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Explications of the reconstruction of Leibniz’s

metaphysics that Deleuze undertakes in The

Fold: Leibniz and the Baroque focus predomi-

nantly on the role of the infinitesimal calculus

developed by Leibniz.1 While not underestimat-

ing the importance of the infinitesimal calculus

and the law of continuity as reflected in the

calculus of infinite series to any understanding

of Leibniz’s metaphysics and to Deleuze’s

reconstruction of it in The Fold, what I propose

to examine in this paper is the role played by

other developments in mathematics that Deleuze

draws upon, including those made by a number

of Leibniz’s near contemporaries – the projective

geometry that has its roots in the work of

Desargues (1591–1661) and the ‘‘proto-topol-

ogy’’2 that appears in the work of Dürer (1471–

1528) – and a number of the subsequent

developments in these fields of mathematics.

Deleuze brings this elaborate conjunction of

material together in order to set up a mathema-

tical idealization of the system that he considers

to be implicit in Leibniz’s work. The result is

a thoroughly mathematical explication of the

structure of Leibniz’s metaphysics. What is

provided in this paper is an exposition of the

very mathematical underpinnings of this

Deleuzian account of the structure of Leibniz’s

metaphysics, which, I maintain, subtends the

entire text of The Fold.

Deleuze’s project in The Fold is predomi-

nantly oriented by Leibniz’s insistence on the

metaphysical importance of mathematical spec-

ulation. What this suggests is that mathematics

functions as an important heuristic in the

development of Leibniz’s metaphysical theories.

Deleuze puts this insistence to good use

by bringing together the different aspects of

Leibniz’s metaphysics with the variety of math-

ematical themes that run throughout his work.

Those aspects of Leibniz’s metaphysics that

Deleuze undertakes to clarify in this way, and

upon which this paper will focus, include:

(1) the definition of a monad; (2) the theory

of compossibility; (3) the difference between

perception and apperception; and (4) the

range and meaning of the pre-established har-

mony. However, before providing the details

of Deleuze’s reconstruction of the structure of

Leibniz’s metaphysics, it will be necessary to give

an introduction to Leibniz’s infinitesimal calculus

and to some of the other developments

in mathematics associated with it.
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leibniz’s law of continuity and the
infinitesimal calculus

Leibniz was both a philosopher and mathemati-

cian. As a mathematician, he made a number

of innovative contributions to developments in

mathematics. Chief amongst these was his

infinitesimal analysis, which encompassed the

investigation of infinite sequences and series,

the study of algebraic and transcendental curves3

and the operations of differentiation and integra-

tion upon them, and the solution of differential

equations: integration and differentiation being

the two fundamental operations of the infinitesi-

mal calculus that he developed.

Leibniz applied the calculus primarily to

problems about curves and the calculus of finite

sequences, which had been used since antiquity

to approximate the curve by a polygon in the

Archimedean approach to geometrical problems

by means of the method of exhaustion. In his

early exploration of mathematics, Leibniz applied

the theory of number sequences to the study

of curves and showed that the differences and

sums in number sequences correspond to tan-

gents and quadratures, respectively, and he

developed the conception of the infinitesimal

calculus by supposing the differences between

the terms of these sequences infinitely small

(see Bos 13).

One of the keys to the calculus that Leibniz

emphasized was to conceive the curve as an

infinitangular polygon.4 Leibniz based his proofs

for the infinitangular polygon on a law of

continuity, and he used the adjective continuus

for a variable ranging over an infinite sequence

of values. In the infinite continuation of the

polygon, its sides become infinitely small and its

angles infinitely many. The infinitangular poly-

gon is considered to coincide with the curve,

the infinitely small sides of which, if prolonged,

would form tangents to the curve, where a

tangent is a straight line that touches a circle or

curve at only one point. Leibniz applied the law

of continuity to the tangents of curves as follows:

he took the tangent to be continuous with, or as

the limiting case (‘‘terminus’’) of the secant.

To find a tangent is to draw a straight line joining

two points of the curve – the secant – which are

separated by an infinitely small distance or

vanishing difference, which he called a differ-

ential.5 The Leibnizian infinitesimal calculus

was built upon the concept of the differential.

The differential, dx, is the difference in x values

between two consecutive values of the variable

(at P. See Fig. 1.), and the tangent is the line

joining such points.

The differential relation, that is, the quotient

between two differentials of the type dy/dx,

serves in the determination of the gradient of the

tangent to the circle or curve. The gradient of a

tangent indicates the slope or rate of change of

the curve at that point, that is, the rate at which

the curve changes on the y-axis relative to the

x-axis. Leibniz thought of the ‘‘dy’’ and ‘‘dx’’ in

dy/dx as ‘‘infinitesimal’’ quantities. Thus dx was

an infinitely small non-zero increment in x and dy

was an infinitely small non-zero increment in y.

Leibniz brings together the definition of the

differential as it operates in the calculus of

infinite series, in regard to the infinitangular

triangle, and the infinitesimal calculus, in regard

to the determination of tangents to curves, as

follows:

Here dx means the element, that is, the

(instantaneous) increment or decrement, of the

(continually) increasing quantity x. It is also

called difference, namely the difference

between two proximate x’s which differ by

an element (or by an inassignable), the one

originating from the other, as the other

increases or decreases (momentaneously).6

Fig.1.
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The differential can therefore be understood, on

the one hand, in relation to the calculus of infinite

series as the infinitesimal difference between

consecutive values of a continuously diminishing

quantity, and, on the other, in relation to the

infinitesimal calculus as an infinitesimal quantity.

The operation of the differential in the latter

actually demonstrates the operation of the

differential in the former, because the operation

of the differential in the infinitesimal calculus

in the determination of tangents to curves

demonstrates that the infinitely small sides of

the infinitangular polygon are continuous with

the curve.

In one of his early mathematical manuscripts

entitled ‘‘Justification of the Infinitesimal

Calculus by That of Ordinary Algebra,’’ Leibniz

offers an account of the infinitesimal calculus in

relation to a particular geometrical problem that

is solved using ordinary algebra.7 An outline of

the demonstration that Leibniz gives is as shown

in Fig. 2.8 Since the two right triangles, ZFE and

ZHJ, which meet at their apex, point Z, are

similar, it follows that the ratio y/x is equal to

(Y� y)/X. As the straight line EJ approaches

point F, maintaining the same angle at the

variable point Z, the lengths of the straight lines

FZ and FE, or y and x, steadily diminish, yet the

ratio of y to x remains constant. When the

straight line EJ passes through F, the points E

and Z coincide with F, and the straight lines, y

and x, vanish. Yet y and x will not be absolutely

nothing since they preserve the ratio of ZH to HJ,

represented by the proportion (Y� y)/X, which

in this case reduces to Y/X, and obviously does

not equal zero. The relation y/x continues to exist

even though the terms have vanished since the

relation is determinable as equal to Y/X. In this

algebraic calculus, the vanished lines x and y are

not taken for zeros since they still have an

algebraic relation to each other. ‘‘And so,’’

Leibniz argues, ‘‘they are treated as infinitesi-

mals, exactly as one of the elements

which . . . differential calculus recognises in the

ordinates of curves for momentary increments

and decrements’’ (545). That is, the vanished

lines x and y are determinable in relation to each

other only in so far as they can be replaced by

the infinitesimals dy and dx, by making the

supposition that the ratio y/x is equal to the ratio

of the infinitesimals, dy/dx. When the relation

continues even though the terms of the relation

have disappeared, a continuity has been con-

structed by algebraic means that is instructive

of the operations of the infinitesimal calculus.

What Leibniz demonstrates in this example are

the conditions according to which any unique

triangle can be considered as the extreme case of

two similar triangles opposed at the vertex.9

Deleuze argues that, in the case of a figure in

which there is only one triangle, the other triangle

is there, but it is there only virtually.10 The

virtual triangle has not simply disappeared,

but rather it has become unassignable, all the

while remaining completely determined. The

hypotenuse of the virtual triangle can be

mapped as a side of the infinitangular polygon,

which, if prolonged, forms a tangent line to the

curve. There is therefore continuity from the

polygon to the curve, just as there is continuity

from two similar triangles opposed at the vertex

Fig. 2.
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to a single triangle. Hence this relation is

fundamental for the application of differentials

to problems about tangents.

In the first published account of the calculus,11

Leibniz defines the ratio of infinitesimals as the

quotient of first-order differentials, or the

associated differential relation. He says that

‘‘the differential dx of the abscissa x is an

arbitrary quantity, and that the differential dy of

the ordinate y is defined as the quantity which

is to dx as the ratio of the ordinate to the

subtangent’’ (Boyer 210) (see Fig. 1). Leibniz

considers differentials to be the fundamental

concepts of the infinitesimal calculus, the

differential relation being defined in terms of

these differentials.

newton’smethod of fluxions and
infinite series

Newton began thinking of the rate of change, or

fluxion, of continuously varying quantities, which

he called fluents such as lengths, areas, volumes,

distances, temperatures, in 1665, which pre-dates

Leibniz by about ten years. Newton regards his

variables as generated by the continuous motion

of points, lines, and planes, and offers an account

of the fundamental problem of the calculus as

follows: ‘‘Given a relation between two fluents,

find the relation between their fluxions, and

conversely.’’12 Newton thinks of the two variables

whose relation is given as changing with time,

and, although he does point out that this is useful

rather than necessary, it remains a defining

feature of his approach and is exemplified in

the geometrical reasoning about limits, which

Newton was the first to come up with.13 Put

simply, to determine the tangent to a curve at a

specified point, a second point on the curve is

selected, and the gradient of the line that runs

through both of these points is calculated. As the

second point approaches the point of tangency,

the gradient of the line between the two points

approaches the gradient of the tangent. The

gradient of the tangent is, therefore, the limit of

the gradient of the line between the two points as

the points become increasingly close to one

another.

He conceptualized the tangent geometrically,

as the limit of a sequence of lines between two

points, P and Q, on a curve, which is a secant

(see Fig. 3). As the distance between the points

approached zero, the secants became progres-

sively smaller; however, they always retained

‘‘a real length.’’ The secant therefore approached

the tangent without reaching it. When this

distance ‘‘got arbitrarily small (but remained a

real number)’’14 it was considered insignificant

for practical purposes, and was ignored. What is

different in Leibniz’s method is that he ‘‘hypothe-

sized infinitely small numbers – infinitesimals –

to designate the size of infinitely small intervals’’

(Lakoff and Núñez 224) (see Fig. 1). For Newton,

on the contrary, these intervals remained only

small, and therefore real. When performing

calculations, however, both approaches yielded

the same results. But they differed ontologically,

because Leibniz had hypothesized a new kind

of number, a number Newton did not need, since

‘‘his secants always had a real length, while

Leibniz’s had an infinitesimal length’’ (Lakoff

and Núñez 224). Leibniz’s symbolism also treats

quantities independently of their genesis, rather

than as the product of an explicit functional

relation. Deleuze uses this distinction between the

methods of Leibniz and Newton to characterize

the mind–body distinction in Leibniz’s account of

the monad, the details of which will be returned

to later in the paper.

Fig. 3.
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Both Newton and Leibniz are credited with

developing the calculus as a new and general

method, and with having appreciated that the

operations in the new analysis are applicable to

infinite series as well as to finite algebraic

expressions. However, neither of them clearly

understood nor rigorously defined their funda-

mental concepts. Newton thought his underlying

methods were natural extensions of pure geome-

try, while Leibniz felt that the ultimate justifica-

tion of his procedures lay in their effectiveness.

For the next two hundred years, various attempts

were made to find a rigorous arithmetic founda-

tion for the calculus, one that relied on neither

the mathematical intuition of geometry, with

its tangents and secants – which was perceived as

imprecise because its conception of limits was

not properly understood – nor the vagaries of the

infinitesimal, which cannot be justified either

from the point of view of classical algebra or from

the point of view of arithmetic, and therefore

made many mathematicians wary, so much so

that they refused the hypothesis outright despite

the fact that Leibniz ‘‘could do calculus using

arithmetic without geometry – by using infinite-

simal numbers’’ (Lakoff and Núñez 224–25).

the emergence of the concept of
the function

Seventeenth-century analysis was a corpus of

analytical tools for the study of geometric objects,

the most fundamental object of which, thanks to

the development of a curvilinear mathematical

physics by Christiaan Huygens (1629–95), was

the curve, or curvilinear figures generally, which

were understood to embody relations between

several variable geometrical quantities defined

with respect to a variable point on the curve.

The variables of geometric analysis referred to

geometric quantities, which were conceived not as

real numbers but rather as having a dimension:

for example, ‘‘the dimension of a line (e.g.,

ordinate, arc length, subtangent), of an area

(e.g., the area between curve and axis) or of a

solid (e.g., the solid of revolution).’’15 The

relations between these variables were expressed

by means of equations. Leibniz actually referred

to these variable geometric quantities as the

functiones of a curve,16 and thereby introduced

the term ‘‘function’’ into mathematics. However,

it is important to note the absence of the fully

developed concept of function in the context of

algebraic relations between variables for Leibniz.

Today, a function is understood to be a relation

that uniquely associates members of one set with

members of another set. Neither the equations

nor the variables are functions; rather, the

relation between x and y was considered to be

one entity. Thus the curve was not seen as a

graph of a function but rather as ‘‘a figure

embodying the relation between x and y.’’17

In the first half of the eighteenth century a shift

of focus occurred from the curve and the

geometric quantities themselves to the formulas

which expressed the relations among these

quantities, thanks in large part to the symbols

introduced by Leibniz. The analytical expressions

involving numbers and letters, rather than the

geometric objects for which they stood, became

the focus of interest. It was this change of focus

towards the formula that made the emergence

of the concept of function possible. In this

process, the differential underwent a correspond-

ing change; it lost its initial geometric connota-

tions and came to be treated as a concept

connected with formulas rather than with figures.

With the emergence of the concept of the

function, the differential was replaced by

the derivative, which is the expression of the

differential relation as a function, first developed

in the work of Euler (1707–83). One significant

difference, reflecting the transition from a

geometric analysis to an analysis of functions

and formulas, is that the infinitesimal sequences

are no longer induced by an infinitangular

polygon standing for a curve, according to the

law of continuity as reflected in the infinitesimal

calculus, but by a function, defined as a set of

ordered pairs of real numbers.

subsequent developments in
mathematics: the problem of rigour

The concept of the function, however, did not

immediately resolve the problem of rigour in the

calculus. It was not until the late nineteenth

century that an adequate solution to this problem
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was posed. It was Karl Weierstrass (1815–97) who

‘‘developed a pure nongeometric arithmetization

for Newtonian calculus’’ (Lakoff and Núñez 230),

which provided the rigour that had been lacking.

The Weierstrassian program determined that the

fate of calculus need not be tied to infinitesimals,

and could rather be given a rigorous status from

the point of view of finite representations.

Weierstrass’s theory was an updated version

of an earlier account by Augustin Cauchy

(1789–1857), which had also experienced pro-

blems conceptualizing limits.

It was Cauchy who first insisted on specific

tests for the convergence of series, so that

divergent series could henceforth be excluded

from being used to try to solve problems of

integration because of their propensity to lead to

false results.18 By extending sums to an infinite

number of terms, problems began to emerge if

the series did not converge, since the sum or limit

of an infinite series is determinable only if the

series converges. It was considered that reckoning

with divergent series, which have no sum, would

therefore lead to false results.

Weierstrass considered Cauchy to have actu-

ally begged the question of the concept of limit

in his proof.19 In order to overcome this problem

of conceptualizing limits, Weierstrass ‘‘sought

to eliminate all geometry from the study

of . . . derivatives and integrals in calculus’’

(Lakoff and Núñez 309). In order to characterize

calculus purely in terms of arithmetic it was

necessary for the idea of a curve in the Cartesian

plane defined in terms of the motion of a point to

be completely replaced with the idea of a

function. The geometric idea of ‘‘approaching

a limit’’ had to be replaced by an arithmetized

concept of limit that relied on static logical

constraints on numbers alone. This approach is

commonly referred to as the epsilon-delta

method.20 The calculus was thereby reformulated

without either geometric secants and tangents or

infinitesimals; only the real numbers were used.

Because there is no reference to infinitesimals

in this Weierstrassian definition of the calculus,

the designation ‘‘the infinitesimal calculus’’ was

considered to be ‘‘inappropriate.’’21 Weierstrass’s

work not only effectively removed any remnants

of geometry from what was now referred to as the

differential calculus, but it eliminated the use

of the Leibnizian-inspired infinitesimals in doing

the calculus for over half a century. It was not

until the late 1960s, with the development of the

controversial axioms of non-standard analysis

by Abraham Robinson (1918–74), that the

infinitesimal was given a rigorous foundation,22

thus allowing the inconsistencies to be removed

from the Leibnizian infinitesimal calculus without

removing the infinitesimals themselves.23

Leibniz’s ideas have therefore been be ‘‘fully

vindicated,’’24 as Newton’s had been thanks to

Weierstrass.25

In response to these developments, Deleuze

brings renewed scrutiny to the relationship

between the developments in the history of

mathematics and the metaphysics associated

with these developments, which were margin-

alized as a result of efforts to determine the

rigorous foundations of the calculus. This is a

part of Deleuze’s broader project of constructing

an alternative lineage in the history of philosophy

that tracks the development of a series of

metaphysical schemes that respond to and

attempt to deploy the concept of the infinitesi-

mal. The aim of the project is to construct a

philosophy of difference as an alternative spec-

ulative logic that subverts a number of the

commitments of the Hegelian dialectical logic

which supported the elimination of the infinite-

simal in favour of the operation of negation, the

procedure of which postulates the synthesis of

a series of contradictions in the determination of

concepts.26

the theory of singularities

Another development in mathematics, the rudi-

ments of which are in the work of Leibniz, is the

theory of singularities. A singularity or singular

point is a mathematical concept that appears

with the development of the theory of functions,

which historians of mathematics consider to be

one of the first major mathematical concepts

upon which the development of modern mathe-

matics depends. Even though the theory of

functions doesn’t actually take shape until later

in the eighteenth century, it is in fact Leibniz

who contributes greatly to this development.
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Indeed, it was Leibniz who developed the first

theory of singularities in mathematics, and,

Deleuze argues, it is with Leibniz that the concept

of singularity becomes a mathematico-philoso-

phical concept.27 However, before explaining

what is philosophical in the concept of singularity

for Leibniz, it is necessary to offer an account of

what he considers singularities to be in mathe-

matics, and of how this concept was subsequently

developed in the theory of analytic functions,

which is important for Deleuze’s account of

(in)compossibility in Leibniz, despite its not

being developed until long after Leibniz’s death.

The great mathematical discovery that Deleuze

refers to is that singularity is no longer thought of

in relation to the universal, but rather in relation

to the ordinary or the regular.28 In classical logic,

the singular was thought of with reference to the

universal; however, that doesn’t necessarily

exhaust the concept since in mathematics the

singular is distinct from or exceeds the ordinary

or regular. Mathematics refers to the singular and

the ordinary in terms of the points of a curve, or

more generally concerning complex curves or

figures. A curve, a curvilinear surface, or a figure

includes singular points and others that are

regular or ordinary. Therefore, the relation

between singular and ordinary or regular points

is a function of curvilinear problems which can be

determined by means of the Leibnizian infinite-

simal calculus.

The differential relation is used to determine

the overall shape of a curve primarily by

determining the number and distribution of its

singular points or singularities, which are defined

as points of articulation where the shape of the

curve changes or alters its behaviour. For

example, when the differential relation is equal

to zero, the gradient of the tangent at that point

is horizontal, indicating that the curve peaks or

dips, determining, therefore, a maximum or

minimum at that point. These singular points

are known as stationary or turning points.

The differential relation characterizes not only

the singular points which it determines but also

the nature of the regular points in the immediate

neighbourhood of these points, that is, the shape

of the branches of the curve on either side of each

singular point.29 Where the differential relation

gives the value of the gradient at the singular

point, the value of the second-order differential

relation, that is if the differential relation is

itself differentiated and which is now referred to

as the second derivative, indicates the rate

at which the gradient is changing at that point.

This allows a more accurate approximation of the

shape of the curve in the neighbourhood of that

point.

Leibniz referred to the stationary points as

maxima and minima depending on whether the

curve was concave up or down, respectively.

A curve is concave up where the second-order

differential relation is positive and concave down

where the second-order differential relation is

negative. The points on a curve that mark

a transition between a region where the curve is

concave up and one where it is concave down are

points of inflection. The second-order differential

relation will be zero at an inflection point.

Deleuze distinguishes a point of inflection, as an

intrinsic singularity, from the maxima and

minima, as extrinsic singularities, on the grounds

that the former ‘‘does not refer to coordinates’’

but rather ‘‘corresponds’’ to what Leibniz calls

an ‘‘ambiguous sign,’’30 that is, where concavity

changes, the sign of the second-order differential

relation changes from þ to �, or vice versa.

The value of the third-order differential

relation indicates the rate at which the second-

order differential relation is changing at that

point. In fact, the more successive orders of the

differential relation that can be evaluated at the

singular point, the more accurate the approxima-

tion of the shape of the curve in the ‘‘immediate’’

neighbourhood of that point. Leibniz even

provided a formula for the nth-order differential

relation, as n approaches infinity (n!1). The

nth-order differential relation at the point of

inflection would determine the continuity of the

variable curvature in the immediate neighbour-

hood of the inflection with the curve. Because the

point of inflection is where the tangent crosses

the curve (see Fig. 4.) and the point where

the nth-order differential relation as n!1 is

continuous with the curve, Deleuze characterizes

the point of inflection as a point-fold, which

is the trope that unifies a number of the themes

and elements of The Fold.
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the characteristics of a point-fold as
reflected in the point of inflection

Deleuze considers Baroque mathematics to have

been born with Leibniz, and he gives two

examples of how infinite variables emerge as

the object that defines the discipline of this

period, and in both cases Deleuze remarks on the

presence of a curved element that he characterizes

as a point-fold.

(1) The first is the irrational number and the

corresponding serial calculus. An irrational

number cannot be written as a fraction, and has

decimal expansions that neither terminate nor

become periodic. Pythagoras believed that all

things could be measured by the discrete natural

numbers (1, 2, 3, . . . ) and their ratios (ordinary

fractions, or the rational numbers). This belief

was shaken, however, by the discovery that the

hypotenuse of a right isosceles triangle (that is,

diagonal of a unit square) cannot be expressed as

a rational number. This discovery was brought

about by what is now referred to as Pythagoras’s

theorem,31 which establishes that the square of

the hypotenuse of a right isosceles triangle is

equal to the sum of the squares of the other two

sides, c2¼ a2
þ b2. In a unit square, the diagonal

is the hypotenuse of a right isosceles triangle,

with sides a¼ b¼ 1, hence c2¼ 2, and c¼
ffip
2,

or ‘‘the square root of 2.’’ Thus there exists a line

segment whose length is equal to
ffip
2, which is

an irrational number. Against the intentions of

Pythagoras, it had thereby been shown that

rational numbers did not suffice for measuring

even simple geometric objects.

Another example of a simple irrational number

is �, which is determined by the relation between

the circumference, c, of a circle relative to its

diameter, d (where �¼ c/d). Leibniz was the first

to find the infinite series (1� 1/3þ 1/5�

1/7þ � � � ) of which �/4 was the limit. Leibniz

only gave the formula of this series, and it was

not until the end of the eighteenth century that

this formula was demonstrated to be an infinite

convergent series by the mathematician Johann

Heinrich Lambert (1728–77).

Irrational numbers can therefore remain in

surd form, as for example
ffip
2, or they may be

represented by an infinite series. Deleuze defines

the irrational number as ‘‘the common limit

of two convergent series, of which one has

no maximum and the other no minimum’’

Fig. 4.
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(The Fold 17), thus any irrational number is

the limit of the sequence of its rational

approximations, which can be represented as

follows: increasing series! irrational num-

ber decreasing series. The diagram that

Deleuze provides on page 17 is of a right isosceles

triangle, the sides of which are in the ratio

1:1:
ffip
2 (see Fig. 5).

It functions as a graphical representation of

the ratio of the sides of AC:AB (where

AC¼AX)¼ 1:
ffip
2. The point X is the irrational

number,
ffip
2, which represents the meeting point

of the arc of the circle, of radius AC, inscribed

from point C to X, and the straight line AB

representing the rational number line. The arc

of the circle produces a point-fold at X. The

‘‘straight line of rational points’’ is therefore

exposed ‘‘as a false infinite, a simple indefinite

that includes the lacunae’’ of each irrational

number
ffip
n, as n!1. The rational number

line should therefore be understood to be

interrupted by these curves such as that repre-

sented by
ffip
2 in the given example. Deleuze

considers these to be events of the line, and then

generalizes this example to include all straight

lines as intermingled with curves, point-folds or

events of this kind.

(2) The second example is the differential

relation and differential calculus. Here Deleuze

argues that the diagram from Leibniz’s account of

the calculus in ‘‘Justification of the Infinitesimal

Calculus by That of Ordinary Algebra’’ (see

Fig. 2) can be correlated with a point-fold by

mapping the hypotenuse of the virtual triangle

onto a side of the infinitangular polygon, which,

if prolonged, forms a tangent line to the curve.

Once the virtual triangle vanishes or becomes

unassigned, the relation dy/dx, and therefore the

unassigned virtual triangle, is retained by point F,

just as the differential relation designates the

gradient of a tangent to the curve at point F,

which can therefore be characterized as a

point-fold.

Deleuze maps these characteristics of a

point-fold onto the inflection and identifies it as

‘‘the pure Event of the line or of the point, the

Virtual, ideality par excellence’’ (The Fold 15).

The inflection is therefore deployed through-

out The Fold as the abstract figure of the event,

and any event is considered to be a concrete case

of inflection. By means of explanation, Deleuze

offers three examples, drawn from the work of

Bernard Cache,32 of the kind of virtual or

continuous transformation that the inflection

can be understood to be characteristic of.

(1) The first set of transformations are

‘‘vectorial, or operate by symmetry, with an

orthogonal or tangent plane of reflection’’

(The Fold 15). The example that Deleuze offers

is drawn from Baroque architecture, according to

which an inflection serves to hide or round out

the right angle. This is figured in the Gothic arch

which has the geometrical shape of an ogive.

(2) The second set of transformations is

characterized as ‘‘projective.’’ The example that

Deleuze gives is the transformations of René

Thom (1923–2002) which refer ‘‘to a morphology

of living matter.’’ Thom developed catastrophe

theory, which is a branch of geometry that

attempts to model the effect of the continuous

variation of one or more variables of a system that

produce abrupt and discontinuous transforma-

tions in the system. The results are representable

as curves or functions on surfaces that depict

‘‘seven elementary events: the fold; the crease;

the dovetail; the butterfly; the hyperbolic,

elliptical, and parabolic umbilicus’’ (The Fold

16). The problem of the conceptualization of

matter in Leibniz and the role of projective

methods in its conceptualization, specifically

those of Desargues, will be addressed later in

the paper.

(3) The third set of transformations ‘‘cannot be

separated from an infinite variation or an

infinitely variable curve’’ (The Fold 17). The

example that Deleuze gives is the Koch curve,

demonstrated by Helge von Koch (1870–1924)

Fig. 5.
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in 1904. The method of constructing the Koch

curve is to take an equilateral triangle and trisect

each of its sides. On the external side of each

middle segment, construct equilateral triangles

and delete the above-mentioned middle segment.

This first iteration resembles a Star of David

composed of six small triangles. Repeat the

previous process on the two outer sides of each

small triangle. This basic construction is then

iterated infinitely. With each order of iteration,

the length of any side of a triangle is 4/3 times

longer than the previous order. As the order

of iteration approaches infinity, so too then does

the length of the curve. The result is a curve

of infinite length surrounding a finite area. The

Koch curve is an example of a non-differentiable

curve, that is, a continuous curve that does not

have a tangent at any of its points. More

generalized Koch or fractal curves can be

obtained by replacing the equilateral triangle

with a regular n-gon, and/or the ‘‘trisection’’ of

each side with other equipartitioning schemes.33

In this example, the line effectively and con-

tinuously defers inflection by means of the

method of construction of the folds of its sides.

The Koch curve is therefore ‘‘obtained by means

of rounding angles, according to Baroque

requirements’’ (The Fold 16).

deleuze’s ‘‘leibnizian’’ interpretation
of the theory of compossibility

What, then, does Deleuze mean by claiming that

Leibniz determines the singularity in the domain

of mathematics as a philosophical concept? A

crucial test for Deleuze’s mathematical recon-

struction of Leibniz’s metaphysics is how to deal

with his subject–predicate logic. Deleuze main-

tains that Leibniz’s mathematical account of

continuity is reconcilable with the relation

between the concept of a subject and its

predicates. The solution that Deleuze proposes

involves demonstrating that the continuity char-

acteristic of the infinitesimal calculus is iso-

morphic to the series of predicates contained in

the concept of a subject. An explanation of this

isomorphism requires an explication of Deleuze’s

understanding of Leibniz’s account of predication

as determined by the principle of sufficient

reason.

For Leibniz, every proposition can be

expressed in subject–predicate form. The subject

of any proposition is a complete individual

substance that is a simple, indivisible, dimension-

less metaphysical point or monad.34 Of this

subject it can be said that ‘‘every analytic

proposition is true,’’ where an analytical proposi-

tion is one in which the meaning of the predicate

is contained in that of the subject. Deleuze

suggests that if this definition is reversed, such

that it reads: ‘‘every true proposition is necessa-

rily analytic,’’ then this amounts to a formulation

of Leibniz’s principle of sufficient reason,35

according to which each time a true proposition

is formulated it must be understood to be

analytic, that is, every true proposition is a

statement of analyticity whose predicate is wholly

contained in its subject. It follows that if a

proposition is true, then the predicate must be

contained in the concept of the subject. That is,

everything that happens to, everything that can

be attributed to, everything that is predicated

of a subject – past, present and future – must be

contained in the concept of the subject. So for

Leibniz, all predicates, that is, the predicates

that express all of the states of the world, are

contained in the concept of each and every

particular or singular subject.

There are, however, grounds to distinguish

truths of reason or essence, from truths of fact or

existence. An example of a truth of essence would

be the proposition 2þ 2¼ 4, which is analytic;

however, it is analytic in a stronger sense than

a truth of fact or existence. In this instance,

there is an identity of the predicate, 2þ 2, with

the subject, 4. This can be proved by analysis,

that is, in a finite or limited number of quite

determinate operations, it can be demonstrated

that 4, by virtue of its definition, and 2þ 2,

by virtue of their definition, are identical. So, the

identity of the predicate with the subject in an

analytic proposition can be demonstrated in a

finite series of determinate operations. While

2þ 2¼ 4 occurs in all time and in all places,

and is therefore a necessary truth, the proposition

that ‘‘Adam sinned’’ is specifically dated, that is,

Adam will sin in a particular place at a particular
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time. It is therefore a truth of existence and, as we

shall see, a contingent truth. According to the

principle of sufficient reason, the proposition

‘‘Adam sinned’’ must be analytic. If we pass from

one predicate to another to retrace all the causes

and follow up all the effects, this would involve

the entire series of predicates contained in the

subject Adam, that is, the analysis would extend

to infinity. So, in order to demonstrate the

inclusion of ‘‘sinner’’ in the concept of ‘‘Adam,’’

an infinite series of operations is required.

However, we aren’t capable of completing such

an analysis to infinity.

While Leibniz was committed to the idea of

potential (‘‘syncategorematic’’) infinity, that is, to

infinite pluralities such as the terms of an infinite

series which are indefinite or unlimited, Leibniz

ultimately accepted that, in the realm of quantity,

infinity could in no way be construed as a unified

whole by us. As Bassler clearly explains:

So if we ask how many terms there are in an

infinite series, the answer is not: an infinite

number (if we take this either to mean a

magnitude which is infinitely larger than a

finite magnitude or a largest magnitude) but

rather: more than any given finite

magnitude.36

The performance of such an analysis is indefinite

both for us, as finite human beings, because our

understanding is limited, and for God, since there

is no end of the analysis, that is, it is unlimited.

However, all the elements of the analysis are

given to God in an actual infinity. We can’t grasp

the actual infinite, nor reach it via an indefinite

intuitive process. It is only accessible for us via

finite systems of symbols that approximate it.

The differential calculus provides us with an

‘‘artifice’’ to operate a well-founded approxima-

tion of what happens in God’s understanding.

We can approach God’s understanding thanks to

the operation of differential calculus, without

ever actually reaching it. While Leibniz always

distinguished philosophical truths and mathema-

tical truths, Deleuze maintains that the idea

of infinite analysis in metaphysics has ‘‘certain

echoes’’ in the calculus of infinitesimal analysis

in mathematics. The infinite analysis that we

perform as human beings in which sinner is

contained in the concept of Adam is an indefinite

analysis, just as if the terms of the series that

includes sinner were isometric with 1/2þ 1/4þ

1/8, etc., to infinity. In truths of essence the

analysis is finite, whereas in truths of existence

the analysis is infinite under the above-mentioned

conditions of a well-determined finitude.

So what distinguishes truths of essence from

truths of existence is that a truth of essence is

such that its contrary is contradictory and

therefore impossible, that is, it is impossible for

2 and 2 not to equal 4. Just as the identity of

4 and 2þ 2 can be proved in a series of finite

procedures, so too can the contrary, 2þ 2 not

equalling 4, be proved to be contradictory and

therefore impossible. While it is impossible to

think what 2þ 2 not equalling 4 or a squared

circle may be, it is possible to think of an Adam

who might not have sinned. Truths of existence

are therefore contingent truths. A world in which

Adam might not have sinned is a logically

possible world, that is, the contrary is not

necessarily contradictory. While the relation

between Adam sinner and Adam non-sinner is a

relation of contradiction since it is impossible

that Adam is both sinner and non-sinner, Adam

non-sinner is not contradictory with the world

where Adam sinned, it is rather incompossible

with such a world. Deleuze argues that to be

incompossible is therefore not the same as to be

contradictory; it is another kind of relation

that exceeds the contradiction.37 Deleuze char-

acterizes the relation of incompossibility as

‘‘a difference and not a negation’’ (The Fold

150). Incompossibility conserves a very classical

principle of disjunction: it’s either this world or

some other one. So, when analysis extends to

infinity, the type or mode of inclusion of the

predicate in the subject is compossiblity. What

interests Leibniz at the level of truths of existence

is not the identity of the predicate and the subject

but rather the process of passing from one

predicate to another from the point of view of

an infinite analysis, and it is this process that

is characterized by Leibniz as having the max-

imum of continuity. While truths of essence

are governed by the principle of identity,

truths of existence are governed by the law of

continuity.
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Rather than discovering the identical at the

end or limit of a finite series, infinite analysis

substitutes the point of view of continuity for that

of identity. There is continuity when the extrinsic

case – for example the circle, the unique triangle

or the predicate – can be considered as included

in the concept of the intrinsic case, that is, the

infinitangular polygon, the virtual triangle, or the

concept of the subject. The domain of (in)com-

possibility is therefore a different domain to that

of identity/contradiction. There is no logical

identity between sinner and Adam, but there is

a continuity. Two elements are in continuity

when an infinitely small or vanishing difference is

able to be assigned between these two elements.

Here Deleuze shows in what way truths of

existence are reducible to mathematical truths.

Deleuze offers a ‘‘Leibnizian’’ interpretation of

the difference between compossibility and incom-

possibility ‘‘based only on divergence or conver-

gence of series’’ (The Fold 150). He proposes the

hypothesis that there is compossibility between

two singularities

when series of ordinaries converge, series of

regular points that derive from two singula-

rities and when their values coincide, other-

wise there is discontinuity. In one case,

you have the definition of compossibility,

in the other case, the definition of

incompossibility.38

If the series of ordinary or regular points that

derive from singularities diverge, then you have

a discontinuity. When the series diverge, when

you can no longer compose the continuity of this

world with the continuity of this other world,

then it can no longer belong to the same world.

There are therefore as many worlds as diver-

gences. All worlds are possible, but they are

incompossibles with each other. God conceives

an infinity of possible worlds that are not

compossible with each other, from which He

chooses the best of possible worlds, which

happens to be the world in which Adam sinned.

A world is therefore defined by its continuity.

What separates two incompossible worlds is

the fact that there is discontinuity between

the two worlds. It is in this way that

Deleuze maintains that compossibility and

incompossibility are the direct consequences of

the theory of singularities.

projective geometry andpoint of view

While each concept of the subject contains

the infinite series of predicates that express the

infinite series of states of the world, each

particular subject in fact only expresses clearly

a small finite portion of it from a certain point

of view. In any proposition, the predicate is

contained in the subject; however, Deleuze

contends that it is contained either actually or

virtually. Indeed, any term of analysis remains

virtual prior to the analytic procedure of its

actualization. What distinguishes subjects is that

although they all contain the same virtual world,

they don’t express the same clear and distinct

or actualized portion of it. No two individual

substances have the same point of view or exactly

the same clear and distinct zone of expression.

Deleuze considers the explanation of point of

view to be mathematical or geometrical, rather

than psychological. In order to characterize the

point of view of the monad Deleuze draws upon

the projective geometry of Desargues (1591–

1661). Desargues extends the work of Apollonius

(262–190 BC) and Kepler (1571–1630) by intro-

ducing new methods for proving theorems about

conics. He introduced a method of proof called

projection and section that unified the approach

to the several types of conics that had previously

been treated separately. Conic sections are curves

formed by the intersection of a plane with the

surface of a cone, that is, two right circular cones

placed apex to apex. The principles of projection

and section can be understood according to the

example of a flashlight that projects a circular

patch of light on a wall. The flashlight is regarded

as a point or apex, the lines of light from the

flashlight to the circle are said to constitute a

projection, and the wall itself is the plane that is

said to contain a section of that projection.

The circle on the wall would therefore be

understood mathematically as the section that

is projected on a plane passing through the

projection at 90 degrees. This problem is

extended mathematically if we suppose that a

different section of this same projection is made
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by a different plane that cuts the projection at a

different angle. For example, if the flashlight

were held at an angle to the wall it would project

an ellipse. To project a figure from some point

and then take a section of that projection is to

transform the figure to a new one. Shapes and

sizes change according to the plane of incidence

that cuts the cone of the projection, but certain

properties remain the same throughout such

changes, or remain invariant under the transfor-

mation, and it is these properties that Desargues

studied. Conic sections, including the parabola,

ellipse, hyperbola, and circle, can be obtained by

continuously varying the inclination of the plane

that makes the section, which means that they

may be transformed into one another by suitable

projections and are therefore continuously deri-

vable from each other.

It is possible that Leibniz had read or at least

knew of Desargues’s work through the work of

Pascal (1623–62) and La Hire (1640–1718), which

Leibniz had became acquainted with during the

years in which he was working on his early papers

on situational analysis. Desargues, Pascal and

La Hire first proved properties of the circle and

then carried these properties over to the other

conic sections by projection and section on the

basis that since it is true of the circle it must by

projection and section be true of all conics.

The commitment to algebra was so strong by

Descartes and his followers that projective

geometry went almost unnoticed at the time.

The realization that a new branch of geometry

was implicit in their work did not come about

until the nineteenth century, by which time new

developments in mathematics allowed mathema-

ticians to bring to fruition the ideas still dormant

in projective geometry.39

The summit of a cone is a point of view

because, according to projective geometry, it

‘‘is the condition under which we apprehend the

group of varied forms or the series of curves’’

(The Fold 24), for example the circle, ellipse,

parabola and hyperbole, that are derivable from

one another by projection and section. It is in this

way that a continuity has been constructed by

means of the projective properties of the conic

sections, and it is this very continuity that

Deleuze maps onto the variable curvature

represented by the point of inflection to

determine the point of view of a monad.

However, rather than being mappable onto the

entire series of inflections that make up the curve

included in a monad, point of view only projects

onto the neighbourhood of a single inflection or

singularity. This does not yet account for the

fact that each individual subject only expresses

clearly a partial zone or subdivision of the infinite

series of predicates or states of the world included

in the monad, but is only the first step of the

explanation that Deleuze offers.

The next step draws upon Leibniz’s distinction

between three kinds of points: the physical, the

mathematical and the metaphysical. Leibniz

draws a clear distinction between the world of

mathematical entities (lines, surfaces, numbers),

and the world of concrete things, which is

reflected in the distinction between mathematical

points and physical points. For him a physical

point is a centre of radiation of force which

cannot be further contracted. The physical point

is what traces the lines of inflection that are

extended up to the neighbourhood of other

singularities, and which is characterized by

Deleuze as the point of inflection. The mathema-

tical point is a position, a site, a focus, or location

that Deleuze characterizes as the point of view.

And the metaphysical point is simple, indivisible,

and dimensionless, it is the soul or the subject

that ‘‘must be placed in the body where its point

of view is located,’’40 or, as Deleuze maintains,

it ‘‘is what occupies the point of view, it is what is

projected in point of view’’ (The Fold 23).41

While the inflection is a section of the

projection of a point of view, what comes to

occupy this point of view is a soul, a substance,

a subject, a concept of the individual, designated

by a proper name (see The Fold 12, 19).

The point of view is therefore the mode of

individuation of the individual subject. Because

the subject occupies the point of view, point of

view pre-exists the subject which is placed there.

Singularities are therefore pre-individual (see The

Fold 64). The finite portion of the world that the

individual subject expresses clearly is actually

constituted by a small number of the points

of view of convergent inflections that represent

the principal singularities or primary predicates
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of the monad. For example, Deleuze defines the

individual ‘‘Adam,’’ which Leibniz, in the letters

to Arnauld, describes as the ‘‘first man,’’ as the

first singularity; the ‘‘garden’’ as the second

singularity; ‘‘having a woman born of his own

side’’ as the third singularity; and as having

‘‘succumbed to temptation’’ as the fourth

singularity.

Deleuze’s hypothesis is that the individual

subject is a condensation of such compossible,

or convergent, singularities, and he draws upon

Leibniz’s distinction between the three kinds of

points for his explanation. Leibniz maintains that

it is possible for mathematical points to coincide;

for example, given an infinite number of

triangles, it is possible to make their summits

coincide in the one point, ‘‘as the different

summits of separate triangles coincide at the

common summit of a pyramid’’ (The Fold 63).

This is why the mathematical points are not

constituent parts, or physical points of extension.

The condensation of singularities in an individual

subject therefore means that the summits of the

triangles that represent the mathematical points

characteristic of point of view coincide in this way

in a metaphysical point. So Deleuze maintains

that the individual subject is a point, but a

metaphysical point, and the metaphysical point is

the ‘‘concentration, accumulation, coincidence of

a certain number of converging preindividual

singularities’’ (The Fold 63).

the theory of the differential
unconscious and the body as
phenomenal

The number of mathematical points, or points of

view, coincident in the individual subject at any

one time corresponds to the proportion of the

world that is expressed clearly and distinctly

by that individual, in relation to the rest of the

world that is expressed obscurely and confusedly.

The explanation as to why each monad only

expresses clearly a limited subdomain of the

world that it contains pertains to Leibniz’s

distinction between ‘‘perception, which is the

inner state of the monad representing external

things, and apperception, which is consciousness

or the reflective knowledge of this inner state

itself.’’42 The infinite series of predicates or states

of the world is in each monad in the form of

minute perception. These are infinitely tiny

perceptions, which Deleuze characterizes as

‘‘unconscious perceptions’’ (The Fold 89), or as

the ‘‘differentials of consciousness’’ (93). Each

monad expresses every one of them, but only

obscurely or confusedly, like a clamour. Leibniz

therefore distinguishes conscious perception as

apperception from minute perception, which is

not given in consciousness.

When Leibniz mentions that conscious percep-

tions ‘‘arise by degrees from’’ minute percep-

tions,43 Deleuze claims that what Leibniz indeed

means is that conscious perception ‘‘derives

from’’ minute perceptions. It is in this way that

Deleuze links unconscious perception to infinite-

simal analysis. Just as there are differentials for

a curve, there are differentials for consciousness.

When the series of minute perceptions is

extended into the neighbourhood of a singular

point, or point of inflection, that perception

becomes conscious. Conscious perception, just

like the mathematical curve, is therefore subject

to a law of continuity, that is, an indefinite

continuity of the differentials of consciousness.

We pass from minute perception to conscious

perception when the series of ordinaries reaches

the neighbourhood of a singularity. In this way,

the infinitesimal calculus operates as the uncon-

scious psychic mechanism of perception. Deleuze

understands the subdomain that each monad

expresses clearly in terms of the constraints that

the principle of continuity places on a theory of

consciousness. ‘‘At the limit, then, all monads

possess an infinity of compossible minute

perceptions, but have differential relations that

will select certain ones in order to yield clear

perceptions proper to each’’ (The Fold 90).

Before addressing Leibniz’s understanding of

the phenomenal nature of a monad’s body, his

account of matter, and Deleuze’s characterization

of it, requires explication. At the most basic level,

Leibniz identified extended matter with primitive

passive force that includes both impenetrability

and resistance.44 In addition to this, Leibniz

considered nature to be infinitely divisible such

that ‘‘the smallest particle should be considered

as a world full of an infinity of creatures.’’45
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He also maintained that ‘‘The division of the

continuous must not be taken as of sand dividing

into grains, but as that of a sheet of paper or of a

tunic in folds, in such a way that an infinite

number of folds can be produced, some smaller

than others, but without the body ever dissolving

into points or minima’’ (The Fold 6).46

Deleuze takes this trope of ‘‘a tunic in folds’’

to characterize Leibnizian matter as ‘‘solid pleats’’

that ‘‘resemble the curves of conical forms,’’ that

is, the actual surface of the projection from

apex to a curve of the cone of a conic section

‘‘sometimes ending in a circle or an ellipse,

sometimes stretching into a hyperbola or a

parabola.’’ Deleuze then proposes origami, the

Japanese art of folding paper, as the model for the

sciences of Leibnizian matter (The Fold 6).

This accounts for the first type of fold that

characterizes the pleats of matter, which are

then organized according to a second type of

fold, which Deleuze characterizes mathematically

by means of Albrecht Dürer’s (1471–1528)

projective method for the treatment of solids.

Dürer, in his work on the shadow of a cube,

devised a

proto-topological method of developing

[solids] on the plane surface in such a way

that the facets form a coherent ‘‘net’’ which,

when cut out of paper and properly folded

where the two facets adjoin, will form an

actual, three-dimensional model of the solid

in question.47

What, then, does this mean for bodies? Bodies are

extended in so far as geometry is projected in this

proto-topological way onto them. In a metaphysi-

cal sense, what is really there is force. In his notes

on Foucher, Leibniz explains that ‘‘Extension or

space and the surfaces, lines, and points one can

conceive in it are only relations of order or orders

of coexistence.’’48 The extensionality of bodies

is therefore phenomenal in so far as it results

from the projection of geometrical concepts onto

the ‘‘tunic in folds’’ of matter. What to each

monad is its everyday reality is to Leibniz a

phenomenal projection, which is rendered intelli-

gible only when it is understood to reflect the

intelligible, mathematical order that determines

the structure of Leibniz’s metaphysics.49

So there is a projection of structure from the

mathematico-metaphysical onto the phenomenal,

which Deleuze distinguishes according to the

distinction canvassed earlier between the func-

tional definition of the Newtonian fluxion and

the Leibnizian infinitesimal as a concept. ‘‘The

physical mechanism of bodies (fluxion) is not

identical to the psychic mechanism of perception

(differentials), but the latter resembles the

former’’ (The Fold 98). So Deleuze maintains

that ‘‘Leibniz’s calculus is adequate to psychic

mechanics where Newton’s is operative for

physical mechanics’’ (98), and here again draws

from the mathematics of Leibniz’s contempor-

aries to determine a distinction between the mind

and body of a monad in Leibniz’s metaphysics.

How, then, does this relate to the body that

belongs to each monad? In so far as each monad

clearly expresses a small region of the world, what

is expressed clearly is related to the monad’s

body. Deleuze maintains that ‘‘I have a body

because I have a clear and distinguished zone

of expression’’ (The Fold 98).

What is expressed clearly and distinctly is

what relates to the biological body of each monad,

that is, each monad has a body that is in constant

interaction with other bodies, and these other

bodies affect its body. So what determines such

a relation is precisely a relationship between

the physical elements of other bodies and the

monad’s biological body, each of which is

characterized as a series of microperceptions

which are the differentials of consciousness.

Deleuze assimilates the relation between these

two series to the differential relation.

Microperceptions are brought to consciousness

by differentiating between the monad’s own

biological body and the physical affects of its

relations with other physical elements or bodies.

This results in the apperception of the relation

between the body of the monad and the world

it inhabits. However, the reality of the body is the

realization of the phenomena of the body by

means of projection, since the monad draws all

perceptive traces from itself. The monad acts as

if these bodies were acting upon it and were

causing its perceptions. However, among monads

there is no direct communication. Instead, each

individual subject is harmonized in such a way
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that what it expresses forms a common compos-

sible world that is continuous and converges with

what is expressed by the other monads. So it is

necessary that the monads are in harmony with

one another; in fact the world is nothing other

than the pre-established harmony amongst

monads. The pre-established harmony is, on the

one hand, the harmony amongst monads, and on

the other the harmony of souls with the body,

that is, the bodies themselves are realized as

phenomenal projections which puts them in

harmony with the interiority of souls.

The reconstruction of Leibniz’s metaphysics

that Deleuze provides in The Fold draws upon

not only the mathematics developed by Leibniz

but also upon developments in mathematics made

by a number of Leibniz’s contemporaries and a

number of subsequent developments in mathe-

matics, the rudiments of which can be more or

less located in Leibniz’s own work. Deleuze then

retrospectively maps these developments back

onto the structure of Leibniz’s metaphysics in

order to bring together the different aspects of

Leibniz’s metaphysics with the variety of math-

ematical themes that run throughout his work.

The result is a thoroughly math-

ematical explication of Leibniz’s

metaphysics, and it is this

account that subtends the entire

text of The Fold.

notes
I am grateful to the reviewer Rene¤ Guitart for his
constructive suggestions.

1 See, for example, Duffy, ‘‘Leibniz, Mathematics
and the Monad.’’

2 Panofsky 256.

3 Transcendental in this mathematical context
refers to those curves that were not able to be
studied using the algebraic methods introduced
by Descartes.

4 A concept that was already in circulation in
the work of Fermat and Descartes. Leibniz,
Mathematische SchriftenV:126.

5 See ibid. 223.

6 Leibniz,Mathematische SchriftenVII: 222^23.

7 Leibniz, Philosophical Papers and Letters 545.

8 The letteringhasbeenchanged tomore directly
reflect the isomorphism between this algebraic
example and Leibniz’s notation for the infinitesi-
mal calculus.

9 This example presents a variation of the infini-
tesimal or ‘‘characteristic’’ triangle that Leibniz
was familiar with from the work of Pascal.
See Leibniz, ‘‘Letter to Tschirnhaus (1680)’’ in The
Early Mathematical Manuscripts; and Pascal,‘‘Traite¤
des sinus du quart de cercle (1659)’’ in �uvres
Mathe¤ matiques.

10 Deleuze, Sur Leibniz, 22 Apr.

11 Leibniz,Mathematische SchriftenV: 220^26.

12 Newton,Method of Fluxions and Infinite Series.

13 Newton’s reasoning about geometrical limits
is based more on physical insights rather than
mathematical procedures. In ‘‘Geometria
Curvilinea,’’ Newton develops the synthetic
method of fluxions which involves visualizing the
limit towhich the ratio betweenvanishing geome-
trical quantities tends.

14 Lakoff and Nu¤ n‹ ez 224.

15 Bos 6.

16 Leibniz, Methodus tangentium inversa; see
Katz199.

17 See Bos 6.

18 See Boyer 287. While Leibniz had already
envisaged the convergence of alternating series,
and by the end of the seventeenth century the
convergence of most useful concrete examples
of series, which were of limited quantity, if not
finite, was able to be shown, it was Cauchy who
provided the first extensive and significant treat-
ment of the convergence of series. See Kline 963.

19 For an account of this problem with limits in
Cauchy, see Potter 85^86.

20 See Potter 85.While the epsilon-delta method
is due toWeierstrass, the definition of limits that it
enshrines was actually first proved by Bernard
Bolzano (1741^1848) in 1817 using different termi-
nology (Ewald 225^48); however, it remained
unknown until 1881 when a number of his
articles and manuscripts were rediscovered and
published.

21 Boyer 287.

22 See Bell.
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23 The infinitesimal is now considered to be a
hyperreal number that exists in a cloud of other
infinitesimals or hyperreals floating infinitesimally
close to each real number on the hyperreal
number line (Bell 262). The development of non-
standard analysis, however, has not broken the
stranglehold of classical analysis to any significant
extent, but this seems to be more a matter of
taste and practical utility rather than of necessity
(Potter 85).

24 Robinson 2.

25 Non-standard analysis allows ‘‘interesting
reformulations, more elegant proofs and new
results in, for instance, differential geometry,
topology, calculus of variations, in the theories of
functions of a complex variable, of normed linear
spaces, and of topological groups’’ (Bos 81).

26 For a more extensive discussion of this aspect
of Deleuze’s project, see Duffy, The Logic of
Expression.

27 Deleuze, Sur Leibniz, 29 Apr.

28 Ibid.

29 The concept of neighbourhood, in mathe-
matics, which is very different from contiguity, is
a key concept in thewhole domain of topology.

30 Deleuze,The Fold15.

31 Which was actually known to the Babylonians
one thousand years earlier, although Pythagoras
is considered to be the first to have proved it.

32 Cache 34^41, 48^51, 70^71, 84^85.

33 See Lakhtakia et al. 3538.

34 Leibniz’s distinction between the three kinds
ofpoints ^ physical,mathematical, andmetaphysi-
cal ^ will be returned to in the following section.

35 Deleuze, Sur Leibniz,15 Apr.

36 Bassler 870.

37 And that Deleuze characterizes as ‘‘vice-dic-
tion’’ (The Fold 59).

38 Deleuze, Sur Leibniz, 29 Apr.

39 It did not achieve prominence as a field of
mathematics until the early nineteenth century
through the work of Poncelet (1788^1867),
Gergonne (1771^1859), Steiner (1796^1863), von
Staudt (1798^1867) and Plu« cker (1801^68).One of
the leading themes in Poncelet’s work is the

‘‘principle of continuity’’ which he coined and in a
broad philosophical sense goes back to the law
that Leibniz used in connection with the calculus.
However, Poncelet advanced it as an absolute
truth and applied it to prove many new theorems
of projective geometry. See Kline 843.

40 ‘‘Letter to Lady Masham (1704)’’ in Leibniz,
Philosophical Essays 290.

41 Leibniz provides a mathematical representa-
tion of the metaphysical points in his ontological
proof of God as1/1. If the infinite is the set of all
possibilities, and if the set of all possibilities is pos-
sible, then there exists a singular individual who
corresponds to it, and this singular individual is
God represented mathematically by 1/1. From
God to themonad is to go from the infinite to the
individual unit that includes an infinity of predi-
cates. The metaphysical point that occupies the
position of a monad’s point of view is the inverse
of the position occupied by God, and is repre-
sented mathematically by1/1.There is an infinity
of 1/1 (monads), and one all-inclusive1/1 (God).
‘‘For Leibniz the monad is. . . the inverse, recipro-
cal, harmonic number. It is themirror of theworld
because it is the inverted image of God’’ (The Fold
129).

42 ‘‘Principles of Nature and Grace (1714)’’ in
Leibniz, Philosophical Papers and Letters x13.

43 In the preface to New Essays on Human
Understanding, Leibniz says that ‘‘noticeable per-
ceptions arise by degrees from ones which are
toominute to be noticed’’ (56).

44 Leibniz, Philosophical Essays120.

45 ‘‘Letter to Simon Foucher (1693)’’ in Leibniz,
Die philosophischen Schriften I: 415^16.

46 Pacidus Philalethi in Leibniz, Opuscules et frag-
ments 614^15.

47 Panofsky 259. This method was systematized
by Gaspard Monge (1746^1818) in what he called
‘‘descriptive geometry.’’

48 Leibniz, Philosophical Essays 146. See Garber
34^40.

49 See Grene and Ravetz 141. Deleuze also poses
the question of whether this topological account
can be extended to Leibniz’s concept of the vincu-
lum (The Fold 111). If so, the topology of the vincu-
lum would have to be isomorphic to that of
matter; however, it would be so within each
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monad, andwould be complicated by itself being a
phenomenal projection. For further discussion
of the vinculum in Leibniz see Look.
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