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Abstract

In the course of proving a tenability result about the probabilities of
conditionals, van Fraassen (1976) introduced a semantics for condition-
als based on ω-sequences of worlds, which amounts to a particularly
simple special case of ordering semantics for conditionals. On that se-
mantics, ‘If p, then q’ is true at anω-sequence just in case q is true at the
first tail of the sequence where p is true (if such a tail exists). This ap-
proach has become increasingly popular in recent years. However, its
logic has never been explored. We axiomatize the logic of ω-sequence
semantics, showing that it is the result of adding two new axioms to
Stalnaker’s logic C2: one, Flattening, which is prima facie attractive,
and, and a second, Sequentiality, which is complex and difficult to as-
sess, but, we argue, likely invalid. But we also show that when sequence
semantics is generalized from ω-sequences to arbitrary (transfinite) or-
dinal sequences, the result is a more attractive logic that adds only
Flattening to C2. We also explore the logics of a few other interest-
ing restrictions of ordinal sequence semantics. Finally, we address the
question of whether sequence semantics is motivated by probabilistic
considerations, answering, pace van Fraassen, in the negative.

1 Introduction

Stalnaker’s (1968) ‘A theory of conditionals’ launched the modern study of
the conditional with a semantics for natural-language conditionals and a de-
scription of the corresponding logic C2, laying the groundwork for the rich
subsequent literature on conditionals in philosophy, linguistics, and logic.
One subject of lively debate in this literature concerns the probabilities of
conditionals. Our topic is the logic corresponding to an intriguing semantics
for conditionals, based on ω-sequences, developed by van Fraassen (1976)
in the course of that debate.

*Thanks to Melissa Fusco, Wesley Holliday, Calum McNamara, Nick Ramsey, and espe-
cially Snow Zhang for invaluable and patient help; as well as audiences at UConn, Stanford
and Berkeley.
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Stalnaker (1970) developed a theory of probability—treated as a prop-
erty of sentences, and equated with “degree of rational belief”—for a lan-
guage with a binary conditional connective > standing for ‘if. . . then’ (on an
indicative interpretation). The theory includes the following characteristic
principle:

Stalnaker’s Thesis: Pr(p > q) = Pr(q | p) (provided the right-hand-
side is defined).1

There is robust empirical motivation for thinking that there is some impor-
tant truth in the vicinity of Stalnaker’s Thesis (see Douven and Verbrugge
2013 and many citations therein). For instance, if David is holding a fair
die, the probability that if he rolls even, then he’ll roll two is intuitively
1/3—equal to the probability that he rolls a two, conditional on rolling even.

Lewis (1976) showed that Stalnaker’s Thesis was in tension with the as-
sumption that we update our credences by conditionalization: in particular,
no non-trivial class of probability functions closed under conditionalization
satisfies Stalnaker’s Thesis for a single interpretation of >. This left it open,
however, that there is some way of co-ordinating different interpretations of
the conditional with different interpretations of ‘probability’—e.g., whether
we are talking about credences before or after some update—in such a way
that Stalnaker’s Thesis always holds within a single context. However, a strik-
ing result in Stalnaker 1974 showed that even this is impossible given the
background logic C2, except in certain trivial cases.

At the same time, however, van Fraassen (1976) showed that models of C2
can be equipped with nontrivial probability functions satisfying a restricted
form of Stalnaker’s Thesis.2 In van Fraassen’s models, the probability func-
tion on non-conditional sentences can be freely specified, and Stalnaker’s
Thesis holds for conditionals whose antecedents do not themselves contain
conditionals.3

Ours is not, however, a paper about the probabilities of conditionals (a
topic we return to only briefly, in §7), but rather about the construction which
van Fraassen developed in the course of modeling the restricted version of
Stalnaker’s Thesis. In that construction, van Fraassen used a semantics for
conditionals with the following form. Start with a set W of “worlds” and
a valuation that specifies which atomic sentences are true at elements of

1See Stalnaker 1970: p. 75. Like Popper (1959), Stalnaker himself sets things up in such
a way that the right-hand-side is always defined—e.g., Pr(q | p ∧ ¬p) = 1 for all p and q.

2Publication dates in this literature are confusing. To our knowledge, Lewis’s was the
first triviality result. Stalnaker’s 1974 letter was a response to a draft of van Fraassen’s
paper, which, in turn, was a response (in part) to Lewis’s result. Van Fraassen’s published
1976 paper appears to leave open whether his construction validates Stalnaker’s Thesis for
the whole language, a possibility which Stalnaker’s letter rules out; our understanding is
that the published version was in fact the one Stalnaker’s letter was responding to, despite
the later publication date. Thanks to Bas van Fraassen for correspondence about this.

3It also holds for some conditionals whose antecedents do contain conditionals: see §7
for details.
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W. Now consider the set of ω-sequences over W: that is, functions from the
natural numbers to W. These sequences will serve as indices in a model
for a language containing the conditional connective >. In this model, an
atom is true at a sequence σ = ⟨w0,w1,w2, . . .⟩ just in case it is true at w0

according to the old valuation. The clauses for negation and conjunction
are classical. Finally, a conditional p > q is true at a sequence σ just in
case either σ has a tail at which p is true, and q is true at the first such
tail, or σ has no tail at which p is true (the tails of ⟨w0,w1,w2,w3,w4 . . .⟩ are
⟨w0,w1,w2,w3,w4 . . .⟩, ⟨w1,w2,w3,w4 . . .⟩, ⟨w2,w3,w4, . . .⟩, and so on).

Sequence semantics has become increasingly popular in recent years.4

But, surprisingly, some basic questions about the semantics have never been
answered, including what its logic is. The goal of this paper is to axiomatize
the logic of ω-sequence models, as well as some interesting generalizations
and restrictions of that approach that base the same semantics on differ-
ent classes of ordinal sequences (that is, functions from arbitrary ordinals,
possibly larger or smaller than ω, to an underlying set).

We have a few motivations for this project. One is its intrinsic inter-
est: ω-sequence semantics is an intriguing, and in some ways very simple,
semantics for conditionals. So we should understand it, and part of under-
standing the semantics is knowing the logic it gives rise to. Besides being of
intrinsic interest, this will help us assess the viability of sequence semantics
for modeling conditionals in natural language.5

A final motivation comes from particularities of the logic that arises from
sequence semantics. As we will show, sequence semantics can be viewed as a
special case of Stalnaker’s semantics for conditionals—a special case which,
it turns out, strictly strengthens Stalnaker’s logic C2. This is of special interest
to both authors, who believe that all the principles of C2 are plausible as far
as natural language conditionals go.

This is a controversial position. The commitment of C2 to the validity of
Conditional Excluded Middle (CEM) has historically been rather unpopular,
due to influential criticism by Lewis. In fact, essentially every commitment
of C2 has been rejected somewhere in the subsequent literature. However,
our commitment to the correctness of a logic at least as strong as C2 makes us
particularly interested in strengthenings of C2. (We will not do anything here
to defend C2, but see Dorr and Hawthorne 2022 for extensive discussion.)

To our knowledge, however, no logics which are stronger than C2 but
weaker than Materialism have ever been explored. Materialism is the logic
which collapses the natural language conditional p > q to the material con-
ditional p → q, that is, the logic which simply adds to classical logic the
principle (p > q) ↔ (p → q). There exist powerful arguments against this
equivalence (Edgington 1995). Famously, however, Dale (1974), Dale (1979),

4See e.g. Kaufmann 2009; 2015; Bacon 2015; Schultheis 2022; Santorio 2021; Goldstein
and Santorio 2021; Khoo 2022.

5See Holliday and Icard 2018 on the methodological importance of axiomatization in
semantics.
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Gibbard (1981), and McGee (1985) showed that the gap between C2 and Ma-
terialism is surprisingly small: in particular, it is fully closed by the Import-
Export principle (which we discuss in §4.1). To our knowledge, no logics
residing in the gap bewteen C2 and Materialism have ever been studied,
perhaps because of these famous results. But will turn out that the logic of
ω-sequences is strictly intermediate between C2 and Materialism. In fact,
in the course of exposition, we will explore two such logics: we will show
that the logic of ω-sequences is the logic we call C2.FS, comprising C2 plus
every instance of the following two axiom schemas.

(p > ((p ∧ q) > r))↔ ((p ∧ q) > r)Flattening
□(p→ (¬p > r)) ∧ □(q→ (¬q > r))

→ ((p ∨ q)→ (¬(p ∨ q) > r))
Sequentiality

where □p is defined as ¬p > p. We will argue that Flattening is at least prima
facie appealing for conditionals in natural language, while Sequentiality
is, at best, too complex to reasonably assess, and, at worst, invalid. This
suggests thatω-sequence semantics is not a strong contender for a logic of the
natural language conditional. But we will show that the logic of a semantics
based on ordinal sequences in general, rather than just ω-sequences, is the
more attractive logic comprising C2 together with just Flattening. We will
explore the logics of a few other interesting restrictions of ordinal sequence
semantics, and, finally, argue that, pace van Fraassen, sequence semantics
cannot be motivated by indirect considerations about the probabilities of
conditionals.

2 C2 and its semantics

We will begin with some important background, reviewing Stalnaker’s
(1968) conditional logic C2, and a class of models corresponding to that
logic. (Cognoscenti may wish to skip to the next section.)

The language of C2 and all the logics we will be considering is a standard
propositional languageL equipped with a binary conditional connective >.
So, where At = {p0, p1, . . .} is a countably infinite set of atomic sentences:6

p ::= pk ∈ At | ¬p | (p ∧ p) | (p > p)

We use→,↔, and ∨ as abbreviations for the material conditional, material
biconditional, and disjunction defined as usual. For brevity, we sometimes
use a compact notation for negation and conjunction applied to atoms and
metavariables: p for ¬p and pq for (p∧q) (thus ¬pq is ¬(p∧q)). We also some-
times omit parentheses: where we do, the order of operations is negation,

6Stalnaker and Thomason (1970) extend C2 to a language with quantifiers, but here we
are concerned only with the propositional fragment from Stalnaker 1968.
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then >, then∧ and∨, and finally→ and↔, so for instance p > q→ ¬r > s∧ t
is to be read as (p > q)→ ((¬r > s) ∧ t).7

C2 is the closure of the following set of axiom schemas:8

Every theorem of classical propositional logicPC
p > pIdentity
(p > q) ∧ (q > p) ∧ (p > r)→ q > rReciprocity
p > q→ (p→ q)MP
p > q ∨ p > ¬qCEM

under the following two inference rules:

⊢ p→ q and ⊢ p together imply ⊢ qDetachment
⊢ (p ∧ q)→ r implies ⊢ ((s > p) ∧ (s > q))→ s > rNormality

When p is a theorem of C2 we write ⊢C2 p.
Stalnaker’s own axiomatization of C2 is somewhat different, and uses

two further abbreviations, which will be useful in what follows and hence
worth noting here:

□, defined by □p := ¬p > p; and

♢, defined by ♢p := ¬□¬p. 9

Stalnaker then defines C2 with the axioms PC, MP, and Reciprocity plus
four further axioms (the first of which is just the familiar K axiom for □):

□(p→ q)→ (□p→ □q)
□(p→ q)→ p > q
♢p→ (p > q→ ¬(p > ¬q))
p > (q ∨ r)→ (p > q ∨ p > r)

and closing the result under Detachment together with the rule:

⊢ p implies ⊢ □pNecessitation

It is a good exercise to show that these two axiomatizations of C2 are indeed
equivalent. Deriving our axiomatization from Stalnaker’s is easy, using the
definition of □ via >. For the other direction, the key principle to derive is:

MOD □p→ q > p
7The defined unary operators □ and ♢ which we introduce below also take highest

priority.
8Reciprocity is often called CSO, but the source of that name is lost (to us, at least), so

we will use the more mnemonic name.
9♢p could equivalently be defined as ¬(p > ¬p).
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Stalnaker’s axiomatization brings out the fact that there is a sense in
which C2 contains (though is not reducible to) a modal logic. The modal
logic KT is the logic containing every instance of the PC and K schemas as
above, along with the further axiom schema:

T □p→ p

closed under the rules of Necessitation and Detachment. We will show below
that the theorems of C2 expressible using atoms, Boolean connectives, and
□ (that is, the theorems in the modal fragment of L) are exactly the theorems
of KT.

While □ in the formal language is simply a shorthand, one might also
think there are indeed close connections between necessity and condition-
als, in particular between, on the one hand, epistemic modals and indica-
tive conditionals; and, on the other, circumstantial modals and subjunctive
conditionals.10 Such connections would make the modal logics of various
conditional logics especially interesting. Even in the absence of such con-
nections, however, the modal fragments of our conditional logics are well
worth studying on a purely logical basis.

2.1 Order models for C2

There are many model-theoretic semantics for conditional connectives in the
literature, generalizing Kripke’s possible-worlds semantics for modal logic
to conditional languages. Our focus in this paper will be on order models for
conditionals, which were introduced by Lewis (1973) as models for his logic
(which is strictly weaker than C2). Order models turn out to be particularly
intuitive for the study of C2 and its strengthenings. In particular, we can
model C2 with order models where each world is associated with a well-
ordering of worlds. As we will see, sequence models can be naturally viewed
as a special case of well-order models, making it easy to see that their logic
includes C2.

A Kripke model equips a set of possible worlds with a binary accessibility
relation R, representing relative necessity and possibility: p is necessary at
w just in case p is true throughout the worlds accessible from w, which we
write R(w), and p is possible at w just in case p is true somewhere in R(w).
An order model is like a Kripke model but with additional structure: in
addition to a set of worlds R(w), an order model associates each world w
with an ordering <w of R(w). We pronounce u <w v as ‘u is closer to w than v’.
In such a model, assuming there are some closest p-worlds to w, p > q is true
at w just in case all of these worlds are q-worlds. p > q is also (‘vacuously’)
true at w when there aren’t any p-worlds in R(w).11

10See Dorr and Hawthorne 2022 for one defense of such a position.
11In Lewis’s generalization of order models, we also need to say something about the

case where R(w) contains some p-worlds, but for each one of them, there is another that is
closer. However this case will conveniently not arise in the models we deal with.
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Lewis conceived of closeness in terms of similarity: x <w y means that
x is more similar to w than y is (in whatever respects turn out to be rel-
evant). But using order models does not commit us to a similarity-based
interpretation of the order functions, any more than Kripke semantics for
the modal operators commits us to any particular theory of necessity and
possibility. Thus, skeptics of similarity-based approaches to conditionals (a
group in which we include ourselves) have no special reason to object to
the use of order models. Indeed, in modelling strengthenings of C2, we will
need to impose conditions on order models which would be completely
implausible if closeness had to be interpreted as similarity, so insofar as the
strengthenings are well-motivated, they will add to the already strong case
against similarity-based approaches (see §4.1).

In the order models characteristic of C2, each ordering <w is a well-order:
that is, a transitive, connected, asymmetric, well-founded relation on R(w).
This means that we can restate the order semantics for conditionals in terms
of the unique closest antecedent world, if there is one: p > q is true at w just in
case q is true at the first p-world in <w, or there are no p-worlds in R(w). This
uniqueness assumption guarantees that the controversial CEM axiom holds
in the model; logics without CEM (like Lewis’s) can be obtained by relaxing
this assumption. However, we will not further discuss such models in this
paper, so by ‘order model’ we will always mean a well-order model.12

Let us lay this all out more formally, and introduce some standard ter-
minology which will be helpful:

Definition 2.1. An order frame is a pair ⟨W, <⟩, where W is a non-empty set
and < is a function which takes any w ∈ W to a strict total well-order <w on
some subset of W such that whenever x <w y, w = x or w <w x.

12This order semantics for conditionals is equivalent to the semantics based on selection
functions given in Stalnaker 1968. A selection function is a function f which takes a set of
worlds φ and world w and returns a set f (φ,w). We can use a selection function to evaluate
conditionals, by defining Jp > qK to be {w : f (JpK,w) ⊆ JqK}. In the case of interest for C2, f
is required to obey constraints corresponding to MP, Reciprocity, Identity, and CEM:

1. If w ∈ φ, w ∈ f (φ,w)

2. If f (φ,w) ⊆ ψ and f (ψ,w) ⊆ φ, f (φ,w) = f (ψ,w).

3. f (φ,w) ⊆ φ

4. f (φ,w) has cardinality at most 1

Given these constraints, we can move freely between selection functions and order func-
tions. Given a selection function f , we define an isomorphic order function < by saying that
x <w y just in case f ({x, y},w) = {x} and f ({y},w) = {y}. Conversely, given an order function
<, we define an isomorphic selection function f by saying that f (φ,w) is {w} when w ∈ φ;
otherwise the singleton of the first φ-world ordered by <w, if there is one; and otherwise the
empty set. (Reflection on the respective properties of order and selection functions show
that these defined constructions are, indeed, order and selection functions, respectively.) So
there is no deep difference between these two kinds of model. However, order models lend
themselves more naturally to the study of sequence semantics, as we shall see.
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We can read off an accessibility relation from an order frame: the worlds
accessible from w are those that w strictly precedes in the ordering induced
at w, together with w itself:13

R(w) = {w} ∪ {v : w <w v}

As we will see, R plays the same role with respect to the defined □ as acces-
sibility relations usually do in Kripke models. We write x ≤w y whenever
x, y ∈ R(w) and y ≮w x, i.e., whenever either x <w y, or x = y and x ∈ R(w).

Definition 2.2. An order model is an order frame ⟨W, <⟩ together with a
valuation function V : At→ P(W).

Definition 2.3. When ⟨W, <,V⟩ is an order model, its denotation function is
the function J·K⟨W,<,V⟩ : L → P(W) such that for any atom pk and sentences
p, q:

JpkK = V(pk)
J¬pK =W \ JpK

Jp ∧ qK = JpK ∩ JqK
Jp > qK = {w ∈W : R(w) ∩ JpK = ∅ ∨ ∃y ∈ R(w) ∩ Jp ∧ qK : ∀x <w y : x < JpK}

For readability, relativization of J·K· to a model is usually left implicit. As
usual, we can define a pointed order model as a pair of an order model with
a world from its set of worlds, i.e. a pair ⟨w, ⟨W, <,V⟩⟩ such that w ∈ W and
⟨W, <,V⟩ is an order model; when ⟨w, ⟨W, <,V⟩⟩ is a pointed order model,
we say that it is based on ⟨W, <,V⟩. p is true at a pointed order model ⟨w,M⟩
just in case w ∈ JpKM; when the implicit model is clear, we write JpKw = 1
for w ∈ JpK, and JpKw = 0 for w < JpK. When Γ ⊆ L, we can also speak of
Γ being true at a pointed model to mean that all its elements are. We also
write w,M ⊩ p when p is true ⟨w,M⟩; whenM is implicit from the context,
we write simply w ⊩ p. For brevity we sometimes talk about p being true at
every model in a given class; by this we mean true at every pointed model
based on a model in that class. Two pointed models are equivalent just in
case they verify exactly the same sentences of L.

A standard induction on formulae shows:

Theorem 2.4. C2 is sound for order models: that is, ⊢C2 p implies that p is
true in every pointed order model.

We also have a corresponding completeness result: every sentence that is true
in every pointed order model is a theorem of C2. Equivalently, whenever p
is consistent in C2 (that is, ⊬C2 ¬p) it is true in some pointed order model. In
fact, we can show something stronger: C2 is complete with respect to the
class of finite order models:

13Accessibility relations are sometimes specified as independent parameters, but as this
shows, they needn’t be.

8



Theorem 2.5. If p is true in every finite pointed order model, then ⊢C2 p.

The proof of this result, together with all the other completeness theorems
we will claim in this paper, is given in the Appendix.

One corollary is that C2 is decidable. Since every non-theorem is false
in some finite pointed order model, and we can effectively enumerate all
the finite pointed order models (up to isomorphism), we can test for non-
theoremhood by searching through the finite pointed order models until we
find a countermodels; this provides an effective decision-procedure when
run in parallel with a proof search.

This soundness and completeness theorem also allows us to prove our
earlier assertion about the modal fragment of C2:

Theorem 2.6. When p is a sentence in the modal fragment of L, ⊢C2 p iff
⊢KT p.

Proof. We rely on the well-known fact that KT is sound and complete with
respect to modal modals with a reflexive accessibility relation.

⇒ Normality for > gives the K axiom for □, and MP for > gives T for □.

⇐ Suppose we have a modal model W with a reflexive accessibility rela-
tion R; we can extend this to an order model that respects R by fixing
a strict well-ordering < on W, and for x , y, let x <w y iff wRx and
wRy and either x = w, or x , w and y , w and x < y. If ⊢C2 p then by
soundness p is true in every order model, and hence in every reflexive
modal model, and so by completeness of KT, ⊢KT p.

□

2.2 The failure of strong completeness

Theorem 2.5 is about individual sentences: it is equivalent to the claim that
whenever p is consistent in C2 (meaning that ¬p is not a theorem of C2), p
is true in some pointed order model. This kind of result is sometimes called
a weak completeness theorem. By contrast, a strong completeness theorem
would say that for every set of sentences that is consistent in a certain logic,
there is a model based on a frame in the relevant class in which every sentence
in that set is true. We define consistency for sets of sentences as usual: Γ is
consistent relative to ⊢ when there is no finite conjunction p of elements of
Γ such that ⊢ p→ ⊥, where ⊥ abbreviates p0 ∧ ¬p0. Somewhat surprisingly,
we do not have a strong completeness theorem analogous to Theorem 2.5.14

Theorem 2.7. There are C2-consistent sets Γ ⊆ L which are not true in any
pointed order model.

14We do not know of any explicit discussion of this point in the literature. But see
Kaufmann 2017 for related points.
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Proof. One such Γ is the following:

Γ = {¬((pi ∨ pi+1) > pi) | i ∈N}

Suppose all the members of Γ were true in some pointed order model
⟨w, ⟨W, <,V⟩⟩. Consider the set of worlds φ which verify some atom in this
model, i.e., φ =

⋃
i V(pi). We must have φ ∩ R(w) , ∅, for otherwise the

elements of Γ would all be false at w (e.g., if p1 and p2 are nowhere true in
R(w), then (p1 ∨ p2) > p1 is vacuously true at w). Since <w is a well-order, φ
must have a least element x in <w. Some atom pk is true at x, by definition of
φ. Now consider (pk ∨ pk+1) > pk. This is true at w, since the first world in <w

where pk ∨ pk+1 is true must be x (since x is the first world in <w where any
atom is true), where pk is true. Hence its negation is false at w, contrary to
the assumption that w verifies all the elements of Γ.

Nevertheless, Γ is consistent in C2. If it were not, then by definition,
it would have some inconsistent finite subset. But every non-empty finite
subset ∆ ⊂ Γ is true in a pointed order model, which with soundness shows
that every finite subset of Γ is consistent. To see this, let pk be the atom with
the highest index of any atom which appears in ∆. Consider any set U with
k + 1 members, which we label w0,w1, . . .wk. ∆ is true at the pointed order
model ⟨wk, ⟨U, <,V⟩⟩, where < is any order function with wn <wk wn−1 : n ≤ k,
and V any valuation such that V(pi) = {wi} for i ≤ k. □

The same reasoning shows that no extension of C2 in which Γ remains
consistent is strongly complete for any class of order models.

It is possible, however, to formulate a notion of a “general” order frame,
and hence order model, relative to which we do have strong completeness
(cf. Segerberg 1989). The idea is to add to our frames an extra “propo-
sitional domain” parameter—a set of subsets of worlds, representing the
allowable denotations for sentences—and only require that our orders are
well-founded relative to the elements of that parameter, rather than relative
to all subsets of

In more detail, let a generalized order frame be a triple ⟨W,B, <⟩, where
W is any non-empty set; < is a function which takes any w ∈ W to a total
linear order <w on a subset of W, such that whenever <w orders any element
of φ ∈ B, φ has a first element in <w; and B is a set of subsets of W, closed
under the set-theoretic operations corresponding to ∧,¬, and > in order
semantics (relative to <). A generalized order model is a generalized order
frame ⟨W,B, <⟩ equipped with a valuation V : At→ B. The definition of J·K
that worked for order models still works in generalized models, and yields
a function from L to B. C2 is sound and strongly complete with respect
to generalized order models; completeness can be shown with a standard
canonical model construction. (To model a set of sentences like Γwhich is not
true in any order model, we need only consider a generalized order model
in which the setφ of worlds that verify some atom is not in the propositional
domain, and does not have a minimal element in <w.)
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A generalized order frame is full ifB = ℘(W); full generalized frames are
equivalent to order frames.15

Presumably because of facts along these lines, Segerberg (1989) writes
that ‘in modal logic it seems quite natural to restrict one’s interest—at least
initially—to full frames. In conditional logic, studied in the present vein, this
is not so.’ Nevertheless, our interest in this paper will be primarily in full
order frames, since our main goal is to identify the logics of various kinds
of sequence models, which (as we will shortly see) can be viewed as special
cases of (full) order models.

3 Omega-sequence Semantics

With this set-up in hand, we are now in a position to give a more rigorous
presentation of van Fraassen’s (1976) ω-sequence models. We will present
these models in a way which brings out the fact that these are in fact a
special case of order models. This will let us show immediately that the
logic of ω-sequence models is at least as strong as C2.

First, we will introduce some general terminology for talking about se-
quences. Although for van Fraassen’s models the sequences of interest are
ω-sequences, which can be understood as functions from the natural num-
bers to an underlying set, for the sake of later generalizations we will con-
sider these as a special case of “ordinal sequences”, whose domain can be
any arbitrary ordinal.

Definition 3.1. Given a non-empty set P and an ordinal α, an α-sequence over
P is a function σ : α→ P. A function is an ordinal sequence just in case it is an
α-sequence for some ordinal α.

When σ is an α-sequence and β < α, we write σβ for the value of σ at β,
that is, σ(β). When β ≤ α, we write σ[β:] for the βth tail of σ, i.e., the length
α − β sequence ⟨σβ, σβ+1, σβ+2, . . .⟩.

When τ is a tail of σ, the rank of τ in σ is the least β such that τ = σ[β:].

Any set of ordinal sequences can be endowed with an order function in a
natural way:

15The selection function models described in Footnote 12 can be “generalized” in an
analogous way to order models. In a generalized order model, the selection function f is
only defined for on pairs w, φ where φ belongs to the propositional domain; as with order
models, we also require the propositional domain to be closed under all the operations on
sets corresponding to the semantic clauses.

In both generalized order models and generalized selection models, elements of the
propositional domain that happen not to be denoted by any sentence in L are logically
irrelevant: restricting the propositional domain of a model to the sets that are in fact denoted
by sentences of L (in the original model) will not change the truth value of any sentence at
any world. This is worth noting because it brings us back to the kind of models developed
by Stalnaker and Thomason (Stalnaker 1968; Stalnaker and Thomason 1970) in which the
selection functions are defined not on pairs of worlds and sets of worlds, but for pairs of
worlds and sentences. Given the constraints they place on such selection functions, such
models are equivalent to generalized order models as we have defined them here.
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Definition 3.2. The tail order function ≺S on any set S of sequences has τ ≺S
σ ρ

iff τ and ρ are tails of σ and the rank of τ in σ is less than the rank of ρ in σ.

Definition 3.3. An order frame ⟨W, <⟩ is anω-sequence frame iffW is a set ofω-
sequences on some underlying set P (which we call the “protoworlds”); W is
closed under tailhood (that is, if it contains σ then it contains every non-empty
tail of σ); and < is the tail order function ≺W as in Definition 3.2. A [pointed]
ω-sequence model is a [pointed] order model based on an ω-sequence frame.

For brevity, we write ⟨σ,W,V⟩ for the pointedω-sequence model ⟨σ, ⟨W,≺W,V⟩⟩,
since the tail order function supervenes on W. For even more brevity we
sometimes will simply specify a sequence and a valuation ⟨σ,V⟩; in that
case, W is (implicitly) the set of all and only σ’s non-empty tails.

It should be clear how this notion of model, together with the semantics
given above for our language, is equivalent to the (more standard) presenta-
tion of van Fraassen’s models we gave in the introduction: on this semantics,
p > q is true at a sequence σ just in case σ has a tail at which p is true and q is
true at the first such tail, or else σ doesn’t have any tails at which p is true.

Van Fraassen’s models have two further particular properties: they are
full and categorical:

Definition 3.4. An ω-sequence frame ⟨W,≺W
⟩ is full when W is the set of all

and only ω-sequences over some non-empty P.

Definition 3.5. An ω-sequence frame ⟨W,≺W
⟩ is categorical iff σ ∈ V(pk) iff

ρ ∈ V(pk) whenever σ(0) = ρ(0).

As we will see, however, these two restrictions on models are logically
immaterial.

Van Fraassen called the members of the underlying set P ‘worlds’. We
call them ‘protoworlds’ to avoid confusion—after all it is not elements of P,
but sequences over P, that play the standard model-theoretic role of worlds
in assigning truth values to sentences. The choice to call them “worlds”
might go along with a metaphysically ambitious take on the significance
of the models, on which the contrast between subsets of W that do not di-
vide sequences with the same first element and the rest is taken to model a
non-model-relative contrast between “factual”/“objective”/“heavyweight”
questions on the one hand and “non-factual”/“subjective”/“lightweight”
questions on the other, with categorical (conditional-free) propositions de-
pending only on the answers to the former kind of question, and conditionals
depending non-trivially on the latter kind of questions. The former ques-
tions might be supposed to be settled by how things are, whereas the latter are
in some sense mere expressions of the way we think, or artifacts of the way
we talk (see Khoo 2022 for a recent picture along these lines). A proponent of
this metaphysical distinction might think of “worlds” as things that merely
answer all factual questions; in that case, ‘world’ will seem a good name for
elements of P, since, given van Fraassen’s assumptions, a single element of
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P is enough to determine the extension of any conditional-free sentences.
But we will set aside these questions of metaphysical interpretation here,
since they are irrelevant to our logical concerns: even if you hold the contrast
between categorical and conditional to be metaphysically chimerical, you
could still accept the logic of sequence models; conversely, you could reject
that logic while still maintaining that there is an important metaphysical
distinction between the categorical and conditional.

3.1 Some variations on ω-sequence models

In the previous section we introduced both ω-sequence models and the
more specific class of full, categorical models. Prima facie, since not every
ω-sequence model is a full and categorical model, one might expect that
some sentences that hold in all full and categorical models do not hold in all
ω-sequence models. But it turns out that this is not the case: the restriction
to full and categorical models makes no difference to the logic. To see why
this is the case, the following fact will be useful:

Fact 3.6. Pointed ω-sequence models ⟨σ,W,V⟩ and ⟨τ,W′,V′⟩ are equivalent
(that is, verify the same sentences ofL) whenever σ[ j:]

∈ V(pk) iff τ[ j:]
∈ V′(pk)

for all j, k ∈N.

The proof is a routine induction on the length of formulae. The intuition is
that all that matters in assessing the truth of a sentence at the distinguished
sequence in a pointed ω-sequence model is how the tails of that sequence
are valued; just as the actual identity of worlds doesn’t matter in Kripke se-
mantics, likewise the actual identity of sequences doesn’t matter in sequence
semantics.

As an immediate consequence of Fact 3.6, we have:

Fact 3.7. Any pointed ω-sequence model M = ⟨σ,W,V⟩ is equivalent to
the pointed ω-sequence model Mω = ⟨N⃗,Ω,V′⟩ where N⃗ is the sequence
⟨0, 1, 2, 3 . . .⟩ of the natural numbers in their standard order, Ω is the set of
non-empty tails of N⃗, and N⃗[ j:]

∈ V′(pk) iff σ[ j:]
∈ V(pk).

We can think ofMω as a kind of minimal representation ofM. Its underlying
frame is obviously isomorphic to the order frame with domainN in which
j <i k iff i ≤ j < k. Thus the logic of the class of all ω-sequence frames is
the same as the logic of ⟨Ω,≺Ω⟩ which is also the same as the logic of the
singleton of that order frame.

From Fact 3.7 a number of interesting invariance facts immediately fol-
low. First, we can extend any pointed ω-sequence model to a full pointed
ω-sequence model in which W includes all ω-sequences over P, extending
the valuation to the new sequences however we please, without making any
difference to what’s true in the model. The logic of full ω-sequence frames
is thus the same as the logic of all ω-sequence frames. From the other end,
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we can prune any pointed ω-sequence frame back to the generated frame in
which W is just the set of all non-empty tails of the designated sequence
without making a difference to what’s true in the model. Thus the logic of
generated ω-sequence frames is also the same as the logic of all ω-sequence
frames.

We can also use Fact 3.7 to show that requiring categoricity makes no
difference to the logic. For however a pointed ω-sequence model M may
violate this requirement, the categoricity requirement is automatically sat-
isfied in that model’s minimal representation Mω, since the sequences in
Mω never share an initial element. It follows that the logics of categorical
ω-sequence models, full categorical models, full models, and ω-sequence
models are identical.

We can also use Fact 3.7 to identify some further conditions which we
could, if we wished, impose onω-sequence models without making a differ-
ence to the logic. In our models, we allow the domain to include eventually
cyclic sequences some of whose tails are identical: for instance, ⟨1, 2, 1, 2, . . .⟩
is the first, third, fifth, . . . tail of ⟨3, 1, 2, 1, 2, . . .⟩.16 However, it would not
matter if we ruled out eventually cyclic sequences, since none of the se-
quences in the minimal representation are eventually repeating.17 For the
same reason, it would make no difference if we ruled out all repetition of
protoworlds within a sequence, so that (e.g.) we cannot have a sequence
beginning ⟨1, 2, 1, . . .⟩.

With all this in hand, it is worth noting from the opposite direction that
some approaches which bear a close resemblance to ω-sequence semantics
have logics that are very different from the logics we consider, and indeed
are orthogonal to C2, rather than strengthening C2. Two noteworthy re-
cent examples are the approach of Bacon (2015), who develops a version
of sequence semantics which gives up Reciprocity; and that of Goldstein
and Santorio (2021), which marries finite sequence semantics with the do-
main semantics from Yalcin (2007). We will set aside these approaches, as
well as other variants whose logic is orthogonal to C2, focusing instead on
semantics corresponding to logics that extend C2.

4 Flattening

We are now in a position to begin answering our main question: what is the
logic of ω-sequence models?

Since we were able to present ω-sequence models as a special case of
order models, it is immediate from the soundness of C2 with respect to
order models that the logic ofω-sequence models includes C2. But it includes

16A sequence σ is eventually cyclic iff for some n and m, for all j : σ[n+ jm:] = σ[n:].
17It turns out that we also get the same logic if we require the sequences to be eventually

cyclic. This follows from our completeness theorem for C2.FS, which works by generating
models all of whose sequences are eventually cyclic.
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more as well. For an especially obvious example of how it goes beyond C2,
consider the following modal schema:

4 □p→ □□p

As is well known, 4 is valid on a modal frame just in case its accessibility
relation is transitive. It is consequently valid on ω-sequence frames: τ is
accessible from σ just in case τ is a tail of σ, and any tail of a tail of σ is a tail
of σ. But 4 is not part of C2, whose frames need not be transitive; again, the
modal logic of C2 is KT, which does not include 4.

Another modal schema that is not part of C2 is

H (♢p ∧ ♢q)→ (♢(p ∧ ♢q) ∨ ♢(q ∧ ♢p))

H is valid on a modal frame just in case it’s connected: whenever wRv and
wRu, either vRu or uRv. The accessibility relations of ω-sequence frames are
connected: if τ andρ are distinct tails ofσ, whichever of them has greater rank
is a tail of the other and hence accessible from it. But H is not part of C2 or
of even of C2 extended with the 4 axiom, since order frames with transitive
accessibility relations need not have connected accessibility relations.

In addition to 4 and H, the logic of ω-sequence frames also includes
schemas which essentially involve the conditional. We will discuss two
such schemas, which together yield an axiomatization of the the logic of
ω-sequences models. In this section, we begin with the following:

Flattening p > (pq > r)↔ pq > r

Let C2.F be the result of adding Flattening to C2 (i.e., the smallest extension
of C2 including every instance of Flattening and closed under Detachment
and Normality).

It is easy to see that Flattening is valid on ω-sequence frames. The right-
hand side is false at a sequence just in case it has a pq-tail and r is false at its
first pq-tail. The left-hand side is false just in case it has a p-tail with a pq-tail,
and r is false at the first such pq-tail. But any sequence with a pq-tail thus
has a p-tail, and in any sequence with a pq-tail, its first pq-tail is identical to
the first pq-tail of its first p-tail. So the two sides of Flattening have the same
truth-value in any pointed ω-sequence model.

Indeed, to foreshadow a bit, note that this reasoning depends just on the
structure of the tailhood relation, not on the ordinal structure ofω-sequences.
That means that Flattening is valid on sequence semantics whatever the do-
main of the underlying sequence. Indeed, we will see that C2.F is the logic of
ordinal sequence semantics—a variant of ω-sequence semantics where the
underlying sequences can take any ordinal as their domain—whereas the
logic of ω-sequences is strictly stronger than C2.F.

On the other hand, there are pointed order models in which instances of
Flattening are false, such as in the model in Figure 1.
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1 2p 3pq

2p 4pqr

3pq

4pqr

Figure 1: A countermodel to Flattening. Each horizontal line represents the order
induced at the left-most (shaded) world, with a world appearing to the left of
another just in case the first precedes the second in the relevant ordering, so, e.g.,
<3 is the empty order, while <2 is the order {⟨2, 4⟩}. Subscripts indicate atomic
valuations. Thus 1 ⊮ pq > r while 1 ⊩ p > (pq > r). For a counterexample to the
opposite direction of the Flattening biconditional, make r true at 3 but false at 4.

It is worth noting a few alternative axiomatizations of this logic. First,
Flattening is equivalent to the corresponding schema using the strong con-
ditional connective ≫, defined by p ≫ q := ¬(p > ¬q)) (or equivalently,
p≫ q := ♢p ∧ (p > q)):

≫-Flattening p≫ (pq≫ r)↔ pq≫ r

≫-Flattening can be obtained from Flattening by replacing r in Flattening
with¬r and negating both sides. Conversely,≫-Flattening entails that pq > r
and p > (pq > r) are equivalent modulo ♢(pq); but they are also obviously
equivalent when ♢pq is false, in which case they are both trivially true.

Second, we can obviously break up Flattening into its two directions

p > (pq > r)→ pq > rCautious Importation
(pq > r)→ p > (pq > r)Cautious Exportation

We can also give names to the special cases of these principles where r is a
contradiction ⊥. These can be written using ♢ as

p > ¬♢pq→ ¬♢pqCrashing Cautious Importation
¬♢pq→ p > ¬♢pqCrashing Cautious Exportation

It turns out that given either one of Cautious Importation and Cautious
Exportation, we only need the ‘Crashing’ restriction of the other to get back
the full strength of Flattening. For example, to derive Cautious Exportation
from Cautious Importation plus Crashing Cautious Exportation, suppose
pq > r. If ¬♢pq, then p > ¬♢pq and hence p > (pq > r). Otherwise, ¬(pq > ¬r),
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so by Cautious Importation ¬(p > (pq > ¬r)), so by CEM p > ¬(pq > ¬r), so
by CEM and Normality, p > (pq > r). The other derivation is analogous.

Third, it is often convenient (especially in working with natural language
examples) to use “rule” forms of these axioms, where the conjunction pq is
replaced by any q for which we have ⊢ q → p. For example, we can also
characterise C2.F as the result of closing C2 under the following rule:

Flattening Rule If ⊢ q→ p then ⊢ p > (q > r)↔ q > r

This implies Flattening since ⊢ pq → p, and follows from Flattening by
the substitution of logical equivalents (since ⊢ q → p entails that that q is
logically equivalent to pq).

C2.F turns out to include many—though not all—of the distinctive prin-
ciples that hold inω-sequence models but not all order models. For example,
it includes both the modal axioms 4 and H. 4 is actually equivalent to Crash-
ing Cautious Exportation, as we can see by applying the rule form of that
axiom to the C2-theorem ¬p→ ¬□p to get

¬♢¬p→ ¬□p > ¬♢¬p

which simplifies to□p→ □□p. For H, we use Crashing Cautious Importation
(in rule form, applied to the tautology p→ (p ∨ q)) to get:

(p ∨ q) > ¬♢p→ ¬♢p

Contraposing and applying CEM, this implies ♢p→ (p∨ q) > ♢p. By parallel
reasoning we also have ♢q→ (p ∨ q) > ♢q, and hence by Normality

♢p ∧ ♢q→ (p ∨ q) > (♢p ∧ ♢q)

But CEM, Normality, and Reciprocity together yield the entailment from
(p ∨ q) > r to p > r ∨ q > r; applying this to the above, we have:

♢p ∧ ♢q→ (p > (♢p ∧ ♢q)) ∨ (q > (♢p ∧ ♢q))

Since ♢p and p > q entail ♢(p ∧ q) in C2, this implies the H axiom:

♢p ∧ ♢q→ ♢(p ∧ ♢q) ∨ ♢(q ∧ ♢p)

4.1 Evaluating Flattening

As we mentioned above, one way to interpret order models is as representing
relative similarity between worlds. From the point of view of that interpre-
tation, it is no accident that Flattening fails in those models: Flattening is in
clear tension with that interpretation of order models.

Schematically, similarity-based theories of the conditional predict Flat-
tening can fail because the most similar pq-world(s) to actuality need not be
the most similar pq-world(s) to the p-world(s) most similar to actuality. For
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a simple concrete example of this, consider a variation on a toy example of
Lewis’s involving a line L. Lewis’s similarity-based intuition was that, given
a world w where L has length n, if x and y are otherwise exactly alike, except
that in x the length of L is closer to n than it is in y, then x is more similar to
w than y is. Now suppose that L is in fact 10 inches long, and compare (1a)
and (1b):

(1) a. If L hadn’t been strictly between 8–11 inches, then if it hadn’t
been strictly between 8–13 inches, it would have been 13 inches.

b. If L hadn’t been strictly between 8–13 inches, then it would have
been 13 inches.

(1a) and (1b) instantiate the two conditionals in Flattening (in the rule-based
formulation from the last section) since not being strictly between 8–13
inches entails not being strictly between 8–11 inches. But, if we interpret
conditionals via similarity, in particular with Lewis’s simple assumption
above, then (1a) should be true while (1b) is false. The world x most similar
to actuality where the line isn’t strictly between 8 and 11 inches is one where
it’s 11 inches. The world y most similar to x where the line isn’t strictly
between 8–13 inches is one where it’s 13 inches. So (1a) is true. By contrast,
the world most like actuality where the line isn’t between 8 and 13 inches is
one where it’s 8 inches, so (1b) is false. (For a counterexample in the opposite
direction, change ‘it would have been 13 inches’ to ‘it would have been 8
inches’.)

Is this counterexample convincing? We find it difficult to hear a clear
divergence between (1a) and (1b), except by doggedly holding in mind the
Lewisian interpretation of ‘if p. . . ’ as a proxy for ‘in the world most similar to
actuality where p is true. . . ’. Of course, a defender of a similarity-based view
could claim that we simply fail to clearly see a contrast which does exist here.
But they would need a story about why we make an error here, whereas
we have clear intuitions about many other subtle judgments recorded in
the literature on conditionals. Barring such a theory, the apparent validity
of Flattening might provide a new argument in the battery of well-known
arguments against similarity theories of conditionals.

Setting aside the baggage of similarity, we can try to evaluate Flattening
on its own terms, by considering pairs of sentences that would be logically
equivalent according to Flattening and seeing whether they in fact seem
equivalent. It seems to us that the results of this exercise speak in favor of
Flattening. For instance, compare these pairs:

(2) a. If Mark and Sue are at the party, there will be a conflagration.
b. If Mark is at the party, then if Mark and Sue are at the party, there

will be a conflagration.

(3) a. If he had gotten an espresso and it had been overextracted, he
would have had a fit.
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b. If he had gotten an espresso, then if he had gotten an espresso
and it had been overextracted, he would have had a fit.

These feel pairwise equivalent. At best, the (b)-variants feel redundant; the
first antecedent feels like it’s doing nothing. This is not explained by order
semantics, according to which the two variants have logically orthogonal
meanings. But this intuition is explained (given standard theories of redun-
dancy) if Flattening is valid, since then the (b)-variants are equivalent to
their consequents.

By relying on the rule form of Flattening, we can formulate test pairs that
feel somewhat less clunky:

(4) a. If he had gotten an espresso and it had been overextracted, he
would have had a fit.

b. If he had gotten an espresso, then he would have had a fit if he’d
gotten an overextracted one.

(5) a. If he had been in the south of France, he’d have had a great time.
b. If he had been in France, he’d have had a great time if he had

been in the south of France.

Again, these feel pairwise equivalent. We have checked many instances of
Flattening, in both the indicative and subjunctive mood, and have not found
clear counterexamples.

To be sure, there are superficial counterexamples to Flattening involving
tense and anaphora:

(6) a. If John wins, then if John and Sue win, John will have won twice.
b. If John and Sue win, John will have won twice.

(7) a. If a man came in, then if a man came in and a man came in, then
three men came in.

b. If a man came in and a man came in, then three men came in.

But it seems implausible that these are counterexamples to Flattening, and
more plausible that the felt inequivalence in these pairs arises from different
indexing of tense/anaphora in the two pairs. This is a somewhat delicate
issue, involving questions about the representation of context-sensitivity
that are beyond our scope. But it is worth noting that if we accept these
as counterexamples to Flattening, then we also have to accept that there
are counterexamples to the very widely accepted ‘Contraction’ principle
p > (p > q)↔ p > q. For the following also feel pairwise inequivalent:

(8) a. If a man came in, then if a man came in, then two men came in.
b. If a man came in, then two men came in.

Thus Flattening seems, from the point of view of natural language, in at
least as good prima facie standing as Contraction (a theorem of C2 as well as
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many weaker logics of conditionals, though one that must notoriously be
rejected by non-classical logicians attempting to maintain a naïve theory of
truth). This is a strong position to be in.

However, there are reasons for caution about taking these appearances at
face value. Flattening is a “cautious” cousin of the well-known Import-Export
axiom schema:

Import-Export (IE) p > (q > r)↔ pq > r

The only difference between Flattening and Import-Export is that, in Flatten-
ing, p recurs in the antecedent of the conditional consequent on the left-hand
side, so we have p > (pq > r), rather than p > (q > r) as in IE. From a logical
point of view, this small difference is crucial, for, as Dale (1974), Dale (1979),
and Gibbard (1981), showed, adding IE to C2 (or, indeed, to many weaker
conditional logics) collapses > to the material conditional, that is, results in
a logic that validates:

Materialism p > q↔ (p→ q)

Materialism is, however, widely rejected in the literature on conditionals, as
we noted above; see Edgington 1995 for many arguments against it. For a
brief argument, consider the claim that no tree is deciduous if it keeps its
leaves through the winter. According to materialism this entails that every
tree keeps its leaves through the winter, since the negation of p → q entails
p. But this is obviously wrong.

However, Flattening does not have the same suspect logical status: we
have already seen that it is valid in ω-sequence models; but Materialism is
not. For instance, in theω-sequence model generated from σ = ⟨1, 2, 1, 2, . . .⟩,
where p is false at σ and true at ⟨2, 1, 2, 1, . . .⟩, while q is false at both se-
quences, the material implication p → q is true at σ while the conditional
p > q is false. Nor does Flattening lead to any other troubling form of trivi-
ality, as ω-sequence models show. Moreover, at least one error theory of the
apparent validity of IE precisely relies, in part, on the validity of Flatten-
ing (Mandelkern 2024). So validating Flattening may turn out to be a key
stepping stone towards explaining the apparent validity of IE.

A final relevant observation is that there are compelling counterexamples
to IE in the case of subjunctive conditionals: e.g. the sentences in (9) can
intuitively diverge in meaning (Etlin 2008).

(9) a. If the match had lit and it had been soaked in water, then it would
have lit.

b. If the match had lit, then it would have lit if it had been soaked
in water.

A standard desideratum in the theory of conditionals is to give a unified
theory of indicative and subjunctive conditionals: there is one word ‘if’
which can express both conditionals, depending on the mood of the rest of
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the sentence. So we have positive reason not to validate IE as a matter of
the logic of ‘if’, and instead to explain its apparent validity for indicatives,
and lack thereof for subjunctives, as arising from the interaction of the
meaning of ‘if’ with mood. But matters are different for Flattening, which
appears valid for both indicatives and subjunctives. The pairs which look
like counterexamples to IE for subjunctive conditionals still look equivalent
when we change them to instantiate Flattening:

(10) a. If the match had lit and it had been soaked in water, then it
would have lit.

b. If the match had lit, then it would have lit if it had been soaked
in water and it had lit.

In sum, despite their superficial similarity, Flattening and IE have very differ-
ent statuses vis-à-vis the theory of conditionals, and reasonable arguments
against validating IE, and instead giving some kind of error theory to explain
its apparent validity, do not extend to Flattening.

Stepping back, we think the relationship of Flattening to Import-Export
is reminiscent of the relationship of the following pairs of principles:

(p > q) ∧ (pq > r)→ (p > r)Cautious Transitivity
(p > q) ∧ (q > r)→ (p > r)Transitivity

(p > qr)→ (pr > q)Cautious Monotonicity
(p > q)→ (pr > q)Monotonicity

The “incautious” principles Transitivity and Monotonicity are widely re-
jected (Stalnaker 1968); and, just as for Import-Export, adding either of them
to C2 results in Materialism. By contrast, the “cautious” principles are widely
accepted, and are theorems of C2 and of many other popular conditional
logics. In this light, we might naturally regard Flattening as a plausible
cautious cousin of the implausible, incautious Import-Export principle.

Nevertheless, we do not want to suggest that the case for the validity of
Flattening is anything like watertight. The strongest reason we see to worry
about involves the fact that, as already noted, it implies the 4 and H princi-
ples for the □ defined in terms of >. This is a potential warning sign, since
there are well known arguments against the 4 principle for many seemingly
relevant interpretations of □, and many of these arguments also extend to
the H principle. Williamson (2000) and Dorr, Goodman, and Hawthorne
(2014) argue against 4 on an interpretation where □means ‘a is in a position
to know that. . . ’. This suggests that 4 might also fail for the epistemic ‘must’
if its meaning is related to that of ‘know’; and the arguments can also be
adapted to directly use epistemic ‘must’. Insofar as the □ defined in terms
of > interpreted as an indicative conditional is equivalent to, or otherwise
intimately connected to, the epistemic modal, these considerations may also
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threaten the 4 axiom for that □. Meanwhile, when we turn to the notion
of nomic necessity—which might be thought to be identical to the defined
□ on some counterfactual interpretations of >—we find influential forms
of Humeanism which motivate rejection of at least H and perhaps also 4.
On the ‘best system’ theory of laws (Lewis 1994), being a nomic necessity
is being entailed by whatever collection of true axioms achieves the best
balance of simplicity and strength. On this picture, there could be a complex
world where there are two jointly inconsistent simple propositions both of
which are false but nomically possible, and (because of their simplicity)
such that necessarily, if they are true, they are nomically necessary. This is
inconsistent with the connectedness of nomic accessibility, and thus with H.
(It is also arguable that Humeans should reject 4 for nomic necessity, though
we will not go into that here.) While it is not so plausible that nomically
necessary truths are counterfactually necessary on every interpretation of
counterfactuals, one might think that there are some salient of interpreta-
tions of counterfactuals that involve “holding the laws fixed” in such a way
that these Humean worries would carry over to 4 and H for the defined □.
There are also potential reasons for doubting both 4 and H for metaphysical
modality, which many take to be equivalent to □ defined in terms of coun-
terfactuals: Salmon (2005) rejects 4 for metaphysical necessity in order to
solve certain puzzles of Tolerance (though see Dorr, Hawthorne, and Yli-
Vakkuri 2021 for an alternative approach to those puzzles which preserves
4); meanwhile Bacon (2020) and Bacon and Dorr (2024) explore versions of
“combinatorialism” on which metaphysical modality would not obey H.18

We will not here undertake to evaluate these arguments against 4 and H
for various familiar interpretations of necessity, or adjudicate the question
to what extent they carry over to the □ defined in terms of ‘if’. If we ac-
cept these arguments (for that defined □), we will have to reject Flattening,
and develop an error theory of its apparent validity. But the appearances
favoring Flattening are quite strong, so the difficulty of this task should not
be underestimated. In any case, we think it’s clear that the logic C2.F has
strong prima facie appeal as (at least part of) the logic of the natural language
conditional.

4.2 The logic C2.F

As we have already asserted, the logic ofω-sequence frames is not exhausted
by C2.F. To see why this is the case, and get some intuition of what is missing,
it will be useful to introduce a different class of order frames with respect to
which C2.F is complete as well as sound, the flat order frames.

Definition 4.1. Order frame ⟨W, <⟩ is
18On these views, we can have propositions p and q—e.g., the results of predicating

two different fundamental properties of some fundamental individual—such that it is
metaphysically possible both that p = q and that p = ¬q. But p = q entails ¬♢(p = ¬q) and
p = ¬q entails ¬♢(p = q), so this violates H.
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Figure 2: Illustrations of a flat order function (left) and a non-flat (because not
semi-flat) order function (right) in frames with worlds {1,2,3,4}.

– semi-flat iff for any x, y, z,w ∈ W, if x <w y and either y ≤w z or z ∈
R(x) \ R(w), then y ≤x z.

– and flat iff it is semi-flat and transitive

Note that in a transitive frame, the case where x <w y and z ∈ R(x) \ R(w)
cannot arise, since x ∈ R(w) guarantees R(x) ⊆ R(w). So an order frame is
flat iff it is transitive and for any x, y, z,w ∈ W : x <w y ≤w z implies y ≤x z.
In other words, a flat order frame is a transitive frame where, whenever x is
accessible from w, <x orders all the worlds that come after x in <w in just the
same way they were ordered in <w. By contrast worlds that came before x in
<w may occur at any position in <x, or not be accessible from x at all. See
Figure 2 for an illustration of a flat and non-flat order frame.

We can show that Flattening is valid on all flat order frames. In fact,
flatness characterizes Flattening, in the sense that the order frames on which
Flattening is valid are exactly the flat ones. Since we already know that
Flattening is equivalent to the combination of Cautious Importation with
Crashing Cautious Exportation, and that the latter is equivalent to 4 (which
is characterized by transitivity), it suffices to prove the following lemma:

Lemma 4.2. Cautious Importation is valid on an order frame ⟨W, <⟩ iff it is
semi-flat.

Proof.

⇒ Suppose x <w y and for some z, either

(a) y ≤w z and y ≰x z; then

· if y < R(x), let V(p) = {x, y},V(q) = {y},V(r) = ∅;
· if y ∈ R(x) and z < R(x), let V(p) = {x, z},V(q) = {z},V(r) = ∅;
· if z <x y, then let V(p) = {x, y, z},V(q) = {y, z},V(r) = {z}.
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(b) or z ∈ R(x) \ R(w) and y ≰x z. Then let V(p) = {x, z, y},V(q) =
{z, y},V(r) = {z}.

⇐ Suppose that ⟨W, <⟩ is semi-flat, and consider any V and w ∈ W such
that w ⊩ p > (pq > r). If there is no pq-world in R(w), or the first p-world
in <w is a pq-world, then w ⊩ pq > rand we are done. Otherwise, let x
be the first p-world in <w and let y be the first pq-world in <w. Since
x <w y, y ∈ R(x), so R(x) contains a pq-world; let u be the first of them
according to <x. We know u ⊩ r so it suffices to show y = u. We cannot
have u <w y since then y would not be the first pq-world in <w. And we
also cannot have y <w u or u < R(w), since in either case semi-flatness
would yield y <x u, so u would not be the first pq-world in <x. The
only remaining possibility is that y = u.

□

Since Flattening is equivalent (modulo C2) to 4 together with Cautious
Importation, Flattening is characterized by flatness:

Theorem 4.3. Flattening is valid on an order frame ⟨W, <⟩ iff ⟨W, <⟩ is flat.

Proof. If ⟨W, <⟩ is flat, then Cautious Importation is valid on it by the lemma,
and by transitivity 4 and hence Crashing Cautious Exportation are also valid
on it, hence Flattening is valid on it. Conversely, if Flattening is valid on the
frame, then Cautious Importation is, so it is semi-flat by the lemma; and
also 4 is, since 4 is equivalent to Crashing Cautious Exportation, so it is
transitive. □

We can also formulate frame conditions that characterize Cautious Ex-
portation and Crashing Cautious Importation; the combination of these
conditions is also equivalent to flatness, since the conjunction of the axioms
is equivalent to Flattening.19

With this characterization result in hand, we can turn to soundness and
completeness results for C2.F. The right-to-left direction of Theorem 4.3 says
that C2.F is sound for flat order frames: that is, all the theorems of C2.F are
valid on every flat order frame. However, completeness is another matter: a
characterization result like Theorem 4.3 does not entail a completeness result.
Abstractly, a characterization result for a logic L against a background class
of frames F specifies the subset FL of F such that for all F ∈ F , F ∈ FL iff L
is valid on F. However, it is possible that L is not complete with respect to
FL, when there is some sentence p which is valid on every F ∈ FL but is not
a theorem of L: i.e., when the set FL is “too small” to find a countermodel to
every non-theorem of L.

19Cautious Exportation is valid on ⟨W, <⟩ iff it is transitive and for all w, x, y, z, if x <w y <w
z and z ∈ R(x), then y <x z. Crashing Cautious Importation is valid on ⟨W, <⟩ iff whenever
x <w y, y ∈ R(x).
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And indeed, it is well known that there are normal modal logics which
are not complete with respect to the class of modal frames that characterize
them: in other words, certain formulae that are not theorems of the logic
are nevertheless valid on every Kripke frame ( Fine 1974; Thomason 1974;
van Benthem 1978; see Holliday and Litak 2019 for a helpful recent overview
and discussion). So we cannot simply assume that a characterization result
yields a corresponding completeness result. Moreover, the fact that C2.F,
like many extensions of C2, is not strongly complete for any class of order
frames (as we showed in Theorem 2.7) means that the standard canonical
model method for proving completeness will not work for these logics.

With all that said, we do in fact have a completeness result for C2.F: in
the appendix, we show that C2.F is (weakly) complete for flat order frames.
Indeed, we show that it is complete for finite such frames:

Theorem 4.4. C2.F is weakly complete with respect to finite flat order
frames.

Because of its restriction to finite frames (and the fact that flatness is a
decidable property of finite frames), this result has the corollary that C2.F
is decidable.

One noteworthy corollary of the soundness direction of Theorem 4.3 is
that the two modal schemas 4 and H we mentioned in §4 in fact exhaust the
purely modal content of C2.F. Here are the two axioms again:

□p→ □□p4
(♢p ∧ ♢q)→ (♢(p ∧ ♢q) ∨ ♢(q ∧ ♢p))H

The modal logic that adds these two axiom schemas to KT is called S4.3, and
it is sound and complete (indeed strongly complete) for modal frames with
a reflexive, transitive, and connected accessibility relation. It is also weakly
complete for finite such frames (Bull 1966), which we use to show:

Theorem 4.5. When p belongs to the modal fragment of L, ⊢C2.F p iff ⊢S4.3 p.

Proof. We already established the right-to-left direction in section §4.20 For
the left-to-right direction, suppose p is false in a finite reflexive, transitive,
and connected model v, ⟨W,R,V⟩. Then (by a standard induction, relying on
the transitivity of R) p is also false in the generated submodel v, ⟨R(v),Rv,Vv⟩,
where Rv and Vv are respectively R and V restricted to R(v). Next we give
a recipe to transform v, ⟨R(v),Rv,Vv⟩ into an equivalent flat order model
v, ⟨R(v), <,Vv⟩, yielding a flat order model where p is also false.

To construct <, choose a strict linear order ≺ on R(v) such that x ≺ y
implies xRy. Then set x <w y iff x , y and either

20By the completeness theorem 4.4, we can also give a simple model-theoretic proof: it is
easy to see that every flat order model has an accessibility relation that is reflexive, transitive,
and connected; thus if p is true in every reflexive transitive connected modal model, it is
also true in every flat order model, and thus a theorem of C2.F by completeness.
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Figure 3: A flat order model which is not equivalent to any ω-sequence model,
verifying (a)–(c) but not (d).

– x = w and wRy; or

– wRx, x ≺ y, and y , w.

The result obviously agrees with Rv (since, when wRx and x ≺ y, xRy by our
construction of ≺ and hence wRy by transitivity). It is obviously irreflexive.
It is well-founded by the finitude of R(v). Transitivity of <w follows from
the transitivity of ≺. And it is connected: when w ∈ R(v): for any distinct
x, y ∈ R(w), if x = w or y = w then x <w y or y <w x respectively; otherwise by
the totality of≺ either x ≺ y or y ≺ x and hence x <w y or y <w x, respectively.

This order function is also semi-flat: if x <w y and either y ≤w z or
z ∈ R(x) \ R(w), then y ≤x z. Since R is transitive, we may ignore the second
case, so we must show that if x <w y ≤w z then y ≤x z. If x = w this holds
trivially. If x , w and y = z, we just need to show that y ∈ R(x); but since we
have x <w y and x , w, we have x ≺ y and hence xRy. If x , w and y , z,
we must show y <x z. The truth of x <w y and y <w z implies that y , w and
y , x and z , w and z , y, and so x ≺ y and y ≺ z, hence x ≺ z and so z , x.
And xRy, since x <w y.

□

A corollary of this result is that C2.F cannot be axiomatized by adding any
purely modal principles (such as 4 or H) to C2. For it is easy to see that
there are non-flat order frames that are reflexive, transitive and connected:
the non-flat frame in Figure 2 is an example. Such frames do not validate all
of C2.F, but do validate all its purely modal theorems.

5 Sequentiality

C2.F does not include all the sentences that are valid on all ω-sequence
frames. To see this, we can appeal to the fact that C2.F is sound for flat order
frames (the right-to-left direction of Theorem 4.3). Consider the flat order
model in Figure 3. It is easy to see that (a)–(c) are true at 1 while (d) is false
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at 1:

(a) □(p→ (¬p > r))
(b) □(q→ (¬q > r))
(c) p ∨ q
(d) ¬(p ∨ q) > r

But in anyω-sequence model where (a)–(c) are true, (d) must be true as well.
Suppose for contradiction that (a)–(c) are true at σ but (d) is false there. Then
σ has a first ¬(p ∨ q)-tail, at which r is false; let n be the rank of that tail.
Since (c) is true at σ, n cannot be 0, so σ[n−1:] exists. Either p or q is true at
σ[n−1:]. If p is, then σ[n:] is the first ¬p-tail of σ[n−1:], so ¬p > r is false at σ[n−1:],
contradicting (a). Similarly, if q is true at σ[n−1:], σ[n:] is the first¬q tail of σ[n−1:],
so ¬q > r is false at σ[n−1:], contradicting (b).

Thus the following axiom schema, which says that (d) follows from (a)–
(c), is valid on ω-sequence models:

Sequentiality □(p→ (¬p > r))∧□(q→ (¬q > r))→ ((p∨q)→ (¬(p∨q) > r))

Let C2.FS be the result of adding Sequentiality to C2.F (i.e., the smallest
extension of C2.F including every instance of Sequentiality and closed under
Detachment and Normality). We have just shown that C2.FS is sound for
ω-sequence frames; we will presently see that it is also complete for them.

Note that that given the validity of the 4 axiom in C2.F, the necessitation
of Sequentiality is equivalent to the following variant version which turns
the final material conditional into a strict conditional:

□(p→ (¬p > r)) ∧ □(q→ (¬q > r))→ □((p ∨ q)→ (¬(p ∨ q) > r))

This principle (which hence gives an equivalent axiomatization of C2.F)
shows that Sequentiality can be seen as saying that a certain property of
propositions—the property of being a proposition p such that □(p → (¬p >
r))—is closed under finite disjunction.

Since Sequentiality will play an important role in what follows, it is
instructive to consider a special case of it, namely where r is simply the
disjunction p∨ q. Given our definition of □ and Normality, this is equivalent
to the following:

Restricted Sequentiality
□(p→ (¬p > q)) ∧ □(q→ (¬q > p))→ ((p ∨ q)→ □(p ∨ q))

Surprisingly, Restricted Sequentiality turns out to be equivalent to the full
strength Sequentiality schema against the background of C2.F: see Ap-
pendix G for a proof. Restricted Sequentiality can be false in flat models
for the same reason as Sequentiality: in fact since r is necessarily equivalent
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to p ∨ q in the model from Figure 3, this model also demonstrates the inva-
lidity of Restricted Sequentiality in C2.F. Meanwhile, seeing why Restricted
Sequentiality holds in ω-sequence models is perhaps even easier than Se-
quentiality itself. For suppose the antecedent and p ∨ q are both true at σ;
without loss of generality, we may suppose that p is true at σ. Then as we
pop worlds off σ one at a time, if we ever reach a tail where p is false, q will
have to be true there; as we continue popping, if we ever reach a tail where
q is false, p will have to be true there, and so on. Since all the tails of σ will
eventually be reached in this process, either p or q (or both) is true at all of
them, meaning that □(p ∨ q) is true at σ.

5.1 Ancestral order models

To better understand what property ofω-sequence models is responsible for
the validity of Sequentiality, we can characterize the class of order frames
on which C2.FS is valid. In the reasoning we just gave explaining why Se-
quentiality is valid overω-sequence frames, the only fact about these frames
(apart from their flatness) that we relied on is that every sequence accessible
from a given sequence can be reached from it in finitely many steps, where
at each step we go from a sequence to its first tail (or, equivalently, that
every tail of a sequence has an immediate predecessor). In other words, the
key property of ω-sequence frames, which (together with flatness) explains
why they validate Sequentiality, is their ancestrality, where this is defined as
follows:

Definition 5.1. Given an order frame ⟨W, <⟩:

– The successor of w, succ(w), is w if R(w) = {w}, and otherwise the first
world after w in <w.

– x is reachable from w iffw is related to x by the ancestral of the successor
relation.

– Finally, the frame is ancestral iff every world accessible from any given
world is also reachable from that world.

It is easy to see that every ω-sequence frame is ancestral as well as flat. And
while of course not every flat ancestral order frame is an ω-sequence frame,
we can show every flat ancestral frame is isomorphic to an ω-sequence
frame, so the logic of ω-sequence frames is the logic of flat ancestral frames.

To construct an ω-sequence frame isomorphic to a given flat ancestral
frame ⟨W, <⟩, we will replace each world in W with its successor-sequence,
defined as follows:

Definition 5.2. In an order frame ⟨W, <⟩, the successor-sequence αw of w is the
ω-sequence starting with w where each element after the first is the successor
of the previous element.
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The set {αw | w ∈ W} is obviously closed under tailhood, and thus is an
ω-sequence frame. A few examples should give an intuitive sense for why,
when ⟨W, <⟩ is flat and ancestral, the function mapping each world to its
successor-sequence is an isomorphism from the starting frame to the corre-
sponding ω-sequence frame. Consider the frame ⟨{1, 2, 3}, <2

⟩ illustrated in
the center of Figure 4: replacing each member with its successor-sequence
yields an ω-sequence frame comprising the three sequences ⟨1, 2, 3, 3, 3 . . .⟩,
⟨2, 3, 3, 3, 3 . . .⟩,⟨3, 3, 3 . . .⟩, which is indeed isomorphic to the one we started
with. Likewise, if we start with the frame ⟨{1, 2, 3}, <3

⟩ on the right of Figure 4,
we get the isomorphic ω-sequence frame with sequences ⟨1, 2, 3, 1, 2, 3 . . .⟩,
⟨2, 3, 1, 2, 3, 1 . . .⟩, ⟨3, 1, 2, 3, 1, 2 . . .⟩.

By contrast, this procedure won’t work if we start with a non-ancestral
order frame. To get a feel for why not, consider the flat but non-ancestral
order frame <1 in Figure 4. The successor-sequence of 1 in this order frame
is ⟨1, 2, 1, 2 . . .⟩, since 1 and 2 are each other’s successors. The successor
sequence of 3 is ⟨3, 3, 3, 3 . . .⟩, since 3 is its own successor. α3 is hence not
accessible from (i.e., not a tail of)α1, even though 3 is accessible from 1. Hence
the sequence frame constructed this way is not isomorphic to the starting
frame under the successor sequence function. More generally, whenever v
is accessible but not reachable from w, αv will not be accessible from αw.

To show that flat ancestral frames are always isomorphic to the cor-
responding successor-sequence frame, consider any flat ancestral frame
F = ⟨W, <⟩ and w ∈ W. First we show that u ∈ R(w) iff αu ∈ R(αw). The
fact that F is ancestral means that every world accessible from w is reachable
from it. And the fact that F is flat, and hence transitive, means every world
reachable from w is accessible from it. So u ∈ R(w) just in case u is reachable
from w. But now note that, likewise, αu is a tail of αw iff u is reachable from
w: if u is reachable from w, u will appear in αw, and the truncation of αw at u
is obviously αu; and if u is not reachable from w, u will never appear in αw,
but αu always begins with u.

Now we need to show that x <w y iff αx ≺αw αy, i.e., iff the first occurrence
of x in αw precedes the first occurrence of y in αw. To show this, the following
definition will be helpful:

– When x is in αw, the rank of x from w is the least n such that x is the nth
element of αw.

Hence we must show that x <w y iff the rank of x from w is smaller than the
rank of y from w:

⇒ Suppose x <w y. If x = w, then the claim holds trivially since the rank
of x from w is 0. If x , w, then (by flatness) x also precedes y according
to w’s successor, and so on until we reach x; since x cannot precede y
according to <y, that means that as we take successor steps from w, we
must reach x before we reach y.
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Figure 4: Illustrations of a flat but not ancestral frame <1, and two ancestral
frames <2, <3. In <1 there is no way to get from 1 to 3 by taking successor
steps, since you end up stuck in a loop between 1 and 2.

⇐ Suppose for contradiction that x ≮w y although the rank of x from w is
less than the rank of y from w. Then by connectedness we must have
y <w x. But by flatness, for any u , y, if y <u x, we have y <succ(u) x. So
reasoning inductively, we have y <u x for every u that appears in αw

before y, and in particular y <x x, which is ruled out by the definition
of order model.

This isomorphism result both shows the interest of, and puts us in a
position to prove, the following characterization result:

Theorem 5.3. C2.FS is valid on an order frame iff it is flat and ancestral.

Proof. Given Theorem 4.3, it suffices to show that a flat order frame validates
every instance of Sequentiality iff it is also ancestral.

⇒ Suppose ⟨W, <⟩ is flat but not ancestral, so for some w, v, w can access
but not reach v. Set p true at exactly the worlds whose rank from w is
even, q true at exactly the worlds whose rank from w is odd, and r true
at exactly the worlds reachable from w. Then:

◦ w verifies □(p→ ¬p > r). Consider any p-world y accessible from
w; by our choice of valuation, y is reachable from w. There must be
a world reachable from y which has odd rank and hence verifies
¬p. There are two options.

· y is not the highest-ranked world reachable from w, so y’s
successor is also the next world in αw and hence has odd
rank.
· y is the highest-ranked world reachable from w. Since v is

accessible but unreachable from w, v is accessible but un-
reachable from y, so y has a successor u other than itself. u’s
rank from w is strictly less than y’s, and hence must be able
to reach a world t with odd rank from w, which must hence
be reachable from y.
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Hence y can reach a¬p-world; but obviously any world reachable
from y is reachable from w, and hence (by our choice of valuation)
verifies r; and, by flatness, all worlds reachable from y precede in
<y any worlds unreachable from w, so that y verifies ¬p > r.

◦ w verifies □(q→ ¬q > r), by parallel reasoning.

◦ w verifies p ∨ q, since w verifies p

◦ w falsifies ¬(p∨ q) > r, since the first accessible ¬(p∨ q) worlds in
<w are not reachable from w and hence, by our choice of valuation,
falsify r.

⇐ Suppose ⟨W, <⟩ is flat and ancestral. Then it is isomorphic to the corre-
sponding successor sequence frame, and we have already shown that
every sequence frame validates Sequentiality. □

Since we showed above that an order frame is isomorphic to an ω-
sequence frame if it is flat and ancestral, Theorem 5.3 implies that any order
frame which is not flat and ancestral is not isomorphic to an ω-sequence
frame. So a corollary is that an order frame validates C2.FS iff it is isomorphic
to an ω-sequence frame.21

Turning to soundness and completeness: the right-to-left direction of
Theorem 5.3 is equivalent to the claim that C2.FS is sound for ω-sequence
frames. As we emphasized in the discussion before Theorem 4.4, charac-
terization results do not always yield corresponding completeness results.
However, once more, our characterization result does indeed point the way
towards a completeness result. In Appendix D, we prove a stronger claim
which implies that C2.FS is complete for ω-sequence frames:

Theorem 5.4. C2.FS is complete for finite ω-sequence frames.

This immediately implies:

Theorem 5.5. C2.FS is complete for finite flat ancestral order frames.

As before, the restriction to finite frames (and the fact that the question
whether a finite order frame is flat and ancestral is decidable) gives us the
decidability of C2.FS as a corollary.

One noteworthy application of these results is that they let us exactly pin
down the purely modal fragment of C2.FS. The modal logic S4.3.1 is the
result of adding every instance of Dum to S4.3:

(Dum) □(□(p→ □p)→ p)→ (♢□p→ p)

21Another corollary of this result is that C2.FS is sound over frames ⟨W,≺⟩ where W is
a set of ω-sequences not necessarily closed under tailhood; such frames are obviously still flat
and ancestral, and hence by this result validate C2.FS. This shows that the assumption
that ω-sequence frames are closed under tailhood, while convenient in our discussion and
faithful to van Fraassen’s exposition, is logically irrelevant.
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S4.3.1 is sound and (weakly) complete for the singleton of the Kripke frame
⟨N,≤⟩ (Segerberg 1970). We saw in §3.1 that every pointedω-sequence model
is equivalent to a pointed model based on the frame whose worlds are N
with the order function j <i k whenever i ≤ j < k. But this order function
corresponds to the accessibility relation ≤. Hence a modal sentence is true in
some ω-sequence model iff it is true in some model based on ⟨N,≤⟩, which
with our soundness and completeness results yields:

Theorem 5.6. When p is a modal sentence, ⊢C2.FS p iff ⊢S4.3.1 p.

5.2 Evaluating Sequentiality

As with Flattening, we’d like to know whether Sequentiality is in fact valid
for the natural language conditional connective. Here we will tentatively
argue it is not, highlighting some methodological difficulties as we go.

We’ll focus on Restricted Sequentiality, repeated below, which, recall, is
equivalent, modulo C2.F, to Sequentiality:

Restricted Sequentiality
□(p→ (¬p > q)) ∧ □(q→ (¬q > p))→ ((p ∨ q)→ □(p ∨ q))

To assess an axiom schema like this, the standard methodology would
be to find sentences of natural language that instantiate the schema under
a plausible translation, and assess whether they strike reflective speakers as
valid. But this is difficult to do in the present case. There are two options.
We could unpack the □’s in Restricted Sequentiality into the left-nested con-
ditionals that they abbreviate, and then consider corresponding translations
into natural language. However, humans generally struggle to evaluate com-
plex left-nested conditionals, and indeed, in this particular case, the resulting
sentences of English are little more than word salad.

The other option is to try to find natural language expressions that ex-
press the target □ defined out of >. But it is controversial whether there
are words of natural language that express this □. Even if there are, there
is plausibly context-sensitivity both in the interpretation of ‘if’ and in the
interpretation of natural language necessity modals. To assess Restricted
Sequentiality, we must find a natural language modal that is interpreted
throughout the particular context of our counterexample in the target way.

There are various options to try. Here is an attempt using the adverbial
phrase ‘in every case’ as our necessity operator, which at least makes for a
readable example. In particular, we gloss □(p → q) as ‘in every case where
p, q’.

(11) The Sequential Assassin’s Guild (SAG) comprises two seasoned assassins,
p and q. They have a strict back-up policy in place: whenever p kills someone,
they make sure that q would otherwise have carried out the assassination,
and vice versa. The SAG is deciding whether to kill Nero, and will flip a
fair coin to determine whether they in fact do so. Consider:
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a. In every case where p kills Nero, if p hadn’t done it, q would
have. □(p→ (¬p > q))

b. In every case where q kills Nero, if q hadn’t done it, p would
have. □(q→ (¬q > p))

c. p or q will kill Nero. p ∨ q
d. In every case, p or q kills Nero. □(p ∨ q)

Given SAG’s iron-clad back-up policies, we can be certain of (11a) and (11b).
(11c) has .5 chance: it will be true just in case the fair coin lands heads. But
(11d) is certainly false, since killing Nero is a contingent matter: the coin flip
could come up either way.

But observe that (11a)–(11c) together entail (11d) via Restricted Sequen-
tiality, so if Restricted Sequentiality were valid, we could not rationally be
sure of (11a) and (11b), assign credence .5 to (11c), and assign credence less
than .5 to (11d). Hence if ‘in every case’ and ‘if’ are coordinated in the right
way (so that ‘in every case, p’ is true iff ‘if not p, then p’ is true), and have the
same interpretations throughout (11), then Restricted Sequentiality is not
valid.

Similar cases are easy to multiply (we encourage readers to experiment
with other modal phrases to capture the target notion of necessity).22

However, it is hard to be sure that the interpretation of ‘in every case’
is univocally tied to ‘if’ in the right way throughout (11). An alternative
hypothesis is that, in (11a) and (11b), we interpret ‘in every case’ so that
Nero being killed is a necessity, given that he in fact is killed (since, had the
person who killed him not done it, the other one would have), while in (11d)
we have a more expansive notion of necessity in mind. It is difficult to rule
out this possibility.

So, while (Restricted) Sequentiality has apparent counterexamples in nat-
ural language, there is plenty of room to resist them. However, it is hard to
see how a clear argument could be formulated for the validity of Sequen-
tiality in natural language. And in general, considerations of parsimony
suggest that there is no reason to adopt a logic that validates principles for
which we lack a positive case. There are countless logical principles that are
too complex for humans to assess; no one would advocate simply adopting
them all on the grounds that there is no clear case against them.

Given the difficulties of asessing Sequentiality directly, it is natural to
wonder whether there might be an axiomatization of C2.FS which is easier
to assess. While we cannot rule this out, we can rule out one possibility. As
we have seen, part of what makes Sequentiality especially hard to assess is
the left-nested conditionals (or, equivalently, □’s) that it contains. Could we
axiomatize C2.FS without left-nesting? The answer is no: for in the fragment

22An interesting question is whether conditional mood matters in these cases. One ob-
stacle to assessing Sequentiality for indicatives is that material conditionals with the form
p → ¬p > q—or the corresponding disjunctions ¬p ∨ ¬p > q—are generally infelicitous
when > is indicative, making the premises difficult to assess.
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of our language without left-nesting, the logic of ω-sequence models is in
fact C2.F. More carefully:

Definition 5.7. The Boolean language LB is the standard language of propo-
sitional logic:

q ::= pk ∈ At | ¬q | (q ∧ q)

The Boolean-antecedent languageLBA is the language which adds conditionals
to LB exactly when the antecedent is conditional-free

p ::= pk ∈ At | ¬p | (p ∧ p) | (q > p) : q ∈ LB

Theorem 5.8. When p ∈ LBA, ⊢C2.F p iff ⊢C2.FS p.

Theorem 5.8 is proved in Appendix F, and shows that the difficulties for
evaluating Sequentiality which we have just encountered are ineliminable:
the characterization of C2.FS essentially involves left-nested conditionals
(or their abbreviation in terms of the defined □).

A different, less linguistic argument against Sequentiality turns on the
observation that, given the characterization result above, any world in any
model for C2.FS can access at most countably many worlds under the
accessibility relation relevant to the □ defined out of >. If that interpretation
of □ is taken seriously as a model of metaphysical or epistemic modality, or
indeed any ordinary interpretation of natural language necessity modals,
then this limitation to countable infinity seems implausible. Clearly, a dart
can be thrown in such a way that it could hit any point on a dartboard, in any
relevant sense of ‘could’ (epistemic, metaphysical, circumstantial); but there
are uncountably many points on a dartboard. This limitation to countable
accessible worlds isn’t an artifact of the model theory: in a suitably rich
object language (for example, higher order logic), one could simply prove
that the only points that could have been hit are the one that would have
been hit if the actual one hadn’t been, the one that would have been hit if
that one hadn’t been either, and so on, up to at most countably many.

Together with the natural language argument given above, and the
methodological case against adopting complex logical principles that lack a
positive motivation, this constitutes at least a prima facie case that Sequen-
tiality is an undesirable artifact ofω-sequence semantics—unlike Flattening,
which is at least prima facie attractive.

6 Ordinal sequence frames

It is prima facie surprising that a semantics as apparently natural as ω-
sequence semantics should give rise to such a peculiar logic as C2.FS, espe-
cially when the first step towards our axiomatization, namely the addition
of Flattening to C2, is on the face of it much more compelling.

On reflection, however, the class of ω-sequence frames is restricted in a
somewhat arbitrary way: namely, to sequences of lengthω. There is a natural
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generalization of this approach which bases the same kind of semantics on
arbitrary ordinal sequences, which turns out to be sound and complete for
C2.F rather than C2.FS.

Definition 6.1. An ordinal sequence frame is an order frame ⟨W,≺W
⟩where W

is a set of (possibly transfinite, possibly finite) sequences, and ≺W is the tail
order function on W.

Theorem 6.2. C2.F is sound and weakly complete for ordinal sequence
models, and in fact, for ordinal sequence models which are finite, closed
under non-empty tailhood, and in which every sequence has length less
than ωω.

For soundness, it suffices to show that all ordinal sequence models are flat,
which is just as for the case of ω-sequences. The completeness result is
proved in Appendix C. In fact, it is by showing the completeness of C2.F
for ordinal sequence models (and appealing to the fact that these models
are flat) that we prove Theorem 4.4 (the completeness of C2.F for flat order
models).

Above we showed that flat ancestral order frames are in fact isomorphic
to ω-sequence frames. This means that not only do these give rise to the
same set of validities, but also to the same binary consequence relation (i.e.,
the same set of pairs Γ, p such that p is true in every pointed model in the
relevant class where Γ is). This is a substantive fact, since in general, two
classes of model may agree on a set of validities while disagreeing on a
binary consequence relation, in particular for pairs Γ, p where Γ is infinite.
And indeed, it turns out that flat order frames and ordinal sequence frames
do not give rise to the same binary consequence relations.

For an illustration of this, consider the frame in Figure 5, with the domain
is N, with j <i k iff (i) i ≤ j, and j < k or k < i; or (ii) k < j < i. This frame
is not isomorphic to any ordinal sequence frame. And indeed, equipping it
with a valuation that sets each atom pi true at exactly the world i results in
a set of sentences which is not true in any ordinal sequence model.

To get a sense for the obstacle that arises if we try to transform this
frame into an ordinal sequence frame, think about how you would go about
constructing a sequence corresponding to world 0. The natural idea would be
to start with the natural numbers in order, followed by a copy of the natural
numbers in reverse order. The problem, however, is that such a construction
is not a sequence, since there is no ordinal with this order structure.

To make this thought precise, consider the following sets of sentences,
whose union is true at 0 in this frame, given the valuation above:

Γ = {¬((p j ∨ pk) > pk) | j < k}

∆ = {pi > ¬((p j ∨ pk) > p j) | j < i < k}

K = {pi > ¬((p j ∨ pk) > p j) | j < k < i}
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Figure 5: A flat order frame not isomorphic to any ordinal sequence frame.

Λ = {¬♢(pi ∧ p j) | i , j}

Now suppose for contradiction that Γ ∪ ∆ ∪ K ∪ Λ is true at some ordinal
sequence σ. Λ ensures no two atoms are ever true at the same tail of σ. Γ
ensures that some first pi tail precedes some first p j tail, whenever i < j. ∆
ensures that when i < k, between the first pi tail and the first pk tail after
it, there is no p j tail when j < i. So, together, Γ ∪ ∆ ∪ Λ ensure that σ starts
with a stretch of tails verifying just p0, followed by a stretch verifying just
p1, followed by a stretch verifying just p2, and so on (possibly interspersed
with some stretches verifying no atoms at all).

Finally, K ensures that, after the first pi tail of σ, for any j < k < i, there
is a first pk tail before any p j tail; in other words, we have a sequence that
descends towards i of tails that first verify pi−1, then pi−2, then pi−3, and so
on, down to p1 (again, possibly also with stretches verifying no atoms). But
since Γ ∪ ∆ ∪ Λ ensure that σ starts with an ascending sequence, so that the
first p j tail always precedes the first pk tail when j < k, these descending
sequences must come after every atom has appeared at least once. Since the
ordinals are well-founded, there is a least ordinal α such that some atom is
true at σ[α:] and every atom is true at some earlier tail in σ. Let pk be the atom
true at σ[α:]. Then there is no pk+1-tail between the first pk+2-tail and σ[α:], so
the conditional pk+2 > ¬((pk ∨ pk+1) > pk) is false. But this is in K, and so our
assumption that σ verifies all these sentences leads to contradiction.

In combination with our incompleteness result in §2.2 (which we framed
for C2, but which extends immediately to C2.F), this shows that we have
identified at least four, nested notions of consistency for sets of sentences,
corresponding to four kinds of frame we have considered, all of which
correspond to C2.F and agree as regards finite sets: namely, sets which hold
in some finite ordinal sequence or flat order frame;23 sets which hold in some
ordinal sequence frame; sets which hold in some flat order frame; and sets

23Where a set like Γ above is inconsistent.
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which hold in some generalized flat order frame, or, equivalently, from which
no contradiction can be derived in C2.F.

6.1 List frames and successor-ordinal frames

In this section we consider two interesting restrictions of ordinal sequence
semantics: first, to ordinal sequence frames in which all sequences have
finite length; second, to ordinal sequence frames whose sequences all have
a final tail in the domain (in a sense to be specified). The first class is of
obvious interest for reasons of simplicity, and has been discussed in the
recent literature (Khoo and Santorio 2018; Khoo 2022); the second, as we
will see, is related to the first as ordinal sequence frames are to ω-sequence
frames.

Definition 6.3. Given a non-empty set P, a list over P is a sequence over P
whose domain is a finite ordinal.

A list frame is any ordinal sequence frame ⟨W,≺W
⟩ in which W is a set of lists

closed under non-empty tailhood.
The logic of list frames is at least as strong as C2.FS, because any such

frame is isomorphic to anω-sequence frame generated from theω sequences
we obtain by replacing every k-length list with an ω-sequence which agrees
with that list up to k − 1 and then repeats the last world of the list infinitely.
In fact, the logic of lists is strictly stronger than C2.FS: it is the logic which
strengthens C2.FS with every instance of McKinsey:24

McKinsey □♢p→ ♢□p

McKinsey is not valid in ω-sequence frames: for instance, in the ω-sequence
model based on ⟨1, 2, 1, 2, . . .⟩, where p is true at ⟨1, 2, 1, 2, . . .⟩ but false at
⟨2, 1, 2, 1 . . .⟩, □♢p is true at ⟨1, 2, 1, 2, . . .⟩while ♢□p is false there. But McKin-
sey is valid in list frames, since for every list τ and set X of lists containing
τ, τ has a tail in X which has no tails in X other than itself. If □♢p is true at
τ, every tail of τ in X must have some p-tail in X, so the last tail of τ which
is in X must be a p-tail which can only access itself.

Theorem 6.4. Let C2.FSM be C2.FS plus every instance of the McKinsey
axiom schema. C2.FSM is sound and complete with respect to list models.

For completeness, see Appendix E.
The reasoning that shows that McKinsey is sound for list models will

generalize to any ordinal sequence frame where all the sequences have a
final tail in the domain, no matter how long they are. Hence we can validate
McKinsey without also validating Sequentiality. Let a final sequence frame
be an ordinal sequence frame ⟨W,≺W

⟩ such that whenever σ ∈ W, there

24Equivalently, we could add the Grzegorczyk Axiom, □(□(p→ □p)→ p)→ p.
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exists a β such that σ[β:]
∈ W and whenever α ≥ β and σ[α:] is defined and in

W, σ[α:] = σ[β:]. Natural examples are ordinal sequence frames closed under
non-empty tailhood where every sequence’s domain is a successor ordinal
(i.e., an ordinal with a final element), as well as ordinal sequence frames
whose domain includes the empty sequence (which will be a trivial final tail
of every sequence).

Theorem 6.5. Let C2.FM be C2.F plus every instance of the McKinsey axiom
schema. C2.FM is sound and complete with respect to final ordinal sequence
frames.

Completeness is proved in the appendix.
We have now seen four logics which are sound and complete for differ-

ent classes of ordinal sequence models: namely, C2.F, C2.FS, C2.FM, and
C2.FSM. And we have only brushed the surface: for every class of ordinal
sequence models, we can ask whether it corresponds to a logic, potentially
revealing infinitely many new interesting conditional logics. Indeed, Ben-
jamin Przybocki (p.c.) has reported interesting results along these lines on
the axiomatization of classes of ordinal frames in which the length limit is
some ordinal strictly between ω and ωω.

7 Does Stalnaker’s Thesis motivate C2.FS?

Since van Fraassen came up with a class of models that validates both
Flatness and Sequentiality as a byproduct of trying to show the nontriviality
of a restricted version of Stalnaker’s Thesis, one might wonder whether there
is some interesting argument from some version of that Thesis to Flattening
and/or Sequentiality.25

Here is the consistency result van Fraassen proves:

Fact 7.1. Suppose P is a non-empty set, π is a probability measure on P,
π∗ is the induced product measure on Pω, and V is a valuation on the ω-
sequence frame Pω in which the denotations of atoms are in the domain ofπ∗

and never distinguish between sequences with the same first element. Then
π∗(Jp > qK) = π∗(JqK | JpK) whenever π∗(JpK) > 0 and either both p and q are
Boolean (a truth-functional combination of atoms), or one is Boolean and the
other is a zero-degree conditional (a conditional with a Boolean antecedent
and consequent).26

25A more direct kind of probabilistic argument for Flattening would follow from a prob-
abilistic argument for the validity of IE (from which Flattening follows). However, while
McGee (1989) develops a model for the probabilities of conditionals that validate IE, most
have not followed McGee in taking a probabilistic argument for IE seriously, since the
resulting construction requires a non-classical interpretation of conditional probability, as
well as an unusual conditional logic. We are interested here in whether there is a more
conservative probabilistic case for Flattening and/or Sequentiality.

26Here, a probability measure on P is a (countably-additive) probability measure whose
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Using a straightforward generalization of van Fraassen’s proof, we can prove
a stronger result along the same lines:

Fact 7.2. Where P, π, π∗, and V are as in Fact 7.1, π∗(Jp > qK | JrK) = π∗(JqK |
JpK) whenever π∗(JpK) > 0, π∗(JrK | JpK) = 1, and each of p and r is a conjunc-
tion of Booleans and zero-degree conditionals.27

The proof of Fact 7.2 goes through without modification if, instead of the set
of all ω-sequences over P, we consider the set of all α-sequences over P for
any other transfinite ordinal α. From the point of view of the probabilities of
conditionals, all that will matter about the sequences is their firstω elements.
So long as the antecedent p has positive probability and is a conjunction of
Booleans and zero-degree conditionals, the set of all sequences for which p is
true at their nth tail for some finite n has probability 1, so the new distinctions
introduced by allowing transfinite sequences make no difference when it
comes to conditionals with positive-probability antecedents.28

This also shows that getting the above facts will not require models that
strictly validate Flattening—we can easily allow failures of flatness, so long
as they only show up among worlds accessible but not reachable from any
given world w, since this will still let us represent worlds as ordinal se-
quences with an order-function that agrees with the tail-order function as
regards the sequences reachable from any given sequence. This will let us
model van Fraassen’s result consistent with failures of Flattening having
positive probability. Those failures, however, will have to involve condi-
tionals with very strange antecedents (amounting to something equivalent
to the negation of Sequentiality) in order to get us out past the initial ω-
sequence of worlds in the relevant sequences. So it would be interesting to
see if instances of Flattening with Boolean substitution instances play a role
in securing the relevant restriction of Stalnaker’s Thesis, since this might
provide the basis for a simplicity argument for the validity of Flattening.29

domain is some σ-algebra of subsets of P. Given any probability measure on P and any
index set I, there is a natural product measure π∗ on PI. Informally, π∗ treats each i ∈ I
like a fresh draw of a member of P from an urn, with the probabilities on each draw
given by π. More carefully, we say that Y ⊆ PI is a cylinder set iff there is a finite set
X ⊆ I, and a function g : X → P(P), such that g(i) is in the domain of π for all i ∈ X,
and Y = { f ∈ PI

| f (i) ∈ g(i) for all i ∈ X}. The domain of π∗ is defined to be the smallest
σ-algebra of subsets of PI that contains all the cylinder sets. π∗ is the unique probability
function on this σ-algebra such that for any cylinder set Y = { f | f (i) ∈ g(i) for all i ∈ X},
π∗(Y) =

∏
i∈X π(g(i)).

27Dorr and Hawthorne (2022) discuss a range of empirical phenomena that can be ex-
plained by the extra strength that comes from allowing r , ⊤.

28The move to transfinite sequences may however introduce new possibilities if we move
to a theory of primitive conditional probability like Popper’s, or allow for infinitesimal
probabilities.

29Note that in any model with a probability function satisfying Fact 7.2 (or even the
weakening below that requires r and p to be Boolean), the two sides of any instance of
Flattening where p, q are Boolean and pq has positive probability will have to have the same
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Figure 6: The setN<ω of lists of natural numbers, depicted as the domain of a tree.

As it turns out, however, there is variant of van Fraassen’s consistency
result that uses a different kind of model that does not validate Flattening, or
anything beyond C2, that provides something pretty close to Fact 7.2. The
only way in which we weaken Fact 7.2 is that the antecedent p and the back-
ground condition r now both have to be Boolean: we no longer allow zero-
degree conditionals or conjunctions thereof. The idea of the variant result is
to build an order model whose worlds are not sequences of protoworlds, but
infinitely-branching trees of protoworlds—structures that consist of a “root”
protoworld together with a countable infinity of “branches”, each of which
is itself a tree. Figure 6 depicts the structure of such a tree: a particular tree
will attach a protoworld to the root and to every branching point. Formally,
we can identify such trees with functions from lists of natural numbers to
protoworlds:

Definition 7.3. Trees:

– For any set X, X<ω is the set of lists over X.

probability. For π∗(Jp > (pq > r)K) = π∗(Jpq > rK | JpK) = π∗(JrK | JpqK) = π∗(Jpq > rK). One
might see this securing a limited kind of “probabilistic validity” for the two single-premise
inference rules corresponding to the two directions of Flattening. However, there is no
obvious route from Fact 7.2 to the claim that the instances of Flattening have probability
one, even for Boolean p and q. The tree models introduced below show that if we weaken
Fact 7.2 to require p and r to be Boolean, we can have models where instances of Flattening
with Boolean p and q have probability less than one.
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– For a set P, the set of trees over P is PN<ω : i.e., the set of functions from
lists of naturals to members of P.

– When τ is a tree over P, the root of τ is τ(⟨⟩), and the nth branch of τ (for
any n ∈ N) is the tree τ′ such that τ′(α) = τ(⟨n⟩ + α) for any α ∈ N<ω,
where + is sequence concatenation.

– We can define an order function ≺T on any set T of trees analogous to
the tail order function on sequences: ρ ≺T

τ σ iff either ρ = τ and σ is the
nth branch of τ for some n, or ρ , τ and σ , τ and for some n and m,
ρ is the nth branch of τ, and σ is the mth branch of τ, and there is no
k ≤ n such that σ is the kth branch of τ.

– When P is any non-empty set, a tree frame over P is an order model
whose domain W is some set of trees over P, with the tree order function
≺

W as above. A tree model is an order model based on a tree frame.

– Whereπ is a probability measure on P, we denote the product measure
on PN<ω by π†.

Theorem 7.4. The logic of tree models is C2.

Proof sketch. Given a finite order frame ⟨W, <⟩, we generate an isomorphic
tree frame by recursively associating each world w with a tree τw over W,
setting τw(⟨⟩) = w and τw(⟨n⟩ + α) = τv(α), where v is the world n + 1 steps
out from w in <w if there is one, otherwise the last world in <w. Then we can
show that u <w v iff τu ≺τw τv. □

We conjecture moreover that every C2-consistent sentence has nonzero prob-
ability (according to some product measure) in some tree frame. Certainly
we will have tree models where failures of Flattening (even with Boolean
p, q, r) have non-zero probability. For instance, consider three atoms p, q, r
and a tree where p is false at the root and q is false at the first p-branch;
suppose n is the number of that branch. For the p, q, r-instance of Flattening
to be true at such a tree, we would need that the first branch of the nth branch
where pq is true and the first branch of the starting tree where pq is true have
the same valuation for r. But these valuations are fully independent, and so
there is non-zero probability that they differ.

We can now prove our tree-frame analogue of Fact 7.2—exactly the same
except that p and r have to be Boolean (whereas before they could be con-
junctions of Booleans and zero-degree conditionals).

Fact 7.5. Where π is a probability measure on P, π† is the corresponding
product measure on PN<ω , and V is a valuation on the tree frame PN<ω in
which denotations of atoms never distinguish between trees with the same
root, then π†(Jp > qK | JrK) = π†(JqK | JpK) whenever π†(JrK | JpK) = 1 and
both p and r are Boolean.
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Proof. We begin with some definitions which apply to any function space PI

(including PN<ω) and product measure π† on PI derived from a probability
measure π on P. When X ⊆ I and Y ⊆ PI, say that Y supervenes on X iff for
any f , g ∈ PI, if f (i) = g(i) for all i ∈ X, then f ∈ Y iff g ∈ Y. When Y,Z ⊆ PI,
say that Y is orthogonal to Z iff for some X ⊆ I, Y supervenes on X and Z
supervenes on I \ X. When f : I → I and Y ⊆ PI, f ∗(Y) is {g ∈ PI

| g ◦ f ∈ Y}.
Finally, f is measurable iff f ∗(Y) is in the domain of π† whenever Y is. We rely
on two standard facts about product measures:

(i) If Y,Z ⊆ PI are orthogonal and in the domain of π†, π†(Y ∩ Z) =
π†(Y)π†(Z).

(ii) If f : I → I is injective and measurable, and Y ⊆ PI is in the domain of
π, π†( f ∗(Y)) = π†(Y) .

Fix P, π,V, p, q, r such that p and r are Boolean and π†(JrK | JpK) = 1. If π†(JpK |
JrK) = 1, we are done, since π†(Jp > qK | JrK) = π†(Jp ∧ qK | JrK) = π†(JqK | JpK);
so we may assume π†(JpK | JrK) is positive.

Let Y be the set of all trees such that either they have no branch in JpK, or
their first branch in JpK is in JqK. Define two injective functions f , g :N<ω

→

N<ω by f (⟨⟩) = ⟨0⟩, f (⟨n⟩ + α) = ⟨n + 1⟩ + α; g(α) = ⟨0⟩ + α. Lset:

Z B f ∗(Y) i.e., the set of all trees such that either none of
their positive-indexed branches is in JpK, or their
first positive-indexed branch in JpK is in JqK

U B g∗(Jp ∧ qK) i.e., the set of all trees such that p and q are both
true at their zeroth branch

W B g∗(JpK) i.e., the set of all trees such that p is false at their
zeroth branch

Thus Y = U∪ (Z∩W). U and W are disjoint, and Z is orthogonal to W, since
Z supervenes on the set of lists beginning with a positive integer, while W
supervenes on the set of lists beginning with 0. Thus, since g∗ and f ∗ are
measurable, we have by the two facts above:

π†(Y) = π†(U) + π†(Z)π†(W) = π†(Jp ∧ qK) + π†(Y)π†(JpK)

and hence

π†(Y) = π†(Jp ∧ qK)/(1 − π†(JpK)) = π†(JqK | JpK)

This gets us close to what we need. Looking at the definition of Y, we see
that p > q is true at a tree τ iff either p ∧ q is true at τ, or p is false at τ and
τ ∈ Y. That is, Jp > qK = Jp ∧ qK ∪ (Y ∩ JpK). So,

π†(Jp > qK | JrK) = π†(Jp ∧ qK | JrK) + π†(Y ∩ JpK | JrK)

= π†(JqK | Jp ∧ rK)π†(JpK | JrK) + π†(Y | Jp ∧ rK)π†(JpK | JrK)
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But π†(JqK | Jp ∧ rK) = π†(JqK | JpK), since by hypothesis π†(JrK | JpK) = 1.
And Y is orthogonal to Jp ∧ rK (since the latter supervenes on {⟨⟩}, while Y
supervenes on the set of non-empty lists), and thus π†(Y | Jp ∧ rK) = π†(Y),
which is identical to π†(JqK | JpK) by what we showed above. So we have:

π†(Jp > qK | JrK) = π†(JqK | JpK)π†(JpK | JrK) + π†(JqK | JpK)π†(JpK | JrK)

= π†(JqK | JpK)(π†(JpK | JrK) + π†(JpK | JrK))

= π†(JqK | JpK) □

By contrast, tree models (with product measures) do not sustain a version
of Stalnaker’s Thesis that allows zero-degree conditionals in the antecedent.
For example, π†(JpK | Jp > qK) = π†(JpqK)/π†(Jp > qK) = π(JpqK)/π(JqK | JpK) =
π†(JpK). But π†(J(p > q) > pK) can be strictly less than π†(JpK). We omit the
tedious algebraic proof, but to get a sense for why this is, it’s helpful to
compare the situation with the product measure on ω-sequence models. In
that construction, a simple calculation shows that this equality does hold.30

The pq indices and the (p > q) ∧ ¬p indices get the same probability mass in
the two constructions, so we need only compare the ¬(p > q) indices. The
key observation is that the information that the first (p > q)-tail of a sequence
is also a p-tail tells us nothing at all about the tails strictly preceding that one,
beyond what we already knew (that they are all ¬(p > q)-tails). By contrast,
finding out that the first (p > q) branch of a tree is also a p-branch (and
thus a pq branch) tells us that some pq branch must have preceded this one
(since the root verifies ¬(p > q)), whereas if the the first (p > q)-branch is a
¬p-branch, then the first pq branch of the tree can come either before or after
that branch. So there are fewer ¬(p > q)-trees where the first (p > q)-branch
is a p-branch than there are such sequences.

So, the part of the proof of Fact 7.2 that involves antecedents that are
zero-degree conditionals (or conjunctions thereof) turns essentially on the
extra strength of sequence models as opposed to tree models. If one thought
there were good reasons to want a version of Stalnaker’s thesis with the extra
strength of Fact 7.2 over Fact 7.5, that might potentially yield an interesting
argument for the validity of Flattening. But it is not clear that there are
good reasons for wanting this. Note that it is out of the question to have a
version of Fact 7.2 that allows r to be a disjunction of a Boolean and a zero-
degree conditional. Then whenever p and q are Boolean and π(JpqK) > 0, we
would have π(Jp > qK) = π(JqK | JpK) = π(Jp > qK | J(p ∨ (p > q))K), and hence
π(Jp ∨ p > qK) = 1 and π(Jp > qK | p) = 1. This implies that π(JqK | JpK) ≥
1−π(JpK), which cannot hold for all Boolean p and q unless π is trivial.31 And

30π∗(J(p > q) > pK) = π(JpqK) +
∑

n≥0
π(J¬p ∨ ¬qK)nπ(JpqK)π(JpqK) = π(JpqK) +

π(JpqK)π(JpqK)/(1 − π(J¬p ∨ ¬qK)) = π(JpK).
31To specific: it would have to be the case that whenever 0 < π(JpK) < 1/2, every other q is

such that either π(JqK | JpK) = 1 or π(JqK | JpK) = 0. Note that this reasoning did not depend
on any assumptions about the logic of the conditional.
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even if we forget about r (i.e. restrict the claim to the case where r = ⊤), as
Stalnaker showed in his 1974 letter to van Fraassen, we still cannot have the
version of Fact 7.2 in which the antecedent p can be a disjunction of a Boolean
and a zero-degree conditional unless we are willing to give up C2. For in C2
(and indeed in many popular systems weaker than C2), (p ∨ (p > q)) > pq is
equivalent to pq, so π(J(p ∨ (p > q)) > pqK) = π(JpqK) for any π. But so long
as π(JpqK) > 0, the only way we could have π(JpqK) = π(JpqK | Jp ∨ (p > q)K)
would be forπ(Jp ∨ (p > q)K) to be 1, which as we saw above leads to triviality.

Given these limitative results, those of us who (unlike Bacon 2015) are
not willing to give up on C2 will need to have some strategy for explaining
away any prima facie appeal of strong versions of Stalnaker’s Thesis that
apply even to antecedents with the forbidden disjunctive form. Perhaps, for
example, they will appeal to some special factors that influence the reso-
lution of context-sensitivity in such a way that conditionals embedded in
the antecedents of other conditionals tend to be interpreted in some special
way, maybe differently from the conditional in which they are embedded
(cf. Kaufmann 2023). Whatever we end up saying in response to this chal-
lenge, it is a reasonable guess that it will generalize in such a way that it
could also explain away any remaining appeal of Stalnaker’s Thesis for con-
ditionals whose antecedent is a single zero-degree conditional on its own,
or a conjunction of such conditionals and Booleans. It seems unlikely that
the extra strength of Fact 7.2 over Fact 7.5—lying, as it does, in an awkward
terrain strictly between the full strength of unrestricted Stalnaker’s Thesis
and the natural restriction to Boolean antecedents—could form the basis for
a compelling argument for Flattening.

Indeed, as Kaufmann (2023) argues, it is not at all clear that sequence
models make the right predictions even about conditionals with left-nesting
limited to conjunctions of zero-degree conditionals. Suppose you think John
is very likely to go to the party, but dislikes Liam so much that he is very
unlikely to go if Liam is going. Then it seems that you could reasonably think
that it is also quite unlikely that John will go to the party if Liam will go if
John goes. But this runs contrary to the application of Stalnaker’s Thesis in
this case, which, as we saw above, requires (p > q) > p always to have the
same probability as p. So one might even see the validation of Stalnaker’s
Thesis in this case as a drawback of sequence models vis-à-vis tree models.

Evaluating this argument raises tricky questions about context-sensitivity
which we will not try to settle here. Our main conclusion is that it seems
unlikely that apparently unrelated considerations about Stalnaker’s Thesis
could motivate either Flattening or Sequentiality.

8 Conclusion

Setting aside the logics of material and strict conditionals, the study of
classical conditional logic has focused almost exclusively on logics of which
C2 is an extension. But we have seen in this paper that van Fraassen’s models
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point the way to a rich array of conditional logics which properly extend
C2, without collapsing into the material conditional. Although the original
motivation for these models—namely, sustaining a version of Stalnaker’s
Thesis—does little to support the features of the models responsible for
their additional logical strength, the logics they generate are nevertheless
quite interesting. Moreover, at least one of these logics, namely C2.F, enjoys
considerable prima facie plausibility for conditionals in natural language.
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Appendix A Preliminaries

We start with some definitions that we will use throughout this appendix.
We continue to use sequence for any function whose domain (or ‘length’)

is an ordinal, and list for a sequence of finite length.

– ℓ(σ) is the length of σ.

– For α < ℓ(σ), σα is the value of σ on α; so e.g. σ0, σ1, σ2 are the first,
second, and third element of σ.

– For α ≤ ℓ(σ), σ[α:] is the α-tail of σ: that is, σ[α:]β = σα+β for β < ℓ(σ) − α.

– For α ≤ ℓ(σ), σ[:α] is the initial segment of σ of length at most α, i.e. the
restriction of σ to α.

– σ[α:β] is σ[:β][α:]: the length β − α segment of σ that starts at α.

– σ−1, σ−2, . . . are the last, second last, . . . elements ofσ: i.e.,σ−n = σα where
ℓ(σ) = α + n, if such an n exists. (It may not exist, e.g. if the length of σ
is an ordinal like ω that doesn’t have a last element). Similarly, when
ℓ(σ) = α + n, σ[:−n] is σ[:α].

– σ + ρ is the result of concatenating σ with ρ: that is:

(σ + ρ)(α) =


σα when α < ℓ(σ)
ρα−ℓ(σ) when ℓ(σ) ≤ α < ℓ(σ) + ℓ(ρ)
undefined otherwise

– σ :: x is σ + ⟨x⟩.

– ρ is a segment of σ iff ρ = σ[α:β] for some α and β; a tail of σ iff ρ = σ[α:]

for some α; and an initial segment of σ iff ρ = σ[:α] for some α.

Recall some abbreviations for our conditional language:

– p≫ q := ¬(p > ¬q) (which is equivalent in C2 to ♢p ∧ p > q);

– □p := ¬p > p;

– ♢p := ¬□¬p (which is equivalent in C2 to ¬(p > ¬p)).

– ⊥ := p0 ∧ ¬p0

Fix a logic L containing C2; talk of consistency, entailment, equivalence,
and so on throughout the appendix are relative to L (we will make succes-
sively stronger assumptions about L as we go).

For a list of sentences τ, set
∧
τ = τ0

∧ · · · ∧ τ−1 and
∨
τ = τ0

∨ · · · ∨ τ−1,
with

∧
⟨⟩ = ⊤ and

∨
⟨⟩ = ⊥. Fix a standard ordering on the sentences, so we

can extend the use of
∧

and
∨

from lists to finite sets.
Our key tool throughout the appendices will be a function that takes a

list of sentences τ and makes a single sentence τ. We define this recursively:
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Definition A.1. The function · is the function from lists of sentences to
sentences such that:

⟨⟩ B ⊤

τ :: p B

τ ∧ (¬
∨
τ≫ p) if p , ⊥

τ ∧ (¬
∨
τ > p) if p = ⊥

Example A.2. Suppose p, q , ⊥. Then:
1. ⟨p⟩ is ⊤ ∧ (¬⊥ ≫ p), which is C2-equivalent to p.
2. ⟨p, q⟩ is ⟨p⟩ ∧ (¬

∨
⟨p⟩ ≫ q), equivalent to p ∧ (p > q) ∧ ^p.

3. ⟨p, q,⊥⟩ is ⟨p, q⟩∧(¬
∨
⟨p, q⟩ > ⊥), equivalent to p∧(p > q)∧^p∧□(p∨q).

Note that for τ to be consistent, no later element other than ⊥ can entail
any earlier element, since if τ j entailed τk for j < k, (¬

∨
τ[:k]) ≫ τk would be

inconsistent. Also, for τ to be consistent, τ cannot contain any inconsistent
sentences other than ⊥, and if it does include ⊥, every subsequent element
of the list must also be ⊥: if p , ⊥, τ + ⟨⊥, p⟩ is equivalent to τ ∧ ((¬

∨
τ) >

⊥)∧((¬(
∨
τ∨⊥)≫ p), which is inconsistent since the second conjunct entails

¬
∨
τ > ¬p while the last conjunct is equivalent to ¬(¬

∨
τ > ¬p).

The interest of this list-to-sentence operation turns on the following basic
facts.

Lemma A.3. If τk entails pq and every element of τ[:k] entails p, then τ entails
p > q; if moreover τk , ⊥, τ entails p≫ q.

Proof. We use the following ‘Catious Monotonicity’ and ‘Left Logical Equiv-
alence’ properties of any logic including C2:

⊢ (p > qr)→ (pq > r)CMon
⊢ (p≫ qr)→ (pq≫ r)CMon≫

If ⊢ p↔ q then ⊢ (p > r)↔ (q > r)LLE
If ⊢ p↔ q then ⊢ (p≫ r)↔ (q≫ r)LLE≫

For the first part, note that if τk entails pq, then since τ entails ¬
∨
τ[:k] > τk, it

also entails ¬
∨
τ[:k] > pq. So by CMon, it entails ((¬

∨
τ[:k]) ∧ p) > q. But since

every member of τ[:k] entails p, (¬
∨
τ[:k]) ∧ p is equivalent to p. So by LLE, τ

entails p > q. The second part is similar using CMon≫ and LLE≫. □

Lemma A.4. If p is consistent with τ, τ does not end with⊥, and ⊢
∨
τ∨ q1∨

· · · ∨ qn, then either p is consistent with τ :: qi for some qi, or p is consistent
with τ :: ⊥.

Proof. By induction on the length of τ. The claim holds trivially when τ is
⟨⟩, since ⟨qi⟩ is equivalent to qi. For the induction step, we use the following
theorem of C2:

∨-Distribution ⊢ (p > (q1 ∨ · · · ∨ qn))→ ((p > q1) ∨ · · · ∨ (p > qn))
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If ⊢
∨
τ∨q1∨· · ·∨qn, then¬

∨
τ > (q1∨· · ·∨qn) is a theorem, so by Distribution,

p∧τmust be consistent with¬
∨
τ > qi for some qi. If it is moreover consistent

with ¬
∨
τ ≫ qi, that means that p is consistent with τ :: qi; otherwise, p is

consistent with τ :: ⊥. □

Lemma A.5. Suppose X is a finite set of consistent sentences and p and q are
sentences such that either q , ⊥ and p is consistent with ¬

∨
X≫ q, or q = ⊥

and p is consistent with ¬
∨

X > q. Then there is a list τ of elements of X such
that p is consistent with τ :: q.

Proof. We cover the case where q , ⊥; the other case is similar. We first show
that for any list θ of members of X, if p ∧ (¬

∨
X ≫ q) ∧ θ is consistent, then

there is some r in X ∪ {q} but not in θ such that p ∧ (¬
∨

X ≫ q) ∧ θ :: r is
consistent. This follows from Lemma A.4, since

∨
(X ∪ {q,¬q ∧ ¬

∨
X}) is a

theorem, and θ :: r is inconsistent when r is in θ, while θ :: ¬q ∧ ¬
∨

X and
θ :: ⊥ are both inconsistent with ¬

∨
X≫ q.

But if p were not consistent with τ :: q for any τ consisting entirely of
members of X, the relevant r could never be q, so it would have to be true
that any θ of elements of X for which p ∧ (¬

∨
X ≫ q) ∧ θ is consistent can

be extended to a longer such list by adding some r in X but not in θ. This is
obviously impossible, since X is finite. □

Thanks to these nice properties, we can use the sentence-forming opera-
tion · to define a hierarchy of ‘state descriptions’ over a given set of atoms,
where the state descriptions of a given depth n consistently settle the truth
value of all sentences of modal depth no greater than n that can be built out
of those atoms.

Definition A.6. For a given logic L containing C2 and finite non-empty set
of atoms A, the sets YL(A,n) (the “depth-n L-state descriptions over A”) are
defined as follows.

– YL(A, 0) is the set of all consistent conjunctions that include exactly one
of p and p for each atom p ∈ A.

– YL(A,n+1) is the set of all consistent sentences of the form τ :: ⊥, where
τ is a list of elements of YL(A,n).

Example A.7. Let p and q be atoms. Then YC2({p}, 0) is {p, p}, and YC2({p, q}, 0)
is {pq, pq, pq, pq}.

YC2({p}, 1) has four members, ⟨p,⊥⟩, ⟨p,⊥⟩, ⟨p, p,⊥⟩, and ⟨p, p,⊥⟩, equiv-
alent respectively to □p, □p, p ∧ ♢p, and p ∧ ♢p. YC2({p, q}, 1) contains τ :: ⊥
for each of the 64 non-empty, non-repeating sequence τ of elements of
YC2({p, q}, 0).32 Note that for certain logics L extending C2, some of these

3224 = 4!
(4−4)! of length 4, 24 = 4!

(4−3)! of length 3, 12 = 4!
(4−2)! of length 2, and 4 = 4!

(4−1)! of
length 1.
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elements would be inconsistent and hence absent from YL({p, q}, 1): for ex-
ample, if L includes the axiom schema p → □p, YC2({p, q}, 1) would just
contain the four sentences ⟨pq,⊥⟩, ⟨pq,⊥⟩, ⟨pq,⊥⟩, and ⟨pq,⊥⟩.

Each member of YC2({p}, 2) is of the form τ :: ⊥ for some list τ of elements
of YC2({p}, 1); but not every non-repeating, non-empty τ can appear in this
role. If τ begins with ⟨p,⊥⟩, it cannot contain any elements entailing p, so
the only other element that could appear is ⟨p, p,⊥⟩; similarly, if τ begins
with ⟨p,⊥⟩, the only other element that can appear is ⟨p, p,⊥⟩. Meanwhile,
if τ begins with ⟨p, p,⊥⟩, at least one element entailing p—either ⟨p,⊥⟩or
⟨p, p,⊥⟩—must appear later in τ; similarly, if it begins with ⟨p, p,⊥⟩, an
element entailing p must appear later. 32 lists meet these constraints.33

More generally: where ρ = ⟨τ0, . . . , τn⟩ is a non-repeating list of elements
of YC2(A,n), ρ :: ⊥ is consistent in C2 (and hence a member of YC2(A,n + 1))
only if τ0 is the result of deleting all but the first occurrence of each element
in ⟨τ0

0, . . . , τ
0
n⟩.34

Lemma A.8. If s ∈ YL(A,n) and p is a sentence of modal depth ≤ n with
atoms from A, then either s entails p in C2 or s entails p in C2.

Proof. By induction on n. The base case is true since the elements of YL(A, 0)
settle the truth value of every atom in A, hence every Boolean combination
of atoms in A. For the induction step, it suffices to show that when s ∈
YL(A,n + 1) and p and q have modal depth ≤ n, s entails one of p > q and
¬(p > q) in C2. Any such s will be of the form τ :: ⊥ where each element of
τ is in YL(A,n). Suppose that the first element of τ :: ⊥ that entails p also
entails q. Then since no previous element entails p, all of them entail p by the
induction hypothesis; so by Lemma A.3, τ :: ⊥ entails p > q. Otherwise, the
first element of τ :: ⊥ that entails p does not entail q. This element must be
τ j for some j, since ⊥ does entail q. By the induction hypothesis, τ j entails q
and all elements of τ[: j] entail p, so by Lemma A.3, τ :: ⊥ entails p ≫ q and
hence ¬(p > q). □

Lemma A.9. If p is consistent, it is consistent with some element of YL(A,n)
for every A and n.

Proof. By induction on n. The base case holds since
∨

YL(A, 0) is a tautology.
For the induction step, we note that since

∨
YL(A,n) is a theorem by the

induction hypothesis, p ∧ (¬
∨

YL(A,n) > ⊥) is consistent whenever p is, so

33Two beginning with ⟨p,⊥⟩, two beginning with ⟨p,⊥⟩, 14 (= 3!
(3−3)! +

3!
(3−2)! + 2) beginning

with ⟨p, p,⊥⟩, and 14 beginning with ⟨p, p,⊥⟩.
34In fact this is the only constraint. Given disjoint pointed order-models M1 . . .M\ for

τ1, . . . , τn, we can construct a new pointed order model by taking the union M1 . . .M\

together with one new world w—the distinguished world—where<w comprises w followed
by the distinguished worlds ofM1 . . .M\, and atom pi is true at w iff entailed by τ0. Then
so long as ρ obeys the given constraint, τ0 and hence also ρ are true at w.
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by Lemma A.5, there is a sequence τ of elements of YL(A,n) such that p is
consistent with τ :: ⊥. τ :: ⊥ is our desired element of YL(A,n + 1). □

Lemmas A.8 and A.9 together imply that if want to show that every
L-consistent sentence has an order model of a certain sort, it suffices to show
that every member of every YL(A,n) has a model of that sort. For when
p has modal depth n and atoms from A, it will be L-consistent with some
s ∈ YL(A,n) by Lemma A.9, hence entailed in C2 by this s by Lemma A.8,
hence true in any model where s is true (by the soundness of C2 for order
models), and hence true in some model since s is.

Appendix B C2 is weakly complete for finite order models

We now turn to our first result: C2 is weakly complete for finite order models.
While this result is not new (or at least, is part of the conditionals folklore),
proving it now provides an opportunity to showcase the use of some of the
definitions from the previous section, which will also be needed for the later
completeness theorems for logics which strengthen C2.

Definition B.1. For a given finite set of atoms A and natural number n, we
define an order modelMA,n = ⟨W, <,V⟩:

– W is
⋃

m≤n YC2(A,m): all of the C2-state descriptions over A of depth
no greater than n.

– When s is a depth-0 state description, t <s u is never true (so R(s) = {s}).
When s = τ :: ⊥ is a state description of positive depth, t <s u iff for
some i, u = τi, and either t = s or t is in τ[1:i].

– V is the obvious valuation which has s in V(pi) iff s C2-entails pi. (Atoms
not in A are thus false everywhere.)

Lemma B.2. Each world inMA,n is true at itself.

Proof. We prove, by induction on complexity, that for every sentence p with
atoms in A and every state description s whose depth is not less than the
modal depth of p, p is true at s in MA,n iff s entails p. The claim follows as the
special case where p = s.

– Atoms: immediate from the definition ofMA,n.

– Conjunction: obvious.

– Negation: If ¬p is true at s, then p is not true at s, so by the induction
hypothesis s does not entail p; since p is of modal depth ≤ m, it follows
by Lemma A.8 that s entails ¬p. Conversely, if s entails ¬p, then since
s is consistent, s does not entail p, so p is false at s by the induction
hypothesis, so ¬p is true at s.
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– Conditional: Suppose p > q is a conditional of modal depth ≤ m, mean-
ing that p and q must have modal depth < m, and s = τ :: ⊥ is a
state-description of depth m.

(i) First suppose p > q is false at s. Then there is some u ∈ R(s)
such that p and ¬q are true at u, while ¬p is true at t whenever
t <s u. Since every member of R(s) is a depth m or depth m − 1
state description, the induction hypothesis implies that u entails
p ∧ ¬q while every t such that t <s u entails ¬p. If u = s, s does
not entail p > q (since if it did it would be inconsistent, by MP).
Otherwise, u = τi for some i ≥ 1, and we have that τ j entails ¬p
for all j < i—including j = 0, since τ0 entails all the depth < m
sentences s entails. So by Lemma A.3, s entails p ≫ ¬q. Since s is
consistent, it does not entail p > q.

(ii) Next, suppose p > q is true at s. Then there are two cases: either
p > ¬q is false at s, or □¬p is true at s. In the former case, by
part (i), s does not entail p > ¬q. Since p > ¬q has modal depth
≤ m, it follows by Lemma A.8 that s entails ¬(p > ¬q) and hence
also p > q (by CEM). In the latter case, ¬p is true at every world
in R(s), so by the induction hypothesis, all of these worlds entail
¬p. Hence every member of τ entails ¬p. (τ0 does too because it
agrees with s on depth < m sentences.) But s entails ¬

∨
τ > ⊥, so

by CMon, s entails p > ⊥ and hence also p > q. □

Given Lemmas A.8 and A.9, this result immediately establishes:

Theorem B.3 (=Theorem 2.5). C2 is complete for finite order models.

Appendix C Completeness for C2.F

Now we turn towards our completeness result for C2.F. We will prove that
C2.F is complete for finite ordinal sequence frames. We build on our earlier
definitions, now assuming that our underlying logic L includes C2.F. The
following definitions will turn out to be helpful, where τ is any list:

Definition C.1.

– τ is orderly iff τ is consistent, τ is non-empty, any two elements of τ
are jointly inconsistent, and ⊥ never occurs in τ except possibly as the
final element.

– τ is direct iff τ is orderly and there is a orderly list of elements of τ that
has the same last element as τ and includes at least two elements of τ,
but does not include every element of τ.

– τ is circuitous iff τ is orderly and not direct and has length at least 3.
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Example C.2. Let the logic L be C2.F, let a B pq, b B pq, c B pq (where p and
q are atoms), and consider the following length-6 list (:

τ B ⟨⟨a, b, c,⊥⟩
τ0

, ⟨b, a, c,⊥⟩
τ1

, ⟨c, a, b,⊥⟩
τ2

, ⟨a, c,⊥⟩
τ3

, ⟨c,⊥⟩
τ4

,⊥
τ5

⟩

τ is orderly, as can be seen by considering the ordinal sequence model whose
domain comprises the following length ω + 5 sequence over {a, b, c} and its
non-empty tails—six sequences in all—with the valuation where an atom is
true at a sequence iff it is entailed by its first element:

⟨a, b, a, b, . . . , c, a, b, a, c⟩

(In fact, τ is an element of YC2.F({p, q}, 2)—a depth-2 state-description over
those atoms.) Moreover, τ is direct, since ⟨τ4,⊥⟩ is consistent. (⟨τ4,⊥⟩ is true
at the final tail ⟨c⟩ in this model.) The initial segments of τ are also orderly,
since obviously any initial segment of a orderly list is orderly. τ[:5] is direct,
since ⟨τ3, τ4

⟩ is orderly (as witnessed by the tail ⟨a, c⟩). τ[:4] is also direct,
since ⟨τ1, τ3

⟩ is orderly (as witnessed by the tail ⟨b, a, c⟩). τ[:3], by contrast, is
circuitous, since neither ⟨τ0, τ2

⟩ nor ⟨τ1, τ2
⟩ is orderly. (τ0 entails a ≫ b and

hence τ0 ≫ b (by CMon), which is inconsistent with τ0 ≫ τ2, and likewise τ1

entails b ≫ a and hence τ1 ≫ a which is inconsistent with τ1 ≫ τ2.) Finally,
τ[:2] and τ[:1] are orderly but neither direct nor circuitous, since their lengths
are less than 3.

The key new facts secured by adding Flattening are as follows.

Lemma C.3. Suppose the logic L includes C2.F, τ is orderly, and every
element of τ[:−1] entails q. Then if τ−1 entails q > r, every element of τ[:−1]

is consistent with q > r, and if τ−1 is consistent and entails ¬(q > r), every
element of τ[:−1] is consistent with ¬(q > r).

Proof. Suppose k < ℓ(τ), every member of τ[:−1] entails q, and τ−1 entails q > r.
τ entails τ[:k+1] and ¬

∨
τ[:−1] > τ−1, and hence τ[:k+1]

∧ (¬
∨
τ[:−1] > (q > r)).

Since q entails ¬
∨
τ[:−1] and ¬

∨
τ[:k], ¬

∨
τ[:−1] > (q > r) and ¬

∨
τ[:k] > (q > r)

are both equivalent to q > r by the Flattening Rule, hence equivalent to each
other. Hence, τ[:k+1]

∧ (¬
∨
τ[:k] > (q > r)) is consistent. Since τk , ⊥, τ[:k+1]

is τ[:k]
∧ (¬
∨
τ[:k]
≫ τk). So we can conclude that ¬

∨
τ[:k]
≫ (τk

∧ (q > r)) is
consistent. But for this to be the case, τk

∧ (q > r) must also be consistent.
The case where τ−1 is consistent and entails ¬(q > r) is similar. Then, τ

entails ¬
∨
τ[:−1]

≫ τ−1 and hence τ[:k+1]
∧ (¬
∨
τ[:−1]

≫ ¬(q > r)), i.e. τ[:k+1]
∧

¬(¬
∨
τ[:−1] > (q > r)). By the same reasoning as above, this is equivalent to

τ[:k+1]
∧ ¬(¬

∨
τ[:k] > (q > r)), i.e. τ[:k]

∧ (¬
∨
τ[:k]
≫ τk) ∧ (¬

∨
τ[:k]
≫ ¬(q > r)).

This is consistent only if τk
∧ ¬(q > r) is. □

Lemma C.4. If the logic L includes C2.F and τ is orderly, then for each
element τk , ⊥, there is a orderly list ρ of elements of τ such that ρ0 = τk,
ρ−1 = τ−1, and the elements of τ[k+1:] all occur, in the same order, in ρ.
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Proof. First consider the case where τ−1 , ⊥. Then for each k < ℓ(τ),

(¬
∨
τ[:k]
≫ τk) ∧ · · · ∧ (¬

∨
τ[:−1]

≫ τ−1)

is consistent (since all its conjuncts are conjuncts of τ). Since¬
∨
τ[: j]
⊢ ¬
∨
τ[:k]

for all j > k, the≫-Flattening Rule says that this is equivalent to

¬
∨
τ[:k]
≫ (τk

∧ (¬
∨
τ[:k+1]

≫ τk+1) ∧ · · · ∧ (¬
∨
τ[:−1]

≫ τ−1))

which is thus also consistent. Since p ≫ q is consistent only when q is, we
can conclude that

(*) τk
∧ (¬
∨
τ[:k+1]

≫ τk+1) ∧ · · · ∧ (¬
∨
τ[:−1]

≫ τ−1)

is consistent too. But then, by Lemma A.5 (setting p in that lemma to be
τk
∧ (¬
∨
τ[:k+1]

≫ τk+1) ∧ · · · ∧ (¬
∨
τ[:−2]

≫ τ−2), q to be τ−1, and X to be the
set of elements of τ[:−1]), there must be a list ρ of elements of τ, ending with
τ−1, such that the conjunction of (*) with θ is consistent. But clearly, given
that the elements of τ are pairwise inconsistent, this conjunction can only be
consistent if ρ0 is τk and all of τ[k:] occur in ρ in the same order as in τ[k:].

The case where τ−1 = ⊥ is parallel. □

Lemma C.5. When τ is circuitous and t is in τ[:−1], there is a orderly list that
begins with t, ends with τ−1, and contains all and only the elements of τ.

Proof. By Lemma C.4 there is a orderly list ρ beginning with t, ending with
τ−1, and containing only elements of τ. But since τ is circuitous, any such list
must contain every element of τ. □

We will now describe a function that takes any orderly list τ and re-
turns a (possibly-repeating, possibly-transfinite) sequence ↑τ, such that the
elements of ↑τ are exactly the elements of τ[:−1], and the order of their first
occurrences in ↑τ is the same as their order in τ.

Definition C.6. We define ↑τ recursively, based on the length of the orderly
list τ.

For the base cases, when the length of τ is 1 or 2, ↑τ B τ[:−1]: that is, ⟨⟩ if
ℓ(τ) = 1 and ⟨τ0

⟩ if ℓ(τ) = 2.
For the recursion step, when ℓ(τ) > 2, there are two cases, depending on

whether τ is direct or circuitous.

– Case 1: τ is direct, so there is a orderly list of elements of τ with the
same last element as τ and length strictly between 1 and ℓ(τ). Let j be
the greatest number such that τ j is the first element of such a sequence,
and let ρ be such a sequence beginning with τ j. (If there are multiple
appropriate sequences beginning with τ j, choose ρ to be the first one
according to some fixed order on sequences.)
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If j = ℓ(τ) − 2, note that since τ[:−1] and ρ are both shorter than τ we
may assume that ↑ is defined on them, and define:

↑τ B ↑τ[:−1] + ↑ρ

If j < ℓ(τ)−2, then we know from Lemma C.4 that there is a orderly list
that begins with τ−2, ends with τ−1, and contains exactly the elements
of τ. Let θ+ be the first such list, and let θ be its initial segment up
to and including the occurrence of τ j; note that θ is also orderly and
shorter than τ. Then define:

↑τ B ↑τ[:−1] + ↑θ + ↑ρ

It will later be convenient to subsume the previous case (where j =
ℓ(τ) − 2) to this one by defining θ to be ⟨τ−2

⟩ (hence ↑θ = ⟨⟩) when
j = k − 2.

– Case 2: τ is circuitous. Then by Lemma C.5, for each element t of τ[:−1],
there is a orderly list that begins with t, ends with τ−1, and contains
exactly the elements of τ. Define a function π such that for each t in
τ[:−1], π(t) is such a list: τ itself if t is τ0; otherwise, the earliest such list
according to our fixed order. Let ρ(t) B π(t)[:−1] (so each ρ(t) is shorter
than τ), and g(t) B π(t)−2. Then define:

↑τ B ↑ρ(τ0) + ↑ρ(g(τ0)) + ↑ρ(g(g(τ0))) + ↑ρ(g(g(g(τ0)))) + · · ·

Example C.7. Fixing L as C2.F, let us compute ↑τ where τ is the example
from Example C.2:

τ B ⟨⟨a, b, c,⊥⟩
τ0

, ⟨b, a, c,⊥⟩
τ1

, ⟨c, a, b,⊥⟩
τ2

, ⟨a, c,⊥⟩
τ3

, ⟨c,⊥⟩
τ4

,⊥
τ5

⟩

As we noted in Example C.2, τ is direct (when the logic is C2.F), so we are
in case 1. Since ⟨τ4,⊥⟩ is orderly, j = 4 and ρ = ⟨τ4,⊥⟩ so

↑τ = ↑τ[:5] + ↑⟨τ4,⊥⟩ = ↑τ[:5] :: τ4

using the base case for length-2 lists for the second identity. Proceeding to
calculate ↑τ[:5], we note that since ⟨τ3, τ4

⟩ is orderly, τ[:5] is also direct, j = 3,
ρ = ⟨τ3, τ4

⟩, so
↑τ[:5] = ↑τ[:4] + ↑⟨τ3, τ4

⟩ = ↑τ[:4] :: τ3

Turning to τ[:4], we find that this is also direct, since ⟨τ1, τ3
⟩ is orderly. There

are no orderly lists of elements that begin with τ2 and end with τ3 and have
length less than 4, since the only i < 4 for which ⟨τ2, τi

⟩ is orderly is 0, and
the only i < 4 for which ⟨τ2, τ0

⟩, τi is orderly is 1. So in this case, j = 1 and
ρ = ⟨τ1, τ3

⟩. θ+ is the only orderly list of elements of τ[:4] beginning with τ2
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and ending with τ3, namely ⟨τ2, τ0, τ1, τ3
⟩, and θ is thus its initial segment

⟨τ2, τ0, τ1
⟩. So,

↑τ[:4] = ↑τ[:3] + ↑⟨τ2, τ0, τ1
⟩ + ↑⟨τ1, τ3

⟩

= ↑τ[:3] + ↑⟨τ2, τ0
⟩ + ↑⟨τ0, τ1

⟩ + ↑⟨τ1, τ3
⟩

= ↑τ[:3] + ⟨τ2, τ0, τ1
⟩

Turning finally to computing ↑τ[:3], we already noted that τ[:3] is circuitous,
so we will be in case 2. The only function meeting the requirements on π is
as follows:

π(τ0) = ⟨τ0, τ1, τ2
⟩

π(τ1) = ⟨τ1, τ0, τ2
⟩

So, ρ(τ0) = ⟨τ0, τ1
⟩, ρ(τ1) = ⟨τ1, τ0

⟩, g(τ0) = τ1, g(τ1) = τ0, and

↑τ[:3] = ↑⟨τ0, τ1
⟩ + ↑⟨τ1, τ0

⟩ + ↑⟨τ0, τ1
⟩ + ↑⟨τ1, τ0

⟩ + · · ·

= ⟨τ0, τ1, τ0, τ1, . . .⟩

Combining all of the above, we have

↑τ = ⟨τ0, τ1, τ0, τ1, . . . , τ2, τ0, τ1, τ3, τ4
⟩

Note that if we replace each element of this ω+ 5-sequence with the depth-0
state-description it entails, we get the sequence

⟨a, b, a, b, . . . , c, a, b, a, c⟩

which we used in Example C.2 as the basis for the ordinal sequence model
verifying all the relevant consistency claims. In particular, τ is true in the
ordinal sequence model based on either of these sequences, with the obvious
valuation. This will be our general strategy: given a depth-n state description
s = τ :: ⊥, we will turn ↑τ into an ordinal sequence model in the obvious
way, and we will be able to show that s is true in this model.

Definition C.8. Where L includes C2.F, n > 0 and s = τ :: ⊥ ∈ YL(A,n) (the
set of depth-n state descriptions with atoms A),Ms is the ordinal sequence-
model whose sequences are the non-empty tails of ↑(τ :: ⊥), with the natural
valuation: atom pi is true at tail σ iff σ0 entails pi.

The key thing we need to show is that s is true inMs. To get there, we
will need a few more lemmas. First, we check that ↑ behaves as advertised:

Lemma C.9. When τ is orderly, the elements of ↑τ are exactly those of τ[:−1],
and their first occurrences in ↑τ come in the same order as in τ[:−1].
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Proof. By induction on the length of τ.
Base cases (1, 2): obvious.
Induction step: If τ is direct, ↑τ is ↑τ[:−1]+↑θ+↑π, where θ and ρ are lists

of elements of τ of length < ℓ(τ). By the induction hypothesis, all elements
of τ[:−1] except τ−2already occur in ↑τ[:−1], in the same order in which they
occur in τ[:−1]. Moreover, τ−2 occurs later in ↑τ, either as the first element of
↑θ (if ↑θ is non-empty) or else as the first element of ↑ρ. And furthermore,
neither ↑θ nor ↑ρ has any elements not in θ[:−1] or ρ[:−1] respectively, hence
neither has any elements not in τ[:−1]. So all the elements of τ[:−1] occur in ↑τ,
in the right order.

If τ is circuitous, ↑τ is

↑ρ(τ0) + ↑ρ(g(τ0)) + ↑ρ(g(g(τ0))) + ↑ρ(g(g(g(τ0)))) + · · ·

where ρ and g are as in Definition C.6, and ↑ρ(τ0) = ↑τ[:−1]. By the induction
hypothesis, ↑τ[:−1] comprises exactly the elements of τ[:−2], with the same
order of first occurrence. Meanwhile, τ−2 is g(τ0), which is the first element
ofρ(g(τ0)) and hence of↑ρ(g(τ0)), and thus also occurs in↑τ, after all elements
of τ[:−2]. And since each subsequent term in the infinite sum is derived by
applying ↑ to a sequence of elements of τ[:−1], nothing not in τ[:−1] occurs in
any of them. □

We can also observe some tight limits on the ‘complexity’ of the sequences
output by ↑:

Lemma C.10. For any orderly τ of length k ≥ 2, ↑τ has length at most ωk−2,
and has at most 3

2 (k − 1)! non-empty tails.

Proof. By induction on k.
Base case: when τ has length 2, ↑τ has length 1 with one non-empty tail.
Induction step: Suppose τ is of length k + 1. If it is direct, then ↑τ is

↑τ[:−1] + ↑θ + ↑ρ, where τ[:−1], θ, and ρ are all of length ≤ k. By the induction
hypothesis, each of ↑τ[:−1], ↑θ, and ↑π is of length at most ωk−2 with at most
3
2 (k−1)! non-empty tails. Thus the length of ↑τ is at mostωk−2

·3 ≤ ωk−1. Also,
every non-empty tail of ↑τ is either (i) a non-empty tail of ↑π, or (ii) of the
form σ+↑π, where σ is a non-empty tail of ↑θ, or (iii) of the form σ+↑θ+↑π,
where σ is a non-empty tail of ↑τ[:−1]. So the number of such tails is at most
9
2 (k − 1)! ≤ 3

2k! (since k > 2).
Meanwhile, if τ is circuitous, ↑τ is of the form

↑ρ(τ0) + ↑ρ(g(τ0)) + ↑ρ(g(g(τ0))) + · · ·

where g is a function that maps elements of τ[:−1] to other elements of τ[:−1],
and ρ is a function that maps each element t of τ[:−1] to a orderly list of length
k. By the induction hypothesis, each ↑ρ(t) is of length at most ωk−2, so ↑τ has
length at most ωk−1. Also, every non-empty tail of ↑τ is of the form

θ + ↑ρ(g(t)) + ↑ρ(g(g(t))) + · · ·
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where θ is a tail of ↑ρ(t) for some t in τ[:−1]. There are only k such elements t,
and by the induction hypothesis, each ↑ρ(t) has at most 3

2 (k − 1)! tails. So ↑τ
has at most 3

2k! tails. □

Definition C.11. For any orderly τ, we define ↑+τ to be ↑τ :: τ−1.

Lemma C.12. Suppose τ is a orderly list of elements of YL(A,n), σ :: s is a
segment of ↑+τ, and q, r are sentences of modal depth < n such that every
element of σ entails ¬q. Then if s entails q > r, every element of σ entails
q > r; and if s entails ¬(q > r) and is consistent, every element of σ entails
¬(q > r).

Proof. By induction on the length of τ. The base cases for 0 and 1 are trivial.
Base case for 2: ↑+τ = τ, so the only nontrivial case is where s = τ1 and
σ = ⟨τ0

⟩. If τ1 entails q > r and τ0 entails ¬q, Lemma C.3 says that τ0 is
consistent with q > r. Since τ0 is a depth n state description and q and r are
depth < n, it follows by Lemma A.8 that it entails q > r. Similarly, if τ1 is
consistent and entails ¬(q > r), Lemma C.3 implies that ¬(q > r) is consistent
with, and hence entailed by, τ0.

For the induction step, suppose the claim holds for sequences of length
≤ k, and suppose τ is orderly and of length k + 1, and σ :: s is a segment of
↑
+τ such that either s entails q > r or s entails ¬(q > r) and is consistent.

Case 1: τ is direct, so ↑+τ has the form

↑τ[:−1] + ↑θ + ↑+ρ

with θ, t, and ρ sequences of length ≤ k, as in Case 1 of Definition C.6. If
σ is a segment of ↑τ[:−1] or ↑θ or ↑ρ, σ :: s is a segment of ↑+τ[:−1], ↑+θ, or
↑
+ρ, so the claim follows from the induction hypothesis. If σ is of the form
σ1 + σ2 where σ1 is a tail of ↑θ and σ2 is an initial segment of ↑ρ, then we
first appeal to the induction hypothesis for ρ to show that every element of
σ2 agrees with s on q > r. In particular, σ0

2 agrees with s on q > r, and σ1 :: σ0
2

is a segment of ↑+θ, so by the induction hypothesis for θ every element of
σ1 also agrees with s on q > r. Finally, if σ is of the form σ1 + σ2 where σ1 is a
tail of ↑τ[:−1] and σ2 is an initial segment of ↑θ + ↑+ρ, then every element of
σ2 agrees with s on q > r by what we just showed. But σ1 :: σ0

2 is a segment
of ↑+τ[:−1], so by the induction hypothesis applied to τ[:−1], every element of
σ1 also agrees with s on q > r.

Case 2: τ is circuitous. Let the functions ρ and g be as in the definition of
↑. Then there are four possible subcases:

(i) σ is a segment of ↑ρ(t) for some element t of τ[:−1].

(ii) σ is of the form σ1+σ2, where for some t in τ[:−1], σ1 is a tail of ↑ρ(t) and
σ2 is an initial segment of ↑ρ(g(t)).
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(iii) σ is of the form

σ1 + ↑ρ(g(t)) + · · · + ↑ρ(gn(t)) + σ2

where for some t in τ[:−1], σ1 is a tail of ↑ρ(t) and σ2 is an initial segment
of ↑ρ(gn+1(t)).

(iv) s is τ−1 and σ is of the form

σ1 + ↑ρ(g(t)) + ↑ρ(g(g(t))) + · · ·

where for some t in τ[:−1], σ1 is a tail of ρ(t).

In subcase (i), we can appeal directly to the induction hypothesis for ρ(t).
In subcase (ii), we first use the induction hypothesis for ρ(g(t)) to show
that every element of σ2 agrees with s on q > r, and then use the induction
hypothesis for ρ(t) and the fact that σ1 :: σ0

2 is a segment of ↑+π(t) to show
that every element of σ1 also agrees with s on q > r. In subcase (iii), we first
use the same method to show that every element of ↑ρ(gn(t)) + σ2 agrees
with s on q > r. Since every element of τ[:−1] except gn+1(t) occurs in ρ(gn(t)),
and gn+1(t) is the first element of σ2, and every element of σ is in τ[:−1], this
is already enough to show that every element of σ agrees with s on q > r.
Finally, in subcase (iv), we first reason that since every element of τ[:−1] other
than g(g(t)) occurs in ↑ρ(g(t)), and g(g(t)) is the first element of ↑ρ(g(g(t))),
the elements of σ are exactly the elements of τ[:−1]. Thus every element of
τ[:−1] entails ¬q, and so by Lemma C.3, every element of τ[:−1], and hence
every element of σ, agrees with τ−1 (= s) on q > r. □

Lemma C.13. When s ∈ YL(A,n+ 1), every sentence p of depth ≤ n is true at
a tail σ in the modelMs iff p is entailed by σ0.

Proof. By induction on the complexity of p.

– Atoms: given by the valuation.

– Conjunction: obvious.

– Negation: by Lemma A.8 and the fact that σ0 is a depth-n state descrip-
tion.

– Conditional: Suppose p = q > r; then since p is of depth ≤ n, q and r are
of depth < n.

Suppose first q > r is not true at σ. Then for some β, q∧¬r is true at σ[β:],
while q is not true at σ[α:] for any α < β. By the induction hypothesis,
σβ entails q ∧ ¬r, and σα entails ¬q for all α < β. By MP, σβ also entails
¬(q > r). Since σβ is also consistent, by Lemma C.12 σα entails ¬(q > r)
for all α < β. In particular σ0 entails ¬(q > r); since it is consistent, it
does not also entail q > r.
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Meanwhile, if q > r is true at σ, there are two cases. In the first case,
q > ¬r is not true at σ, in which case σ0 entails¬(q > ¬r) by what we just
proved; by CEM, it also entails q > r. In the second case, q > ⊥ is true at
σ, meaning that q is false at every tail of σ. By the induction hypothesis,
every element of σ entails ¬q. Since σ :: ⊥ is a segment of ↑+(τ :: ⊥)
and ⊥ entails q > r, we can apply the first part of Lemma C.12 again,
to conclude that every element of σ, in particular σ0, entails q > r.

□

Lemma C.14. s is true inMs.

Proof. When s ∈ YL(A,n + 1), s = τ :: ⊥ for some orderly list τ of elements of
YL(A,n). Looking back at the definition of ·, it is easy to see that it is true at
a sequence in an ordinal sequence model iff the depth-n state-descriptions
true at tails of that sequence are exactly those that occur in τ, and the order
of their first occurrences is their order in τ. Given the previous lemma, this
means it is true inMs so long as the elements of ↑(τ :: ⊥) are exactly those
of τ and their first occurrences are in the same order as in τ. But we already
proved that this is the case, as Lemma C.9. □

This establishes our desired completeness result:

Theorem C.15 (= the completeness half of Theorem 6.2). Every consistent
sentence of C2.F is true in some finite ordinal sequence model, closed under
non-empty tailhood, in which every sequence has length less than ωω.

Proof. Given a consistent sentence p of modal depth n with atoms from A,
by Lemmas A.8 and A.9, there must be a depth-n state description s over A
that entails p. By Lemma C.14, s will be true inMs, which by Lemma C.10
is finite and obeys the required length limit. By the soundness of C2.FS for
ordinal sequence models, p is true inMs. □

Since ordinal sequence models are also flat order models, it follows that:

Theorem C.16 (=the completeness half of Theorem 4.4). Every consistent
sentence of C2.F is true in some finite flat order model.

Appendix D Completeness for C2.FS

We turn next to the stronger logic C2.FS, defined as the result of adding all
instances of the following schema to C2.F:

Sequentiality □(p→ p > r) ∧ □(q→ q > r)→ ((p ∨ q)→ ¬(p ∨ q) > r).

Here is the key new fact about this logic:
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Lemma D.1. In any logic L including C2.FS, every circuitous list ends with
⊥.

Proof. Suppose for contradiction that τ is circuitous and τ−1 , ⊥. Then

τ0
∧ (¬
∨
τ[:−1]

≫ τ−1)(1)

is consistent, since both conjuncts are equivalent to conjuncts of τ. But

τ0
∧ (¬τ0

≫ τ−1)(2)

is inconsistent, since it is equivalent to ⟨τ0, τ−1
⟩, and the circuitousness of

τ means that ⟨τ0, τ−1
⟩—being a sequence of some but not all elements of τ

ending with τ−1—must be inconsistent. Likewise,∨
τ[1:−1]

∧ (¬
∨
τ[1:−1]

≫ τ−1)(3)

must also be inconsistent. For if it were consistent, then by Lemma A.5, there
would have to be some orderly list of elements of τ[1:] ending in τ−1, which
is also disallowed by the circuitousness of τ.

The inconsistency of (2) means that ⊢ τ0
→ (¬τ0 > ¬τ−1), and the incon-

sistency of (3) means that ⊢
∨
τ[1:−1]

→ (¬
∨
τ[1:−1] > ¬τ−1). Since the logic

is closed under necessitation, it follows that ⊢ □(τ0
→ (¬τ0 > ¬τ−1)) and

⊢ □(
∨
τ[1:−1]

→ (¬
∨
τ[1:−1] > ¬τ−1)). Noting that τ0

∨
∨
τ[1:−1] is just

∨
τ[:−1], we

can apply Sequentiality to conclude that ⊢
∨
τ[:−1]

→ (¬
∨
τ[:−1] > ¬τ−1). This

implies ⊢ τ0
→ (¬

∨
τ[:−1] > ¬τ−1), contradicting the consistency of (1).

□

Using this, we can show

Lemma D.2. In any logic including C2.FS, whenever τ is orderly and does
not end with ⊥, ↑τ is finite.

Proof. A straightforward induction on the length of τ. □

Lemma D.3. In any logic including C2.FS, whenever τ is orderly, ↑τ is at
most of length ω.

Proof. Given the previous lemma, it suffices to prove the result when the
last element of τ is ⊥. We do so by induction on the length of τ. The base
cases (1 and 2) are trivial. For the first part of the induction step, suppose τ
is direct, so that ↑τ is of the form ↑τ[:−1] + ↑θ + ↑π. Since neither τ[:−1] nor θ
ends with ⊥, the first two summands are finite by the previous lemma, and
the third summand is at most of length ω by the induction hypothesis, so ↑τ
is at most of length ω. For the second part of the induction step, suppose τ
is circuitous. Then ↑τ is

↑ρ(τ0) + ↑ρ(g(τ0)) + ↑ρ(g(g(τ0))) + · · ·

where each ρ(t) is a non-empty sequence not ending in ⊥. By the previous
lemma, all these sequences are finite; so their join has order type ω. □
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Combining this with Lemma C.14, we have:

Theorem D.4. C2.FS is complete for finite ordinal sequence models in which
all sequences have order-type at most ω.

In fact we can slightly strengthen this result:

Theorem D.5 (=Theorem 5.4). C2.FS is complete for finite ordinal sequence
models of order-type exactly ω.

Proof. For any non-empty list σ, let the ω-padding of σ be the ω-sequence
that results from repeating the last element of σω times. Note that τ is a (non-
empty) tail of σ iff the ω-padding of τ is a tail of the ω-padding of σ, and the
ω-padding of any list has the same first element of that list. So in any ordinal
sequence model that contains some finite sequences, we can replace every
such sequence with its ω-padding without disrupting the order relation or
the valuation. □

Note too that every ordinal sequence model whose sequences have length
at most ω is ancestral: every tail of every sequence can be reached by suc-
cessively deleting the initial element. So we can also draw the following
corollary from Theorem D.4:

Theorem D.6 (=Theorem 5.5). C2.FS is complete for finite flat ancestral
order models.

Appendix E Adding the McKinsey axiom

In this section we consider logics L that extend C2.FM, the result of adding
the McKinsey axiom to C2.F:

McKinsey ♢□p ∨ ♢□¬p

We’ll use the following consequence of McKinsey in the context of S4
(which C2.FS includes):

M* ⊢ □(p1 ∨ · · · ∨ pn)→ (♢□p1 ∨ · · · ∨ ♢□pn)

Lemma E.1. Every instance of the schema M* is a theorem of the modal logic
S4.M (the result of adding every instance of McKinsey to S4).

Proof. By induction on n. Base case trivial. Induction step: suppose □(p1 ∨

· · · ∨ pn). By McKinsey we have ♢□¬pn ∨ ♢□pn, hence ♢□(p1 ∨ · · · ∨ pn−1) ∨
♢□pn. By the induction hypothesis, ♢♢□p1 ∨ · · · ∨ ♢♢□pn−1 ∨ ♢□pn. So by 4,
♢□p1 ∨ · · · ∨ ♢□pn−1 ∨ ♢□pn. □

McKinsey gives us the following opposite number for the main lemma
with Sequentiality:
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Lemma E.2. In any logic L including C2.FM, no circuitous list ends with ⊥.

Proof. Suppose thatτ is orderly and ends with⊥; then in particular¬(
∨
τ[:−1]) >

⊥, i.e. □(τ0
∨ · · · ∨ τ−2), is consistent. So by Lemma E.1, ♢□τ0

∨ · · · ∨ ♢□τ−2 is
consistent, so there must be some p in τ[:−1] such that ♢□p and hence also □p
is consistent. In that case ⟨p,⊥⟩ is orderly, so τ is not circuitous. □

Using this, we can show:

Lemma E.3. In any logic including C2.FM, whenever τ is orderly and ends
with ⊥, the length of ↑τ is a successor ordinal.

Proof. Induction on the length of τ. The base cases (1 and 2) are trivial. For
the induction step, suppose τ is orderly and ends with ⊥: then it is direct
by Lemma E.2, so ↑τ is of the form ↑τ[:−1] + ↑θ + ↑ρ, where ρ is shorter than
τ and also ends with ⊥; by the induction hypothesis, the length of ↑ρ is a
successor, so the length of ↑τ is a successor too. □

Combining this with Lemma C.14, we have:

Theorem E.4 (the completeness half of Theorem 6.5). C2.FM is complete for
finite ordinal sequence models closed under non-empty tailhood in which
the domains of all sequences are successor ordinals.

And putting together this theorem with Theorem D.4, we have

Theorem E.5 (the completeness half of Theorem 6.4). C2.FSM is complete
for finite list-models (i.e., ordinal sequence models closed under non-empty
tailhood whose domain consists of finitely many ordinal-sequences, each of
finite length).

Appendix F Languages without left-nesting

In this section, we show that all theorems of C2.FSM in the languageLBA (in
which conditionals are required to have Boolean antecedents) are already
theorems of C2.F.

Given a valuation V on a set P, letMV,α be the ordinal sequence models
whose domain is the set of all non-empty sequences over P with length ≤ α,
with the valuation given by applying V to the first element of each sequence.
We define a function h that takes a sequence σ in this model’s domain and
a LBA-sentence p, and returns a set h(σ, p) of ordinals in the domain of σ—
intuitively, the elements of σ that are “relevant” to the truth value of p at σ.
Here is the definition:

h(σ, pi) := {0} for pi an atom
h(σ,¬p) := h(σ, p)

h(σ, p ∧ q) := h(σ, p) ∪ h(σ, q)

h(σ, p > q) :=

{0} ∪ {α + β | β ∈ h(σ[α:], q)} if σ has a first p-tail, σ[α:]

{0} otherwise
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Obviously h(σ, p) is always a finite set of ordinals containing 0.
Any set X of ordinals is well-ordered by ≤, and hence there is an order-

preserving bijection fX from X to some ordinal. Thus, for any sequence σ
and set X of ordinals in its domain, we can construct a new sequence σ↾X,
defined by (σ↾X)α=σ f−1

X (α). Note that whenα ∈ X, we haveσ[α:]↾{β : α + β ∈ X}
= (σ↾X)[ fX(α):]. Since σ↾X cannot be longer than σ, it is guaranteed to be in the
domain ofMV,α if σ is.

Lemma F.1. Suppose X includes every member of h(σ, p). Then, inMV,α, the
truth value of p at σ is the same as the truth value of p at σ↾X.

Proof. By induction on the complexity of p. For atoms, this follows from the
fact that restricting any sequence by a set of ordinals that includes 0 yields
a sequence with the same first element. For negation and conjunction it is
obvious.

For a conditional p > q (where p is Boolean), note first that if no pro-
toworld where p is true occurs in σ, this will also be true of σ↾X. So suppose
that a p-protoworld occurs for the first time at position α in σ. Since no p-
protoworlds occur in σ before position α, none occur in σ↾X before position
fX(α). And of course (σ↾X) fX(α) = σα, which is a p-protoworld; and so the
truth value of p > q at σ↾X is the same as the truth value of q at (σ↾X)[ fX(α):],
i.e. at σ[α:]↾{β : α + β ∈ X}. But h(σ, p > q) = {0} ∪ {α + β : β ∈ h(σ[α:], q)} ⊆ X, so
h(σ[α:], q) ⊆ {β : α + β ∈ X}. So by the induction hypothesis, the truth value of
q at σ[α:]↾{β : α + β ∈ X} is identical to the truth value of q at σ[α:], which is in
turn identical to the truth value of p > q at σ. □

Taking X = h(σ, p), we have:

Corollary F.2. The truth value of anyLBA-sentence p at σ inMV,α is the same
as its truth value at the list σ↾h(σ, p).

Finally, since throwing all sequences other than the list σ↾h(σ, p) and its non-
empty tails out of the domain ofMV,α will not affect the truth value of any
sentence, we can derive:

Theorem F.3 (=Theorem 5.8). EveryLBA sentence p that is consistent in C2.F
is true in some finite list-model, and hence also consistent in C2.FSM.

Appendix G Equivalence of different axiomatizations of C2.FS

In this section, we show that the following axiom schemas are equivalent
over C2.F. The third, which was not mentioned in the main text, is useful
for proving the equivalence of the other two. In earlier versions of this
paper (before we hit on Sequentiality) we used a version of it in the official
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axiomatization of C2.FS.

□(p→ (p > r)) ∧ □(q→ (q > r))→ ((p ∨ q)→ (¬(p ∨ q) > r))Sequentiality

□(p→ (p > q)) ∧ □(q→ (q > p))→ ((p ∨ q)→ □(p ∨ q))
Restricted Sequentiality

((p > q) > p) ∧ ((q > p) > q)→ ((p ∨ q)→ □(p ∨ q))
Conditional Sequentiality

Theorem G.1. For any logic L containing C2.F, the results of adding Se-
quentiality, Restricted Sequentiality, and Conditional Sequentiality are all
identical.

Proof. For the purposes of this proof, let s B (p > q) > p and t B (q > p) > q,
so Conditional Sequentiality is st→ ((p ∨ q)→ □(p ∨ q)).

(a) To derive Conditional Sequentiality from Restricted Sequentiality, it
suffices to derive

⊢ pst→ ¬pst > qst(1)
⊢ qst→ ¬qst > pst(2)

For given these, we can apply necessitation and then Restricted Sequentiality
to derive

⊢ (pst ∨ qst)→ □(pst ∨ qst)(3)

which implies

⊢ st→ ((p ∨ q)→ □(p ∨ q))(4)

So, let’s see how to establish (1); the proof of (2) will be parallel. For contra-
diction, assume p, s, t, and ¬(¬pst > qst). By CEM we have ¬pst > ¬qst and
hence (a) ¬pst > (st→ pq). The converse (b) (st→ pq) > ¬pst is trivially true.
Noting that the antecedents p > q and q > p of s and t each entail st→ pq, we
can apply the Flattening (or Cautious Exportation) Rule to our assumptions
s and t to derive (st→ pq) > s and (st→ pq) > t, and hence (c) (st→ pq) > pq.
By Reciprocity, (a)–(c) jointly imply ¬pst > pq, and hence p > pq by CMon.
This implies p > q, so by s and MP we have p, contradicting our assumption
of p.

(b) To derive Sequentiality from Conditional Sequentiality, assume□(p→
(p > r)), □(q → (q > r)), and p ∨ q; we want to show pq > r. If □(p ∨ q) this
is vacuously true, so we can further suppose ^(p q). We can then apply
Conditional Sequentiality to conclude that at least one of s and t is false.
Suppose without loss of generality that it’s s. Then by CEM, (p > q) > p. So
by MOD and the first assumption, (p > q) > (p > r), hence (p > q) > (p > qr).
By CMon, this implies (p > q) > (p q > r). Since the antecedent of the right-
nested conditional entails the first antecedent (p > q), we can apply the
Flattening (or Cautious Importation) Rule to infer that p q > r.

(c) To derive Restricted Sequentiality from Sequentiality, just let r B p∨ q
in Sequentiality. □
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