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Abstract: This selective review explores biologically inspired learning as a model for 

intelligent robot control and sensing technology on the basis of specific examples. Hebbian 

synaptic learning is discussed as a functionally relevant model for machine learning and 

intelligence, as explained on the basis of examples from the highly plastic biological neural 

networks of invertebrates and vertebrates. Its potential for adaptive learning and control 

without supervision, the generation of functional complexity, and control architectures based 

on self-organization is brought forward. Learning without prior knowledge based on 

excitatory and inhibitory neural mechanisms accounts for the process through which survival-

relevant or task-relevant representations are either reinforced or suppressed. The basic 

mechanisms of unsupervised biological learning drive synaptic plasticity and adaptation for 

behavioral success in living brains with different levels of complexity. The insights collected 

here point toward the Hebbian model as a choice solution for “intelligent” robotics and sensor 

systems. 
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1. Introduction 

The Hebbian synapse and synaptic learning rules [1] are the fundamental conceptual basis of 

unsupervised learning in biological and artificial neural networks [2]. A synapse refers to a 

connection between two neurons in a biological or artificial neural network, where the neuron 

transmitting information via a synapse or synaptic connection is referred as the presynaptic 

neuron, and the neuron receiving the information at the other end of a synaptic connection as 

the postsynaptic neuron. The information propagation, and its efficiency, of biological and 

artificial synapses is strictly self-reinforcing, following a principle called self-organization, 

which is explained in further detail in Section 4.3. The more a synapse is stimulated, the more 

effectively information flows through the connection, which ultimately results in what Hebb 

[1] and subsequently others have called the long-term potentiation (LTP) of neural 

connections. Synaptic connections that are no longer repeatedly stimulated and, as a 

consequence, no longer self-reinforced will lose their information propagation efficiency, 

which ultimately results in the long-term depression (LTD) of neural connections. A 

schematic illustration of synaptic learning is shown below (Figure 1). This selective review 

starts with a brief recall of the principles of Hebbian synapse-based learning (Section 2). On 

this basis, specific examples of biological learning in vertebrates and invertebrates (Sections 3 

and 4) are then brought to the forefront to illustrate the potential for bioinspired neural 

network models and self-organizing control of simple and complex agentic functions of 

robots or other artificially intelligent system. Such functions include rhythmic movement 

generation and control, goal-directed behaviors, task space coding, sequential action timing, 

alternative event choice, and sensorimotor integration for action. Such functions are then 

discussed using examples from current developments in robotics (Section 5) to further clarify 

how converging sensory and reinforcement (reward) learning can make a functional network 
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as a whole capable of acquiring task structures and self-organizing toward further learning. 

The conclusions include a summary table (Table 1) with references to specific models (with 

equations) of self-organization as a function of the type of behavior (function), model 

organism (species), and level of complexity for “intelligent” robot design architectures. 

 

 
 

Figure 1. Schematic illustration of synapses within a small neural network. Self-reinforcing 

(Hebbian) synaptic learning leads to the progressive increment of the synaptic weights (w) of 

efficiently stimulated neural connections, which are thereby long-term potentiated. The 

connectivity of nonreinforced synapses weakens and, ultimately, becomes long-term 

depressed. The synaptic learning rules are the fundamental conceptual basis of unsupervised 

reinforcement learning in biological and artificial intelligence. 

 

Table 1. Levels of robotic agency and species serving as model (I = invertebrate, V = 

vertebrate) for self-organized control architectures in increasing order of functional 

complexity (NN = neural network). 

 

 

Functional 

Complexity 
Agency Species Control Level Implemented 

Selected 

References 

Single NN 
Rhythmic  

movement 
I Self-organized Yes [42,44,46,54] 

Single NN 
Goal-directed  

action 
I, V Self-organized Yes 

[30,64,68,70–

72,80–83,91,98] 

Single NN 
Alternative  

choice 
I, V Self-organized Yes [10,25,53,62] 

Single NN 
Sequenced  

action 
I, V Self-organized Yes 

[46,98,99,105,12

8,150,152–155] 

Multiple NN 
Sensorimotor  

integration 
I, V Self-organized Yes 

[53,62,114,115,1

28,129131,132] 

Multiple NN 
Cognitive 

planning 
V Self-organized Partially [2,3,98,99,150] 

Multiple NN 
Voluntary  

action 
V Self-organized No [2,3,98,151] 
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2. Biological Synapse: Adaptive Learning “from Scratch” 

Any object of the physical world is defined by multiple features and properties such as shape, 

texture, luminance, color, weight, taste, sound, or function. Each such feature is represented 

via different modalities in interconnected cortical regions of the mammalian brain [2–4]. The 

brains of living systems learn about such physical regularities “from scratch”, i.e., without any 

prior knowledge, through unsupervised mechanisms. The Hebbian learning principles 

generate distributed multimodal brain representations, as clarified further below, in networks 

of functionally connected neurons, each contributing to specific sensory and/or motor 

processes related to an object and generating short-range representations in dedicated neural 

networks (populations) that interact with each other at long-range spatial scales. 

 

2.1. From Single Synapses to Brain Networks 

According to Hebb [1], each type of cell assembly has a functionally specific connectivity, 

thereby acquiring the status of a functionally dedicated neural network selective for a 

particular sensorial or cognitive function, or a particular type of information. The propagation 

of information during synaptic learning may be event-driven [5], clock-driven [6], or a 

combination of both [7,8]. The general basis of all computational development in this regard 

is a simplified synapse model, where the spike input will trigger a synaptic electric current 

into the postsynaptic neuron. The Hebbian learning principle in its most general form is 

expressed in mathematical terms as 

∆wij ∝ vivj, (1) 

where wij refers to the change of synaptic weight between the presynaptic neuron i and the 

postsynaptic cell j, and v represents the activities of those neurons, respectively. Any network 

of strongly connected neurons in a functionally dedicated neural network or cell assembly 

may communicate with another functionally dedicated network to generate multimodal brain 

representation. According to Hebb [1], the combined activity of functionally specific 

networks in the mammalian brain explains the full complexity of cognitive representation 

(“intelligence”, “intelligent processes”) on the basis of a from-simple-to-complex processing 

hierarchy. Functionally connected neurons act as a functional unit, with the activation of a 

fraction of that unit leading to the activation of the whole unit. When no longer activated, the 

weight of synaptic connections is weakened and, ultimately, the functional connectivity 

extinguishes as a result of the mechanisms of LTP and LTD that govern biological neural 

learning. LTP and LTD are triggered by the timing of neural signals (spikes) in the short-

range spatial regime governing interactions between adjacent neurons. The hypothesis that the 

same timing principles apply to the long-range regime of functional interaction between 

neurons across distant cortical areas is supported by functional neuroanatomy and 

psychophysics [3,4].  

 

2.2. Timing of Neural Signals 

The timing of neural signals in a network [5–8] determines whether neural connections are 

reinforced (excitation) or suppressed (inhibition). When a presynaptic signal precedes a 

postsynaptic signal, potentiation of the synapse resulting in a stronger weight w is observed, 

with repeated strengthening ultimately leading to long-term potentiation (LTP); a repeated 

reverse temporal signal order weakens synaptic strength and, ultimately, leads to long-term 

depression (LTD). Because of the absence of explicit goals, correction functions, or prior 

knowledge, Hebbian synaptic learning is categorized as unsupervised learning. The 

information propagation in such networks may be event-driven [5], clock-driven [6], or a 

combination of both [7,8]. In self-organizing reinforcement learning, the weight w of an 

eligible synapse c changes in time t with the reinforcement signal R. 

w(t) = R(t) × c(t), (2) 
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where R(t) is the “reward” signal at a given moment in time t. Starting from these basic 

functional principles, LTP and LTD promote increasingly effective functional organization in 

neural networks such as those found in biological brains. Neural encoding therein is to 

represent information from the physical world, such as the direction of object or limb 

movement, in the activity of a neuron (spike activity, firing rate). Information decoding is the 

reverse process of interpretation of neuronal activity and its translation into electrical signal 

for actuators (such as muscles, digits, or limbs). The biological brain encodes information in 

two continua corresponding to physical space and neural space. The physical space may be 

the physical properties of objects such as their color, shape, or temperature; the neural space 

consists of functional properties of a neuron such as firing rates and peaks. In binary coding, 

neuron models take two values corresponding to on/off states while ignoring the timing and 

multiplicity of spikes. Binary coding [9] converts the spike timing of neurons during specific 

time intervals into binary codes and is, for example, used to represent categories during 

learning [10]. Rate coding, on the other hand, is based on the coding of intensity of sensory 

stimuli [11]. Often a population or assembly of neurons is used as a whole to encode specific 

information, a strategy that is consistent with that of brains in living agents, where specific 

functions are controlled by a specific class of neurons.  

 

2.3. Reinforcement and Extinction 

One of the ambitions of biologically inspired neural coding in models for robot control is to 

characterize and provide a plausible brain model for the behavioral neuroscience of 

reinforcement and extinction [12,13].  

These are phenomena in which a behavior that has been acquired through reinforcement in 

operant learning decreases in strength until its full extinction when the outcome or event that 

reinforced it is no longer occurring (Figure 2). The mechanisms of reinforcement and 

extinction appear to involve three functionally identified regions of neural circuitry formed by 

the amygdala, the prefrontal cortex, and the hippocampus [14]. The remainder of this article 

discusses the principles of reinforcement and extinction in biological learning using examples. 

These were selected on the basis of the self-organizing mechanisms brought to the fore in the 

work cited. How their implementation in artificial neural network architectures can promote 

the design of intelligent robots and sensor technology is then made clear. An essential ground 

condition of self-organizing intelligence is the functional plasticity of neural networks. 
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Figure 2. Phenomena of reinforcement (left) and extinction (right) account for all learning in 

brain and behavior. A system response (SR) to a conditional stimulus (CS) steadily reinforced 

by a specific outcome (O) or “reward” during learning leads to a consolidated functional 

network connectivity (left). Such connectivity decreases in strength until its full extinction 

when the outcome that initially reinforced it is no longer delivered (right). 

 

2.4. Functional Plasticity 

Throughout the process of synaptic learning and memory consolidation, structural changes 

driven by activation of one or several neurotransmitter receptors take place in the target neural 

networks [15]. These neurobiological changes are the basis of all functional plasticity. The 

most important excitatory neurotransmitter system in this respect would probably be the 

glutamatergic system [16], since its involvement in persistent forms of synaptic plasticity is 

well recognized [17]. After the activation of neurotransmitter receptors, several downstream 

signals are triggered. The most important signal for synaptic learning is calcium, which has 

the ability to interact with the actin cytoskeletons of dendrites and, through this interaction, 

regulates structural and, as a consequence, functional synaptic plasticity [18]. After synaptic 

activation, the flow of calcium ions (Ca
2+

) into cells, either through gated calcium channels or 

via internal reservoirs, results in complex series of transitory oscillatory signals [19]. Such 

signaling complexity needs to be transformed into stable and persistent messages, which 

explains the need for self-organizing structural change in biological neural networks [20]. In a 

relatively constant environment, animals may express variable behaviors or motor actions as a 

consequence of internal drives and motivations. Such actions are driven by adaptive pressure, 

i.e., the need to survive in a changing environment, and arise from the dynamic properties of 

so-called central networks, i.e., the control structures of a given function, behavior, or agency, 

in a living brain. Such adaptive processes may result in stereotyped behaviors and action 

patterns or in highly variable and goal-directed choice behaviors [21–24,26]. Feeding, sexual, 

and aggressive behaviors in invertebrates and vertebrates are goal-directed actions relying on 

lesser or higher degrees of functional complexity in which internal “decisions” to act 

determine the spontaneous expression of survival relevant actions and activity patterns [26–

29]. “Decision to act” here implies that the neural network has structural and functional 

mechanisms which enable the selection of a particular behavior, action, or activity pattern 

from several variants thereof. Such mechanisms internally represent the conditions for 

external expression in the form of action. The network mechanisms that govern this kind of 

internal decision making are subject to plastic changes by self-organization, i.e., through 

regulation by changes in sensory inputs from the outside world associated with the positive 

(reward) or negative (punishment) consequences of a specific action, behavior, or response 

[30–32]. Sensory feedback in associative learning enables memory representation and 

modification of internal motivation [21–32]. With increasing structural and functional 

complexity of neural network connectivity, internal feedback mechanisms become 

increasingly essential for determining the relevance (“value”, “meaning”) of an external 

context for the production of a specific response or activity pattern [33–35]. Research data 

pointing toward specific neural structures implicated in such internal, behaviorally relevant 

decision making in living organisms are available [36–39]. However, the functional principles 

of self-organization that account for the capability of a neural network or a set of multiple 

inter-connected networks to generate and organize neuronal activity for coherent action-in-

context selection, spontaneously and at different levels of complexity, have remained the holy 

grail in functional and computational neuroscience. A related and still unresolved question is 

how internal decision-making processes are regulated by further learning and long-term 

memory changes.  
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3. Invertebrate Models of Adaptive Learning 

Invertebrate mechanisms of learning and memory illustrate that the biological brain 

mechanisms that control learning have a long evolutionary history. Living beings may be 

conceived as evolving, developing agents with a need to cope with environmental uncertainty. 

Most of the current knowledge of the central nervous system (brain) to spontaneously trigger 

motor behavior and actions that follow a specific pattern stems from the analysis of rhythmic, 

largely stereotyped, behavior of invertebrates. Limb and body movements (locomotion) and 

respiratory activities (breathing patterns) are examples of such stereotypes. So-called 

“rhythmogenic networks” or “central pattern generators” have been proposed to account for 

the synaptic and intrinsic membrane properties of neurons governing stereotypic behaviors 

[40–44]. Ongoing operations can be dynamically regulated or modulated in such networks by 

sensory input, but their functional variability is not necessarily determined by internally 

represented motivational components [45,46]. Invertebrate neural network models provide a 

mechanistic account for this kind of “low-level” learning, with and/or without internal 

representation [26–31]. Insights into the functional design and properties of motor networks 

able to autonomously elaborate action patterns and context setting for their expression [47] 

mainly stem from the neuroscience of invertebrate organisms [24–30], suggesting model 

circuits for low-level command processes governing invertebrate behavior(s). Experimental 

and model data have allowed characterizing the synaptic organization, cellular properties, and 

dynamic network organization in invertebrates including mollusks [48–50]. 

 

3.1. Motor Learning and Memory  

The sea snail Aplysia is among the most widely used ‘model organisms’ in the cellular 

biology of low-level motor learning and memory. For his contributions to this field of 

discovery, Eric Kandel [51] shared the 2000 Nobel prize for Physiology or Medicine. Aplysia 

has two functionally identified motor neurons (Figure 3); the large size of these neurons 

correlates with the sensory areas they connect to, and each neuron can act as a single 

integrative center for the control of multiple motor behaviors. This species, thus, exploits a 

distinct strategy from others where complex tasks are controlled by several thousands of 

neurons. Aplysia can develop both non-associative and associative forms of long-term 

memory [48] needed for all fundamental learning (habituation, sensitization, classical and 

operant conditioning). The cellular and molecular mechanisms of long-term plasticity in 

Aplysia have many parallels in humans, which suggests a profound evolutionary conservation 

of the most elementary events underlying all learning and memory [51]. This has important 

implications for biologically inspired artificial intelligence for robot movement control, as 

made clear later. Until recently, learning and memory in invertebrate organisms were believed 

to be mediated by relatively simple presynaptic mechanisms. New experimental evidence 

from research using Aplysia indicates that the previously defended distinction between 

invertebrate and vertebrate synaptic mechanisms of learning is invalid. Learning in Aplysia 

cannot be explained in terms of presynaptic mechanisms only, given that NMDA receptor-

dependent LTP appears to be necessary for classical conditioning in Aplysia [30]. Moreover, 

modulation of postsynaptic ionotropic glutamate receptor trafficking underlies behavioral 

sensitization in this snail [52]. Exclusively presynaptic processes drive relatively brief 

memory in Aplysia; more persistent memory forms in invertebrates are, therefore, likely to be 

mediated by postsynaptic processes as in vertebrates or by presynaptic mechanisms that 

depend on feedback signals [52,53], which results in the same outcome. In short, the neuronal 

underpinnings of variable motor strategies employed by simple living organisms such as 

invertebrates already depend, at least partly, on autonomous neural mechanisms, i.e., self-

organization. The structural and functional properties of the networks mediating invertebrate 

motor activity spontaneously select external conditions for the expression of distinct, 
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sometimes opposing, actions [48,54–57]. Invertebrate neural networks are capable of driving 

extinction learning [52–58], which relates to the ability to update previously learned 

information by integrating novel and, in essence, contradictory information. Such relearning 

has an important adaptive function and relevance for artificial intelligence design approaches 

in robotics.  

 
 

Figure 3. Snapshot view of the neuroanatomy of Aplysia central nervous system. This 

invertebrate exploits a distinctly different coding strategy compared with higher-order species, 

where behavior is controlled by several thousands of neurons. In Aplysia, synaptic actions 

attributed to neural activities governing positive and negative responses in feeding behavior 

are produced by large spontaneously active motor neurons (M), of which two have been 

functionally mapped in the cerebral ganglia. These motor neurons have an unusually large 

soma and act as multi-action interneurons, generating inhibitory and/or excitatory synaptic 

potentials in connected neurons linking the buccal to the abdominal ganglia. At high-

frequency firing rates during feeding behavior, the synaptic potentials may convert from 

excitatory to inhibitory [52,53]. 

 

3.2. Avoidance and Approach  

Insect models [56] have been exploited to shed light on fundamental processes of memory 

formation and memory update in behavioral processes of attraction and aversion producing 

alternative choice responses [57,58]. Fruit flies can learn to associate an odor stimulus with a 

positive or negative consequence, such as food reward or electric shock punishment [59–61]. 

In the training phase, flies are typically exposed to two odors (differential conditioning) where 

one odor is perceived alone, whereas a second odor is presented together with either reward or 

punishment [59]. Once an association has formed between a stimulus and its consequence 

(reward, punishment), the learned anticipation of reward or punishment can be observed in a 

memory test that enforces a binary choice behavior (approach or avoidance) to positively and 

negatively reinforced stimuli [61]. A single learning trial [61,62] can be sufficient to form a 

stable memory. The so-called prediction error theory [57] describes a basic theoretical 

concept in the field of classical conditioning. It accounts for the fact that the efficacy of 

learning is determined by the discrepancy (or error) between the expected and the received 
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reinforcement (reward or punishment). Re-exposing flies to a conditional stimulus (odor) after 

successful training in the absence of positive or negative reinforcement leads to a reduction in 

the previously learned behavior, a phenomenon called extinction learning [57,58,63–69], 

which is observed across invertebrate and vertebrate species. According to prediction error 

theory, extinction learning is driven by the repeated mismatch between the expected outcome 

(reward or punishment) of the initial learning (conditioning) phase and a different and 

unexpected new outcome, i.e., the absence of either positive or negative reinforcement, for 

example. 

 

3.3. Adaptation to the Unexpected 

In humans and in robots, extinction learning is of high relevance for behavioral adaptation to 

the unexpected. Such would include the ability to choose an alternative trajectory when the 

programmed one presents an unexpected obstacle, for example. Data from conditioning 

experiments suggest that two parallel but opposing memory traces coexist in the functional 

neural network architectures of biological reinforcement and extinction learning [70–76]. A 

minimalistic model of such circuitry has been proposed recently [74] to account for classical 

appetitive and aversive conditioning with memory extinction. This model is tailored to 

existing anatomical data, with two circuits of critical importance that exploit highly plastic 

synaptic connections between principal neurons (PN), functionally identified Kenyon cells 

(K), essential for olfactory learning and memory facilitated by dopamine-driven plasticity 

[72–75] of their signaling in response to odors, and functionally identified output neurons 

(ON) in separate and mutually inhibiting reward (attraction) and punishment (repulsion) 

learning pathways. Neuromodulation through recurrent network connections and the plasticity 

thereof permit implementing a simple mechanism that generates testable predictions in the 

temporal domain for the rapid encoding of associations of the conditioned stimulus with a 

reward or a punishment in single-trial learning (Figure 4). Each PN of the network model is 

activated at a random rate drawn from a uniform distribution within the range between 0 and 

1. PNs are connected to K neurons via a first synaptic weight matrix (W1); each connection 

has a fixed synaptic weight. Activation of the K vector in the next layer results from the 

matrix product of the PN population vector and the respective weight matrix W1. K neurons 

are fully connected to the ON via a second weight matrix (W2). With all synaptic weights 

initially set to 0.01, the excitatory input to ON4 and ON1 mediating negative reinforcement 

results from a summation of inhibitory and excitatory input 

 

ON4 = ON4+ + ON4− (3) 

ON1 = ON1+ + ON1− (4) 

 

whereas, for ON3 and ON2 mediating positive reinforcement, the activation rate is solely 

determined by excitatory input. KPOS and KNEG neurons receive excitatory feedback from 

ON4 and ON1 neurons, respectively. Reinforcing stimuli have an effect on both. A rewarding, 

unconditioned stimulus (positive reinforcement) generates excitatory input to the POS 

neurons while excitatory feedback from ON1 to the NEG neurons is partially suppressed. 

Conversely, a punishing, unconditioned stimulus (negative reinforcement) generates 

excitation of NEG neurons, as well as the partial suppression of excitatory input from ON4 to 

the POS neurons. The complete model and equations for all processing stages are given in 

[74]. 
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Figure 4. Invertebrate neural network model inspired by [74] for olfactory coding, olfactory 

memory formation during the negative or positive reinforcement of odors (reinforcement 

learning), and extinction learning when positive or negative reinforcement is no longer 

delivered. The neural network architecture and its functional properties account for transitions 

between approach and avoidance behaviors, and vice versa, in response to odors during 

extinction learning. The network consists of three fully connected functional layers of 

principal neurons (PN), reward (POS), and punishment (NEG) coding dopaminergic Kenyon 

neurons (K), and output neurons (ON), representing the three major stages of the olfactory 

pathway in Drosophila. 

 

Similar neural network models based on a predictive form of Hebbian synaptic plasticity [75] 

account for a wide range of experiments on insect learning in uncertain environments 

including risk aversion. The predictive Hebbian model uses neuromodulatory influences to 

bias specific actions and to control synaptic plasticity. The neural substrates of prediction and 

reward [76] provide model accounts that have been in behavioral simulation [74–77]. 

 

4. Vertebrate Models of Learning for Cognitive Control 

Evolution and individual brain development are open-ended processes of information increase 

and, as a consequence, information processing capacity [77], where an agent’s capabilities of 

learning and acting, i.e., the level of agency, represent a functional compromise between 

stability and specificity, on the one hand, and the anticipation of external (environmental) 

change, on the other. Unsupervised reinforcement learning therein is a universal mechanism, 

widely used to explain behavior and behavioral control. It accounts for the lower-level 

adaptive learning in invertebrates illustrated in Section 3, and the higher-level learning for 

cognitive control in vertebrates including the nonhuman and human primate [78–89]. In 

vertebrate species, reward (reinforcement) learning consists of an agent learning specific 

values associated with specific states that constitute a so-called task state space [80–89]. The 

agent then uses the learnt knowledge to control the multiple-alternative choice of actions 

likely to lead to desired (reinforced) outcomes [79–82].  

 

4.1. Task State Learning and Control 

It has been proposed that neural networks in the mammalian orbitofrontal cortex [83–88] 

encode task states and task state spaces [82] during reinforcement learning. How the OFC 

acquires and stores this kind of information is not well understood. Neural network 

hypotheses and models [79–92] have attempted to propose and simulate cortical candidate 
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mechanisms inspired by known functional properties of the primate brain. Neural network 

models based on reservoir computing represent a suitable approach for encoding task state 

information during reinforcement learning [79–82]. Reservoir networks [82] exhibit 

heterogeneous and dynamic activity patterns that can be exploited (Figure 5). Most 

reinforcement learning models account for human or animal behavior whilst assuming that the 

agent knows the task structure; yet, in the case of real agents (animals, humans, robots), the 

task structure needs to be learnt. It is critical for such a network to receive reward information 

as part of its input and, just as the orbitofrontal cortex receives converging sensory and reward 

inputs, the network is able to acquire task structure and support reinforcement learning by 

encoding combinations of sensory and reward events [81–83]. The network is based on the 

principles of a two-stage decision task where the agent (primate, robot) has to choose between 

two options A1 and A2. Their choices then lead to two intermediate outcomes B1 and B2 with 

different fixed probabilities. Choosing A1 is more likely to lead to B1, and choosing A2 is 

more likely to lead to B2. The final reward associated with a given choice is contingent only 

on the intermediate outcomes, and this contingency is reversed across trial blocks. Thus, the 

probability of getting a reward is higher for B1 in one trial block, and then becomes lower in 

the next while the probabilistic association between initial choices and intermediate outcomes 

never changes. The learning agent is not informed of the structure of the task and has to figure 

out the optimal choice response by tracking not only the final reward outcomes but also the 

intermediate outcomes. Further details, in the framework of a self-organizing neural network 

model for state encoding and reward association, can be found in [81]. The work described 

therein makes a compelling model case for the habitual process of reinforcement learning in 

interaction with specific goal-directed aspects by showing that such an interaction need not be 

coordinated by external arbitration. The principle of self-organization [81,82] plays an 

important part to such effect, as clarified later with regard to unsupervised control of robot 

and sensor learning. 

 

 
 

Figure 5. Cortical neural network model simulating reward (R) and non-reward associations 

with alternative choice decisions (A1, A2) leading to different consequences (B1, B2) that 

have equal probabilistic weight but change between trial blocks. A state-encoding layer 

between input and output simulates the excitatory and inhibitory neural mechanisms 

generating the conditional encoding (internal representation) of reward versus non-reward 
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contingencies associated with a given choice response (decision) during reinforcement 

learning. 

 

Thus, biological learning algorithms have the possibility to resort to internal processing 

hierarchies in the formation of action sequences for habit learning and goal-directed actions, 

on the one hand, and the habituated sequencing of actions, on the other, through excitatory 

and inhibitory brain-inspired mechanisms [80–94]. This accounts for so-called event coding 

[81,84] during reinforcement learning in line with experimental findings [78–81].  

 

4.2. Memorizing Temporal Order 

Remembering the temporal order of a sequence of events is easy for humans and most 

mammals in everyday life. The underlying neuronal dynamics are self-organizing, as 

illustrated in models inspired by functional properties of the primate brain [2,3]. Overt human 

behavior and its full expression proceed on a timescale of seconds or minutes for longer tasks 

[95], which appears to contrast with the ultrafast millisecond timescale of neuronal processing 

in the primate brain. Sequence learning (Figure 6) in neural networks has been a model in 

terms of finely tuned temporal firing activities enabling the compression of slow behavioral 

sequences down to the millisecond timescale, which is that of synaptic plasticity. 

Mathematical analysis and computer simulations have produced the phenomenon of phase 

precession [95–99]. Within critically short synaptic learning windows, phase precession was 

found to improve temporal-order neural network learning [98,99]. Putative mechanisms for 

linking the millisecond timescale of synaptic plasticity to the slow timescale of behavior relate 

induction times of synaptic plasticity to spike-timing-dependent plasticity, a specific form of 

synaptic plasticity, taking into account the temporal order of presynaptic and postsynaptic 

spiking, on the one hand, and the slower firing rates of place cells [97–99], a specific class of 

location coding neurons, on the other. Such neurons start firing in specific patterns when an 

animal visits certain learned locations in its familiar environment. A ‘learning window’ 

constitutes the temporal intervals at which presynaptic and postsynaptic activities induce 

synaptic plasticity during learning, and model accounts have simulated precisely timed neural 

activity generated by phase precession, i.e., the successive across-cycle shift of from-late-to-

early spike phases by comparison with a background oscillation [98]. Phase precession allows 

for a temporal compression of a sequence of behavioral events from the timescale of seconds 

to that of milliseconds [99–101], matching the widths of generic spike-timing-dependent 

plasticity (STDP) learning windows [102–104]. The processes of synaptic plasticity are 

described activity-dependent alterations of synaptic transmission efficiency (functional 

plasticity) resulting from or accompanied by changes in the structure and number of synaptic 

connections (structural plasticity). Information storage for memory represention is highly 

influenced by activity patterns of neurons and networks the timing of their firing activity. 

Both determine the plasticity potential of neurons by generating changes in their input-output 

characteristics. Excellent overviews of these synaptic mechanisms, from molecules to neural 

circuit integration, are provided in [98,99]. Precisely timed integration of spatial locations and 

the trajectories linking them has been accounted for by plastic mechanisms in the 

hippocampus, where overlapping place cell activities and their subsequent temporal 

compression determine the time windows for spike-timing-dependent synaptic plasticity 

(STDP). Detailed mathematical accounts for the putative synaptic learning rules in such 

models are provided in [98–102]. These examples illustrate how the network representation of 

action and event sequences is formed, modified, and modified again in time by the self-

organizing mechanisms of synaptic learning and plasticity [103–105]. 
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Figure 6. Encoding of spatial sequences in the mammalian brain through neural mechanisms 

of temporal compression, as described earlier [98,99]. The place fields (top), corresponding to 

oscillatory neural activities of place cells in the hippocampus, may spatially overlap, an 

important condition for network learning of trajectories. 

 

4.3. Self-Organization 

Biological learning is, as highlighted above using selected examples from invertebrates and 

vertebrates, by definition self-organizing. On this basis, the brain representation of agentic 

experience is generated by groups of highly interconnected neurons called cell assemblies in 

both invertebrate and vertebrate learning. In higher-order learning, allocation and storage of 

information in connected circuitry operate on the basis of synaptic weight adaptation in 

different types of synapses, networks, and functionally connected assemblies of networks. 

Synaptic plasticity is the basis of all cognition and memory [2,3]. While memory allocation is 

sometimes associated with the synaptic changes at feedforward synapses, storage with the 

adaptation of recurrent connections most likely involves both [103–105]. The functional 

principle through which memory allocation and storage is achieved, and the adaption of 

different synapses and networks involved is coordinated allows for reliable representation of 

multiple memories without disruptive interference between. This functional principle is that 

of self-organization [105–107]. As discussed in full detail elsewhere [106], there are seven 

key properties of self-organization in vertebrate brain systems: (1) modular connectivity, (2) 

unsupervised learning, (3) adaptive ability, (4) functional resiliency, (5) functional plasticity, 

(6) from-local-to-global functional organization, and (7) dynamic system growth. They are 

derived from insights in neurobiology, cognitive neuroscience, physics, and, in particular, 

Grossberg’s [2] adaptive resonance theory (ART), which provides a mechanistic, 

mathematically supported, account of how self-organization achieves stability and functional 

plasticity while minimizing structural system complexity. The principle is exploited in 

Kohonen’s [107] self-organizing map, a computationally parsimonious example of self-
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organizing, brain-inspired artificial neural network (ANN) recently employed in simulations 

of brain-like sensory learning for automatic (sensor or robot driven) detection of microscopic 

changes in physical environments [108–112]. The SOM has a functional architecture that 

formally corresponds to the nonlinear, ordered, smooth mapping of high-dimensional input 

data to representations in terms of a regular, low-dimensional array [107]. Any set of input 

variables can be defined as a real vector x of n-dimension. A parametric real vector mi of n-

dimension is associated with each representation in the SOM, with the vector mi being a 

model, and the SOM an array of model representations. Assuming a general distance measure 

between x and mi given by d(x,mi), the map of an input vector x on the SOM array is then 

defined as the representation mc that best matches x yielding the smallest d(x,mi). During 

unsupervised learning, an input vector x is compared with all the mi to identify mc. Euclidean 

distances ||x–mi|| define mc. Models topographically close in the map, up to a certain 

geometric distance, indicated by hci, activate each other to learn from their joint input x. This 

results in a local relaxation or smoothing effect on the models in the neighborhood and leads 

to global ordering. Self-organized (SOM) learning is inspired by the Hebbian principles 

summarized in Equations (1) and (2). SOM learning can be expressed in the form  

 

                                     (5) 

 

where          represents an integer, the discrete-time coordinate hci(t) is the 

neighborhood function, a smoothing kernel defined across the ma which converges toward 

zero with time, and      is the learning rate, which also converges toward zero with time. 

This particular form of unsupervised learning uses the winner-take-all principle, where each 

image input vector x is matched to its best matching model within the map mc. Similarly 

[105], recent network simulations and phase space analyses have revealed that the interplay 

between long-term synaptic plasticity and homeostatic synaptic scaling simultaneously self-

organizes the adaptation of feedforward and recurrent synapses such that a new stimulus 

forms a new memory wherein different stimuli are assigned to distinct cell assemblies. The 

resulting dynamics can reproduce experimental in vivo data relative to neuronal excitability 

and network connectivity, as well as their influence on memory formation. Thus, it is made 

clear that the few fundamental Hebbian synaptic mechanisms follow self-organizing 

principles for plastic and, at the same time, stable representation in biological neural circuitry. 

 

4.4. Toward “Intelligent” Robotics 

The Hebbian learning principles are a rich source inspiration for the design of biologically 

plausible lower- and higher-level, multifunctional control in robotics. On the basis of 

functionally identified neurons and connectivity principles in combination with biomechanical 

parameters driving multifunctional behavior, testable experimental hypotheses are generated, 

which then in return clarify the biological mechanisms and purposes of multifunctionality. A 

biologically relevant control framework is likely to be computationally efficient in the direct, 

real-time control of artificial robotic systems. At the same time, these systems can provide 

deeper functional insights into the biological system that serves as the model, building a 

bridge between systems neuroscience and robotics. The Hebbian synaptic learning model and 

its implementations account for neuromodulatory effects in invertebrates and vertebrates, as 

shown above using examples. Elementary (reflex-like) learning in invertebrates can be 

directly exploited for the control of robot motor learning in the absence of reward principles 

that account for motivational representation. As shown above using examples from 

invertebrates and vertebrates, the control of high-level learning for precisely timed and 

motivated movements and actions, including the avoidance of obstacles and choice of 

pertinent alternatives in response to the unexpected, relies on synaptic plasticity and the 



14 

 

neural substrates of reinforcement learning through punishment or reward. The functional 

principle of self-organization offers computational solutions for unsupervised learning 

algorithms toward autonomous robot function and control. One of the advantages of the 

biological models reviewed above is that they all can be tested and have been in behavioral 

simulations. Not all their aspects are currently exploited in robotics for developing new 

functional architectures. How this may become possible in the near future is illustrated in the 

next section by discussing examples of current developments in “intelligent” robotics. 

 

5. Current Developments in Brain-Inspired Robot Control 

Multifunctional control in real time is a critical target in intelligent robotics. Combined with 

behavioral flexibility, such control enables real-time robot navigation and adaption to 

complex, often changing environments. Multifunctionality is observed across a wide range of 

living species and behaviors. As made clear above, even seemingly simple organisms such as 

invertebrates demonstrate multifunctional control. Living systems rely on the ability to shift 

from one behavior to another, and to vary a specific behavior for successful action under 

changing environmental conditions. Truly multifunctional control is a major challenge in 

robotics. A plausible approach is to develop a methodology that maps multifunctional 

biological system properties onto simulations [113] to potentiate rapid prototyping and real-

time simulation of solutions (control architectures). The resulting controllers can then be 

tested and improved accordingly by comparison with the original biological system. Their 

relative effectiveness as simulated controllers of an artificial device (robot) is then evaluated 

on the basis of clear criteria (benchmarks). Below, some examples of current development in 

this direction, inspired by biological learning mechanisms discussed in the previous sections, 

are highlighted. 

 

5.1. Repetitive or Rhythmic Behavior 

Hybrid model frameworks combining synaptic plasticity-dependent neural firing with simple 

biomechanics at speeds faster than real time illustrate how invertebrate learning directly 

inspires “intelligent” robotics [114,115]. Such frameworks exploit a multifunctional model of 

Aplysia feeding rhythms, which are capable of repeatedly reproducing three types of behavior: 

biting, swallowing, and rejecting. These simulate behavioral switching in response to external 

sensory cues. Model approaches incorporate synaptic learning and neural connectivity in a 

simple mechanical model of the feeding apparatus [116], with testable hypotheses in the 

context of robot movement control. As explained in detail in Section 3.1, the neural networks 

that govern feeding in Aplysia include motor neurons and cerebral–buccal target interneurons. 

Learning-induced synaptic plasticity in such modular circuitry controls behavioral switching 

(Figure 7), as recently simulated in biologically inspired model approaches directly 

exploitable for multifunctional robot control. For the model equations, the reader is referred to 

[116–120]. This modeling framework can be extended to a variety of scenarios for 

multifunctional robot movement and rhythm control, and it has several advantages. It allows 

rapid simulation of multifunctional behavior and it includes the known functional circuitry 

and simplified biomechanics of peripheral anatomy. The direct relationship with the 

underlying neural circuitry makes it possible to both generate and test specific neurobiological 

hypotheses. The relative simplicity of the network (Figure 7) makes it attractive as a basis for 

robot control. Unlike other artificial neural network architectures, synthetic nervous systems 

are explainable in terms of structures directly informing the functional system output [121–

125]. Although the connections and trained weights of other artificial neural networks may 

provide similar control capabilities, these, unlike synthetic nervous systems, have to be 

trained on large datasets. The very strength of synthetic nervous systems is that they use a 

restricted, functionally identified set of biological neuron dynamics, thereby generating robust 
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control without the need for additional training [125]. Neural network learning-inspired 

robotics include reactive systems emulating reflexes, neural oscillators to generate movement 

patterns, and neural networks for filtering high-dimensional sensory information [126]. To 

such effect, biologically motivated neural-network-based robot controllers, inspired by control 

structures in the sensory brain, where information is routed through the network using 

facilitating dynamic synapses with short-term plasticity, have been proposed [123–128]. 

Learning occurs through long-term synaptic plasticity using temporal difference learning rules 

to enable the robot to learn to associate a given movement with the correct, i.e., appropriate as 

defined, input conditions. Self-organizing network dynamics [127,129] provide memory 

representations of the environments that the robot encounters.  

 

 
 

Figure 7. Model circuitry, adapted from [116,119,120], for multifunctional robotic movement 

command/control based on the functional neuroanatomy and synaptic plasticity of Aplysia 

motor and interneurons (see Figure 3). 

 

5.2. Sensorimotor Integration  

Recent progress in neuromorphic sensory systems which mimic the biological receptor 

functions and sensorial processing [129–132] trends toward sensors and sensory systems that 

communicate through asynchronous digital signals analogous to neural spikes [127], 

improving the performance of sensors and suggesting novel sensory processing principles that 

exploit spike timing [128], leading to experiments in robotics and human–robot interaction 

that can impact how we think the brain processes sensory information. Sensory memory is 

formed at the earliest stages of neural processing (Figure 8), underlying perception and 
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interaction of an agent with the environment. Sensory memory is based on the same plasticity 

principles as all true learning, and it is, therefore, an important source of intelligence in a 

more general sense. Sensory memory is consolidated while perceiving and interacting with 

the environment, and a primary source of intelligence in all living species. Transferring such 

biological concepts into electronic implementation aims at achieving perceptual intelligence, 

which would profoundly advance a broad spectrum of applications, such as prosthetics, 

robotics, and cyborg systems [129]. Moreover, transferring biologically intelligent sensory 

processing into electronic implementations [130–132] achieves new forms of perceptual 

intelligence (Figure 8). These have the potential to profoundly advance a broader spectrum of 

applications in robotics, artificial intelligence, and control systems.  

 

 
 

Figure 8. Biomimetic sensory systems: from biological synapses to artificial neural networks 

for novel forms of “perceptual intelligence”. 

 

These new, bioinspired systems offer unprecedented opportunities for hardware architecture 

solutions coupled with artificial intelligence, with the potential of extending the capabilities of 

current digital systems to psychological attributes such as sensations and emotions. 

Challenges to be met in this field concern integration levels, energy efficiency, and 

functionality to shed light on the translational potential of such implementations. Neuronal 

activity and the development of functionally specific neural networks in the brain are 

continuously modulated by sensory signals. The somatosensory cortical network [133] in the 

primate brain refers to a neocortical area that responds primarily to tactile stimulation of skin 

or hair. This cortical area is conceptualized in the current state of the art [133–136] as 

containing a single map of the receptor periphery, connected to a cortical neural network with 

modular functional architecture and connectivity binding functionally distinct neuronal 

subpopulations from other cortical areas into motor circuit modules at several hierarchical 

levels [133–136]. These functional modules display a hierarchy of interleaved circuits 

connecting, via interneurons in the spinal cord, to visual and auditory sensory areas, and to the 

motor cortex, with feedback loops and bilateral communication with the supraspinal centers 

[135–137]. This enables ’from-local-to-global’ functional organization [134], a ground 

condition for self-organization [106,107], with plastic connectivity patterns that are correlated 

with specific behavioral variations such as variations in motor output or grip force, which 

fulfills an important adaptive role and ensures that humans are able to reliably grasp and 

manipulate objects in the physical world under constantly changing conditions in their 

immediate sensory environment. Neuroscience-inspired biosensor technology for the 

development of robot-assisted minimally invasive surgical training [138–143] is a currently 

relevant field of application here as it has direct clinical, ergonomic, and functional 
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implications, with clearly identified advantages over traditional surgical procedures 

[144,145]. Individual grip force profiling using wireless wearable (gloves or glove-like 

assemblies) sensor systems for the monitoring of task skill parameters [138–141] and their 

evolution in real time on robotic surgery platforms [141–143,146–148] permits studying the 

learning curves [140–142] of experienced robotic surgeons, surgeons with experience as 

robotic platform tableside assistants, surgeons with laparoscopic experience, surgeons without 

laparoscopic experience, and complete novices. Grip force monitoring in robotic surgery 

[146–148] is a highly useful means of tracking the evolution of the surgeon’s individual force 

profile during task execution. Multimodal feedback systems may represent a slight advantage 

over the not very effective traditional feedback solutions, and the monitoring of individual 

grip forces of a surgeon or a trainee in robotic task execution through wearable multisensory 

systems is by far the superior solution, as real-time grip force profiling by such wearable 

systems can directly help prevent incidents [146,147] because it includes the possibility of 

sending a signal (sound or light) to the surgeon before their grip force exceeds a critical limit, 

and damage occurs. Proficiency, or expertise, in the control of a robotic system for minimally 

invasive surgery is reflected by a lesser grip force during task execution, as well as by a 

shorter task execution times [146–148]. Grip forces self-organize progressively in a way that 

is similar to the self-organization of neural oscillations during task learning, and, in surgical 

human–robot interaction, a self-organizing neural network model was found to reliably 

account for grip force expertise [149].  

 

5.3. Movement Planning 

To move neural processing models for robotics beyond reactive behavior, the capacity to 

selectively filter relevant sensory input and to autonomously generate sequences of processing 

steps is critical, as in cases where a robot has to search for specific visual objects in the 

environment, and then reach for these objects in a specific, instructed serial order [150,151]. 

In robotic tasks where the simultaneous control of object dynamics and internal forces exerted 

by the robot limb(s) to follow a trajectory with the object attached to it is required, plasticity 

and adaptation permit to deal with external perturbations acting on the robot–object system. 

On the basis of mere feedback through the internal dynamics of an object, a robot is, like a 

human, able to relate to specific objects with a very specific sensorimotor pattern. When the 

object-specific dynamical patterns are combined with hand coordinates obtained from a 

camera, dedicated hand-eye coordination self-organizes spontaneously [152–154] without any 

higher-order cognitive control. Robots are currently not capable of any form of genuine 

cognition. Cognition controls behavior in living brains, where sensing and acting are no 

longer linked directly to ensure control, as is the case for any robot currently, including 

humanoids. When an action is based on sensory information that is no longer directly 

available in the processing loop at the time where action is to ensue, the relevant information 

must be represented in a memory structure, as it is in any living brain. Information for the 

control of action then becomes abstracted from sensor data through the neural memory 

representations and mechanisms of memory-based decision making [150]. Plastic 

mechanisms in neural network-based control architectures (Figure 9) effectively contribute to 

the learning of dynamics of robot–object systems, enabling adaptive corrections and/or offset 

detection. 
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Figure 9. Biological learning-inspired processing model inspired by [150] for robotic control 

beyond reactive behavior, with a capacity to selectively filter relevant sensory input and to 

autonomously generate sequences of processing steps. The illustration here shows the 

dynamic neural network architecture for the control of perceptual learning (L), memory 

storage of objects/actions, their serial order, and recall (R) through node structures with 

plasticity enabled connections. Selectively gated feedback is enabled through computational 

nodes (outlined in yellow here) for the updating of sensory representations (such as offset 

detection) as a function of changes in input from the environment. 

 

This allows for progressive error reduction by incorporating distributed synaptic plasticity 

according to feedback from actual movements in the given environment. It has been shown 

previously that such feedback processes are omnipresent in voluntary motor actions of human 

agents [154], where rapid corrective responses occur even for very small disturbances that 

approach the natural variability of limb movements. Robot control toward autonomy [155] 

ultimately implies that the robot generalizes across time and space, is capable of stopping 

when an element is missing, and updates a planned action sequence autonomously in real time 

when a scenario suddenly changes. Using biologically plausible neural learning, the flow of 

behavior generated can emerge new neural system dynamics through self-organization 

without any further control or supervision algorithm(s). In robotic control based on 

biologically inspired neural network learning, the universal training method is based on 

Hebbian synaptic learning. Several variants of the latter are discussed and compared, with 

detailed equations, in [150]. The neural network dynamics described therein can, in principle, 

be combined with other network structures that receive reward information as part of their 

input in an extended model approach based on known functional dynamics of the mammalian 

brain. As discussed in previous sections, the orbitofrontal cortex receives converging sensory 

and reward inputs, which makes the network as a whole capable of acquiring task structure 

and support reinforcement learning by encoding combinations of sensory and reward events 

[81,82]. Such networks possess self-organizing state-encoding dynamics of the type shown 

here above (Figure 5), based on the principle of multiple-stage decision tasks, where a human 

agent or robot has to choose between decisions (options) and their consequences. More 

knowledge from and interaction between the fields of cognitive neuroscience and robotics are 

needed here to further explore existing possibilities.  

 

6. Conclusions 

Living organisms have a long evolutionary history of structure and function ensuring their 

survival in natural environments. Such adaptation relies on biological adaptive learning, from 
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single synapse to networks, which is unsupervised and self-organizing. Table 1 gives a 

schematic overview of selected references, highlighted here as a function of the type of 

agency (behavior or function), species exploited (model), and level of self-organizing 

functional complexity for the development of self-organizing neural network solutions 

(control) toward “intelligent” robotics. By emulating biological mechanisms for the 

development of electronic systems for sensorimotor control, the approaches reviewed here 

push humanoid robots, exoskeletons, and similar electronic systems toward increasing levels 

of autonomy. Artificial synapses have emulate the brain’s plasticity with much simpler, less 

costly structures than most other traditional computing methods. They, therefore, offer 

promising perspectives for future robotic and neuromorphic systems. The working 

mechanisms of biological synapses and brain plasticity demonstrate the learning and memory 

potential of extremely simple and highly complex functions in living organisms. Some of 

them already comprise the sensory systems of robots. Synaptic learning can be used to control 

artificial nerves and muscles that have the same working mechanism as biological ones, and 

new models derived from brain learning can breathe lifelike motion into mobile robots. In the 

near future, neuromorphic systems are expected to become vital components of robots and 

electronic applications, including biocompatible neural prosthetics, exoskeletons, soft 

humanoids, and integrated cybernetics, exploiting natural sensory and memory systems to 

project robotics into the future. 
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