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I.

Tim Maudlin’s project sets a new standard for fruitful engagement between philosophy, 

mathematics and physics.  I am glad to have a chance to be part of the conversation.

I think we can usefully distinguish two different strands within the project: one more 

conceptual, the other more straightforwardly metaphysical.  The conceptual strand is an 

attempt to clarify certain concepts, such as continuity, connectedness, and boundary, 

which are standardly analysed in terms of the topological concept of an open set.  The 

metaphysical strand is a defence of a hypothesis about the geometric aspects of the fun-

damental structure of reality—the facts in virtue of which the facts of physical geometry 

are what they are.  

What I have to say mostly concerns the metaphysical side of things.  But I will begin 

by saying just a little bit about the conceptual strand.  

II.

In topology textbooks, expressions like ‘continuous function’, ‘connected set of points’, 

and ‘boundary of a set of points’ are generally given stipulative definitions, on a par with 

the definitions of made-up words like ‘Hausdorff’ (the adjective) and ‘paracompact’.  But 

as Maudlin emphasises, the former expressions can be used to express concepts of which 

we have enough of an independent grip to make it reasonable to wonder whether the 

topological definitions are even extensionally adequate.  And he argues quite persuasively 

that we have no reason to believe that they are.  The most important and general argu-

ment concerns the live epistemic possibility that physical space is discrete, for example by 
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containing only finitely many points.  According to Maudlin the target concepts, unlike 

their putative definitions in terms of ‘open set’, can have non-trivial application within 

physical space even if it is discrete.  Maudlin offers an alternative system of definitions, 

based on the concept of a line (or of a directed line) which does not suffer from these prob-

lems.

The target concepts are somewhat specialised ones; while the ancient Greeks may have 

had them, they are at some distance from everyday life.  For example, the concept of con-

nectedness Maudlin is interested in is not obviously the same as the one I employ when I 

say that whereas my one-volume Concise OED is spatially connected, my two-volume 

Shorter OED is not: that judgment is surely consistent with the claim that even the one-

volume book, when examined at sufficiently small scales, would reveal the same kind of 

geometric profile as an archipelago or a swarm of bees.  To some extent, then, the project 

can be understood as one of ‘conceptual synthesis’ rather than conceptual analysis.  On 

this way of thinking about it, the question is which natural and precise concepts there are 

in the vicinity of our rough-and-ready everyday geometric concepts; and Maudlin’s an-

swer is that in many cases, there are precise, natural, scientifically useful concepts, defin-

able in terms of linehood, that are closer to the everyday concepts than anything definable in 

topological terms.  

I am sympathetic to this claim, which is why I won’t have much more to say about the 

conceptual strand of Maudlin’s project.  My main reservation involves a certain exclusive 

status Maudlin seems to be claiming on behalf of the concepts he has identified, which 

emerges in remarks like ‘[w]e conceive of geometrical spaces primarily by means of … 

lines’ (p. 67).  His view seems to be that for some collection of physical entities to count as 

a space, it must be possible, in a non-arbitrary way, to distinguish certain sets of them as 

lines satisfying the axioms for a Linear Structure.  Without Linear Structure, there can be no 

such subject matter as physical geometry at all.  

I think this is too demanding. Consider the following metaphysical hypothesis: there 

are finitely many ‘points’, whose structure determines a distinguished function that as-

signs a non-negative real number d(x,y) to each pair of points x and y.  These numbers 
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obey the axioms for a metric space: d(x,y) = 0 iff x=y; d(x,y) = d(y,x); d(x,z) ≤  d(x,y) + d(y,z).  

And that’s it: there is nothing to determine any non-arbitrary criterion for counting certain 

pairs of points as “neighbours”, and hence (since any finite Linear Structure can be fully 

characterised by saying which pairs of points in it are neighbours), there is nothing to de-

termine any non-arbitrary assignment of a Linear Structure to the “points”.

This hypothesis does have some unattractive features, which emerge when we ask how 

it is that the function d comes to be “distinguished” from all the other functions from pairs 

of points to real numbers.  Answering this question in a satisfactory way may require add-

ing some new entities to the fundamental ontology over and above the points.1  Because of 

this, the hypothesis may prove less elegant and economical than some of its competitors.  

Nevertheless, the hypothesis does seem to be internally consistent, and consistent with the 

existence of creatures with evidence like ours.  To the extent that developments in physics 

provide reason to question the standard assumption that spacetime is continuous, hy-

potheses like this belong on our menu of possible alternatives.  If we accepted the concep-

tual claim Maudlin seems to be endorsing, we would have to say that if the hypothesis is 

true, there is no such thing as space or physical geometry.  This seems odd.  If the hy-

pothesis is (conceptually) consistent with our own existence, it is surely also consistent 

with the existence of physical objects having shapes and sizes, standing at various dis-

tances from one another, and so forth. And if one concedes this much, it is hard to make 

sense of the thought that it is inconsistent with the existence of space.  Even though there 

is one very interesting set of natural refinements of our everyday geometric concepts 

which can have no nontrivial application if the hypothesis is true, these are not the only 

potentially scientifically useful concepts in the neighbourhood.  The discovery that truths 

involving our everyday geometric concepts are grounded in facts about a fundamental d-

relation would be a surprising discovery in physical geometry: it would tell us something 

about the nature of space, not that space is an illusion.
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III.

On now to the metaphysical strand of Maudlin’s project.  

A central aim of metaphysics is finding out about the fundamental structure of the 

world—the actual, physical world.  Of course physics is a vital ally in this inquiry, and 

given our present ignorance about key questions in physics, we should not expect to be 

able to make confident pronouncements about any but the most general aspects of the 

question.  Nevertheless, we can make progress in exploring the space of coherent hy-

potheses about the fundamental structure of the world.  And in doing so, it makes sense to 

devote special attention to hypotheses suggested by actually existing theories in physics, 

including both fully developed families of mathematically rigorous theories and more 

speculative suggestions thrown up by current research.  We should be especially inter-

ested in developing general, flexible hypotheses about fundamental structure that can be 

filled in in different ways, so as to accommodate a wide range of possible developments in 

physics.  

I take Maudlin’s metaphysical proposals in this exploratory spirit.  There are really two 

hypotheses, one more specific than the other.  According to the less specific hypotheses, 

the fundamental entities include points, and the fundamental structure over these entities 

either includes, or very straightforwardly determines, a classification whereby some sets 

of points count as lines satisfying the axioms for a Linear Structure.  (Or whereby some sets 

of ordered pairs of them count as directed lines satisfying the axioms of a Directed Linear 

Structure.)  According to the more specific hypothesis, the relevant fundamental structure 

is a two-place relation among the points, which we can pronounce ‘x is earlier than y’ (or 

‘x < y’, or ‘x is in the past light cone of y’, or ‘y is in the future light cone of x’); and the di-

rected lines are defined in terms of this, as intervals of maximal totally ordered subsets of the 

extension of  <.2  Maudlin also suggests some additional fundamental ideology which 
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could be added to either proposal: a fundamental property of straightness instantiated by 

some of the lines, and a fundamental binary relation of congruence (sameness of length) 

holding between some of the straight lines.

How do these bold metaphysical hypotheses bear on the conceptual side of the pro-

ject?  A strong reading of the conceptual claims would claim that concepts of continuity, 

connectedness, and boundary—perhaps even the concept of a space—only have nontrivial 

application if at least the weaker of the metaphysical hypotheses is true.  But I doubt that 

this is what Maudlin intends.  Surely he does not regard it as conceptually incoherent to 

suggest (as some have) that the description of the world in terms of spacetime points and 

their geometric structure is a “high-level” structure of some sort, as far from the funda-

mental as thermodymanics is from particle physics.  It is better to think of the conceptual 

claims as having to do with the relations between the concept of a line and other geometric 

concepts, and as neutral about the question how all these concepts are anchored in fun-

damental metaphysics.

IV.

What does it mean to propound a hypothesis about the fundamental structure of the 

world?  According to a standard approach, stating such a hypothesis involves (i) saying 

something about the fundamental ontology: the entities such that all facts ultimately boil 

down to facts about them; (ii) presenting a fundamental ideology: a catalogue of properties 

of, and relations among, the fundamental entities; and (iii) stating some laws which cap-

ture important general patterns in the instantiation of the fundamental properties and re-

lations.

This mode of theorising raises a variety of further questions.  Are we supposed to take 

the fundamental properties and relations seriously as entities, existing in the same fun-

damental sense as the objects that instantiate them?3  Are we supposed to take the charac-

terization of the laws as laws as adding something to the mere claim that they are true, and 
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if so, what does it add?  Are there cogent hypotheses about the fundamental structure of 

the world that cannot be stated in this form, because they posit fundamental facts which 

cannot legitimately be thought of as facts about the instantiation of properties and rela-

tions; and if so, how are these hypotheses to be formulated?  These are all hard questions.  

Fortunately, we don’t have to answer them to get started on the enterprise of formulating 

and comparing specific hypotheses inspired by theories in physics.  

One worrying question that is less easily set aside is whether some apparent differ-

ences between such hypotheses are merely verbal.  Suppose that, in spite of Maudlin’s ad-

vice, we took seriously the hypothesis that topological openness belongs on the list of fun-

damental properties.  Do we really have to choose between this and the hypothesis that 

takes topological closedness as fundamental, defining ‘open set’ as ‘complement of a closed 

set’ rather than vice-versa?  It is hard to accept that there could be a genuine issue here.4  

But this kind of worry is corrosive.  Having got the idea, one will naturally start to 

wonder whether even superficially very different hypotheses about fundamental structure 

might not be mere notational variants.  One will be tempted to look for some general prin-

ciple according to which whenever there is a natural “translation” between two hypothe-

ses about fundamental structure, or a natural “isomorphism” between the sets of possibili-

ties they leave open, then there is no genuine difference between them.  But short of verifi-

cationism, there is no known way of formulating such a criterion: it is just too obscure 

how understand this talk of translations and isomorphisms in such a way that it doesn’t 

just beg the question whether the theories in question are genuine alternatives.5
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he is forced to think that there is a genuine question about whether ‘and’ or ‘or’ or both or neither 
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left open by any such hypothesis has only one member, and there is trivially a unique ‘natural 
isomorphism’ between any two one-membered sets.  But surely it is not true that any two such 
metaphysical hypotheses are notational variants of one another!



This doesn’t mean that the concerns in question are never warranted.  But it does sug-

gest that we should bracket them if we want to get on with the inquiry: until we figure out 

some general principles for evaluating such claims, there is no point in opportunistically 

pronouncing that certain differences are merely notational whenever we find our patience 

wearing especially thin.  No matter how gripped we are by these worries, once we have a 

particular hypothesis about the fundamental structure of the world on the table, we 

should search around for variants of it that seem simpler, more economical, or explanato-

rily more virtuous in some other respect.  If the variants are genuinely and not merely 

verbally different, well and good; if not, then their existence still matters for the purposes 

of seeing how considerations like simplicity and economy bear on the really genuine ques-

tions about fundamental structure, whatever they are.

V.

The general question of fundamental metaphysics is ‘What are the facts in virtue of which 

the world is the way it is?’.  An important special case is ‘What are the facts in virtue of 

which the facts of physical geometry are what they are?’  One class of such facts that espe-

cially cries out for explanation are facts about geometrical relations whose relata include 

mathematical entities: for example, facts of the form the ratio of the volume of region A to that 

of region B is real number x.  Of course, explanations have to stop somewhere.  But there is 

something repugnant about the hypothesis—what Field (1984) calls ‘Heavy Duty Pla-

tonism’—that such mixed mathematico-physical relations are fundamental.  

There are various philosophies of mathematics that would license a general demand to 

explain these mixed relations in terms of relations all of whose relata are concrete: nomi-

nalism, logicism, certain kinds of mathematical structuralism.  Even the rather orthodox 

idea that all mathematical entities are to be identified with sets licenses the demand to 

some extent: for among the pure sets, there are various equally good candidates to be the 

set of real numbers, and it seems silly to suppose that the fundamental physical relations 

privilege one of these (e.g. Dedekind cuts of rationals considered as Wiener-Kuratowski 

pairs of von Neumann numbers).  But whatever one’s views about mathematical ontology 
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might be, it is important to explore ways in which mixed relations might be defined in 

terms of fundamental relations whose relata are all physical objects.  Whatever else it 

might be, mathematics is a useful representational tool; the fact that it is useful to theorise 

about the physical world by describing its relations to mathematical entities is not much 

of a reason to assume that these relations are metaphysically fundamental.  

Relations between physical objects and real numbers are not the only mixed geometric 

relations that occur undefined in standard theories in physics.  Such theories are often ex-

pressed in the language of differential geometry; and the most common approach this 

subject simply helps itself to the idea that some co-ordinate systems (functions from sets 

of points to n-tuples of real numbers) are ‘legitimate’ or ‘admissible’.  The intuitive picture 

is that the admissibility of a co-ordinate system consists in its being faithful to certain as-

pects of the intrinsic structure of the space, but the mathematics is silent about what this 

intrinsic structure consists in.

Maudlin is generally sympathetic to the project of analysing geometrical relations be-

tween the physical and mathematical realms in terms of relations intrinsic to the physical 

realm.  For example, he likes the idea of analysing lengths in terms of some intrinsic no-

tion of ‘congruence’; and he is appropriately repulsed by the idea that notions like ‘admis-

sible co-ordinate system’ might themselves be fundamental.  Nevertheless, his opposition 

to Heavy Duty Platonism is not total.  Maudlin’s lines are sets of points: and while in the 

Relativistic part of the proposal the notion of a line gets analysed in terms of an ‘earlier 

than’ relation whose relata are just points, the fundamental property of straightness, and 

the fundamental relation of congruence, still seem to be instantiated by lines.  

One way for opponents of Heavy Duty Platonism to build on Maudlin’s work would 

be to look for further relations just among points in terms of which these affine and metri-
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cal properties of lines could be defined.6  A very different approach, which seems to prom-

ise more generality, would take lines themselves to be concrete physical entities, every bit 

as real and fundamental as the points.7  

The latter approach in turn comes in two versions.  On the first version, we have some-

thing like classical mereology as part of our account of fundamental reality: linehood is a 

fundamental property instantiated by just some of the many mereological fusions of 

points.8  On the second version, the fundamental entities are just the points and the lines.  

We have a fundamental relation of ‘incidence’ between points and lines: to be a line is just 

to be something upon which something is incident.  

Some hold on a priori grounds that the true catalogue of fundamental relations will 

include a relation of parthood subject to the laws of classical mereology. These people will 

of course be drawn to the first version of the approach: if fusions of points are going to be 

in the ontology anyway, it seems more economical to identify the lines with some of these 

fusions, and identify incidence with parthood, rather than positing lines as an additional 

supply of mereological atoms.  But I don’t think that there are good a priori grounds to 

expect the fundamental structure of the world to include anything like mereological struc-

ture.  Granted, if it doesn’t, it may be hard to find entities in the fundamental ontology 

which we could plausibly identify with ordinary objects like chairs, tables, planets and 

people.  But is there any reason to think that there are any such things, in the sense of 
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resisting this kind of approach seems to be the claim that facts about long-range relations among 
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rising.  
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properties’ (or ‘multigrade relations’): then linehood could be thought of as such a property, in-
stantiated by many points at a time.  Whether this is legitimate is a deep foundational question.  
8 If we wanted directed lines, we would need something more complicated—entities that stand to 
fusions of points as sets of ordered pairs of points stand to sets of points.  



‘there are’ relevant to fundamental ontology?  In my view, the sense of ‘there are’ in which 

it is obvious that there are chairs, tables, planets and people is something quite different.9  

VI.

Once we have set aside our temptations to play the ‘mere notational variant’ card, we 

should be prepared to find that, even after we have settled on a general strategy like ‘Take 

lines as fundamental!’, there are many slightly different ways to implement the strategy in 

a hypothesis about fundamental structure.  Once we have a particular hypothesis on the 

table, we can start tinkering with it to see if we can simplify its ontology or its ideology.  

Maudlin’s account of Relativistic spacetime embodies one such simplification.  We 

might have thought that capturing this geometric structure would require a rich Linear 

Structure, with spacelike, timelike and lightlike lines, along with mixed lines made up of 

different kinds of segments.  But as Maudlin shows, this is needlessly uneconomical: we 

can throw away all but the timelike-or-lightlike lines and still recover facts about the dis-

tances beween spacelike-separated points, by defining them in terms of facts about the 

lengths of timelike-or-lightlike lines.  (And once we have done this, we can define linehood 

itself in terms of ‘earlier than’, provided we don’t mind excluding spacetimes with closed 

timelike curves.)

Can we find other simplifications of a similar sort?  Here is one idea: if we are eventu-

ally going to need a fundamental property of straightness that distinguishes a special sub-

structure of lines, why not simplify the ideology and ontology by throwing away all the 

non-straight lines?  In a relativistic spacetime, a specification of the straight timelike and 

lightlike directed lines and their congruence relation should be enough to pin down (up to a 

scale factor) the geometric structures required by standard presentations of the physics.  

Given the fundamental structure of straight lines, we could define derivative Directed Lin-

ear Structures containing non-straight lines—for example, we can build co-ordinate sys-

tems whose co-ordinate curves are straight lines, and define lines in a new broader sense as 

graphs of curves determined by quadruples of continuous co-ordinate functions.
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The opening pages of Maudlin’s paper suggest that he would not be sympathetic to 

the idea that “rubber sheet geometry” is in this way derivative from affine geometry 

(straightness structure).  He writes that
The affine structure itself presupposes an even more basic organization of 
the points. The straight lines in a space are a subclass of the continuous 
curves, and the continuous curves are defined, mathematically, independ-
ently of the affine structure. So sitting at the bottom of this definitional hier-
archy is a sub-metrical geometry, aspects of a space that do not depend on 
either the metric or the affinity.  (Maudlin 2010, p. 63)

It seems to me that the mathematical sense in which topology is said to be ‘more funda-

mental’ than affine and metric geometry is quite different from the metaphysical sense of 

‘fundamental’ we are concerned with.  The mathematical ‘fundamentality’ of topology is a 

kind of generality: there are many kinds of mathematical structure within which there are 

natural definitions of properties obeying the topological axioms for ‘open set’; this makes 

topology useful for capturing behaviour common to many mathematical structures.  There 

is nothing in this to count against the hypothesis that the metaphysically fundamental 

facts about physical space are all facts about its affine or metric structure.  

There are other kinds of potential simplifications we can consider once we start tinker-

ing with the basic picture.  For example, if we are going to have lines in the fundamental 

ontology in any case, we might consider simplifying the ontology by getting rid of points 

as fundamental entities, and doing everything with some fundamental relations among 

lines.

One strategy would take as fundamental the relation of two lines “overlapping”—in-

tuitively, sharing at least one point in common.  In terms of this, we can define what it is 

for two lines to cross, or “share exactly one point in common”: λ1 crosses λ2 iff λ1 overlaps 

λ2, and there are lines λ3 and λ4 neither of which overlap λ2 such that both λ3 and λ4 are 

parts of λ1 and every line that is part of λ1 overlaps either λ3 or λ4.  (One line is part of an-

other if every line that overlaps the former overlaps the latter.)  If we are dealing with di-

rected lines, we will want, instead, some fundamental relation like ‘λ1 overlaps λ2 later than 

λ3 does’: we think of directed lines as determining an order (with ties) among the lines they 
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cross, rather than an order among points.  Given this fundamental structure, we should be 

able to code up points as equivalence classes of pairs of crossing lines.10  

This reconstruction will break down in some simple Linear Structures.  For example, 

there is the trivial Linear Structure consisting of a single, two-point line: obviously we 

cannot identify these points with two different equivalence classes of pairs of lines.  More 

generally, in any Linear Structure in which the whole space is a line with endpoints, there 

are no pairs of lines that cross at an endpoint.  There may be other more general codings 

which can accommodate these cases.  And in any case, we should not dismiss a hypothesis 

about fundamental structure just because it admits a narrower range of possibilities than 

another account, especially if the possibilities in question are ones that we have no empiri-

cal reason to take seriously.11  

Another approach would be to take parthood as primitive rather than defining it in 

terms of overlap.  Indeed, we might not need anything else.  I haven’t got any neat proofs, 

but it seems likely that there is some large and interesting class of Linear Structures within 

which the facts about the subset relation among lines pins down the whole structure up to 

isomorphism.12  Such a reduction of geometrical notions to mereological ones will be es-

pecially interesting to those (see §V above) who think they have a priori reason to include 

parthood on the list of fundamental relations in any case.  However, as a matter of sociol-

ogy, most of those who hold this view will also accept the mereological axiom of universal 

composition on a priori grounds, in which case their ontology will have to include fusions 
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can think of where this fails involve quite bizarre and degenerate Linear Structures.)  If this holds, 
we can define ‘λ1 and λ2 cross at the same point where λ3 and λ4 cross’ as ‘for some λ5 that crosses λ1 
where λ2 does, either λ5 crosses λ3 where λ4 does and λ1 crosses λ5 where λ3 does, or λ5 crosses λ4 
where λ3 does and λ1 crosses λ5 where λ4 does.  
11 Cf. Maudlin on closed timelike curves.
12 There are also physically interesting Linear Structures in which this is not so: for example, the 
Segment-Spliced Linear Structure of straight lines in Euclidean space.  



of lines that are not themselves lines, and their ideology will thus need a fundamental prop-

erty to differentiate the lines from the non-lines.13  

VII.

When we are trying to figure out how to divide our credence in a reasonable way between 

hypotheses about fundamental structure, considerations of simplicity will matter a lot.  

What we want is not just a short list of fundamental properties and relations, but a simple 

set of laws stated in terms of these properties and relations, in terms of which we can give 

satisfactory explanations of a wide range of evidence.  

Making these discriminations will require a well-honed sense of what makes for a “sat-

isfactory explanation”.  One important way in which laws can fail to make for satisfactory 

explanations is for them to take an ‘as if’ form.  Someone who wanted to admit atoms but 

not subatomic particles into their fundamental ontology could write down a law of the 

form ‘the motions of atoms are just as they would be if they were composed of subatomic 

particles obeying such-and-such laws’.  Although such laws need not be especially com-

plex in any obvious sense of ‘complex’, they do little to explain the phenomena that follow 

from them: the question ‘Why do the atoms move around like that?’ cries out for an an-

swer (see Dorr 2010, §4).  Finding laws which avoid this kind of badness can be hard task.  

Suppose we are trying to write down a complete set of laws for some special-relativistic 

physics, as part of which we want to describe the structure of a Minkowski spacetime in 

terms of Maudlin’s fundamental relations.  It is not enough just to say that the extension 

of earlier than is a partial order, or that the intervals of its maximal totally ordered subsets 

form a Directed Linear Structure.  This is far from sufficient to pin down the structure of 

Minkowski spacetime: if our laws said no more than this, they would be much too weak 

to do the necessary explanatory work.  One thing we could say that would not be too weak 

is this: the set of spacetime points admits a co-ordinate system such that x is earlier than y 
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while parthood is not. For the remainder of the present paper I will ignore this putative additional 
constraint on fundamental ideology.  



iff the co-ordinates of x and y satisfy the standard co-ordinate definition of one point be-

longing to the past light cone of another.  But this invocation of co-ordinate systems is 

worryingly reminiscent of the atom-lover’s ‘as if’ law.  In effect, we are saying that the 

facts about the earlier than relation are just as if spacetime had all this extra co-ordinate 

structure, related to the earlier than structure in a particular way.  It would be much nicer if 

we could state some laws directly in terms of ‘earlier than’ which entail the existence of 

appropriate Lorentzian co-ordinate systems, in the same way that the “intrinsic” axioma-

tisations of Euclidean geometry developed by Hilbert (1899) and Tarski (1959) entail the 

existence of Cartesian co-ordinate systems.  

Admittedly, the analogy between the obviously bad ‘as if’ law and the law that says 

that there is an admissible co-ordinate system is far from perfect.  To properly assess the 

stringency of the demand for explanatorily satisfactory laws, we will need a more thor-

oughly worked out account of what the relevant kind of badness consists in.  (Dorr 2010 

contains some suggestions.)  But even at this stage, when we are considering competing 

lists of fundamental relations, it is clearly worth our while to see which lists allow us to 

state satisfactory “intrinsic” laws, and which require us to resort to suspicious devices like 

existential quantification over co-ordinate systems. 

I don’t know how well Maudlin’s favoured fundamental relations do by this criterion.  

I don’t know how to write down “intrinsic” laws about these relations strong enough to 

pin down, say, the distinctive geometric structure of Minkowski spacetime, or of a vac-

uum solution to Einstein’s field equation for general relativity; but that isn’t to say it can’t 

be done.  Still less do I know how to add additional fundamental relations to describe 

some sort of physical content in spacetime—say, the electromagnetic field—in such a way 

that I could state a satisfactory intrinsic system of laws encompassing both the geometry 

and the physics.  Figuring out whether these things can be done is a big task, which may 

require considerable technical ingenuity.  
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VIII.

Theories of fundamental structure based on Maudlin’s ideas are attractive.  But the right 

slogan for this stage of our enquiries is ‘Let a thousand flowers bloom’.  As part of this 

horticultural endeavour, we should pay special attention to hypotheses which take meta-

physical inspiration from the mathematical tools used in existing mathematical physics.  

For we can hope, by doing this, to find systems of fundamental relations for which the 

task of extracting explanatorily satisfactory laws from existing theories in mathematical 

physics will be especially easy. 

The standard mathematical apparatus used for stating physical theories about space-

time is that of differential geometry.  Mostly, everything is done on the assumption that 

spacetime forms a smooth manifold.  Smooth manifolds are mathematical objects somewhat 

richer than mere topological spaces: we can think of them as capturing the structure of a 

slightly less amorphous kind of rubber sheet, which can be deformed only by gentle 

stretches and squeezes which never introduce anything like a “kink” or “corner”.  On the 

most common approach, this structure is given by specifying a set of admissible co-

ordinate systems, or ‘atlas’ for the space.  But let me sketch a somewhat less well-known 

approach, which I think may be better adapted to metaphysical purposes.14  On this way 

of proceeding, what we are given is a privileged class of smooth functions (also known as 

‘C∞ functions’), subject to certain axioms, within the set of all functions from the points of 

the space to real numbers, or ‘scalar fields’.15  The scalar fields form a mathematical 

“ring”, in the sense that we can define well-behaved notions of addition ((f+g)(p) =df 

f(p)+g(p)) and multiplication ((fg(p) =df f(p)g(p)).  The smooth functions are required to be a 
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14 My main source here is chapter 4 of Penrose and Rindler 1984.  Thanks to Frank Arntzenius for 
pointing me towards this.
15 For the record, here are the axioms for an n-dimensional smooth manifold, as given by Penrose 
and Rindler (1984, §4.1):
(1)!Whenever F is a C∞ function from ℝm to ℝ, and f1 … fm are smooth, the function F(f1, …, fm) de-

fined by F(f1, …, fm)(p) = F(f1(p), …, fm(p)) is smooth.
(2)!If for every point p there are smooth functions h  and f such that h(p) > 0 and hf = hg, then g is 

smooth.
(3)!For each point p  there are smooth functions h, x1, …, xn such that (i) h(p) > 0; (ii) whenever 

h(p1) > 0 and h(p2) > 0 and x1(p1) = x1(p2) and … and xn(p1) = xn(p2), p1=p2; and (iii) for every 
smooth g, there is a C∞ function F from ℝn to ℝ such that hg = hF(x1, …, xn).  



subring of this ring: that is, adding and multiplying smooth functions always yields an-

other smooth function.  The constant functions are in turn a subring of the ring of smooth 

functions.16  

Armed with the primitive distinction between smooth and non-smooth scalar fields, 

one can define further classes of mathematical objects associated with the manifold.  A 

smooth vector field on the manifold is a function V from smooth scalar fields to smooth sca-

lar fields such that (i) V(f) = 0 when f is a constant function; (ii) V(f + g) = V(f) + V(g), and 

(iii) V(fg) = fV(g) + gV(f) (the Leibniz product rule).  We can define addition on smooth 

vector fields by  (V1 + V2)(f) =df V1(f) + V2(f), and multiplication of smooth vector fields by 

smooth scalar fields by (fV)(g) =df fV(g).  We define a smooth covector field on the manifold 

as a function ω from smooth vector fields to smooth scalar fields that is “C∞-linear”, in the 

sense that ω(V1 + V2) = ω(V1) + ω(V2) and ω(fV) = fω(V).  Finally, a smooth tensor field of rank 

m,n is a function that takes m smooth covector fields and n smooth vector fields and yields 

a smooth scalar field, and that is C∞-linear in each argument.  In physics, we pick out some 

of these mathematical entities as (somehow) physically distinguished.  For example, in a 

(false) theory of a fundamental continuous fluid, a smooth vector field might be physically 

distinguished as ‘the fluid velocity field’.  In electromagnetism, a smooth tensor field of 

rank 0,2 is physically distinguished as the electromagnetic field tensor.  One of the physically 

distinguished smooth tensor fields (also of rank 0,2) that makes an appearance in almost 

every physical theory stated in the language of differential geometry is the metric.  The 

metric tensor field plays a special relation in the analysis of geometric facts: for example, 

notions like the length of a path or the volume of a region are standardly defined in terms 

of it.  But from the point of view of the laws, the metric is just another physically distin-

guished smooth tensor field.   To state the physical laws, we define up various further 

fields (e.g. the Ricci tensor field, the stress-energy tensor field) in terms of our original list 

of physically distinguished fields, and state equations (e.g. Einstein’s field equation) in-

volving the results.  
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16 Note that there is no need to add topology as an additional primitive structure over and above 
smoothness: we can define the open sets to be (unions of) the sets {p: f(p) > 0}, where f is smooth.  
See Penrose and Rindler 1984, p. 181.  



If we are in the business of exploring alternatives to Heavy Duty Platonism, we will 

need to find some nontrivial way of answering the question what it is for a given function 

from spacetime points to real numbers to be smooth, or for a given function from pairs of 

vector fields to scalar fields to be the metric.  One could attempt to analyse these these 

mixed properties and relations in terms of relations all of whose relata are points.  But this 

looks very challenging.  A general moral we can draw from Maudlin’s theory of lines is 

that it helps a lot to have a fundamental ontology that contains some entities besides the 

points.  A conservative approach would enrich the fundamental ontology by adding some 

new entities which behave like sets, or mereological fusions, of points.  But as I have al-

ready said, I don’t think mereology has any special status when we are doing fundamen-

tal ontology.  If we want to posit a fundamental relation subject to laws which would 

make it sensible to pronounce it ‘part of’, we must do so on the same a posteriori grounds 

for which we would posit any other piece of fundamental structure.  We should be careful 

not to overlook alternatives to, and generalisations of, mereological structure just because 

of their unfamiliarity.  

What I want to suggest is that instead of positing fundamental entities which behave 

like sets of points, we should consider positing fundamental entities which behave like 

functions from points to real numbers.  I will call these putative entities ‘Scalars’.  But it is im-

portant that they are not supposed to be identical to scalar fields in the ordinary sense.  The 

latter are mathematical functions: according to orthodoxy, sets of ordered pairs of points 

and real numbers.  The Scalars, by contrast, are concrete physical entities whose funda-

mental relations to points and to one another somehow determine a natural correspon-

dence between them and scalar fields.

Fully filling in this theory will require specifying the fundamental relations which con-

fer this structure on the Scalars.  There are various ways to do this.  For the sake of defi-

niteness, let’s suppose we use (a) a ternary ‘sum’ relation among Scalars; (b) a ternary 

‘product’ relation among Scalars, and (c) a ternary relation ‘s1 and s2 coincide at p’. In terms 

of these relations we can state laws of plenitude which ‘say’ that there is a Scalar corre-

sponding to each function from points to real numbers, in the same sense in which the 
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laws of classical mereology ‘say’ that there is a region corresponding to each set of 

points.17

Taking this ontology and ideology as a starting point, it is a relatively straightforward 

matter to craft a detailed hypothesis about fundamental structure based on some existing 

physical theory couched in the language of differential geometry.  First we will need to 

capture the “smooth manifold” structure of spacetime by introducing a new fundamental 

property smoothness which distinguishes a special class of Scalars, subject to some distinc-

tive laws corresponding to the axioms of footnote 16.18  And then we will need some fur-

ther fundamental relations corresponding to the physically distinguished fields.  For ex-

ample, if the mathematical physics we are trying to recover talks about a distinguished 

vector field V (such as the fluid velocity field), we can add a corresponding fundamental 

binary relation over Scalars: V maps s1 to s2.  

Things get trickier when the physics involves distinguished tensor fields which cannot 

be defined in terms of distinguished vector and scalar fields.  A flat-footed approach 

would add two new systems of fundamental entities corresponding to the space of all vec-

tor fields and the space of all covector fields, with fundamental relations among these enti-

ties corresponding to physically distinguished tensor fields.  But this seems ontologically 

extravagant, and fortunately, may not be necessary.  First of all, we can do without covec-

tor fields as fundamental entities.  In any differential manifold there is a special function d 
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17 Let me give a sketch of a way this might be done. First some definitions: (i) A Scalar is nowhere-
negative iff it is the product of some Scalar with itself.  (ii) s1 ≤ s2 iff s2 = s1 + s3 for some nowhere-
negative s3..  (iii) s is rational iff it is contained in every nonempty set of Scalars that is closed under 
the operations of addition, multiplication, taking the additive inverse and taking the multiplicative 
inverse (when one exists).  (iv) s is constant iff whenever sʹ′ is rational, either s ≤ sʹ′ or sʹ′ ≤ s.  Given 
these definitions, we can then write down axioms which say that the constant Scalars have the 
structure of the real line, and a second-order axiom (or first-order axiom schema) which says that 
for every function F from points to constant Scalars, there is a unique Scalar that coincides at every 
point p with F(p).   

Some nominalists will find the use of set theory (or second-order logic) in the definition of ‘ra-
tional’ unacceptable: they will need some additional fundamental ideology, such as a fundamental 
property of constancy.  However, Dorr (2010) defends a view on which such uses of mathematics in 
stating physical laws can be acceptable even if there are (fundamentally speaking) no mathemati-
cal entities.  
18 Arntzenius (MS) shows how to state nominalistic versions of axioms (1) and (3), which eliminate 
the need to quantify over functions on ℝm.



that maps each smooth scalar field f to a smooth covector field df, defined by df(V) = V(f).  

A covector field is said to be exact iff it is the result of applying d to some smooth scalar 

field.  Although not every smooth covector field is exact, each smooth tensor field of rank 

m,n is fully determined once we know what scalar field it yields as output when given any 

m exact covector fields and n smooth vector fields as input.  So if, for example, we are try-

ing to reconstruct a physically distinguished tensor field T of rank 2,0, we can do so using 

a fundamental three-place relation among Scalars, corresponding to the mathematical re-

lation T(df1, df2) = f3.  

That takes care of the tensors of rank m, 0 (those whose arguments are all covector 

fields), but still leaves us with no way to deal with other tensor fields short of enriching 

the fundamental ontology with new entities corresponding to the space of all vector 

fields.19  But there is a trick that we can use to avoid this.  As I said above, in physics the 

list of physically distinguished fields normally includes a special smooth tensor field g of 

rank 0,2, the “metric”.  Like any smooth tensor field of rank 0,2, g determines a function 

Φg from smooth vector fields to smooth covector fields, defined by Φg(V1)(V2) =df g(V1,V2).  

And in almost all physical theories, the metric is required to be “non-degenerate”, which 

means that Φg must be a bijection between the smooth vector fields and the smooth covec-

tor fields.  The upshot is that we can use the metric to go back and forth as we please be-

tween covector fields the vector fields to which they are mapped by Φg, and thus between 

tensor fields of rank m, n and tensors fields of rank m+n, 0.  In this friendly context at least, 

we can reconstruct tensor fields of all sorts using fundamental relations all of whose relata 

are Scalars.  To characterise a physically distinguished tensor field T of rank m,n, we will 

posit a fundamental m+n+1-place relation over Scalars, corresponding to the mathematical 

relation T(df1, … , dfm, Φg-1(dfm+1), … , Φg-1(dfm+n)) = fm+n+1.20  

(I have been ignoring complications induced by the arbitrariness of units.  For exam-

ple,  if we don’t want to have a metaphysically privileged unit of distance, we shouldn’t 
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19 See Arntzenius MS for one way to do this.  
20  This applies equally to the metric itself, which will be captured by a fundamental ternary 
relation among Scalars, corresponding to the mathematical relation g(Φg-1(df1),Φg-1(df2)) = f3, or 
equivalently, Φg-1(df1)(f2) = f3.



really want our fundamental relations to pin down the metric tensor uniquely—rather, 

there should be a one-dimensional family of “equally good candidates” to be the metric 

tensor, each corresponding to a choice of unit.  The obvious way to achieve this neutrality 

involves adding more argument places to the fundamental relations, by analogy with the 

move from a ‘length’ relation between lines and numbers to a ternary ‘length-ratio’ rela-

tion between pairs of lines and numbers.  I won’t go into the details.)

If I were advertising the ontology of Scalars as a way of vindicating nominalism, you 

would have a right to be suspicious.  In respect of the fundamental relations they instanti-

ate and the characteristic laws which govern those relations, Scalars do not look much like 

paradigmatically concrete objects.  On the other hand, spacetime points have by now 

come to be generally accepted as ‘concrete’ in spite of the fact that (according to many 

theories) they are governed by laws which make them behave just like certain mathemati-

cal entities.  For my part, I don’t care at all about the labels ‘concrete’ and ‘abstract’.  What 

I care about is finding an economical fundamental ontology and ideology in terms of 

which I can state strong and simple laws.  I don’t mind borrowing ideas from mathematics 

about what this structure might look like, and I am not at all worried that in doing so I 

will somehow have started down a slippery slope at the end of which is the fully-fledged 

Platonism which incorporates all of mathematics into the fundamental ontology.  

It is worth noting, though, that Scalars are not really so dissimilar to other putative en-

tities that have generally been accepted as concrete.  Spacetime regions are usually taken to 

be no less nominalistically kosher than spacetime points.  But one way to think of the Sca-

lars corresponding to functions whose values lie between 0 and 1 is as “fuzzy regions”, to 

which points can belong to different degrees.  That doesn’t seem so strange, does it?  Ad-

mittedly, it is harder to get any such intuitive purchase on the rest of the Scalars.  But if we 

were really worried about this, we could make do with the more restricted set of Sca-

lars—by using some smooth bijection between [0,1] and the real line, we could treat them 
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as proxies for the full set of scalar fields, refitting the fundamental relations underpinning 

physically distinguished fields in such a way as to take this representation into account.21  

IX.

Here, then, is a possible fundamental structure reality might have: an ontology of points 

and Scalars, with fundamental ‘sum’ and ‘product’ relations among Scalars giving them 

the structure of a ring; a fundamental ‘coincidence at a point’ relation; a three-place rela-

tion on Scalars corresponding to the metric tensor field; and perhaps some more relations 

on Scalars corresponding to other physically distinguished vector and tensor fields.  This 

is certainly a less intuitive picture than one based on Maudlin’s lines.  But I doubt this kind 

of intuitiveness is very important in fundamental metaphysics, especially if the sacrifice of 

intuitiveness makes it possible to state intrinsic, explanatorily satisfactory versions of 

physical laws.  

Now that we have a hypothesis on the table, we can consider simplifying its ontology 

and ideology in various ways.22  I will mention four possible simplifications.

(i) We could do without the idea of a privileged unit Scalar.  This would mean thinking 

of various operations on Scalars, including multiplication, as making sense only relative to 

an arbitrary choice of a given constant Scalar to serve as unit: some of our fundamental  

relations will then require an extra argument place to capture this unit.  In fact, this move 

lets us avoid the need for a fundamental relation corresponding to multiplication of Sca-

lars altogether: all we need is a fundamental property of constancy.  For the addition facts, 
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21 The theory I am sketching has a variant in which Scalars really are just regions, not of standard 
four-dimensional spacetime, but of a five-dimensional space whose points behave like ordered 
pairs of old-style spacetime points and real numbers.  Arntzenius (MS) makes a strong case that in 
the context of gauge-symmetric field theories, one should take the points of some such higher-
dimensional space (a fibre bundle space) to be fundamental, if one includes points in the funda-
mental ontology at all. 
22 I am still ignoring the demand from Dorr 2004 that fundamental relations be symmetric.  It is 
certainly possible to define the asymmetric relations I have been talking about in terms of symmet-
ric ones, but so far I have not looked for especially simple ways of doing this.   



together with the facts about which Scalars are constant, suffice to fix the extension of the 

four-place relation ‘s1s2 = s3 relative to the choice of constant scalar s4 as unit’.23  

(ii) Instead of a generous ontology with Scalars corresponding to arbitrary functions 

from points to real numbers and a fundamental property of smoothness picking out some 

of them as special, we could try to get by with a more economical ontology in which we 

only have Scalars corresponding to smooth scalar fields in the first place.  The cost of do-

ing this is that it is not obvious how to state, in an explanatorily satisfactory way, a ‘pleni-

tude’ axiom guaranteeing that there as many Scalars as we want there to be.  Doing this 

should not be too difficult if we don’t mind laws which appeal to mathematical ontology 

or higher-order logic; but evaluating such laws raises some difficult issues I gestured to-

wards in §VII.24

(iii) If the topology of the whole spacetime is non-compact (e.g. because it is infinite in 

extent), we might squeeze out a little more ontological economy by restricting ourselves 

not only to smooth Scalars, but to smooth Scalars which are nonzero only within some 

compact region.25

(iv) If we are going to have Scalars in the ontology in any case, it is natural to ask 

whether we can make things a bit more unified by getting rid of the separate category of 

points.  This is easily done if we have the rich ontology of Scalars corresponding to arbi-

trary functions.  We can reconstruct points as special sets of Scalars: intuitively, those that 

are zero everywhere except for the given point.  The ring structure of the Scalars is enough 

to tell us which sets of Scalars correspond to points in this way: the relevant sets are those 

that (a) are closed under addition; (b) are closed under multiplication by any Scalar; (c) 

contain at least one nonzero Scalar, and (d) have no proper subsets meeting conditions (a-

c).  (These are called the minimal ideals of the ring.)  We will no longer need a separate fun-
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23 Cf. the axiom system for the real numbers devised by Tarski (1936, §61), in which ‘1’ is primitive 
and multiplication must be defined (using second-order methods).  
24 See Dorr 2010 for further discussion.  
25 Since this will mean getting rid of constant Scalars, there is no longer any use for the fundamen-
tal property of constancy  contemplated under simplification (i). Its work could be done instead by 
a fundamental binary relation, s1 is constant wherever s2 is nonzero.



damental relation of ‘coincidence at a point’: we can say that s1 and s2 ‘coincide at the 

point represented by minimal ideal S’ iff ss1 = ss2 for each s ∈ S.  This won’t work if we 

have adopted simplification (ii), getting rid of all but the smooth Scalars: since no smooth 

Scalar can be zero at all points but one, the ring of smooth Scalars doesn’t have any mini-

mal ideals.  But a closely related construction still will: we can represent points as maximal 

ideals—sets of scalars that meet conditions (a-c) and are not proper subsets of any other 

set meeting conditions (a-c), except for the set of all Scalars.  Under this representation, 

each point is represented by the set of all Scalars that are zero at that point.  This will be 

reflected in our new definition of ‘coincidence at a point’: for s1 and s2 to ‘coincide at the 

point represented by maximal ideal S’ is for s1 - s2 to be a member of S.  Whichever way we 

do it, the upshot is that points are superfluous.  The addition and multiplication structure 

of the Scalars—or even more minimally, the addition structure together with the facts 

about which Scalars are constant—is enough to pin down a  unique smooth manifold (up 

to diffeomorphism).26

A fundamental ontology comprising nothing but Scalars is somewhat alien to our or-

dinary ways of thinking.  We are used to associating fundamentality with smallness of 

size; whereas to the extent that it makes sense think of Scalars as having sizes at all, most  

if not all of them are enormous.  The vision is as different as can be from that of Humean 

Supervenience (Lewis 1986).  But this is not such a novelty: theories of ‘gunky spacetime’ 

(e.g. Arntzenius 2008) propose an ontology in which big and small objects are on a par, 

and in which points don’t exist at all except as constructions out of regions.    

Could there be people like us, having evidence like ours, in a world where the only 

fundamental things were Scalars?  I think it will be hard to deny that there could be, at 

least if one is comfortable with the idea that people are going to turn out to be non-

fundamental entities in any case, and with a broadly functionalist picture of properties 

like personhood.  The idea that there could be people in such a world challenges the as-
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26 Geroch (1972) suggests using the ring of Scalars (an ‘Einstein Algebra’) as an alternative to an 
ontology containing points, although it is not clear whether he regards this as anything more than 
a useful notational variant.  Earman (1989) also promotes the approach (under the name ‘Leibniz 
algebras’), although I don’t think it has the particular advantages over the standard ontology of 
points which he claims on its behalf.  



sumption that non-fundamental entities are “built” out of fundamental entities as walls 

are built out of bricks.  But that is an assumption that needs to be challenged in any case.27

There are many other variants of the Scalar-based ontology which we could consider, 

and which we might be led to take seriously by looking at the details of particular physi-

cal theories.  For example, it isn’t really crucial that Scalars behave like functions from 

points to real numbers.  There are other kinds of value-spaces that would do equally well 

for the purposes of defining vector and tensor fields, and which might natural candidates 

to use if we were going to need them anyway for the purposes of physics.28  

Let me end with a moral that may have wider application.  Separating the investiga-

tion of the metaphysical foundations of physical geometry from the investigation of the 

metaphysical foundations of physics as a whole might work well enough as a simplifying 

device.  But ultimately, we just care about the fundamental structure of the world.  And 

given how intimately geometry is bound up with the rest of physics, it would be foolish to 

assume there will be any useful way to separate off the geometric aspects of the funda-

mental structure from the rest.  When we are investigating the metaphysical foundations 

of geometry, we will do well to keep an eye on the question how the structure we are de-

scribing could be enriched so as to capture a fully-fledged physics.  And when we are in-

vestigating the metaphysical foundations of the parts of physics that go beyond mere ge-
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27 I don’t want to give the impression that you need to buy in to a framework of ‘fundamental’ and 
‘non-fundamental’ entities (or kinds of quantification) in order to take the ontology of Scalars seri-
ously.  We could claim that chairs, people, and so on just are certain Scalars—e.g. Scalars that are 
zero at points “occupied” by the object in question, or Scalars that are nonzero at such points.  I 
don’t see that such an identification is any more problematic than the identification of people with 
regions of spacetime (see Sider 2002, §4.8).  There is the issue that there is a vast multiplicity of 
Scalars which seem equally well qualified to be identified with any given ordinary object; but this 
is just another instance of the Problem of the Many, no different in principle from the difficulty in 
deciding on the exact borders of the region identical to a given ordinary object.   
28Also, I don’t think it is really crucial that we be able to make sense in an absolute way of com-
parisons between the values of Scalars at different points: I am hopeful that it would be enough for 
the Scalars to have the structure of the space of smooth sections of a fibre bundle carrying a connec-
tion that lets one make sense of a local notion of ‘constancy’.  (See Maudlin 2007, chapter 3 and 
Arntzenius MS for explanations of these notions.)  This would be natural given the role of such 
fibre bundles in modern physics.  But at present I don’t have a good sense of how to state explana-
torily satisfactory laws about entities with this less-rich structure.   



ometry, we should avoid the all-too-common mistake of treating space and time as if they 

were a metaphysically unproblematic backdrop to which we can freely appeal in explain-

ing properties like mass and charge.  Most of the decisions that one must make in formu-

lating a fully-worked out hypothesis about the fundamental structure of reality will al-

ready have been made by the time one has figured out how to account for space and time; 

if one has carried out this part of the task properly, filling in the rest of the picture should 

be plain sailing.29
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29 Thanks to Harvey Brown for spurring me to take this on, to Tim Maudlin and Scott Sturgeon for 
helpful comments, and especially to Frank Arntzenius, for many hours of discussion without 
which I wouldn’t have the least clue what to think about these matters.  
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