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1
Deleuze and mathematics

Simon Duffy

The collection Virtual Mathematics: the logic of difference brings 
together a range of new philosophical engagements with mathematics, 
using the work of French philosopher Gilles Deleuze as its focus. 
Deleuze’s engagements with mathematics rely upon the construction of 
alternative lineages in the history of mathematics in order to reconfigure 
particular philosophical problems and to develop new concepts. These 
alternative conceptual histories also challenge some of the self-imposed 
limits of the discipline of mathematics, and suggest the possibility of 
forging new connections between philosophy and more recent develop
ments in mathematics.

This component of Deleuze’s work has, to date, been rather 
neglected by commentators working in the field of Deleuze studies. One 
of the aims of this collection is to address this critical deficit by provid
ing a philosophical presentation of Deleuze’s relation to mathematics; 
one that is adequate to his project of constructing a philosophy of differ
ence and to the exploration of some of its applications.

This project developed as a result of encounters with an increasing 
number of researchers who have been working on the mathematical 
aspects of Deleuze’s work and the key role that these play in his philos
ophy. By bringing this work together for the first time, this collection 
makes an important contribution to the emerging body of work that 
endeavours to explore the broad range of Deleuze’s philosophy.

Deleuze is by no means the only contemporary philosopher to have 
engaged in work of this kind. For this reason the collection is not devoted 
solely to his work, but rather brings together a range of papers that address 
both the logic of these Deleuzian engagements between philosophy and 
mathematics, and the logic of other related efforts to mobilise mathemat
ical ideas in relation to the history of philosophy in order to construct new
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philosophical concepts or to open up new lines of engagement between 
philosophy and mathematics. The collection includes papers by Alain 
Badiou, Gilles Châtelet and Jean-Michel Salanskis; and papers by David 
Webb on Michel Foucault and Jean Cavaillès, and by Charles Alunni on 
Albert Lautman and Gaston Bachelard. The bulk of the collection, how
ever, is devoted to essays that directly address the work of Gilles Deleuze 
and the engagements that he undertakes between the discourse of philos
ophy and developments in the discipline of mathematics.

Deleuze’s engagements with mathematics can be characterised in a 
general and schematic way as consisting of three different components, 
each of which is implicated by, and in turn implicates, the others. The 
explication of each of these components, and of its relations of implica
tion, is required in order to develop an adequate understanding of these 
kinds of engagement.

1. The first component can be characterised as the history of math
ematics relevant to each of the programmes or mathematical disciplines 
with which Deleuze engages, and the alternative lineages in the history 
of mathematics that are determinable in relation to them. An explication 
of how these 'histories’ function as alternative lineages to the accepted 
(retrospectively constructed) history of mathematics that dominates the 
general understanding of the discipline, involves determining each of 
these alternative lineages as generated by a mathematical problem or 
problematic that challenges the self imposed limits of the discipline. The 
tensions that Deleuze characterises between the history of mathematics 
and the mathematical problematics that are extracted from it are particu
larly evident in the tension between what can be described as the axioma- 
tised set-theoretical explications of mathematics and those developments 
or research programmes in mathematics that fall outside of the parame
ters of such an axiomatics; for example, algebraic topology, topos theory 
and differential geometry, to name but a few. Deleuze does not subscribe 
to what Corfield characterises as 'the logicists idea that mathematics 
contains nothing beyond an elaboration of the consequences of sets of 
axioms’ (2003, 23). This tension between a set-theoretical axiomatics 
and the mathematical problematics that fall outside of its parameters can 
be understood as characteristic of the relation between what Deleuze 
and Guattari, in A Thousand Plateaus (1987), deem to be Royal or major 
science and nomadic or minor science. The nature of this distinction and 
its importance to the development of Deleuze’s philosophy is explicated 
by Daniel W. Smith in chapter 8.

2
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An understanding of each of the mathematical engagements which 
Deleuze undertakes throughout his work, therefore, requires a clear 
explication of the history of mathematics from which the specific math
ematical problematic has been extracted, and of the alternative lineage in 
the history of mathematics that is generated in relation to it.

2. The second component of each of Deleuze’s engagements with 
mathematics can be characterised as the explication of the manner by 
means of which these interventions in the history of mathematics are 
redeployed in relation to the history of philosophy. The mathematical 
problematics extracted from the history of mathematics are directly 
redeployed by Deleuze as philosophical problematics in relation to the 
history of philosophy. This is achieved by mapping the alternative 
lineages in the history of mathematics onto corresponding alternative 
lineages in the history of philosophy, that is, by isolating those points of 
convergence between the mathematical and philosophical problematics 
extracted from their respective histories. The redeployment of mathe
matical problematics as philosophical problematics is one of the strate
gies that Deleuze employs with respect to the history of philosophy. 
Deleuze actually extracts philosophical problematics from the history of 
philosophy, and then redeploys them either in relation to one another, or 
in relation to mathematical problematics, or in relation to problematics 
extracted from other discourses, to create new concepts, which, accord
ing to Deleuze and Guattari in What is Philosophy? (1991), is the task of 
philosophy.

3. The creation of new concepts by bringing together mathematical 
and philosophical problematics constitutes the third component of these 
Deleuzian engagements in mathematics. The implication of these three 
components in relation to one another constitutes the mechanism by 
means of which Deleuze’s interventions in the history of mathematics 
serve in his project of constructing a philosophy of difference.

While Alain Badiou is clear about the relation that he figures 
philosophy bears to mathematics; that is, the foundational position of 
mathematics as ontology (2005), the role played by any mathematical 
ontology in the construction of Deleuze’s philosophy of difference is cer
tainly not stated as clearly from the outset, but is just as surely deployed 
as such by Deleuze. While the domain mobilised by Badiou in his 
philosophy of the event is set theory in its relation to category theory, 
that deployed by Deleuze is primarily algebraic topology, functional 
analysis and differential geometry. The very question of an ontology of 
mathematics requires that a mathematical problematic and a specifically

3
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ontological philosophical problematic be implicated in relation to one 
another; what Deleuze characterises in Difference and Repetition as 
‘reciprocal synthesis’ (1994,172). The Badiouian position, taking math
ematics (or more specifically, set theory) as ontology already involves 
this kind of reciprocal implication between mathematics and philosophy.

According to this general schema, Deleuze can hardly be called a 
mathematician, nor is there a particularly Deleuzian mathematics; that is, 
despite engaging with particular mathematical problematics, Deleuze 
doesn’t attach himself to a particular tradition or school of mathematics. 
When he and Guattari comment on ‘the “intuitionist” school (Brouwer, 
Heyting, Griss, Bouligand, etc),’ they insist that it ‘is of great importance 
in mathematics, not because it asserted the irreducible rights of intuition, 
or even because it elaborated a very novel constructivism, but because it 
developed a conception of problems, and of a calculus of problems that 
intrinsically rivals axiomatics and proceeds by other rules (notably with 
regard to the excluded middle)’(Deleuze and Guattari 1987, 570 n. 61). 
Deleuze extracts this concept of the calculus of problems itself as a 
mathematical problematic from the episode in the history of mathemat
ics when intuitionism opposed axiomatics. It is the logic of this calculus 
of problems that he then redeploys in relation to a range of episodes in 
the history of mathematics that in no way binds him to the principles of 
intuitionism. The relationship between Deleuze and the intuitionist 
school of mathematics is taken up by Aden Evens in chapter 11.

Deleuze is therefore very much interested in particular kinds of 
mathematical problematics that can be extracted from the history of 
mathematics, and in the relationship that these problematics have to the 
discourse of philosophy. He can therefore be understood to redeploy not 
only the actual mathematical problematics that are extracted from the 
history of mathematics in relation to the history of philosophy, but also 
the logic of the generation of mathematical problematics, that is, the cal
culus of problems, in relation to the history of philosophy. This is in order 
to generate the philosophical problematics which are then redeployed in 
his project of constructing a philosophy of difference. It is in relation to 
the history of philosophy that Deleuze then determines the logic of the 
generation of philosophical problematics as that characteristic of a phi
losophy of difference.

In order to present an adequate account of the engagements that 
Deleuze undertakes between developments in the discipline of mathe
matics and the discourse of philosophy, the mechanism of operation of

4
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this logic, as determined in relation to the discipline of mathematics and 
the mathematical problematics extracted from it, requires explication. 
Far from being a logic of the relation between Royal science and nomad 
science, between axiomatics and problematics, or of that between the his
tory of mathematics and the mathematical problematics that are extracted 
from it; it is rather a logic of the generation of nomad science itself, or of 
each mathematical problematic itself. It is a logic that has proved inca
pable of being formalised by royal science or mathematics. However, 
and this is the irony of it, it is the logic that is characteristic of the 
advances or transformations in these disciplines. An explication of the 
mechanism of operation of this logic has been undertaken in chapter 7 in 
relation to the history of the differential calculus, and in chapter 11 by 
Aden Evens in relation to the concept of the surd in intuitionist mathe
matics. This logic, the logic of the calculus of problematics, is therefore 
not simply characteristic of the relative difference between Royal and 
nomadic science, or between the history of mathematics and its related 
mathematical problematics. It is rather characteristic of the very logic of 
the generation of each mathematical problematic itself. It is this logic that 
Deleuze redeploys in relation to the history of philosophy as a logic of 
difference in order to generate the philosophical problematics that he 
then uses to construct a philosophy of difference. Developing an under
standing of the nature of this logic is the key to understanding Deleuze’s 
engagement with the history of mathematics and his use of mathematical 
problematics throughout his work.

Another important characteristic that needs to be taken into consideration 
is the manner by means of which the kinds of engagement that Deleuze 
undertakes between the discourse of philosophy and developments in the 
discipline of mathematics can be repeated. Are the engagements that 
Deleuze undertakes with the discipline of mathematics exhaustive? Or is 
the logic of these engagements applicable elsewhere in relation to other 
developments in the discipline of mathematics? The purpose of doing so 
would be to characterise new mathematical problematics that can be 
directly redeployed as philosophical problematics in relation to the 
history of philosophy in order to construct new philosophical concepts.

The work of Manual DeLanda is significant in this respect insofar 
as it engages with the means by which the logic of the generation of prob
lematics continues to affect the discipline of mathematics even after the 
reappropriation of particular problematics by an axiomatics, or indeed a 
formalism, that has been extended to accommodate them. DeLanda’s

5
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work also involves the exploration of the subsequent departures from the 
discipline of mathematics and of the problematics that are thereby gen
erated, opening up the potential for the creation of new philosophical 
concepts.

Work in this area thus entails an examination of more recent devel
opments in mathematics in response to the mathematical problematics 
utilised by Deleuze; an examination of their continued status as prob
lematics, or of the altered axiomatics of mathematics after reappropria
tion of those problematics. The aim would be to locate and characterise 
new mathematical problematics which can then be redeployed as 
philosophical problematics in relation to the history of philosophy, by 
isolating their points of convergence, in order to construct new 
philosophical concepts.

One of these developments is category theory, the programme that 
is 'challenging set theory to become the language of the dominant tradi
tion,’ in mathematics (Corfield 2003,198), Category theory allows you to 
work on mathematical structures without the need first to reduce them to 
set-theoretical axiomatics. Although category theory does appear to be the 
historical continuation of set theory, the 'categorisation’ of the concept of 
set is not a technical refinement but rather represents a profound concep
tual change in mathematics (See Rodin 2004). Indeed category theory can 
be understood to have the potential to function as an alternative power of 
unification in mathematics to set theory (See Salanskis 2002, 102). The 
question of the formalisation of problematics, which category theory can 
perhaps be understood to pose, and of whether Deleuze’s engagements 
with mathematics can be characterised in this way is taken up by Daniel 
W. Smith in chapter 8. Category theory 'began as a project to study con
tinuous mappings within the programme of algebraic topology’ (Corfield 
2003,198). Work on the latter was initiated by Henri Poincaré (b.1854 -  
1912) as a project to help develop tools to study differential equations 
qualitatively. The importance of this aspect of Poincaré’s work for 
Deleuze is taken up in chapter 7. The difference between algebraic topol
ogy and set-theoretic topology is that 'the latter is . ubiquitous in routine 
arguments and formulations, but the former is almost unreasonably effec
tive in advancing mathematical understanding’ (Macintyre 1989, 366). 
Deleuze’s work should be understood to engage with the kinds of mathe
matical problematic associated with such transformations in the discipline 
of mathematics, whether or not they can be given a category-theoretic 
determination. It is these kinds of problematic that populate the innovative 
plane in mathematics that we are calling here 'virtual mathematics’

6
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The essays assembled in this collection work together to characterise the 
way in which the three components of Deleuze’s engagements with 
mathematics operate in his work, and to bring out the way in which 
Deleuze’s philosophy exemplifies a particular kind of engagement 
between the discipline of mathematics and the discourse of philosophy. 
The collection seeks to promote this kind of engagement as a new 
understanding of this relation; one that recognises the difference between 
the two disciplines, and one that promotes further investigation of this 
difference.

Alain Badiou provides a characterisation of the relation between 
philosophy and mathematics that sets the stage for further exploration of 
this relation using the work of Deleuze as a focus. Badiou mounts a 
defence of a particular kind of interrelation by distinguishing between 
two different styles of philosophy, namely the ‘little style’ and the ‘grand 
style’ The little style of philosophy figures mathematics in a secondary 
role to the specialisation ‘philosophy of mathematics’ which can be 
inscribed in the narrow genre of ‘epistemology and history of science’ 
the two operations of which are classification and historicisation. The 
grand style of philosophy, which Badiou champions, holds that 
mathematics directly clarifies philosophy, and not the inverse, and that it 
does so by forced (violent) intrusion in the intimate disposition of the 
questions of philosophy. He considers mathematics to be a necessary 
condition of philosophy itself, one that is ‘both descriptively exterior and 
prescriptively immanent to philosophy.’ Badiou suggests that the neces
sary task of philosophy is to find the new terms of the grand style.

Gilles Châtelet (b. 1944 -  1999) is well known for his work on 
the relationship between the disciplines of mathematics, physics and 
philosophy, and for his interest in the work of Deleuze, who had a deci
sive influence on his philosophical development. The paper by Châtelet 
is previously unpublished, however it will appear in the second volume 
of his collected work, Les enjeux du mobile, that is forthcoming from 
Éditions-Rue d’Ulm. The notes for this paper were found on Châtelet’s 
desk; it is what he was working on just before he died. These notes 
have been edited for publication by Charles Alunni, who provides the 
paper with an introduction. The paper betrays Châtelet’s fundamental 
preoccupation with the diagrams of mathematical physics. Interest in 
‘diagrammatics’ is one of the points of convergence between the work of 
Châtelet and that of Deleuze (See Deleuze and Guattari 1987, 141-8). 
According to Corfield, it is in higher dimensional algebra that ‘diagrams 
are not just there to illustrate, [but] are used to calculate and prove results

7
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vigorously’ (2003, 254). Just as algebraic objects once assisted in our 
understanding of topology, topological objects can now allow us to 
calculate in algebra. This is done by means of the manipulation of the 
projection of the topological object, or diagram, itself. Châtelet explores 
the implications of such a diagrammatics in relation to a particular 
example in knot theory.

Jean-Michel Salanskis seeks to renew the relation between mathe
matics and philosophy by liberating it from the alternative between a 
Heideggerian or phenomenological understanding, which considers 
mathematics to hinder any understanding of what stands beyond the 
objective, and an analytic treatment, which prefers pairing logic and 
philosophy rather than mathematics and philosophy. Salanskis considers 
Deleuze to have thought he could do this by proposing a general doctrine 
of what is as such, a metaphysics in the classical sense, which would be 
directly expressed in mathematical rather than logical terms. Salanskis 
puts forward the case that we can also promote the couple mathematics / 
philosophy in a more Kantian way, in reference to a renewed conception 
of the transcendental.

Deleuze’s engagement with the work of the philosopher of mathe
matics Albert Lautman, who wrote in the 1930s and 1940s, and whose 
approach to a logic of mathematical problems and interpretations has 
inspired several contemporary French philosophers of mathematics, is 
introduced by Charles Alunni. Through the figures of Lautman and 
Bachelard, Alunni charts an alternative history to those developments 
that became the preoccupation of analytic philosophy. This includes an 
examination of the process of desubstantialisation in mathematical 
philosophy undertaken by Lautman through the development of the 
notion of duality, particularly in relation to the symmetry / dissymmetry 
distinction; and the developments associated with Bachelard’s project of 
dialectial surrationalism, which identifies the foundational role of math
ematics in the developments and transformations of scientific thought.

David Webb clarifies Foucault’s conception of the historical a 
priori by returning to the work of Jean Cavaillès, the philosopher of 
mathematics repeatedly cited by Foucault as a significant figure in the 
French tradition of epistemology. Webb argues that the historical a priori 
emerged at least in part from a conception of the formal nature of thought 
developed (well before Foucault) specifically in opposition to phenome
nology. Cavaillès’ critique of Husserl’s formal ontology promoted the 
idea of mathematics as a wholly distinct formal science that is neither 
grounded in the transcendental subject nor empirically derived. More-

8
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over, it is characterised above all by its own historicity, which is similarly 
irreducible either to the historicity of the subject or to any form of cul
tural history. Webb argues that Foucault responds to Cavaillès’ call for a 
break from the philosophy of the subject in favour of a philosophy of the 
concept (Cavaillès 1970). It is this move that various strands of French 
thought would go on to make in the latter half of the twentieth century.

Simon Duffy offers an historical account of one of the mathemati
cal problematics that Deleuze deploys in Difference and Repetition 
(1994), and an introduction to the role that this problematic plays in the 
development of Deleuze’s philosophy of difference. The episode in the 
history of mathematics from which this mathematical problematic is 
extracted is the history of the calculus and its various (alternative) lines 
(or lineages) of development, which were only put on a rigorous alge
braic foundation towards the end of the nineteenth century. Arguments 
constructed on the basis of developments in Set Theory in the 1960s, 
specifically the controversial Abraham Robinson axioms that determine 
the distinction between Standard and Non-Standard analysis and which 
allow the pre-foundational proofs of the calculus to be verified, allow for 
the réintroduction of the relationship between mathematical and meta
physical developments of the calculus that were marginalised, to say the 
least, as a result of the determination of its rigorous algebraic foundation. 
Duffy argues that it is by means of the development of such an argument 
in Difference and Repetition that Deleuze determines a differential logic 
which is deployed, in the form of a logic of differeni/ciation, in the devel
opment of the logical schema of a theory of relations characteristic of a 
philosophy of difference. This logical schema provides one of the keys 
to understanding the relationship between Deleuze’s philosophy of 
difference and the mathematical problematics with which it engages.

Daniel W. Smith examines the nature of the Deleuzian distinction 
between ‘axiomatics’ and 'problematics’ as two different modes of 
formalization in mathematics. He argues that the fundamental difference 
between the two is that each has a different method of deduction: in 
axiomatics, a deduction moves from axioms to the theorems that are 
derived from it, whereas in problematics a deduction moves from the 
problem to the ideal accidents and events that condition the problem and 
form the cases that resolve it. As we have seen, this distinction is 
characteristic for Deleuze of the major or Royal science / minor or 
nomadic science distinction. Smith analyses the epistemological and 
ontological importance of these distinctions to the development of 
Deleuze’s philosophy.
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Aden Evens explores the use of symbols to designate mathemati
cal concepts, which he argues is a practice that risks obscuring the prob* , 
lematic Idea from which the concepts are generated. He recounts a brief 
history of intuitionist mathematics that serves to demonstrate the nature 
of transformations in mathematics, that is, how mathematics advances, or 
moves ahead to encompass the new. Whereas formalist and realist 
schools of mathematics had effectively neutralized the 4surd’ by treating 
it as one formalism among others, the intuitionists, led by L.E.J. Brouwer 
(b.l881 -  1966), challenged this interpretation. In the intuitionist calcu* 
lus, the surd took on a kind of constructive or generative role. However, 
with time, the intuitionists created increasingly rigid formalisms to deal 
with the surd, such that by the middle of the century, its generative 
quality had again been neutralized. Evens claims that this logic of the 
surd, its constructive or generative role that in time is reappropriated by 
a certain formalisation, is characteristic of the kinds of transformations 
experienced by other disciplines as well as mathematics. The example 
that he offers is an analysis of the uncertainty principle of acoustics 
and the problematic nature of the accurate determination of a singular 
sound.

Arkady Plotnitsky examines the relation between Deleuze’s phi
losophy and the developments in mathematics made by the work of 
Bernhard Riemann (b.l826 -  1866). Riemann’s mathematics is consid
ered to be a conceptual mathematics, which distinguishes it from the set- 
theoretical mathematics that dominated the field at the time. Plotnitsky 
also argues that category theory is much closer to the mathematical pro
gramme of Riemann than to set theory. Further, that in fact the fields of 
algebraic topology and differential geometry, from which category 
theory emerged, developed in the wake of Riemann’s work and were 
greatly influenced by it. It is within this context that Plotnitsky explores 
the significance of Riemann’s mathematical concepts to the conceptual 
architecture of Deleuze’s philosophy.

Manuel DeLanda situates the work of Deleuze as a precursor to the 
work that is currently being done by analytic philosophers of science on 
the concept of ‘phase space’, such as Bas Van Fraasen. The notion of 
‘state space’ or ‘phase space’ is associated with the visual or geometric 
approach to the study of differential equations pioneered by Poincaré and 
greatly developed in the last two decades thanks to the availability of 
computers as visualization tools. DeLanda discusses the ontological 
analysis that Deleuze derives from the work of Albert Lautmann, who 
was greatly influenced by Poincaré; he considers its advantages over the
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analyses done by Van Fraasen; and demonstrates its significance to an 
understanding of Deleuze’s neo-materialist philosophy.

Robin Durie gives an account of the role of the problem in deter
mining the relation between mathematics and ontology, or metaphysics, 
in Deleuze’s philosophy. He outlines a series of developments in mathe
matics that determine the field from within which a number of concepts 
that play a decisive role in Deleuze’s philosophy emerge. These include 
the development of the differential calculus, from which differential 
geometry and the calculus of variations emerged; the innovative work of 
Riemann on rc-dimensional space and multiplicities; the contribution of 
Poincaré’s qualitative theory of non-linear differential equations to the 
development of topology; and René Thom’s catastrophe theory, which is 
one recent such development. Durie argues that the principle that under
pins each of these mathematical developments is their fundamentally 
relational approach to mathematics. He identifies the problem that 
Deleuze’s engagement with mathematics poses to philosophy as the 
problem of how to become relational. Durie suggests that it will be by 
forging relations with the emerging sciences, such as complexity theory, 
that new problems will emerge for philosophy.



2
Mathematics and philosophy

Alain Badiou

In order to address to the relation between philosophy and mathematics 
it is first necessary to distinguish the grand style and the little style.

The little style painstakingly constructs mathematics as the object 
for philosophical scrutiny. It is called the little style for a precise reason, 
because it assigns mathematics to the subservient role of that which sup
ports the definition and perpetuation of a philosophical specialisation. 
This specialisation is called the ‘philosophy of mathematics’ where the 
‘of ’ is objective. The philosophy of mathematics can in turn be inscribed 
under the area of specialisation that supports the name ‘epistemology and 
history of science’, an area to which corresponds a specialised bureau
cracy in the academic authorities and committees whose role it is to 
manage the personnel of researchers and teachers.

But in philosophy, specialisation is invariably the means by which 
the little style insinuates itself. In Lacanian terms, this occurs through the 
collapse of the discourse of the Master, which is rooted in the signifier of 
the same name, the SI that gives rise to a signifying chain, onto the dis
course of the University, that perpetual commentary which adequately 
represents the second moment of all speech, that is, the S2 which only 
exists by making the Master disappear under the commentary which 
exhausts it.

The little style of the philosophy of mathematics, and of its episte
mology, strives for such a disappearance of the ontological sovereignty 
of mathematics, its instituting aristocratism, its unrivalled mastery, by 
confining its dramatic and almost incomprehensible existence to a 
generally dusty compartment of academic specialisation.

In fact, this operation with which the little style alone is associated 
is recognisable by the hold that it exerts over its object, because it pro
duced what could be called a castrated mathematics; this hold therefore
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is only made through history and classification. To classify and histori- 
cise are indeed the two operations of all little styles, when the goal is to 
eliminate a frightening master-signifier.

I would immediately like to give a genuinely worthy example of 
the little style. Let us say a great example of the little style. I refer to the 
‘philosophical remarks’ that conclude a truly remarkable book, entitled 
Foundations of Set Theory, a book whose second edition, from which I 
quote, dates from 1973.1 say that it is great, among other things, in that 
it is written by three first-rate logicians, and mathematicians: Abraham 
Fraenkel, Yehoshua Bar-Hillel and Azriel Levy. The concluding philo
sophical paragraph of the book directly states that:

Our first problem regards the ontological status of sets Since sets, as 
ordinarily understood, are what philosophers call universals, our present 
problem is part of the well-known and amply discussed classical problem 
of the ontological status of the universal. (Fraenkel et al. 1973, 331-2)

Let us note at once three things in this short paragraph, to which any 
follower of the little style would at once, without malice, give their 
blessing.

Firstly, one wonders not at all about what mathematics could mean 
for ontology, but rather about the specific ontology of mathematics. In 
other words: mathematics is a particular case of a ready-made philo
sophical question, and not a challenge to or the undermining of this 
question, even less its paradoxical or dramatic solution.

Secondly, what is this ready-made philosophical question? It is 
actually a question that concerns logic, or the capacity of language; 
specifically the question of uni versais. It is only through a preliminary 
reduction to logical and linguistic problems that mathematics is forcibly 
incorporated into a specialised objective area of philosophical interroga
tion. This is a fundamental characteristic of the little style.

And thirdly, the philosophical problem is by no means instituted or 
provoked by the mathematical: it has an independent history; it was, as 
the authors remind us, a prominent feature of ‘medieval discussions’ It 
is a classical problem, to which mathematics represents the opportunity 
for a modernized regional adjustment.

This is what will be seen in the labour to classify the responses:

The three main traditional answers to the general problem of universal 
are known as realism, nominalism and conceptualism . We shall not 

deal here with these lines of thought in their traditional version, but only 
in their modern counterparts known as platonism , neo-nominalism and
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neo-conceptualism In addition, we shall deal with a fourth attitude 
which regards the whole problem of the ontological status of universals in 
general and of sets in particular as a metaphysical pseudo-problem. 
(Fraenkel et al. 1973,332)

Clearly, the philosophical incorporation of mathematics in the little style 
is a neo-classical operation. It supposes that mathematics can be treated 
as the object of specialised philosophical consideration; that this treat
ment necessarily proceeds through the consideration of logic and lan
guage; that it is compatible with ready-made philosophical categories; 
and that it leads to doctrinal classifications sealed by proper names.

In philosophy, the deployment of such a neo-classicist approach 
has an old technical term: scholasticism.

As far as mathematics is concerned, the little style is a regional 
scholasticism.

The perfect example is given in a lecture by Pascal Engel, professor 
at the Sorbonne, which is reproduced in the book, L'objectivité mathéma
tique (Engel 1995,133-46). Engel, in the course of a grammatical digres
sion concerning the status of statements, manages to use, in regard to the 
philosophy of mathematics, no less than twenty five classificatory syn- 
tagms. These are, in their order of appearance in this little jewel of scholas
ticism: Platonism, ontological realism, nominalism, phenomenalism, 
reductionism, fictionalism, instrumentalism, ontological antirealism, 
semantic realism, semantic antirealism, intuitionism, idealism, verifica- 
tionism, formalism, constructivism, agnosticism, ontological reductionism, 
ontological inflationism, semantic atomism, holism, logicism, ontological 
neutralism, conceptualism, empirical realism, and conceptual Platonism. 
This astonishing work of labelling does not seem to have exhausted the cat
egorical permutations, far from it. It is undoubtedly infinite, which assures 
scholasticism of an abundant future, even if, as is required by its ethic of 
intellectual ‘seriousness’, one always works in teams.

Nevertheless, it is possible to make a quick survey of modem 
scholasticism in the company of our three initial authors. First, they pro
pose definitions of each fundamental orientation. Then they cautiously 
indicate that there are, as we have seen with Pascal Engel, all kinds of 
intermediate positions. Finally, they nominate the purest champions of 
the four camps.

Let us take a closer look at them.
To begin with, the definitions. In the following passage, the word 

‘set’ is to be understood as designating any mathematical configuration 
that can be defined in rigorous language.
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A Platonist is convinced that to each well-defined (monadic) condition 
there exists, in general, a set, or a class, which comprises all and only those 
entities that fulfil this condition. [The Platonist moreover is convinced that 
this set, or this class, is] an entity of its own right of an ontological status 
similar to that of its members.

A neo-nominalist declares himself unable to understand what other people 
mean when they are talking about sets unless he is able to interpret their 
talk as a ‘façon de parler’ The only language [that the neo-nominalist] 
professes to understand is a calculus of individuals, constructed as first- 
order theory. (Fraenkel et al. 1973,332)

There are authors who are attracted neither by the luscious jungle flora of 
Platonism nor by the ascetic desert landscape of neo-nominalism. They 
prefer to live in the well-designed and perspicuous orchards of neo-con
ceptualism. They claim to understand what sets are, though the metaphor 
they prefer is that of construction (or inventing) rather than of singling out 
(or discovering) which is the one cherished by the Platonists They are 
not ready to accept axioms or theorems that would force them to admit the 
existence of sets which are not constructively characterizable. (Fraenkel et 
al. 1973,334-5)

In short, the Platonist admits the existence of entities that are transcen
dent to human constructive capacity and that are indifferent to the limits 
of language. The nominalist only admits the existence of verifiable indi
viduals that fulfil a transparent syntactic form. The conceptualist requires 
that all existence is subordinated to an effective construction, itself 
dependent on the existence of previously evident, or constructed entities.

Church or Gödel can be cited as uncompromising Platonists; 
Hilbert or Brouwer as unequivocal conceptualists, and Goodman as a 
fanatical nominalist.

The most radically agnostic hypothesis remains, that which always 
comes in fourth position. Following the theses: ‘Sets have a real exis
tence as ideal entities independent of the mind’ (thesis 1), ‘Sets exist only 
as individual entities validating linguistic expressions’ (thesis 2) and 
‘Sets exist as constructions of the mind’ (thesis 3), always comes, in 
fourth position, the supernumerary thesis: ‘the question of how sets 
exists has no independent meaning outside a given theoretical context’.1

The prevalent opinions [that is, Platonism, nominalism and conceptual
ism] are caused by a confusion between two different questions: the 
one whether certain existential sentences can be proved, or disproved, or 
shown to be undecidable, within a given theory, the other whether this 
theory as a whole should be accepted. (Fraenkel et al. 1973,337)
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Camap, theorist of this clarificatory orientation, suggests that the first 
problem, depending on the resources of the theory in question, is purely 
technical; and that the second comes down to a practical question, based 
upon such variable criteria as:

likelihood of being consistent, case of maneuverability, effectiveness in 
deriving classical analysis, teachability, perhaps possession of standard 
models, etc. (Fraenkel et al. 1973, 337)

It is by confusing these two questions that one is led to posing meaning 
less metaphysical problems, such as for example: ‘Do non-denumerable 
infinite sets exist?’ -  a question which, by introducing existence 
absolutely and not relatively to a theory, leads to entirely sterile contra 
versies.

Clearly then, the little style is played in all four comers, according 
to whether the existence of mathematical entities is adopted as a realist 
linguistic, constructive or purely relative maxim.

But this is because it was initially supposed that philosophy refers 
to mathematics by the critical examination of its objects; that these 
objects must be investigated in regard to their existence; and that finally 
there are four ways of considering existence: as intrinsic; as only the cor
relate of a name; as a construction of the mind; or as a variable pragmatic 
correlate.

Everything else is the grand style. Which, in a word, stipulates that 
mathematics directly clarifies philosophy, rather than the inverse, and 
that it does this by forced, even violent, intervention into the intimate 
operation of questions.

Allow me to begin with five majestic examples of the grand style: 
Descartes, Spinoza, Kant, Hegel and Lautréamont.

Descartes, Regulae ad directionem ingenii, rules for the direction 
of the mind, rule 2.

These considerations make it obvious why arithmetic and geometry prove 
to be much more certain than other disciplines: they alone are concerned 
with an object so pure and simple that they make no assumptions that 
experience might render uncertain; they consist entirely in deducing con
clusions by means of rational arguments. They are therefore the easiest 
and clearest of all the sciences and have just the sort of object we are look
ing for. Where these sciences are concerned it scarcely seems humanly 
possible to err, except through inadvertence.
Now the conclusion we should draw from these considerations is not that 
arithmetic and geometry are the only sciences worth studying, but rather 
that in seeking the right path of truth we ought to concern ourselves only
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with objects which admit of as much certainty as the demonstrations of 
arithmetic and geometry. (Descartes 1985, 366)

For Descartes, mathematics is clearly the paradigm of philosophy, a par
adigm of certainty. Let us add that it is by no means a logical paradigm 
because it is not the proof which gives the paradigmatic value of mathe
matics to the philosopher, it is the absolute simplicity and clarity of the 
mathematical object.

Spinoza. Appendix of the first part of the Ethics, the text dear to 
Louis Althusser.

So they maintained it as certain that the judgments of the Gods far surpass 
man’s grasp. This alone, of course, would have caused the truth to be 
hidden from the human race to eternity, if Mathematics, which is con
cerned not with ends, but only with the essences and properties of figures, 
had not shown men another standard of truth (aliam veritatis normam).

[W]e have such sayings as ‘So many heads, so many attitudes’ ‘everyone 
finds his own judgment more than enough’, and ‘there are as many differ
ences of brains as of palates.’ These proverbs show sufficiently that men 
judge things according to the disposition of their brain, and imagine, rather 
than understand them. For if men had understood them, the things would 
at least convince them all, even if they did not attract them all, as the exam
ple of mathematics shows. (Spinoza 1985,442,5)

For Spinoza, it is no exaggeration to say that mathematics governs the 
historical destiny of knowledge, and thus the economy of freedom, or 
beatitude. Without mathematics, humanity is in the night of superstition, 
itself summarised by the maxim: there is something we cannot think. 
To which it is necessary to add that mathematics instructs us on the most 
important point: that what is thought truly is immediately shared. Math
ematics indicates that the comprehension of anything whatsoever is 
radically undivided. To know is to be absolutely and universally con
vinced.

Kant, Critique of Pure Reason. Preface to the second edition.

Mathematics has, from the earliest times to which the history of human 
reason reaches, in that admirable people the Greeks, travelled the secure 
path of a science. Yet it must not be thought that it was as easy for it as for 
logic -  in which reason has to do only with itself -  to find that royal path, 
or rather itself to open it up; rather, I believe that mathematics was left 
groping about for a long time (chiefly among the Egyptians), and that its 
transformation is to be ascribed to a revolution, brought about by the 
happy inspiration of a single man in an attempt from which the road to be

17



MATHEMATICS AND PHI LO SOP HY

taken onward could no longer be missed, and the secure course of ·, 
science was entered on and prescribed for all time and to an infinitt 
extent.

A new light broke upon the first person who demonstrated the isosceles tri
angle (whether he was called ‘Thales’ or had some other name). Fori* 
found that what he had to do was not to trace what he saw in this figure, q 
even trace its mere concept, and read off, as it were, from the properties <jj 
the figure; but rather that he had to produce the latter from what he him 
self thought into the object and presented (through construction) accord 
ing to a priori concepts. (Kant 1998)

Thus Kant thinks, firstly, that mathematics has secured for itself from its 
origins the sure path of a science. Secondly, that the creation of mathe 
matics is an absolute historical singularity, a ‘revolution’, so much so thaï 
its emergence should be singularised: it is due to the felicitous thought of 
a single man. Nothing, we will see, is more opposed to an historicist oi 
culturalist explanation. Thirdly, once opened, the path is infinite, in time 
as well as in space. This universalism is a concrete universalism because 
it is a trajectory of thought, which can always be retraced, irrespective oi 
the time or the place. And fourthly, Kant sees in mathematics -  the return 
of its paradigmatic function -  the first conception of a knowledge whicl 
is neither empirical (it is not what is seen in the figure), nor formal (thej 
are not the pure, static and identifiable properties of the concept). Math 
ematics thus opens the way for the critical representation of thought: that 
is to say knowledge as non-empirical production or construction. A sen
sible construction, but adequate to the constituting a priori. That is to 
say that Thales is the supposed name of a revolution for the whole of 
philosophy. Kant represents nothing other than the examination of the 
conditions of possibility of that which Thales constructed.

Hegel. The important Remark, in the Science of Logic, that follows 
the development of the infinity of quantum.

But in a philosophical respect the mathematical infinite is important 
because underlying it, in fact, is the notion of the genuine infinite and it is 
far superior to the ordinary so-called metaphysical infinite on which are 
based the objections to the mathematical infinite. (Hegel 1969, §540)

It is worthwhile considering more closely the mathematical concept of the 
infinite together with the most noteworthy of the attempts aimed at justi
fying its use and eliminating the difficulty with which the method feels 
itself burdened. The consideration of these justifications and characteris
tics of the mathematical infinite which I shall undertake at some length in
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this Remark will at the same time throw the best light on the nature of the 
true Notion itself and show how this latter was vaguely present as a basis 
for those procedures. (Hegel 1969, §543)

The decisive point this time is that, for Hegel, mathematics and philo
sophical speculation share a fundamental concept, which is the concept 
of the infinite. In particular, the destitution of the metaphysical concept 
of the infinite, which is to say the destitution of classical theology, is 
initially undertaken by the determination of the mathematical concept. 
Hegel obviously has in mind here the creation of the differential and 
integral calculus in the seventeenth and eighteenth centuries. He wants to 
show that the true concept of the infinite, the dialectical concept, makes 
its entry on the historical scene under the auspices of mathematics. The 
method is remarkable: it is necessary to examine the contradictory labour 
of the concept within the mathematical text itself. Indeed, the concept is 
active and deployed, it ruins the transcendent theological concept, but it 
is not knowledge realised by its own action. Unlike the theological infi
nite, the mathematical infinite is the same as the good infinite of the 
dialectic. However, it is only the same according to the difference which 
is to not yet know itself as the same. In this instance, as in Plato or in my 
own work, philosophy comes down to informing mathematics of its own 
speculative grandeur. In Hegel this takes the form of a detailed examina
tion of what he calls the ‘justifications and determinations’ of the math
ematical concept of the infinite, an examination which, for him, returns 
to a detailed reading of the conceptions of Euler and Lagrange. In this 
reading, one sees how the mathematical concept of the infinite, which for 
Hegel is still impeded, still in the grip of the ‘difficulty with which the 
method feels itself burdened’, carries with itself the affirmative resource 
of a genuinely absolute conception of quantity.

Let us finish this survey of the grand style as it should be, on the 
border between philosophy and the poem. Isidore Ducasse, known as the 
Count of Lautréamont. Like Rimbaud and Nietzsche, Lautréamont, 
under the post-romantic name of Maldoror, wants to bring about a 
denaturing of man, a transmigration of his essence, a positive becoming- 
monster. In other words, an ontological deregulation of all the categories 
of humanism. In this task, mathematics plays a crucial auxiliary role. 
Songs of Maldoror, Second song:

0 austere mathematics! I have not forgotten you since your learned teach
ings, sweeter than honey, distilled themselves through my heart like 
refreshing waves. Instinctively, since the day of my birth, I have aspired 
to drink from your spring more ancient than the sun and I still continue to
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frequent the courtyard of your solemn temple: I, the most faithful of yô  
initiates. There used to be a vacuum in my soul, a something, I know% 
what, dense as smoke; but wisely and religiously I mounted the steps % 
lead to your altar, and you dispelled that gloomy shroud as the wind blot 
a butterfly. In its place you set an extreme coldness, a consummate pm 
dence and an implacable logic. Arithmetic! Algebra! Geometry, 
Imposing trinity! Luminous triangle! He who has never known youi 
without sense! He merits the ordeal of the most cruel tortures for in b 
ignorant carelessness there is a blind contempt. But you, 0 concis 
mathematics, by the rigorous fetters of your tenacious propositions andth 
constancy of your iron-bound laws you dazzle the eyes with a powerft 
reflection of that supreme truth whose imprint is manifest in the order q 
the universe. Your modest pyramids will endure longer than the pyra 
mids of Egypt, those ant-hills erected by stupidity and slavery. The endd 
all centuries will yet see, standing upon the ruins of time, your cabalisti 
ciphers, your terse equations, and your sculptural lines, enthroned atth 
vengeful right hand of the Omnipotent, while in despair like jets of wafe 
the stars will sink into the eternity of a horrible and universal night; ant 
while man, grimacing, thinks of settling his accounts with the last judg 
ment. I thank you for the numberless services you have rendered me.; 
thank you for the unfamiliar qualities with which you have enriched ira 
intelligence. Without you I might perhaps have been overcome in ira 
struggle against man. (Lautréamont 1965, 86-90)

This text is very striking. It develops around mathematics a kind of m 
sanctification, which tends to recall the dialectical significance of the 
great Mallarméan symbols: the star, ‘cold from forgetfulness and 
desuetude’,2 the mirror ‘frozen in [its] frame’ the tomb, the ‘solid 
sepulchre where all things harmful lie’,4 the ‘hard lake haunted beneath 
the ice / By the transparent glacier of flights never flown’ 5 One maj 
speak readily of a wintry anti-humanism. With Lautréamont however, 
the ‘extreme coldness’ of mathematics is coupled with a monumental 
aspect, a kind of Masonic symbolism of eternity, the ‘luminous triangle’, 
the ‘constancy of your iron-bound laws’ the pyramid. Just as 
Nietzsche, in order to overcome Christ in favour of Dionysus, made 
Zarathustra speak in the language of the Gospels (in truth, I say it to you, 
etc), so too does Lautréamont, in order to impose the montrous becom
ing of exhausted and defiled man, speak the language of the Old Testa
ment and of Masonic esotericism. Within this framework, mathematics, 
organised into algebra, arithmetic and geometry -  that is into ‘laconic 
equations’, ‘cabalistic ciphers’ and in ‘sculpted lines’ -  renders an 
indispensable service: it imposes a kind of implacable eternity against
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the humanist conception of man. Mathematics is, in effect, ‘more 
ancient than the sun’, and it will remain intact ‘upon the ruins of time’ 
Mathematics is the discipline and the severity, the immutability and the 
reflection ‘of the supreme truth’. From this to saying that it is the inscrip
tion of being itself, there is only one step; a step that, as you know, I have 
taken. But for Lautréamont, mathematics is something even better: it is 
what provides the intellect with ‘alien qualities’ This point is essential: 
between the human intellect and mathematics, there is no intrinsic 
harmony. The exercise of mathematics, its ‘sweeter than honey’ lessons, 
is the exercise of an alteration, of an estrangement of the intelligence. 
And it is above all by this resource of strangeness that mathematical 
eternity subverts ordinary thought. We grasp here the profound reason 
for which, without mathematics, without the infection of conventional 
thinking by mathematics, Maldoror could not have prevailed in his fun
damental struggle, the struggle against humanist man, the struggle to 
bring forth beyond man the free monster which he is capable of becom
ing.

On all these points, between wintry anti-humanism and the trans- 
human advent of truths, I believe myself to be the only authentic disciple 
of Isidore Ducasse. Why then declare myself a Platonist, as I like to do, 
rather than a Ducassian, or a son of Maldoror?

It is because Plato does not say anything different.
Just as Isidore Ducasse, Plato affirms that mathematics is that 

by which doxa is undone, that by which the sophist is defeated, that with
out which there could never arise, beyond existing humanity, those 
philosopher-kings who, in the conceptual City constructed by Plato, have 
the allegorical name of overman. This is clarification that in order to 
have any chance of seeing these philosopher-kings appear, it is necessary 
to teach young people arithmetic, plane geometry, stereometry and 
astronomy for at least ten years. Mathematics has for Plato this admirable 
quality, which is, of course, its essential value: it sets its sights on pure 
essences, on the idea as such. But also its utility can be reduced to the 
only pragmatics of any value for a man who has risen beyond man, 
namely war. See, for example, The Republic (1987), book 7 ,525c (which 
I have taken the liberty to retranslate):

Socrates: Our overman is both philosopher and captain?
Glaucon: Correct.
Socrates: Then a law must be passed. And immediately.
Glaucon: A law? Why a law, by God? Which law?
Socrates: A law which stipulates the teaching of higher arithmetic, my
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simpleton Glaucon. But it will be necessary to devote onesei 
firmly.

Glaucon: To devote oneself? To what end?
Socrates: Take a young fellow who wants to become admiral o f f

fleet, or minister, or president, or something of that ilk. 
young hotshot who studied at LSE or Yale. Do you imagi® 
he’ll be rushing to enrol at the institute of higher arithmetic 
It will be necessary to seriously talk it up, let me tell you.

Glaucon: I can’t imagine what w e’re going to tell him.
Socrates: The truth. Something harsh. For example: ‘My friend, if yo

want to become a minister or admiral, it is first necessaiyf 
stop being such an agreeable young man, an affected yupp» 
of sorts. Take numbers, for example, do you know wk 
numbers are? Not for running your miserable finances. Nc 
for counting the beef and eggs that your parents peddle attk 
port! But number such as you contemplate it in its eten® 
nature, only by the force of your affected intellect disinfect® 
by me! Number as it is in war, in the terrible reckoning® 
weapons and corpses. But above all, number such as it bring 
about a complete upheaval of thought, erasing becoming m 
approximation in order to face being just as it is, and in i 
truth.’

Glaucon: When you set on him with your speech, in my opinion, th
pretentious lad will take off, green with fear.

This is what I mean by the grand style! Arithmetic as stellar and warlike 
inhumanity.

It should come as no surprise that today a systematic attack i  
being waged against mathematics from all sides. Just as against politics 
in the name of State management and economics; or against art, in tk 
name of cultural relativity; or against love, in the name of sexual prag
matics. The epistemological specialisation of the little style is only at 
involuntary component in this attack. We have no choice: to defend 
ourselves, 6we’ who speak on behalf of philosophy itself, and tk 
supplementary step that it can and must take, we must find the new term 
of the grand style.

Let us first summarise the teaching of our admirable predecessors,
As we saw with them all, the confrontation with mathematics is at 

absolutely necessary condition of philosophy itself, a condition that is ai 
once descriptively external and prescriptively immanent for philosophy 
And this holds even where there are enormous divergences as to whai 
constitutes the fundamental project of philosophy. To create a new con-
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ception of politics for Plato. To extend the scope of absolute certainty to 
the essential questions of life for Descartes. To attain the intellectual 
love of God for Spinoza. To know exactly where the border between faith 
and knowledge lies for Kant. To expose the becoming-subject of the 
Absolute for Hegel. To disfigure and overcome humanist man for 
Lautréamont. In each case it is a question of giving 'thanks’ to rigorous 
mathematics. Philosophy can be: a rationalism tied to transcendence, 
from Descartes to Lacan; a vitalist immanentism, from Spinoza to 
Deleuze; a pious criticism, from Kant to Ricœur; a dialectic of the 
Absolute, from Hegel to Mao Tse-tung; or an aesthetic creationism, from 
Lautréamont to Nietzsche. For the founders of each of these lineages, it 
remains that the cold radicality of mathematics is the necessary exercise 
through which is forged a thinking subject adequate for the transforma
tions that it will have to undergo.

It is no different to this for me. I have assigned philosophy the task 
of constructing the reception in thought of its own time, of refracting 
incipient truths through the unique prism of concepts. Philosophy must 
intensify and gather together, under the sign of systematic thinking, not 
just what its time imagines itself to be, but what its time is -  without 
knowing it -  capable of. In order to do this, I too had to laboriously 
register my own lengthy 'thank you’ to rigorous mathematics.

Let us formulate the maxim abruptly -  no relation between the 
grand style of philosophy and mathematics is to say: no philosophical 
grand style at all.

In 1973, Lacan, using a 'we’ that, for all its imperiousness, 
included psychoanalysts no less than psychoanalysis, declared: 'mathe
matical formalization is our goal, our ideal’ (Lacan 1998,119). Follow
ing the same rhetoric, where the 'we’ now comes to designate 
philosophers and philosophy, I will say: ‘mathematics is our obligation, 
our alteration.’

None of the advocates of the grand style ever imagined that the philo
sophical identification of mathematics had to proceed by way of a logi- 
cising or linguistic reduction. Suffice it to say that for Descartes, it is the 
intuitive clarity of ideas that founds the mathematical paradigm, and by no 
means the automatic character of the deductive process, which is only the 
scholastic and indifferent part of things. Similarly, for Kant, the historical 
destiny of mathematics as the construction of the concept in intuition con
stitutes a revolution that is independent of the achieved destiny of logic, 
which, since its founder Aristotle, has done nothing more than be
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repeated. Hegel scrutinises the foundation of a concept, that of infinite 
disregarding the apparel of proof. Lautréamont certainly appreciates % 
iron necessity of the deductive process and the coherence of figures, bt 
what ultimately counts for him is the power of eternal survival and the iq 
discipline of mathematics. As for Spinoza, it is from the ontology under 
lying mathematics that he awaits salvation. That is, these advocates an 
those who think being outside of any consideration of a meaning or aj 
end, and who only become attached to the cohesiveness of consequences 

There is not a single word about language in all this.
Let us not hesitate to say in passing that on this point Wittgenstein 

as cunning as he is in his loquacious hysteria, and despite the beautify 
proportions of the Tractatus, undeniably one of the masterpieces of anti 
philosophy, should no less be held to be one of the creators of the littj 
style, whose principles he sets out with his customary brutality. Thus if 
Tractatus 6.21: 4A proposition of mathematics does not express , 
thought’ (1992, 65). Or worse still, in Remarks on the Foundation i 
Mathematics (1978), we find a kind of trite pragmatism, which is vers 
fashionable nowadays:

I should like to ask something like: ‘Is it usefulness you are out for in you 
calculus? -  In that case you do not get any contradiction. And if you areir 
out for usefulness -  then it doesn’t matter if you do get one.’ (sec. II, pan 
80: 104e)

We forgive Wittgenstein, but not those who take shelter behind his 
aesthetic ruse -  of which the core is moral, even religious - to adopt ona 
and for all the little style, and to vainly attempt to throw to the lions o! 
indifference, our modem lions, those who intend to remain faithful toÉ 
grand style.

In any case our maxim is: philosophy must enter into logic m 
mathematics, and not into mathematics via logic.

Which in my work became: mathematics is the science of beiif 
qua being. Logic pertains to the coherence of appearance. And if É 
study of appearance also mobilises certain areas of mathematics, it is 
quite simply because, according to an intuition formalised by Hegel bui 
which actually goes back to Plato, it is of the essence of being to appear. 
This still retains the form of all appearance in a mathematisable tran
scendental order. Here again however, it is transcendental logic, whichli 
a part of mathematics related to contemporary sheaf theory, that subordi
nates formal or linguistic logic, which is ultimately only a superficial 
translation of the former.
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Taking up again the ‘we’ I used earlier, I will say: 'mathematics 
teaches us about what must be said concerning what is; and not about 
what is permissible to say concerning what we think there is.’

Mathematics is a weapon for philosophy, a formidable machine of 
thought, a catapult trained on the bastions of ignorance, superstition and 
mental servitude. It is not at all a docile grammatical region. For Plato, 
mathematics is what allows us to break free from the sophistical dicta
torship of linguistic immediacy. For Lautréamont, it is what liberates 
us from the moribund figure of the human. For Spinoza, it is what 
breaks with superstition. But you have read their texts. Today some 
would lead us to believe that mathematics is itself relative, prejudiced 
and inconsistent, unnecessarily aristocratic, or alternatively subservient 
to technology. You should be aware that this is propaganda against what 
has always been the most implacable enemy of spiritualist approxima
tions and rowdy proclamations of scepticism, these insipid allies of 
flamboyant nihilism. Mathematics indeed is unaware of what it means to 
say: T cannot know’. Spiritualist categories such as those of the unthink
able and of the unthought, of what exceeds the meagre resources of 
human reason, or the sceptical categories according to which we cannot 
really resolve any problem, nor respond to any serious question, are 
categories whose existence mathematics does not acknowledge in its 
own realm.

Science in general is not reliable on this point. Quentin 
Meillassoux has convincingly argued that physics offers no barricade 
against spiritualist, even obscurantist, speculation and biology, this 
wild empiricism disguised as science, even less so. It is only in 
mathematics that one can say, unequivocally, that in so far as thought 
formulates a problem, it is definitive that thought can solve it, that 
thought will solve it, however long it takes. For it is also in mathematics 
that the maxim 'Keep going!’ a maxim which satisfies the needs of 
ethics, has the most consistency. How else are you to explain why a 
problem posed by Fermat more than three centuries ago can be solved 
today? And why we still engage in proving or disproving conjectures first 
proposed by the Greeks more than two thousand years ago? Yes, mathe
matics conceived in the grand style is warlike, polemical, fearsome. And 
it is by donning the contemporary matheme like a coat of armour that 
I have undertaken, alone at first, to undo the devastating effects of 
philosophy’s ‘linguistic turn’; to trace a line of demarcation with 
phenomenological religiosity; to re-found the metaphysical triad of
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being, the event and the subject; to take a stand against poetic prophet j 
ing; to identify generic multiplicities as the ontological form of thetm 
to assign a place to Lacanian formalism; and, more recently, to depl| } 
the logic of appearing.

Let us say that, as far as we are concerned, mathematics is alwai 
more or less equivalent to the bulldozer with which we remove the rubbl 
that prevents us from constructing new edifices in the open air.

The principal technical difficulty is undoubtedly the assumption 
that mathematical competence requires years of initiation. Whence tl 
temptation, for the philosophical demagogue, not to whisper a word! 
mathematics, or to act as though the basic rudiments were enough! 
make its subject-matter comprehensible. In this regard, Kant did not ̂  
a very good example, by letting generations believe that they could gra§ 
the essence of mathematical judgement through a single example 14 
7 + 5 = 12. This is like somebody saying that one can grasp the relatio 
between philosophy and poetry by reciting:

Humpty Dumpty sat on the wall,
Humpty Dumpty had a great fall.
All the king’s horses and all the kings men
Couldn’t put Humpty together again!6

After all, they are just lines of verse, just as 7 + 5 = 12 are numbers.
It is striking that in philosophical texts of general ambition, ord 

the grand style, the quotation of poems is regarded as self-explanatorv 
but not at all the quotation of a piece of mathematical reasoning. Nobodt 
seems to think it acceptable to dispense with Hölderlin or Rimbaud, « 
Pessoa, in favour of Humpty Dumpty, no more, to tell the truth, than If 
replace Wagner with Julio Iglesias. But as soon as there is mathematics 
either the reader loses interest, or he believes that it is of the little style 
of epistemology, of the history of science, of specialisation.

This was not the point of view of Plato, nor that more generally oi 
any of the great philosophers. Plato frequently quotes poets, but he also 
quotes theorems, perhaps easy by today’s standards, but certainly diffi
cult for his contemporaries. As for example, in Meno, the construction oi 
the square whose surface is double that of a given square.

I claim the right to mathematical citation, provided that it is appro
priate to the philosophical theses in which it is inscribed, and that all the 
elements required for its comprehension are readily available. Give us an 
example, I hear you say. Well, I will not give you an example of an exam
ple. For the real examples, integrated into the movement of thought;!
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have already provided hundreds of them. I will mention two of these 
movements instead, for your exercise: In chapter 4 of Le nombre et les 
nombres (1990), the presentation of Dedekind’s doctrine of number. Or 
meditation 7 of Uêtre et Vévénement (1988), meditation on the point of 
excess. Consult them, read them, using naturally the reminders, the 
cross-references and the glossary that I have provided. If someone does 
not understand, they can write to me exactly what they do not understand 
-  [otherwise we’re simply dealing with the excuses for the reader’s lazi
ness]. We understand the sentence of Anaximander, an elegy of Rilke, a 
seminar of Lacan on the real, but not the proof, produced two thousand 
five hundred years ago, that there is an infinity of prime numbers. This 
state of affairs is radically antiphilosophic, and serves only those parti
sans of the little style.

I have spoken of bulldozers and rubble. Of which contemporary 
ruins do they happen to be? I think Hegel saw it before anyone else: in its 
essence, mathematics proposes a new concept of the infinite. And on the 
basis of this concept, it authorises an immanentisation of the infinite, its 
separation from the One of theology. Hegel also saw that the algebraists 
and analysts of his time, Euler or Lagrange, were not completely clear on 
this point -  it is indeed with Baron Cauchy that a little order may be 
established in the thorny issue of the limit of a series, and not until Cantor 
before a little more light is thrown on the ancient question of the actual 
infinite. Hegel thought that this quandary was due to the fact that the 
‘true’ concept of the infinite belonged to speculation, and that mathe
matics was, all things considered, only the blind bearer, or the uncon
scious act of its birth. The truth is that the mathematical revolution, 
rendering explicit what had always been implicit in mathematics since 
the time of the Greeks -  that is, the thorough rationalisation of the infi
nite -  was yet to come, and, in a certain sense, will always be yet to come. 
Since we still do not know how to reasonably ‘force’ the type of infinite 
proper to the continuum. Nevertheless, we do know why mathematics 
radically subverts empiricist moderation and elegant scepticism. It is 
because mathematics produces the possibility of thinking that the infinite 
is the native element of rational thought, and not its unfathomable exte
rior. Mathematics is that from which there is no reason to confine thought 
within the ambit of finitude. With mathematics, as Hegel would have 
said, we know that the infinite is nearby.

Then, can one object: if we already know the result, why not be sat
isfied with it? Why still engage in the dry labour of familiarising our
selves with new axioms, with unprecedented proofs, with difficult
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concepts, with inconceivably abstract theories? It is because the infinite 
such as mathematics exposes it to philosophical will, is by no meansr 
stable and irreversible given. The historicity of mathematics is nothin! 
other than the labour of the infinite, than its ongoing and unpredictabl 
re-exposition. Just as a revolution, French or Bolshevik, cannot exhaiis 
the formal concept of emancipation, even though it presents its real, no 
do the mathematical avatars of the thought of the infinite exhaust tk 
speculative concept of infinite thought. The confrontation with mathe 
matics must constantly be reconstituted, because the idea of the infini! 
only manifests itself through the moving surface of its reconfiguration 
And it is all the more essential that our ideas of the finite, and thus tl| 
philosophical virtualities of finitude, are retroactively displaced and rein 
vigorated through those crises, revolutions and the repentances tha 
affect the mathematical schema of the infinite. There is here a moviiif 
front, a struggle as silent as it is relentless, and nothing announces, the* 
no more than elsewhere, the advent of perpetual peace.

What is there in common, in regard to the most subtle const 
quences for thinking, between the infinity of prime numbers as conceivet 
by the Greeks, the fact that a function tends towards the infinite, the linn 
of a series whose indices tend towards the infinite, the infinitely smallt 
non-standard analysis, the regular or singular infinite cardinals, the exfc 
tence of a number-object in a topos, the capture and projection onto! 
family of sets by a functor of an untotalisable collection of algebré 
structures, and hundreds of other formulations, concepts, schemes ant 
theoretical determinations? Probably something that touches upon tk 
fact that the infinite is the intimate law of thought, its natural medium 
because anti-natural. But in another sense, they have nothing at all* 
common. Nothing that would allow one merely to repeat and to maintain 
only allusive and simplified relations with mathematics. This is because 
to use the words of our late friend Gilles Châtelet, the mathematical elab 
oration of thought is not of the order of an unfolding or of pure consfr 
quence. It comprises decisive but previously unknown gestures. Iti 
necessary to begin again, because mathematics is always beginninf 
again, transforming its abstract body of concepts. It is necessary to begin 
studying, writing, understanding again that which is most complicated it 
the world, that whose abstraction is the most insolent, because the philo
sophical struggle against that which unites finitude and obscurantism 
thrives on this recommencement.

This is why Mallarmé was mistaken on at least one point. Like all 
great poets, Mallarmé engaged in a tacit rivalry with mathematics. Hi
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tried to show that the poetic line saturated with images, if contained 
within the naked rhythm of thought, can hold as much or more truth than 
the extra-linguistic inscription of the matheme. This is what made him 
write, in a draft of Igitur:

The infinite emerges from chance, which you have denied. You mathe
maticians expired -  I am projected absolute. I was to finish an Infinite.
(1982)

The idea is clear: Mallarmé acuses mathematicians of having denied 
chance, and thus of fixing the infinite in the hereditary rigidity of calcu
lation. This rigidity, in Igitur, is symbolised by the family. Whence the 
poetic, anti-mathematical operation which, Mallarmé believes, binds the 
infinite to chance, and is symbolised by the dice-throw. Once the dice are 
thrown, and whatever the result, The infinite . escapes the family’ The 
result of which being that mathematicians expire, and along with them 
goes the abstract concept of the infinite, in favour of the impersonal 
absolute which becomes the hero.

But what Mallarmé did not see, is that the operations by which 
mathematics reconfigures the infinite in thought are constantly affirming 
chance through the contingency of its recommencement. Philosophy is 
thus called upon to gather together, to conjoin, the poetic affirmation of 
the infinite which is drawn metaphorically from chance, and the mathe
matical construction of the infinite, which is drawn formally from an 
axiomatic intuition. The injunction to mathematical beauty intersects 
with the injunction to poetic truth. And equally the inverse.

There is a very short poem by Alvaro de Campos, a heteronym of 
Fernando Pessoa. De Campos is a scientist, an engineer, who draws the 
moral from what I have just been saying. Here is this poem, which you 
can immediately learn by heart:

Newton’s binomial is as beautiful as the Venus de Milo.
The trouble is few people are aware of it. (1971, 115)

Style, the grand style, is simply to be aware of it.
Translated by Simon Duffy

Notes

1 [Trans. I have followed Brassier and Toscano in presenting each of these 
theses in terms of ‘sets’. See Badiou 2004, 6.]

2 [Trans, from the poem O ne toss of the dice will never abolish chance’ by 
Mallarmé (1994, 144).]
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3
4
5
6

[Trans, from ‘Herodiade’ by Mallarmé (1994,30).]
[Trans, from ‘A funeral toast’ by Mallarmé (1994,45).]
[Trans, from ‘Several Sonnets ΙΓ by Mallarmé (1994,67).]
[Trans. -  Badiou’s manuscript actually cites a variation on the chorus 
famous French patriotic song from 1914 called ‘Quand Madelon’, wor< 
Louis Bousquet, music by Camille Robert, performed by the singer Bac
Quand Madelon vient nous servir à boire 
Sous la tonnelle, on frôle son jupon

Et chacun lui raconte une histoire 
Une histoire à sa façon 
La Madelon. I

When Madelon has just served us a 
Under the arbour, we brush past her 
coat
And each tells her a story 
A story in his own way.

I have followed Brassier and Toscano in replacing the French with a 
known rhyme that serves the same purpose for the essay. See Ba 
2004,17.]



Interlacing the singularity, the 
diagram and the metaphor

Gilles Châtelet (edited by Charles Alunni*)

3

Introduction by Charles Alunni
you on whom the future counted so much, you didn’t fear to put fire

to your life
We will wander for a long time around your example.

It is necessary to return . All will have to be started again.
René Char, Dans Γatelier du poète}

The paper presented here for the first time is derived from a lecture that 
Gilles gave at the École Normale Supérieure in Paris, in a seminar series 
whose general title was Possible Worlds.2 Not personally having been 
able to be present, and Gilles having prepared his talk on a series of scat
tered notes, I asked him, during April, to write his notes up as a paper for 
publication. The reverberations that I had heard from this lecture, in par
ticular through the report of one of our common students, encouraged me 
to be pressing on this point. As always, Gilles had captivated a public 
which, at the beginning, and for reasons of differences in philosophical 
position, was far from accepting of him a priori. His speculative power, 
doubled by his ‘heroic fury’, had shaken the listeners of the rue d’Ulm. 
Several months passed, without us ever finding ourselves in a situation to 
resume the point of this project, and without me ever knowing whether 
Gilles had the least intention to carry it out. Less than two weeks before 
his suicide, I prepared one of the lectures of my own seminar at the table 
of a cafe where we were in the habit, for approximately five years, of 
periodically meeting.3 Alexis de Saint-Ours, our common student, then 
came to find me, accompanied by Gilles whom he told me he had ‘con
vinced to come as far as here’. Rather a rare thing, Gilles carried a brief
case. After having settled opposite me, he opened it and produced a small 
bundle of documents, which he showed me without allowing me to con
sult them, and all the while saying: ‘You see, I listened to you: I am about 
to finish my paper’
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A few days later, in the early morning of June 15, 1999, \\ 
announcement of the appalling news was communicated to me by ouro| 
mutual friend Bernard Besnier, ‘Director of Studies’ (caïman) at the EN; 
in Fontenay-Saint Cloud. When, a few days later again, we found oui 
selves with his sister and her closest friends in his apartment on boule 
vard Rochechouart, we found his work table entirely occupied t 
bundles of documents and opened books, which showed that Gilles wa 
working there at the time when he killed himself; these were the element 
of the paper in question. In agreement with our friends, I decided to coi 
lect them to try to reconstitute the final text of the paper that wast 
become his last fundamental contribution. The task proved to be long an; 
difficult. He who admired William Burroughs so much (and whoml* 
had met during his stay in the United States) proceeded to compose hi 
manuscripts by an operation of textual cut- up.4 Refusing any use of th 
computer, he developed a handwritten manuscript on which was the 
glued other pieces of printed text (quotations photocopied then cut og 
and stuck, mixed with other pieces of his own texts that he was in th 
habit of typing). The difficulty was made even worse both by a system 
atic absence of any numbering of the documents, and by the use of: 
‘secret’ code, marked on the top of a page and on separate paper fra| 
ments (of the type Φ ΐ, Φ2α, etc. .). Lastly, as with the photocopies g 
whole books which he made use of and bound, he excluded the title pag 
from the reproduction (making it sometimes difficult to identify th 
author and the work), in the same way, in his manuscripts Gilles practi 
cally never indicated the source of his quotations. In the text which intet 
ests us, this was particularly the case for his references to the ‘knot 
theorist, Louis H. Kauffman. Although working on the same sources a 
Gilles, it has taken approximately two months of work to rebuild thi 
kind of textual and theoretical puzzle in the form of a paper.

The manuscript, as with all Gilles’ manuscripts, is deposited wit! 
the Gilles Châtelet Archives at the Ecole Normale Supérieure in Paris, 
which is, by convention, under the responsibility of myself and Alaii 
Prochiantz. These Archives were able to be repatriated to rue d’Ula 
thanks to the École Polytechnique and to the mediation of the forma 
director of his department of mathematics, François Laudenbach. This 
was made possible following the donation which was made to the École 
Normale Supérieure by Doctor Edwige Bourstyn-Châtelet, sister û 
Gilles, and to whom the oeuvre was bequeathed. For which I’d like tt 
take the opportunity here to express my sincere gratitude.

Ulm, Paris, March 200!
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Notes

1 [Trans. toi sur qui l ’avenir comptait tant, tu n’as pas craint de mettre le 
feu à ta vie ./ Nous errerons longtemps autour de ton exemple./ Il faut 
revenir .Tout est à recommencer’.]

2 Meeting of April 15, 1999. [Trans. -  at the ENS in rue d’Ulm, Paris.]
3 For the meetings of the ‘Pensée des sciences’ seminar, held twice a month at 

the École Normale Supérieure (Wednesday evenings from 8 to 10.30pm), we 
had founded a kind of ritual which consisted in (and consists in still today) 
continuing the debates over late victuals. The debates were so animated that 
the owner called us ‘the folk group’ (le groupe folklorique). This bistro, 
located opposite rue d’Ulm, used to be known as Le Normal Bar. In the six
ties, it was already a meeting place: that of Jacques Lacan and his group.

4 Remember that it was between 1958 and 1960, at the time of his Parisian stay 
at the famous Beat Hotel of rue Gît-le-Cœur, that Burroughs became impas
sioned with the results of this technique of the cut-up developed by the 
painter and poet Brion Gy sin.

5 Call number Ined .01.

Gilles Châtelet

If the allusive stratagems can claim to define a new type of systematicity, 
it is because they give access to a space where the singularity of the 
diagram and the metaphor may interlace, to penetrate further into the 
physico-mathematic intuition and the discipline of the gestures which 
precede and accompany ‘formalisation’ This interlacing is an operation 
where each component backs up the others: without the diagram, the 
metaphor would only be a short-lived fulguration because it would be 
unable to operate: without the metaphor, the diagram would only be a 
frozen icon, unable to jump over its bold features which represent the 
images of an already acquired knowledge; without the subversion of the 
functional by the singular, nothing would come to oppose the force of 
habit.

We would thus like to undertake research which would give 
priority to certain key axes, which would analyse the increasingly crucial 
role played by the allusive stratagems in the articulation of the intuitive 
practices of two different domains or disciplines: Physics and Mathe
matics, Geometry and Algebra, an articulation that does not embody a 
relation of instrumentality of one practice over the other.
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A) A nalysis o f  the relationship between ph ilosoph ica l metaphors 
an d scientific m etaphors.

Aristotle already noted that the metaphor could be understood as t 
‘syllogism to complete’: it is precisely this invitation to complete tht 
permits that which is not actually presented there to be shown. The 
metaphor allows one to think between the lines and thus is not only \ 
linguistic impertinence necessarily devoted to precariousness and 
quickly absorbed by convention.

In philosophy, metaphors are not content to play a subsidiary role, 
which one could, if absolutely necessary, do without, but often appear as 
centrepieces of what Jean Ladrière calls the ‘support of the line of argii 
ment’: by creating the effect of veracity, this support establishes itself as 
complementary to studied deduction by means of logic in the narrow 
sense that ensures the transfer of the supposed truth.

These metaphors of a particular type reign over a whole contexi 
and globally command a whole system of more traditional metaphors 
devoted to the local illustration of propositions. Without what might be 
referred to as ‘orchestrating metaphors', the propositions would appear 
isolated, even if they respected the habitual protocols of sequences.

It is precisely this veracity and this allusive capacity that nourishes 
the argumentative support found at the heart of the intuitive practices of 
the most formalised sciences.

Whether they are scientific or philosophical, metaphors organise 
the key points of reactivation and acceleration, the fulcra, the 
‘Archimedes levers’ able to retain a whole context and propel a whole 
set of concepts to a higher speed, allowing for example in physics or 
mathematics the almost instantaneous transit of deductive chains of 
considerable length.

This great proximity between the ‘scientific’ metaphor and the 
‘philosophical’ metaphor gives rise to the thought that each of these 
fields expresses two different, yet capable of being articulated, modes of 
intervention of allusive stratagems. Thus, one can observe that the philo
sophical metaphor is in a relation of rivalry-complicity with conceptual 
grasp -  with the reciprocal threat of overflowing: the incontinent prolif
eration of the metaphor, the domestication of metaphorical impertinence 
by conceptual grasp.

This relation of rivalry-complicity brings the philosophical 
metaphor closer to the scientific metaphor, if one recalls that the latter 
is a part of the implicit text which accompanies any demonstrative 
development. This implicit text -  whose importance we emphasised in
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Figuring Space (Châtelet 2000)[61 -  allows an overall view of this devel
opment, entering into a relationship of alliance and rivalry with the 
official text presenting the procès verbal of the demonstrations. If it 
seems difficult to speak about the procès verbal of the demonstrative in 
philosophy, one can nevertheless point out that the philosophical 
metaphor is organised in regulated sequences ensuring an effect of con
vergence, of allusions and large unsteady oscillations {mises en bascule), 
an effect intended to force conviction, just as the implicit text allows 
anticipation of the already acquired stages of a proof.

The crucial strategic character of the metaphor -  whether in sci
ence or philosophy -  lets us suspect that it would help in better deter
mining the proximities and differences of these two fields of rationality; 
this is why we propose to analyse it in several precise cases.

B) Analysis o f  the role o f  allusive stratagem s in contemporary 
physico-m athem atics: a new conception o f  notation.

Recent spectacular developments in Knot Theory {Théorie des Nœufs 
(sic!)), the work of Vaughan Jones marking the turning point, renders 
manifest a profound articulation between Geometry, Algebra, Topology 
and Physics.171

These developments should not only be appreciated as distin
guishing themselves by ‘varied applications’ -  as one terms the extensive 
character of a transfer of technology from one discipline to another -  but 
as falling under a tradition of implementation of a graphic reason in the 
exact sciences.

We have already noted that the ‘orchestrating metaphors’ were 
able to exceed [to dissolve] the duality of the deductive and the argu
mentative by establishing a new relation between illustrating and the 
illustrated. This is also the case for some contemporary research which 
completely renews the very notion of indexation. No explicit intuition 
accompanies the ‘classical’ behaviour of calculations: in formulae of the
type X = , the set of indices is neutral and the indexation remainsi
completely external to the development of these calculations, behaving 
like a ‘notation’ which is completely indifferent to that which it notes. 
These formulae remain captive to a linear successiveness, xt then x2 then 
x3 etc., an artificial sequence a little analogous to the chain of verbs veni, 
vidi, vici where the temporal order of the processes of enunciation {énon
ciation) replicate exactly the order of the processes of the statement 
(énoncé).
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The contemporary point of view makes the notation concrete bi 
identifying it with a diagram already used in an a priori foreign domaif 
(knot theory [théorie des nœufs (sic)f81]). This domain thus 'evokes’ 
tures which are classical for it, but completely new in the domain when 
it is imported as ‘notation’ Thus certain a priori not very suggestiv« 
complicated formulae of tensor calculus, can be condensed in a fulgurai 
ing way and launch new calculations.9

This upsets the very notion of indexation which becomes bi-dime)i- 
sional in freeing itself from the successive: it is very much a victory of 
the hand that comments on itself, the indexation no longer being delk 
ered by an external ‘set’, but by a process of deformation and modifies 
tion of diagrams.10 This confronts us with a remarkable situation 
theorems of mathematics make it possible to support the notation for thii 
same mathematics (See Kauffman 1991, 15).

We propose to analyse in detail this revenge of the hand which f 
no longer content to drone out x{ then x2 then x3 etc., as prescribed bj 
linear successivity, but can play on all the routes permitted by the (inter
lacing) tracery. The notation contaminates to some extent the calcula
tions, in order to create a new context like literary metaphor.

Let us recall again that Figuring Space (Châtelet 2000) conclude! 
by stressing that the knots (nœufs [sic]) and the (interlacing) tracery air 
reduced neither to an ornament, nor to a particular chapter of the topol
ogy of ordinary Space, but introduce a new mode of intervention of the 
geometrical figure, just as they had introduced a new manner of making 
the image penetrate the text in order to avoid too linear a reading of it 
and thus expressing an ability to rupture which is a reminder of the typt 
of intervention of metaphors already described; this seems to be associ
ated with an aptitude of the ‘tied’ to interweave an ‘over-under’ with* 
cursory reading which passes simply from right to left or from left tc 
right. The ‘tied’ puts in question the traditional opposition between 
habitual, totally undifferentiated, geometric space and. . strongly differ
entiated (high and low, right and left. .) ‘psychological’ space (Emsi 
Mach) which induces evaluations and orientations.

Matrix algebra already used the high-low opposition, and 
Einstein’s convention of tensor products Τ ίλμ Τλ]μ clearly showed the 
subsidiary role of the silent index: it diverted attention to the intricatioi 
of this opposition and of the successivity of the summation.
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M - (nt ] )  =

, J ,· k

M Ô  = >u I  = T ' j k  -
r—— —— i

T ii

one accentuates the operation of disappearance of the silent indices in 
favour of incidental and emergent features, and of a compact reading of 
products.

Thus, a product of matrices becomes:
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The formula becomes very spectacular for the trace:

X m ‘

Current mathematical physics succeeded in uniting operations already 
very powerful by themselves: all the ‘imagery’ of Feynman diagrams and 
the diagrams of homological algebra and algebraic topology which give 
priority to the point of view of arrows and above all blocks of arrow 
(exact series, sequences. . cf. C) at the expense of the classical point of 
view of ‘alpha and omega sets’ (<ensembles de départ et d'arrivée). They 
induce a new grasp of the relation between the image and the calculation: 
to think from the start at the level of blocks, is to capture the operativitj 
to a greater degree -  which is not without recalling the ‘global effects’ oi 
the orchestrating metaphor described in paragraph A.

One is thus led to associate each knot (nœuf [sic]) -  more precisely,, 
its projection on a plane -  with a tensor expression [thus benefiting from; 
all of the autospatiality]:

~  T(k)~ X l C R t f R t
a,b,c,d,ej
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But there is more [to this link between geometry and algebra]: a 
third component comes [to be connected and] to complete the new nota
tion -  the intersections of the projection of the knot (nœuf [sic]) can also 
be seen as collision diagrams of particles:

R
ab
cd

One can show that deformations of the graph do not affect the type 
of knot (nœuf); they can be classified as follows:

These deformations resulting directly from the concrete intuition 
of the sliding of knots (nœuf) materialised by bits of string, induce clas
sical tensor relations concerning the constraints of Quantum Field 
Theory (and reciprocally). It is thus necessary to take all of this termi
nology of categories of ‘braids’, of ‘ribbons’ which irrigate algebra with 
geometrical allusions seriously. All these effects are multiplied ten-fold 
by association with Quantum Field Theory; one would be tempted to say 
that the two operations (algebraic and quantum) reinforce one another,
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mathematical arrows becoming physical, and reciprocally. Thus, ty; 
deformation:

b a b

is equivalent to the unitarity of matrices associated by convention (I).® 
is equivalent to a classical relation of statistical Mechanics.

We see to what point we are far from the classical figuration u  
illustration which always lead to a kind of dissymmetrical predation of 
the concrete by the abstract. We already knew that the knot (nœuj) ism 
captured by an intuition of volume or of a given container: it does m 
occupy a 'place’ in our space -  there is no outside and inside of akna 
(nœuf). The knot (nœuf) is not a figure: it is, if you like, an experiments 
autospatiality. This is why it so upsets the indexation of physical formic 
lae which, to it, seemed a priori foreign. Indexation is no longer reducer 
to the external evaluation of a collection, but becomes the protagonistd; 
an experiment which secretes its own overflow.

It reveals the grasp of Feynman diagrams as convenient conven
tions which associate integral calculus with a reproductive imagery or 
real particle collisions as definitively null and void, leaving the capacity 
of these diagrams for auto-procreation in suspense.

To index diagrams by knots (nœuf) is not to associate M 
imageries operating by resemblance, but to grasp in a single act thetof 
dynamics of allusion (the collisions not 'resembling’ knots (nœuf)). TV 
conditions of the knot (nœuf) diagram become here physical condition 
by the transfer of operations (and reciprocally). *

The success of this synthesis of indexation by knots (nœuf) would1 
certainly have been appreciated by C.S. Peirce, who liked to saythafe 
'algebra is nothing other than a kind of diagram’, stressing that it had lb! 
privilege of articulating three functions: that of an icon (similarity inrefâ  
ity between its signifier and its signified -  resemblance); that of an indäf 
(contiguity in reality between signifier and signified -  auto-overflowing 
and that of a symbol (instituted, learned, contiguity between signifieraA
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signified -  convention), the most perfect being the one where these func
tions ‘are in as equal proportion as possible5 [Cf. Châtelet 2000, 188 n. 
40].

This indexation by knots (nœuf) incarnates this ideal of equilibrium 
between image, allusion and calculation.

One can now appreciate the great subversive proximity of the 
unsteadily oscillating relation, iilustrating-illustrated, of the orchestrat
ing metaphor, and this driven by allusive stratagems, particularly in the 
case of the indexation-knot (nœuf).

One could detect here an invaluable pivot point: that which would 
refuse the quartering denounced by Heidegger; that of an informative 
language aiming at the most massive and most rapid production of mes
sages, and sanctioned by ‘yes-no’ decisions, aiming to force nature to 
appear in a calculable objectivity, to debit compact and irreducible units 
of signification, and of a language of plastic tradition, able to stammer, 
and which lets things appear.

C ) The revolution o f Grothendieck as the articulation between 
concrete geometrical and concrete algebraic.

Let us recall that, in the ’60s, Alexandre Grothendieck wanted to under
take a vast programme of reciprocal ‘translation ’ between Algebra and 
Geometry, implying a rupture with traditional intuition and the interven
tion of new techniques which seem ‘abstract’, but which however are 
revealed to be the most adapted to this ‘translation’, as his introduction 
to the language of diagrams (schémas) emphasises: ‘as in many of the 
parts of modern mathematics, the first intuition moves further and further 
away,in appearance, from the language appropriate to express it in all the 
desired precision and generality’ (Grothendieck and Dieudonné 1960).

Grothendieck, in his writing, sometimes refers to Galois’ theory, as 
an example still to be reconsidered of what one could call a pure alge
braic concretism, as much to the work on classical theories such as those 
of Lie and Sylow groups, as on the most recent theories. One can under
stand Galois’ theory as training: that of the progressive discernment of 
roots, the formal conditions of such a discernment paying attention to the 
sequences of reduction, while the explicit formulae of resolution become 
subsidiary. To bring to bear all the effort of research on the sequences of 
groups, fibres, ‘bundles’, etc., to be able to grasp in flight the very ges
ture of learning. .., such would be, according to Grothendieck, Galois’ 
unforgettable lesson.
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This algebraic concretism can then espouse another concretism, that 
Geometry, which is that of learning the gestures for grasping Space.% 
would like to analyse in detail some examples of this ‘geometrico-% 
braie’ concretism in the work of Grothendieck. His conception of ft 
point is particularly enlightening: the ‘classical’ point of Geometryt 
simply the trace in space-time of the act of designation of this point hen. 
while the point conceived by Grothendieck (and now by all contempt 
rary geometers-algebraists) is an operation, an infinite panoply of virtu 
alities, whose designation would be the most trivial, a monadic point 
‘to concentrate in one point’ all that previously claimed to hold sept 
rately the attention of the mathematician. The modern point is re-knotty 
with this ‘evidence’ that was always anticipated, but never grasped 
before Grothendieck as mathematical evidence, making available a net 
operative power (puissance) and above all a formidable allusive power 
the ‘concentration in one point’ is the complete opposite of a subsides 
in one point but appears, on the contrary, as an operation of liberatm 
and amplification of geometrical virtualities.

Grothendieck saw clearly that mathematics never succumbs to* 
abstraction deprived of all the richness of determination: the ‘generalisa
tions’ of mathematics are never confused with inoffensive generalities: 
there is definitely an audacity specific to mathematicians, certainly asso
ciated with a strict discipline of verification, but above all permitting 
access to a field where yet unclarified virtual determinations emerge, 
Installation in such a field possesses all the character of a diagnosis tint 
operates in a decisive way, well before any exhaustive analysis: the raos! 
flagrant example is that of the attack on such and such a conjecture byi 
stronger -  and thus a priori more difficult to deduce -  conjecture whicl 
completely displaces a problem and reveals the old conjecture to be a 
poorly posed problem. To confuse mathematics with simple deductive 
chains is to be unaware of the crucial character of the sense of the ‘good 
conjecture’ -  of that which we have called the diagnostic of a mathe
matician: this is why Grothendieck’s ‘evidence’ is not related to the 
proximity of two terms in a deductive chain, but to the ‘natural’ effect 
related to the abolition of the space between the symbol which capturé 
and the gesture which is captured.

Statements of the type ‘Let us consider such a point. ., such a sub 
set. Let us extend this segment of line. are frequent during 
demonstration." They are certainly inserted in the deductive chain bm 
have to some extent a strategic character appreciated by experts, ant 
they surreptitiously introduce another rhythm. ‘It is here that somethin!
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happens. It was necessary to have the idea to consider this or that. 
These elements, these statements or these constructions were quite avail
able, but asleep and seem to become animated abruptly by virtue of this 
let us consider’, which puts all the attention on what becomes a pivotal 
element, expressing a type of concretism which is much more intense 
than the ‘concrete’ allegedly encountered at street-corners by the naïve 
empiricist.

We are at the antipodes of the ‘abstraction’ which always results 
from the violent deduction of a part, and thus of a mutilation, whereas 
while the ‘lever’ does not subtract anything and acts like certain 
fragments of a puzzle which, from the outset, emerge and impose or dic
tate the solution: to be absolutely concrete is to persevere to some extent 
in a kind of tangential approach of thought which grasps its own 
movement.

Grothendieck’s undertaking -  like any translation -  is not content 
to define a simple bank of reciprocal references between ‘purely alge
braic’ and ‘purely geometrical’ concepts that are left intact. The theory 
almost forcefully dislodges the attention of the mathematician from 
‘points’ and fixed sets towards arrows (these morphisms) and makes it 
possible to understand algebraically geometrical syntheses.12 One almost 
wants to say that, thanks to the introduction of topology, the structures of 
commutative algebra themselves fabricate an ‘environment’ without 
remaining under the supervision of co-ordinates. We would like to show 
that one may understand the programme of translation as crowning a tra
dition of discovery and development of analogies between Number 
Theory and Geometry initiated by Kronecker and developed by Weil (the 
analogy between bodies of algebraic numbers and ‘paths’ of coverings of 
an algebraic curve, etc.).
Translated by Simon Duffy

Notes

* The notes between square brackets are mine [CA]; the others are Gilles’ The 
parentheses within the text are also mine [CA]

6 See in particular, ch. 3.4, ‘Indifference centres and knots of ambiguity, fulcra 
of the balances of Being’, p. 88 ff; and above all, ch. 5, ‘Electrogeometric 
Space’, § 5, ‘The electrogeometric experiment as square root’, C, ‘The screw 
as bold metaphor’, p. 176 ff.

7 The last paragraph o f Châtelet 2000, ch. 5.6, entitled: ‘Towards the knot as 
secularisation of the invisible’ (p. 183-6). The following new material is an 
extension of this work.
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8 In an astonishing way, Gilles Châtelet no longer speaks here of ‘knot 
(nœuds) (cf. Châtelet 2000,183 ff), but of tn œ ufs\sic), without any expiai 
tion. The mathematical context in which the author intercedes refers to Kauf 
man, Knots and Physics (1991). In this fundamental work, Gilles Châtel 
notes, by hand, above the first two diagrams on the ‘TrifoiT and the Yarç. 
Baxter equation (p. 108): ‘nœuf’ and ‘inverted nœuf This syntagm is tig 
not a typographical error, and the author obviously had an idea in mind. I; 
therefore reduced by this to propose a ‘conjecture’ about a possible It 
between the mathematical concept of knot and (perhaps) the number ni» 
(neuf), the idea of a reference to the egg (œuf) appearing to me at the ve? 
least inconsistent. The syntagm nœuf (for nœud or knot) could then be relate 
to the fact that, in the use of the knot diagram, considered as an ‘Absfra 
Tensor Diagram’ for the Yang-Baxter ‘nodal’ solution, Kauffman establish 
a link to a list of 9-tuples from which this equation can be read (Kaufte 
1991,318).

9 One of the best examples is that of Yang-Baxter’s formula which connecte 
relation of matrix commutation to a knot (nœuf) diagram deformation.

10 We can appreciate here the whole path traversed since the work of Yuka# 
Heisenberg still anxious to illustrate, endeavouring to fix diagrammatical 
the concept of ‘particle of exchange’ But this still remained ‘to the side) 
calculations and too captive to a relation of illustration and similitude wl 
chemical imagery. Contemporary diagrams do not draw their force te 
similitude but from the capacity of their new indexations to ensure a co-pa 
et ration of the image and the calculation.

11 The example of the demonstrations and constructions of so-called elementar 
Geometry is very enlightening: it is enough to think of the proof of the pot 
wise convergent character of the sides of a triangle, transformed by asht 
extensions into the perpendicular bisector of another triangle. There ist 
‘effect of synthesis’ caused by certain points or remarkable constructions at 
by no means given by a simple representation on a figure: the figure hecom 
diagram because it suggests a dotted line.

12 Two central intuitions traverse Grothendieck’s work:
a) the substitution of the point of view of the arrow for the point of view# 

excessively fixed sets: the arrow deposes sources and targets;
b) the grasp of the point as capable at the same time of condensation (I 

most sophisticated structures could become ‘points’): this is thecasefc 
vectorial fibre classes on X seen as points of K(X), and also of multipt 
cation of geometrical virtualities (this is the case with singular points 
Let us take some very simple examples:

1 ) that of the notion of the ideal; one should not consider it as a simple ‘get 
eralisation’ of the multiples of arithmetic, but as an autonomous entity,.. 
point which has its place and which holds at the same time to theseti 
and to the element -  this is the point of view of the spectrum (spectre).
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2) that of an A-modulus M of finite type: it seems more complicated to define 
it by the existence of exact sequences of the type Ap -► M O, than in 
the usual way. It is however this type of definition which encourages 
operating on blocks -  exact sequences which appear just as condensed as 
a geometrical point, and which are found at the core of the development 
of Bundle Theory.



A

Mathematics, metaphysics, 
philosophy

Jean-Michel Salanskis

The idea of a close, intimate connection between mathematics and 
philosophy has been rejected, either in a conscious and intentional way 
or not, by the two major schools of philosophy who fought an unequal 
battle throughout the twentieth century: analytic philosophy, being the 
dominant school, and phenomenology, the surviving challenger. This, 
rejection, it has to be observed, took very different forms in each case.

The founding fathers of analytic philosophy, Frege and Russell, 
were deeply concerned with mathematics, the former having even held* 
position as professor of mathematics. But their scientific endeavour 
primarily addressed the field of logic, which was, so to say, re-invented 
by them, as they built for the first time what we now call first order logic, 
and discussed the new and central topic of 'foundations of mathematics 
on the basis of the new logical language they initiated. They also paved 
the way for doing philosophy using the same first order logic as its 
unique reference tool: by analysing the logical structure of sentences and 
investigating the problems revealed by such an analysis. Their contribu
tion, for these reasons, resulted in a shift of interest from mathematics to 
logic. Logic, improved and raised to the level of formal rigour, appeared 
to inspire directly some philosophy, and thereby to enjoy the kind of 
generality that is needed to deserve the name of philosophy; and even 
when philosophy was supposed to deal specifically with mathematics,^ 
was understood that the only task was to come to terms with the found* 
tional issue, and it was recognised that the only rational way to do so was 
to put things in the framework of contemporary logic. More than a 
hundred years later, the resulting eclipse of mathematics within the field 
of philosophy, at least as a living literature to be addressed, is absolutely 
clear. Who, in the context of analytic philosophy, could imagine for 
example anything comparable to the long remark about infinitesimal
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calculus made by Hegel in the middle of the first book of his Science of 
Logic (1969)? If philosophy would welcome technical formalities, it 
would only be logical developments, as is the case with Kripke or 
Hintikka.

The pioneering author of phenomenology, Husserl, was also origi
nally a mathematician. He wrote his dissertation under the direction of 
Weierstrass, and held his first university position as a mathematician. 
And all the way through the astonishing philosophical life he lived, writ
ing every minute he could, building and re-building phenomenology as a 
systematic whole without losing hope or energy, he maintained the idea 
of an intimate connection between philosophy and science, seeing phe
nomenology as a new science deeply analogous, because of its a priori 
eidetic character, to mathematics. But all Husserl’s followers, perhaps 
under the influence of the first of them, Heidegger, divorced themselves 
from such an orientation, and recommended rather a way of doing 
phenomenology which would be free from the objective stance of all sci
entific discourses, and which would rather look for guiding patterns on 
the side of poetry or literature. Again, one hundred years later, we must 
recognise that Ricoeur, Derrida, Levinas and Gadamer, to quote great 
names, did not move any meaningful distance from the post-Husserlian 
rejection of the affinity between mathematics and philosophy.

Faced with such a situation, we now have to explain and justify 
why philosophy should think of a new companionship with mathematics. 
But we also have to try and distinguish between different ways of realis
ing such an alliance.

Justifying the partnership: back to Plato

As far as the 4 why?’ question is concerned, the job is rather easy. All we 
have to do is go back to the beginnings of philosophy and its only uni
versally acknowledged birth: the Platonic one. It was Plato who defended 
the essential partnership between mathematics and philosophy, which we 
still keep in mind today thanks to the motto written on the front door of 
the Academy (‘The non geometer does not enter’) and to the mathemat
ical education every future leader should receive in order to become a 
philosopher, as is explicitly stated in The Republic (1987b). Let us focus 
our attention on one main point: Plato conceives of philosophical ques
tioning itself as arising ‘from’ mathematics. Once again in The Republic, 
he tells us that the future city-keeper has to be taught to seek the Idea, to 
look for it beyond given sensations. And Plato argues that this cannot
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happen if sensation seems certain, if we believe ourselves to possei 
some object through it. The only chance for us to seek the transcendent 
never changing idea, is to experience perception as self-contradictoi| 
And this happens, for Plato, precisely with and because of mathematic 
He claims that we perceive through our senses the big at the same tii| 
as the small, and the one at the same time as the infinite multiplicity^ 
this last case, and if I am right in following the hints of ancient philosi 
phy scholars, what Plato has in mind is that once we have settled soil 
unit on the straight line, we can still re-define this unit as an arbitrarili 
small part of the former unit, making the former one become an arbitrai, 
ily large, or big, multiple. In other words, we experience that any sensi
tive assignment of the one as a reference unit may be changed. And si«J 
an experience teaches us that the ‘real’ one lies only beyond any sud 
assignment, within the ideal realm. We can easily understand how ft 
example of the big and the small has something in common with thefts 
example: what is said to be big can truly be said to be small if we com 
pare it to something much bigger. Every judgment of the big and ft 
small, then, depends on the choice of some sensitive standard of ft 
‘medium size’. Notice that the example can be further enriched thanks! 
the works of twentieth-century non-standard analysis (Cf., for at 
overview, Salanskis 1999): the puzzle of the big and the small remain! 
the same throughout the ideal framework of mathematics, and only coir 
temporary non-standard theories have approached a solution for thefti 
time. But let us leave this point aside and return to the first, more typiei 
example, which proves, for Plato, that perception is contradictory wh| 
mathematics is involved. But there seems to be a gap in the proof! 
gives: we could ask why it seems possible to us to swap the sensitif 
incarnation of the one, the unit, for another one. And the answer coii 
only be: because we feel it arbitrarily. And it can only be so because!; 
have some kind of pre-understanding of the one as an ideal entity beyonc 
any sensitive incarnation. In a way, the whole argument seems circular 
we are led to the idea beyond sensation only because our pm 
understanding of what the idea is in itself leads us to experience! 
contradiction in the realm of perception.

But I believe that we must agree on the argument exactly alom 
these lines. What Plato explains is that if we are already mathematicians 
even only unaccomplished ones, we are, so to say, compelled by our rela
tion to the mathematical idea, to see the world in a contradictory wa) 
even if this relation is not mastered explicitly. And I would add that hen 
lies precisely for him the origin of philosophical questioning. To questior
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in a philosophical way every kind of data is something that we do if 
we are inspired by ideality, and ideality is originally revealed to us by 
mathematics, or better: it is originally experienced as something towards 
which mathematics sends us, as something which becomes required for 
tile mathematically-minded individual.

And if we read Plato, we understand that his philosophical 
approach is always the same: we ask for a definition of virtue that would 
not be attached to any particular virtue, that would not be formulated in 
terms of the virtue of the doctor, the shoemaker, the painter or the war
rior. And we raise such a question because we are following the model of 
the general definitions of mathematics, such as Theodore’s classification 
of irrational numbers (1987a, 146-8).

So Plato’s teaching is that mathematics lies at the core of philo
sophical questioning, that it remains its basic resource. To do philosophy 
is to try to shed, in the realm of ever-changing beings, some universal 
light, of the kind that we enjoy inside the mathematical realm. And this 
attempt always originates in some question addressed to the world, this 
question being itself connected with some aporia brought about by the 
mathematical perspective.

We can state, at this stage, that philosophy is originally guilty of the 
accusation recently formulated by Sokal and Bricmont (2003). By its 
very essence, it does not pay respect to mathematical truth by keeping it 
within the frontiers of mathematics, such that it remains unproblematic, 
proved and always illustrated by mathematical objects. Philosophy tries 
to transfer insights, concepts and maybe truths which are only designed 
for the mathematical world into the non-mathematical world. And this is, 
I believe, the reason why we can never reduce philosophy to some pure 
and secure pattern of rationality.

Let us go back now to the rest of my argument. I will now try to 
describe the way in which the old Platonic partnership can be renewed. 
And I will begin by evoking the example of Deleuze, who I will consider 
as a representative of the attempt to restore this partnership in a meta
physical way.

Mathematics through metaphysics

Metaphysics should neither be understood here in the Nietzschean sense 
nor in the Heideggerian one, but simply in the Kantian sense, that is, what 
is called ‘dogmatic metaphysics’ in the first Critique (1998), and which 
isexemplified for Kant by Leibniz and Wolff. ‘Dogmatic metaphysics’ is
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defined as the attempt to draw some substantial conclusions at the lei 
of absolutely general concepts, which pertain only to being as such,wn 
no other tool than logic. Following Kant, the true statements that wear, 
in a position to form at this absolutely general level are only analyti 
which then convey no information. There is indeed a valid ‘metaphysic 
of nature’ if we now understand metaphysics as meaning a pm 
synthetic knowledge about every natural being that we know as tr& 
before having to encounter any such being: but this knowledge explicate 
the determinations that may be bestowed on natural beings by virtuei 
their coming to our mind through such and such 'forms of presentation 
(space and time) and their having to be judged, in order to count as gen 
uine objects, with such and such pure concepts (the twelve catégoriel 
Metaphysics, when it is not explication of conditions that we are impoi 
ing on beings of some specific area, that is when it claims to be the log 
cal deduction of significant properties of beings as such, is condemned! 
be empty, or self-contradictory. The relevance of a priori knowledp 
depends on the reference to transcendental structures which anticipa! 
such knowledge by the very fact that they explicate our conditions! 
‘meeting’ and ‘judging’ beings of such and such a kind. This is one of! 
ways ‘finitude’ in the Kantian sense may be asserted: there is no logic! 
clue which would open for us the realm of being ‘in itself’, the ‘noum 
nal’ truth lies by definition beyond our discursive logical power ; wed 
not know in the same manner as God, who understands beings by! 
very gesture through which he created them, but we are knowing beinf 
insofar as they are given to us and able to be judged by us in such m 
such a setting.

Plato, in the Timaeus (1977), was at least considering the possibl 
ity of a mathematical description of everything exactly as it was genet 
ated from the ‘chora’ Such a knowledge would be, if I understand hi 
well, a metaphysical knowledge of the ‘noumenal’ genesis of the worl 
not of the beings in the way they appear and are constituted by us, but« 
the beings as they are, truly individuated in the general process of Be! 
and Becoming.

In Difference and Repetition (1994), Deleuze gives us, in É 
chapter ‘Ideas and the Synthesis of Difference’, a general descriptionî 
individuation. He first starts with the ‘problematic idea’, as he describ 
it. The idea, for him, is characterised as including a problem, the authec 
ticity of the idea is nothing but the unfolding of a problem. That! 
why the idea has an internal temporality. This temporality originates] 
the question, which is compared to the throwing of a dice, but with a
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imperative character. The question as imperative throwing of a dice frees 
a plural game of singularities, which generates a proper space of the 
problem, an internal topology of the virtual, through a process which 
Deleuze called differentiation. But this process cannot avoid simultane
ously being the process of the concrete formation of real individuals, and 
tiie design of actual areas in the world, occupied by these individuals: 
such an effective and actual process Deleuze calls différenciation. So the 
real integrated process of individuation is termed ‘different/ciation’

This description, or, better said, this matrix-story, is supposed to 
hold for the individuation of every being in the universe: it is, so to say, 
‘cosmological’. In particular, Deleuze uses this framework in the natural 
realm (of Naturwissenschaften) and in the cultural realm (of Geisteswis
senschaften) at the same time. He tries to understand in terms of differ
ent/ciation the development of an egg, as well as the development from 
the social Idea (whose anger is the revolution) of some social and politi
cal configuration.

I claim that the discourse of different/ciation is a metaphysical 
one in the Kantian sense, and that it is built on some precise mathemati
cal references. In the way in which I have explicated it, it is possible to 
miss that point, because I insisted on the Platonic analogy with the 
Timaeus on the one hand, and the biological metaphor on the other. When 
Deleuze speaks of différenciation, we cannot help thinking of the dis
tinction between parts of a material whole, parts which assume some 
function with respect to some individual enclosing them, we cannot help 
imagining the arising of the individual as the birth of this particular indi
vidual, and this individual itself as a living one. We are led to such a con
ception by the very reference to the guiding role of the idea and the 
unfolding of its problem: this seems to introduce finality, which we 
attribute more willingly to living beings.

But Deleuze does not want to be understood that way; he wants his 
dramatic picture of individuation to hold beyond the distinction between 
animate and inanimate nature. He wants this picture to be absolutely uni
versal, metaphysically universal: and this is why, I think, he explains dif
ferent/ciation in mathematical terms.

We have seen that individuation is described by him as a drama, 
whose scenes would be: question, problem, singularities, unfolding and 
reciprocal determination, parts and individuals. The first act of this drama 
has to be named ‘idea’. But we must insist on two essential points. First, 
Deleuze calls for the Kantian motto of the idea. He begins his exposition 
of the drama of individuation by reminding us that ideas, in Kant, are
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problematic, in such a way that the content of our first act receives sot 
Kantian colour. And secondly, he gives us some mathematical h| 
about how we should understand different/ciation: the word differed 
tion, itself, is nothing but the mathematical one, which used to refer; 
the pre-Cantorian mathematical framing, to the operation of wrif| 
the infinitesimal variation of some variable, expressed with respect 
some others (let us say that if y=x2+y3, we differentiate by wri| 
dy=2xdx+3y2dy). Very likely, Deleuze is thinking here of what H| 
tells us in the Science of Logic (1969) concerning the relation which f| 
itself from the effectiveness of the relata: the differential ratio dy/ài 
for Hegel, an important example of something which is determined! 
relation without its relata having to be assigned any actual value. Delei 
sees differentiation mathematically as the process of the self-determ| 
tion of the problem at its specific level, a determination which ph§ 
some constraints on the actual values, places shapes and properties! 
what counts as a solution to the problem. Following very clearly (| 
explicitly) the inspiration of Lautman in his Essai sur Γunité des nui 
manques (1938), he insists upon two mathematical models for the uni 
standing of such a process: the model of differential calculus g 
dynamical systems, and the model of the Galois theory of polynong 
equations.

The first model is based on the idea that singularities of ve(j 
fields -  as nodes, focuses and centres -  strongly determine the lof 
topological behaviour of trajectories. These singularities may 
described purely in terms of the given ‘problem’ -  that is to say the veer 
field -  even if they also organise the actual shapes and places of the sol 
tions (the trajectories): the internal analysis of the problem (different 
tion) leads again to the actual assignment of solutions in the space 
trajectories. So, if Deleuze was right in understanding differential cafc 
lus essentially as a calculus of problems, it seems that the theory! 
dynamical systems, interpreted as the qualitative and topological to  
of problems connected in the most natural way with differential calci 
(differential equations), is able to support and to illustrate his fundan 
tal intuition of different/ciation.

The second model concerns the process of specification and dee 
mination of the roots of some polynomial over a field k. Generally spe& 
ing, the roots that one seeks cannot be found in the field k itself,! 
appear in some extension k~>kf of k. If we choose for k' some algefet 
closure K of k, then we are sure to obtain all the possible roots.! 
Galois’ idea was to focus not on the roots themselves in order to comf1
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fern, but rather on the substitutions acting upon the set of roots. This 
leads to the definition of the Galois group of any extension: if k-*k' is 
such an extension, Gal(k7k) is the group of field automorphisms of k' 
which keep all elements of k fixed. The main theorem of the now classi
cal Galois theory asserts the exact correspondence between subgroups of 
the Galois group of a finite Galois extension and intermediate fields of 
fte extension. We can then interpret, as Deleuze suggests, that there is a 
process of enrichment of the field, from k to k \  yielding progressively 
the required roots of the polynomial: each step corresponds to a subgroup 
of the Galois group Gal(kVk), and to a certain range of roots and to 
substitutions defined on them. If we understand the Galois group, its 
Subgroups and quotient groups as expressing the ‘problem’ we can see 
the lattice structure of groups and subgroups as the ‘differentiation’ con
nected with the development and ‘différenciation’ of roots: the bigger the 
subgroup, the smaller the subfield of its fixed points, the fewer roots we 
have.

Such examples are suggestive, but I think their role goes a little 
farther. In the quoted chapter, Deleuze uses these examples in order to 
explain individuation: the general drama of the problematic idea. He 
defends a strongly dynamical picture of individuation, and a mathemati
cal setting and discourse is needed in order to describe and explain such 
a process in an absolutely general way. Mathematical objects have been 
used in physics -  that is to say, by the dominant philosophy of nature -  
to order to make sense of the basic notions of change and movement. 
When Deleuze tries to advocate a sophisticated and universal conception 
of individuation, it is not surprising that he comes to mathematical lan
gage. This is first shown by the very choice of the word differentiation, 
Which belongs to mathematics, and whose Deleuzian use is totally moti
vated by this belonging. But I think that the reference to a Kantian frame
work indirectly plays the same role: if ideas are to be considered as the 
resource of individuation for any being, this will be at the level of what 
Kant called the ‘metaphysics of nature’ And for Kant, as we know, the 
only relevant and true metaphysics is relative to space and time as forms 
©four intuition, and as such requires a mathematical setting.

But here comes the difference: Deleuzian metaphysics is supposed 
b explain how any individual arises through different/ciation without 
p&y regard to the forms of sensibility. Deleuze’s insight reaches the heart 
8f becoming without any reference to phenomena as our way of receiv
ing data. The individuation of social, artistic or cultural beings whose 
presentation owes nothing to space or time, or is only connected in some
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very indirect way to them, will still have to be thought in terms of dift 
ent/ciation. For these reasons, the mathematics of different/ciation is,t 
the Deleuzian construction, a direct and essential key to the become 
process, shedding some decisive light on the relation between the a<%; 
and the virtual. Mathematics plays the central part in the new philosopi 
of nature, which is at the same time and in the same way philosophy.; 
culture, but it does so in the qualitative, absolute and immediate man* 
which characterises for Kant dogmatic metaphysics: metaphysics wht 
claims to grasp being and becoming as such with purely conceptual tod 
The only difference, but it is an important one, is that the conceptual 
is mathematical, and not logical.

Since mathematics is not logic, the status of this new Deleuzi 
metaphysics remains controversial and can be read in at least two way.

Either we insist on the fact that the mathematical theory or theory 
about individuation, as theories of different/ciation, involving t| 
spaces, on the one hand, the virtual -  of singularities and of the probfe 
-  and the other, the actual -  of the parts and of the individuals -  count? 
Deleuze as metaphysical theories telling the truth about individuations 
mathematical speculation without any reference to conditions or forms; 
presentation of underlying phenomena. This is exactly the way in whk: 
we just explicated Deleuze’s conception.

Or, we argue that the reference to dynamical systems is at te 
based, in an implicit way, on the theoretical role of space and time incci 
temporary physics. It is only because the physics of the XIXth andXX; 
centuries ultimately picture change in matter in terms of dynamical sy; 
terns that Deleuze can imagine and sustain his general conception of m 
viduation. Following this alternative view, Deleuze’s conception in. 
longer purely metaphysical, it refers to our best transcendentally-bai 
knowledge and to its mathematical apparatus. The encompassing m  
physical value arises only when Deleuze generalises his view to culte 
political or social domains for which corresponding conditions on I 
presentation of data do not hold. But we should add that in doings 
Deleuze is playing the same metaphysical game as René Thom (1971. 
when he comes to assert the universal value of ‘Catastrophe Theory’!  
to a certain point, as Jean Petitot (1985) saw very well, the two philor 
phies or theories express and do the same thing.
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Non-analytic and non-metaphysical partnership for 
philosophy and mathematics

But I would like to come now to a more personal question: is it possible 
to reinforce the connection, affinity, and even partnership between 
mathematics and philosophy without simply bestowing on mathematics 
the metaphysical power that contemporary analytic philosophy is only 
ready to admit to logic? More precisely, is it possible to do it in such a 
way that we would remain faithful to an extent to Kant’s teaching about 
metaphysics?

I will now try to define such an alternative path, aiming for the 
rejection of the analytic and post-Heideggerian dominance of logic 
and/or language, as well as of metaphysics in the Kantian sense.

I think we can bring new life to the ancient affinity between 
mathematics and philosophy in three ways. Two of these are old ones, 
even if we need some effort in order to redirect them towards this 
affinity. The third seems to me to be new, connected with my personal 
programme.

The first two are simply those of the philosophy of mathematics 
and the transcendental philosophy of science.

Philosophy of mathematics today

Contemporary analytic philosophy sees the basic problem of the 
philosophy of mathematics as settled by the so-called Benaceraff’s 
dilemma. In short, the dilemma asks whether we can conceive of mathe
matical tmths as implicitly governed by the same semantic framework 
that analytic philosophy considers to be the only possible one to assess the 
objective truth of any knowledge. Put in such a way, the major aim of the 
philosophy of mathematics becomes the solving of a logical problem, or 
at least of a problem that is necessarily expressed in logical terms: even if 
some particular answer begins with non-technical terms, in the end it will 
have to be formulated in such a way as to be expressed in some (modified) 
Tarskian scheme. In opposition to such a conception, I see the philosophy 
of mathematics more as an attempt to grasp and describe the specificity of 
mathematics among other human enterprises. The philosophy of mathe
matics, as I hope it should be worked, would accept as its main concern 
the identity of mathematics. I contend that this identity can be approached 
through five typical questions, which I regard as the basic questions of the 
philosophy of mathematics (Cf. Salanskis 2002,81-106):

55



MATHEMATICS,  METAPHYSICS,  PHILOSOPHY

1) What is the relationship between mathematics and philosophy, & 
what way can we say that philosophy shares something with mathel 
matics and remains indebted to it, and in what way does philosophjl 
depart from mathematics and go beyond it?

2) What is the status of the mathematical object, and, in particular,«: 
what sense is it an ideal one, considering the old problem of the onto, 
logical validity of the idea? (this question is asked because we havr; 
every reason to suspect that the identity of mathematics is stronglr 
dependent on the status of the mathematical object, on the way if 
which it refers to what are its recognised objects, that mathematics 
is, up to a certain point, this discourse that manages to deal with as 
ideal object.)

3) How can we define and understand the frontier between logic and 
mathematics? (this question is asked in the context of the big change 
undergone at the beginning of the XXth century, following whici 
mathematics and logic are now explicated in the same formal ami 
symbolic way, and give birth to the same kind of theoretical devel
opments: in such a situation, if we cannot distinguish mathematic 
from logic, we do not know what mathematics is).

4) How can we understand the historicity of mathematics, the fact thaï 
new fields, new objects, new structures, new questions and oev 
truths are and have been all the time introduced, without ever having 
disposed of any mathematical content recognised as such? It seems 
that in this very peculiar way of changing and not changing through 
time, something essential about the identity of mathematics appears.

5) How can we understand the geography of mathematics: that! 
divides itself in a manifold of branches, whose names and total 
number have undergone various changes through history, from the 
ancient division between arithmetic and geometry to the contempt 
rary one involving dynamical systems, arithmetical geometry« 
finite group theory? These divisions contribute to defining the epis
temological image of mathematics at every particular epistemologi
cal state, and therefore are essential for its identity.

Each of these five questions requires from the philosopher both at 
inside and an outside position with respect to mathematics. They havetr 
inhabit mathematics from the inside in order to evaluate its identity fror 
any one of the five points of view: they should know what is important 
and what is not, what contributes normatively to the identity of mathe
matics and what does not. But they also have to speak and understand
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from the outside in order to settle this typically epistemological problem 
Which is the problem of the identity of a discipline. Criteria for distinc
tions, concepts for understanding the identity cannot but come from 
philosophy, which remains the only discipline in charge of a common 
viewpoint including at least mathematics, logic and humanities, or able 
to formulate in adequately general terms the questions about time and 
space that are perhaps in the background of the last two questions, refer
ring to the historicity and geographicity of mathematics.

So, the philosophy of mathematics, understood in this way, makes 
the old connection between philosophy and mathematics, not only by 
giving philosophy a mathematical theme, but also insofar as it forces the 
philosopher to assume the typically inside/outside attitude of epistemol
ogy, that J.-T. Desanti describes in his well-known paper ‘Qu’est-ce que 
Tépistémologie? ’(1975,110-132).

Transcendental philosophy of science today

This is the attitude to be found also in the transcendental philosophy of 
science. I define it as the project of understanding the different sciences 
in terms of the way they imagine and anticipatively picture a world, 
within which they plan to understand evolutions from a necessary per
spective. The aim of the transcendental philosophy of science is not to 
account for the notion of truth in science by equating it with the com- 
monsense truth supposed to be governed by external reality, nor is it 
primarily concerned with the notion of guaranteeing scientific truth, for
mulating its conditions of possibility or evaluating or criticising its value. 
It is rather concerned with what science leads us to envision, what kind 
of world it brings through its theoretical apparatus. In the case of physics, 
such a world is determined by a geometrical setting, that of a differential 
manifold in the case of general relativity and that of a Hilbert space in the 
case of elementary quantum theory (but the world to which we are intro
duced, in that second case, is the world of virtuality). The identity of 
every science, and even more the identity of every theory lies in such a 
mathematical setting, simply because mathematics is the language of the 
imagination of worlds. So if we want to understand the specific gesture 
of some important theory within a certain science, if we want to share the 
perspective on reality that this theory makes possible, then we have to 
analyse its mathematical setting. For this is how we can understand the 
basic setting in which this theory sees evolution and change, how it 
defines the thing undergoing them (point mass or state vector, for
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example), and in terms of what kind of functional mathematical objet 
the 'trajectories’ of the change are expressed.

The programme of such a philosophy of science is simply 
Kantian programme. This programme focuses on the 'aesthetic’ momet 
or strata1, where some intuitive framework accounting for phenomenal 
the area under consideration is assumed, and some mathematical into* 
pretation of this framework decided (in the classical case of Newtoni* 
mechanics, the intuitive framework is space and time as a priori intute, 
forms, in the case of the theory of general relativity, the intuitive frans 
work is the same, but it receives another mathematical interpretation,! 
give two easy and clear examples). The philosophy of science does not 
jump immediately to the categories and possible statements whose truf 
value would have to be evaluated. Kantian epistemology holds thattfc 
locus of the biggest creativity and of the biggest events in contemporain 
science is this aesthetic locus, which the logical empiricist epistemologi 
of the Vienna circle wanted to eliminate. But what good can come fron 
such an epistemology which is neither aiming at understanding the 
specificity of theories of relativity or of elementary quantum theory, u 
interested in quantum electrodynamics or contemporary attempts te 
unify field theory? How could it possibly be that epistemology abat 
doned altogether the aesthetic perspective precisely in a century wherf 
everything new in science happened on that very level?

Kantian epistemology -  it has to be conceded -  is guilty of not bete 
easily applied to sciences that do not yet mathematically interpret theii 
intuitive framework. So, it is not adapted to account for history or sociol
ogy, at least at first glance (perhaps, in such cases, we should complete 
Kantian epistemology with some Husserlian supplement). But it maybe 
successfully used in the case of the epistemology of cognitive science:]! 
is not the case, contrary to what Quine’s famous paper (1969) seems to; 
announce, that cognitive science took the place of classical epistemology. 
To support this point of view, it should be emphasised that the classical 
Kantian epistemology illuminates very well the conflict between the com 
putationalist, the morpho-dynamicist and the constructivist paradigms, 
when the choice of some image of thinking is at stake: it is either intet 
preted within the framework of representation processing, associated with 
logical-computational finite and discrete mathematics, or within the con
current framework of stabilisation within a continuous process of adapta
tion, associated with the mathematics of dynamical systems.

Therefore, if the classical Kantian stance is put into practice in the 
philosophy of science, it can preserve the strong historical relationshif
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between philosophy and science, based on a fine understanding of 
mathematics as the art of imagining worlds: philosophy has to compre
hend this essential capacity of mathematics and to make it its own, up to 
a certain point at least, in order to clarify the role played by mathematics 
in the context of each particular scientific achievement.

Mathematics in the context of the ‘etho-analysis’ programme

I now come to the third possibility: it is opened by my etho-analysis 
programme, which I explicated for the first time at the end of Sens et 
philosophie du sens (2001). The idea is that something should be pre
served of what Kant rejected under the name of dogmatic metaphysics, 
something that we should try to regain after the ‘Copernician revolution’ 
Classical metaphysics should not be viewed only as the purely a priori 
theory of what is, on the sole hypothesis that it is. It was not only the all- 
encompassing science of which every science was a limitation. Before 
the Kantian revolution, metaphysics was also the language capable of 
saying in a philosophical way how we were to understand, live, practice 
and receive the various kinds of human affairs. The over-arching con
cepts of metaphysics, the One, the Other, the Same, Substance, and so on, 
were used in order to formulate such speculative descriptions of various 
aspects of what we see as our reality. In other words, the idea would be 
now to keep on writing philosophy using the logical generality of the 
concepts of metaphysics, but in a non-dogmatic way.

The etho-analysis programme, as I understand it and try to follow 
it,has to contribute to this renewal of metaphysics. At first sight, this may 
appear strange, because etho-analysis is defined as the result of shifting 
the major interest of philosophy from being to sense: etho-analysis is the 
typical investigation of what I call ‘philosophy of sense’ To my mind, 
philosophy should depart from science as knowledge of the world as it 
had to depart from religion, which means that it should not keep on think
ing that it has the ability and the methodological right to say the truth. 
The best possible truth is the scientific one, and science has no direct 
need for philosophy in its truth-telling task. But philosophy has another 
responsibility, which is to clarify the sense underlying any kind of human 
affair. This was already the Kantian perspective, insofar as Kant, in his 
three Critiques (1998, 1997, 1987), did not try to decide the truth about 
nature, or the good with respect to ethics, or the beautiful with respect 
to aesthetics, but rather to evaluate under what normative conditions 
Ée truth, the good and the beautiful could make sense for us. I try to
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radicalise and generalise this philosophical point of view by introduci^ 
a new understanding of the notion of sense: roughly speaking, sensebag 
to be considered not as a way of relating to objectivity, as it happens^: 
Frege as well as in Husserl, but it has to be connected with what I calltk̂  
‘plot of sense’ Some message reaches me, I am the addressee of %· 
message, and this message asks me to understand it: to throw it bae£ 
faithfully with respect to the asking that it bears. I underline thref 
moments of this plot: envelopment of sense (the sense appears ^ 
enveloped in itself), relay or switch of sense (sense basically sends ust&. 
some elsewhere) and directionality of sense (sense gives sense to son* 
towards, to some relevant and privileged direction). And I try to describe 
in a general way how sense gains complexity, and what count as possible: 
coordinates for sense (2001, 136-84). I do not wish to enter into m  
precise explanation of these ideas and theses, I will only try to give an 
outline of this new understanding of sense, based on the notion of 
address: what makes sense addresses me, this is what counts in order for: 
it to qualify as sense. Or, to put it in diagrammatical terms: the classical- 
conception of sense, which I call the intentional one, and which would be 
the conception of phenomenology as well as of analytic philosophy, 
refers the notion of sense to the arrow going from the subject or the 
linguistic expression to the object or the denoted; my conception refeß; 
sense to the arrow of interpellation, going from the addressor to the 
addressee.

Let us come back to the etho-analysis programme. It is devoted to 
the understanding of sense areas, or sense regions: the Husserlian idea of 
regions is kept, and the human world is seen as encompassing many 
sense regions, inside which human beings are bounded by some sharing., 
insofar as they address this sense to each other. To be more precise, the 
local sense, characteristic of the region, is received, but it is received as 
asking to be faithfully sent back, and this basic experience gives rise to 
an intersubjective and historical network. We may call such a networks 
tradition, and I will contend that for every region, we have a tradition,the 
tradition of the local sense, through which the considered sense goes on 
being addressed. The task of etho-analysis may be defined as the task of 
explicating how this sense is typically sent back, how we can faithfully:: 
add to the tradition of the considered sense. But this means illuminating 
the specificity of the considered sense.

In a forthcoming book, I have tried to follow this programme with 
politics, love and the ‘subject’ (see also Salanskis 2005). I claim that 
politics, for example, is not so much a part of reality, than a specific
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political sense, governing an area of the human world (the area of 
everything that pertains to politics, be it linguistic expression, practical 
behaviour or lived experience). I tried to describe how and when we 
account for something, some circumstance, some event, some phrase, 
some feeling, some acting as political, and I contend that we always do 
so when we receive the political sense as addressed. I concentrate there
fore on making explicit what the political asks of us: it is only when we 
feel that what happens answers the asking of political sense that we 
declare the event or circumstance political. I also tried to carry out such 
a job for love, or for the subject: like in the case of politics, I do not see 
love, for example, as the logical name for every loving object, labelling 
a elass of specific items of the world, love counts rather for me as a sense, 
love has to be understood in reference to the tradition of love.

In doing etho-analysis, we are not far from classical metaphysics. 
When classical metaphysicians asked 4What is love?’, for example, it is 
not clear that they were really aiming at defining some part of reality. 
More probably, they wanted to achieve some conceptual clarification of 
die specificity of love, they wanted to capture in very general terms what 
I would call the 'salt’ of love. It can be argued, at least, that the classical 
metaphysical essentialist questions of the form ‘What is. .?’ did not 
really ask for a conceptual key to a class of beings, but for a conceptual 
basis -  called essence -  characteristic of the local sense.

But, as I said before, the classical metaphysicians were doing it by 
means of a small set of metaphysical concepts designed for a discourse 
about the general being (the One, the Other, Substance, and so on). So 
the language of metaphysics, by itself, seems to imply that we refer to a 
particular class of beings. I think that, when we are performing etho- 
analytical investigation, we can avoid this unwanted effect by using other 
concepts, that were discussed by traditional metaphysics, but belong 
more to mathematics, such as continuum, infinity, space, the discrete, 
construction, and so on.

Why and how would such concepts help etho-analytical investiga
tion? First of all, because each one, in its own way, introduces the point 
of view of the infinite. For etho-analysis, finiteness is not the right atmos
phere for description of human affairs. For sure, finiteness has a privilege 
with respect to being, because nothing is ever at hand, available in our 
experience, but finite data. But etho-analysis describes local senses, 
which refer to the ‘other than being’ of asking and addressing, rather than 
to being. We try to understand what is asked, what is ordered, what the 
programme is or what the stakes are. And here the infinite becomes
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relevant, as Emmanuel Levinas demonstrates when describing 
labyrinth of moral responsibility for the other man: I am not only 
sible for him, but also for the consequences on him of my first̂  
responsibility as it is performed by me, and so on, (and this lab̂  
also grows along intersecting lines, because, for example, I -  let us? 
me A -  am responsible for the way my responsibility for the other 
let us call him B -  affects his responsibility for some third man 
call him C). In that case the infinite progression of responsibility % 
other is shown with the help of what we would call in contempt 
terms the concept of construction (building items on the basis of gj; 
primitive items and given building rules).

I think that, more generally, we may use concepts like continu 
infinity, space, the discrete, and construction, to quote again the®; 
familiar examples, in order to explain how regional senses shape| 
world, our behaviour, the linguistic topics we address: only ti| 
concepts can describe not what the case is, but the element in ^  
everything has to be thought, following the governing sense.

I will only try to give another example, by referring to what Iw® 
about action, in Modèles et pensées de l ’action (2000). In this book,? 
aim is to analyse action in a transcendental way: I try to bring to the fir 
the basic meaning of the features in the absence of which we would! 
unable to call something an action. The conceptual a priori image; 
action offered in the book is supposed to be the anticipated characters 
tion of something which will be counted as reality, as in the Kantian c| 
for transcendental analysis: put in different words, the sense of actii 
which I claim to clarify is an objective, intentional sense, and not! 
more radical figure of a sense ‘as addressed5, that interests etho-analys 
My more specific result is that we know three models of action, all* 
them satisfying the ‘general definition5 of action previously introduce: 
These models are strongly different from one another with respect to I 
continuum and the discrete. The first, the dynamical model, defines I 
result of an action as a stabilisation of some trajectory inside some attrac 
tor of the dynamic, in such a way that it depends heavily on the contin
uum (action is a priori seen as the reaching of some topological limittr 
some continuous process). The two other models, that of speech acts ai 
of mathematical construction are rather a priori locating action in soli 
discrete world: the world of linguistic statements and behind them M 
oriented graphs of the minimal societies they involve (for example: tk 
person uttering the promise and the person to whom the promise ® 
promised), or the world of manipulated distinctive symbols. Th®
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jpanscendental distinction between what I cali models of action should be 
|ben in a ‘scientific5 way as the distinction between senses of action 
fhich lead to a different theoretical knowledge of action. But, very 
|kely, we have to recognise a sense region of action, to consider it in an 
iho-analytical way. Action also has the status of a sense giving rise to a 
tradition, of some deontological item. We receive the silent prescription 
fo perform in such a way that we feel entitled to call action what results 
from its connection with the performing. From this point of view, the 
hght question is no longer ‘what is action?5 but ‘what ought action to 
be?’, or more specifically ‘how, under what kind of conditions, do we 
insert new actions in the tradition of action in a faithful way?5, and the 
answer is to be found in the implicit shared decisions of our culture. From 
such a perspective, the distinction between continuous and discrete 
action seems very important. It could be that the continuous setting is 
originally connected with the perspective of objectivation of action, that 
it asks for integrating action in the dynamical realm of physics as 
construed by science; in such a way that we would have to dismiss all 
information coming from that model in our etho-analysis of action. And 
it could be that, for the same kind of reasons, but considered from the 
positive side, discreteness is part of what is planned in the programme of 
action, that discreteness is part of the task of action: to achieve an action 
is intended to mean, for us, breaking the continuum of being in order to 
exhibit discrete marks, and action therefore has to occur as a discrete 
transition with respect to these marks. I have not undertaken the neces
sary reflection and work which would allow me to make strong assertions 
of this kind, but I hope the example will be clear enough to illustrate how 
concepts of the kind I mentioned may interfere with etho-analysis, how 
they give the relevant language to express in what way local senses 
‘infinitise5 the concerned context of human affairs. Action as a pro
gramme reveals, in any case, some infinite horizon of what can become 
possible, or of the available choices for action, but if we want to say 
something more specific about this horizon, our concepts are necessary.

It is not to say that etho-analysis will be exclusively focused on 
these concepts, or that it would be above all concerned with such mathe
matical framing of horizons. It could be that a great part, or even the 
major part of etho-analysis does not deal with such qualification prob
lems, or that in many cases all we have to do is to describe the horizon as 
infinite. But here lies at least the possibility of another kind of continua
tion of the old partnership between mathematics and philosophy, and I 
mean nothing more than this.
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Conclusion

So far, we have gone through the main issue of this essay, but somebrit 
remarks may be added in conclusion. The question of the connect  ̂
between mathematics and philosophy is as a matter of fact a burnir, 
political question. Many contemporary philosophical trends are ready| 
‘fight’ for mathematics, in order to prove and establish that their use of 
is at the same time the most authentic and the most intimate. Even for on 
entations which refuse the ancient partnership, like the Heidegger  ̂
one, such a rejection or denegation becomes a very important part of the: 
message. Altogether, these attitudes, this war, show how deeply philosc 
phy was determined by its Platonic origin. We could formulate it b 
saying that mathematics is the Jerusalem of the competing philosophic 
faiths.

Note

1 In the sense of ‘transcendental aesthetics’
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5
Continental genealogies.
Mathematical confrontations in 
Albert Lautman and Gaston Bachelard

Charles Alunni

À Jacques Derrida, mon ami,
À toi dont l ’influence ne se laissera jamais mesurer ni la perte réparer.
In memoriam.
Ulm, le 10 octobre 2004.

I) Albert Lautman and the interrupted concern for movement.
a) From the Heideggerian seam
b) . to the involutive node of mathematical physics.

II) Gaston Bachelard and the 4spectre ’ of the ETH.
a) Hermann Weyl and the 4phase transition’ towards a physical 

geometry.
b) Wolfgang Pauli or the 4Schola quantorum. ’

a) Pauli in 4principle. ’
ß) Pauli demonstrated by the 4postulate of non-analysis.' 
y) Pauli and his 4metaphysical particle. ’ I)

I) A lbert Lautm an an d the interrupted concern fo r  m ovem ent

In October 1984, Bruno Huisman stated with regards to Jean Cavaillès, 
‘Let us be honest, or at least realistic: today, one can be a professor of 
philosophy without ever having read a single line of Cavaillès. Often 
invoked, sometimes quoted, the oeuvre of Cavaillès is little attended for 
itself’ (Huisman 1984).

As for Albert Lautman, it would seem that the situation is 
even more extreme. In 1994, the publisher Hermann, under the impetus 
of Bruno Huisman and Georges Canguilhem, collected almost the total
ity of the Jean Cavaillès papers in one volume (Oeuvres complètes de
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philosophie des sciences (Cavaillès 1994)). But, the Essai sur Vunité 
mathématiques et divers écrits (Lautman 1977), published by the ί/η%> 
générale d ’Éditions in 1977, had all but disappeared by the early 198|I 
and yet was never republished! This will remain one of the great indig., 
nities of French publishing,1 for as Jean Petitot rightly affirms: ‘Regarded 
as too speculative, in spite of his exceptional mathematical scholars!  ̂
and his close connection with Hilbertian axiomatic structuralism,^ 
mathematical philosophy has, until now, been devoid of any partie^ 
attention We would like to state clearly from the start, Alber, 
Lautman represents, in our view, without exaggeration, one of the mo&; 
inspired philosophers of this century’ (Petitot 1987, 79-80).

One might make sense, and even and especially ‘philosophical’ 
and ‘epochal’ sense, of such a bleak situation, but I will not do so here, 
Let us simply recognise that there is a legitimate reputation of difficult), 
and even of great austerity, attached to the Cavaillès-Lautman binomial 
-  and it is precisely this that is of value and guarantees their importance 
as much for the present as for the future. The constitution of a ‘neu 
mathematical philosophy’ presupposes a laborious asceticism. Tile 
Bachelardian judgement brought to bear on Cavaillès applies (and 
includes) equally to (and from) Lautman: ‘Thus, one can find, in the 
oeuvre of our friend, no preamble of slow introduction, no outline of 
facile generality, no elementary psychological preparation. Reading 
Cavaillès is work’ (Bachelard 1950, 223). Their logical (and common! 
concern was always to seize the constructive gestures of effective 
mathematics in their autonomy. And yet a new philosophical doctrine 
can only be elaborated from a fresh perspective once one is ‘installed' 
in the field’: ‘mathematical knowledge is central to any understanding 
of what knowledge is’ (Cavaillès 1946, 34). For Cavaillès, ‘installation 
in the field refers to doing the spade work on abstract set theory and, 
the discovery of a ‘new world’ (the formula is Van der Waerden’s), the 
world of the ‘mathematics of the algebraists’ who were centred in, 
Göttingen. As for Lautman, the humus of his epistemological research. 
would consist not only of the oeuvre of his friend Jacques Herbrand, 
but also that of Hilbert (his theory of the body of classes and spaces of 
the same name), the Modern Algebra of Van der Waerden, the 
algebraic topology developed by Alexandroff, Hopf and Pontrjagin, the 
theory of quantum groups of Hermann Weyl, the work of Élie Cartan 
(on symmetrical spaces and external algebra), and finally Nicolas 
Bourbaki’s operation of refoundation (through Claude Chevalley and 
Henri Cartan).
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There is however one exception to the oppressive silence of con
temporaries on Lautman’s philosophy (outside, of course, philosophers 
of science, or philosophical scientists, like J.-T. Desanti, Dominique 
Lambert, Jean Petitot or Gilles Châtelet), namely, Gilles Deleuze2 in his 
Difference and Repetition from 1968.3 The incentives to an attentive 
reading, which emerge from his citations, bear upon the notions of the 
‘dialectical Idea’, of the ‘differential’ and the theory of the ‘problem’ ,4 of 
the double aspect of Ideas-problems (transcendence and immanence) 
through a significant interweaving with the work of George Bouligand 
(epistemology of the ‘problem’ and of ‘difference’ in mathematics), of 
Louis Rougier (on the concepts of ‘intensity’ of ‘dissymmetry’ and 
again of difference), of Heyting (on distance or ‘logical and mathemati
cal difference’ according to Griss), or of Paulette Destouches-Février 
(difference and negation in logic, mathematics and physics). These ref
erences would decisively influence the work of Gilles Châtelet, whose 
philosophical training took place under Deleuze.5

a) From the Heideggerian seam . . .

Nonetheless, there was at least one major occurrence in the context of 
contemporary French philosophy which should have served as an injunc
tion to ‘professional philosophers.’ to take a closer look: Lautman’s ref
erence to Martin Heidegger. We will try to reconstruct this decidedly 
economic allusion from his 1939 paper, Nouvelles recherches sur la 
structure dialectique des mathématiques, which appeared in ‘Essais 
philosophiques’ (the title of the collection came directly from its direc
tor, Cavaillès, [n° 804 of ‘Actualités scientifiques et industrielles’]). It is 
worth noting that, in this publication, Heidegger is surrounded on one 
side by André Weil on the generalisation of Abelian functions and on the 
other by Hecke on the algebraic theory of numbers!

A philosophical analysis of this paper suggests, in our opinion, a 
set of questions which are essential to its elucidation:

1) the internal economy of the ‘Lautmanian corpus’;
2) the relation of concors-discors to the theoretical operation of Cavaillès;
3) which is not without importance for a detailed analysis of Lautman’s 

too famous Platonism, that which induces in its turn a feedback effect 
on the totus of the philosophy of ‘philosophers’

There are three elements which we consider significant enough to 
require a relatively autonomous analytical focus.
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i )  Contrary to Catherine C hevalley , w ho, at the end o f  her artier 
on ‘Albert Lautman et le  souci lo g iq u e’ (1 9 8 7 ), devotes one relativer 
expeditious line to this H eideggerian appeal, it m ight be m ore appropt 
ate to explore the internal requirem ents o f  L autm an’s text w hich necer 
sitated the reference to the Freiburg ph ilosopher’s Vom Wesen dt 
G rundes . For Catherine C hevalley, Ίη  the 1939 text, he seeks . .  in| 
im perfectly identified H e id eg g er , the idea o f  a transcendental relation! 
the domination o f  Ideas over m athem atical theories, w hich w ould givei 
account o f their “em anation” by “a kind o f  procession” We considc 
this the paradigm o f  a universal clich é  I

Reestablishing the context o f  the 1939 tex t’s theoretical meek 
nism , w e must consider what the established elem ents o f  Lautman! 
philosophy o f mathematical unity w ere, at the m om ent w hen t# 
H eideggerian spectre, or one o f  its variations, appeared.

Lautman, fo llow ing  the Hilbertian axiom atic, associates himsef 
from the outset with a structura l conception . This conception:

su b stitu tes  fo r the  m eth o d  o f  g e n e tic  d e fin itio n s  [p e cu lia r  fo r  Lautmanϋ 
the  Ju rass ic  th eo rie s  o f  th e  n in e te en th  cen tu ry ]  th a t o f  ax io m a tic  defb 
tio n s , and  fa r from  w a n tin g  to  re b u ild  th e  w h o le  o f  m a th e m a tic s  from# 
sta rting  p o in t o f  lo g ic  [L au tm an  a tta ck s  th is  t im e  th e  p ro to c o ls  o f  Wiem 
Kreis], in tro d u ces on  th e  co n tra ry , w h ile  p a ss in g  fro m  lo g ic  to  arithmefe 
and  fro m  arith m etic  to  a n a ly s is , new  v a ria b le s  and  n ew  a x io m s w hich eat: 
tim e  b ro ad en  th e  fie ld  o f  c o n se q u en c es , (p . 2 6 ) 6

Lautman then speaks o f  a synthesis o f  the real w hich ‘m ixes at once wii 
intelligence and logical rigour, w ithout ever m erging com pletely wil 
one or the other’ (p. 26). It is the stru ctu ra l and dynam ic conception ,

the  s tru c tu ra l c o n ce p tio n  and  th e  d y n a m ic  c o n c e p tio n  o f  mathematic 
seem  first o f  a ll to  b e  o p p o sed : o n e  in d ee d  ten d s  to  u n d e rs ta n d  a mathe
m atica l theo ry  as a  c o m p le te d  w h o le , independent o f  tim e, th e  o th er on tk 
co n tra ry  does n o t am en d  th e  te m p o ra l s ta g es  fro m  its d ev e lo p m en t; forthe 
first, th eo ries  are  like  en titie s  {êtres) th a t a re  q u a lita tiv e ly  d is tin c t from ok 
ano ther, w h ile  th e  seco n d  sees in  e ach  an infinite p o w er o f  expansion out
side o f  its lim its  and  c o n n ec tio n  w ith  th e  o th e rs , by  w h ic h  th e  unity! 
in te llig en ce  is a ffirm ed , (p . 27)

Scientific philosophy must take theories, not isolated concepts, as its object 
It is as structural (the autonomous and historical m ovem ent o f  theoretical 
development) that mathematics brings forth d ia lectica l ideas  which alio« 
it ‘to tell another more hidden history, m ixed with constructions that are# 
interest to mathematicians and made for the philosopher’ (p. 28).
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2) And thus we arrive at the structural schemas: ‘Partial results, 
connections halted midway, or attempts which resemble gropings are 
Organised under a thematic unity, and through their movement reveal a 
connection which forms between certain abstract ideas, that we refer to 
as dialectical' (ibid). ‘By Ideas, we do not mean models whose mathe
matical entities would be only copies, but in the true Platonic sense of the 
term, the structural schemas according to which effective theories are 
organised’ (p. 204).7 Now what is necessary is something to qualify this 
‘true’ Platonism ‘differently’; ‘mathematical reality does not reside 
in the differences which would separate finished entities from unfinished 
entities, perfect entities from imperfect entities; it resides rather in the 
possibility of determining one from the other, that is in the mathematical 
theory where these connections are affirmed. One sees, then, that the 
reality which is being considered is not a reality of static entities or 
objects of pure contemplation. If qualitative distinctions exist in mathe
matics, they characterise the theories rather than the entities’ (p. 138). 
Below we will see the similarity between this ‘de-substantialisation’, this 
an-hypostatic will, and Heidegger’s position.

As for all dialectics, these ‘structural schemas’ establish specific 
connections between contrary notions: local/global, intrinsic/extrinsic, 
essence/existence, continuous/discontinuous, finite/infinite, algebra/ 
analysis, etc. But, at this point, a profound technique of stratification 
intervenes which has already ‘complicated’ stirred up, ‘clouded’ and 
undermined a traditional Platonic dialectical view:

One can define the nature of mathematical reality from four different points 
of view: the real is sometimes a mathematical fact and sometimes a math
ematical entity; sometimes a theory and sometimes an Idea which domi
nates these theories. These four notions are hardly opposed, rather they 
naturally intermix with one another: facts consist of the discovery of new 
entities, these entities are organised into theories and the movement of these 
theories embodies the schema of the connections of certain Ideas, (p. 135)

Here, the ‘structural schemas’ constitute, alongside mathematical facts, 
entities and theories, a fourth layer of mathematical reality. Now, a cen
tral point, which already constitutes for us a notable difference from what 
we would generally define as Platonism, is that ‘comprehension of the 
Ideas of this Dialectic necessarily extends into the genesis of effective 
mathematical theories' (p. 203).

While seeking to determine the nature of mathematical reality, we demon
strated that the theories of mathematics could be viewed as material
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ideally designed to give substance  to a dialectical id ea l. This dialectic 
seems to be principally constituted from pairs of opposites, and the ideas 
of this dialectic present themselves in each case as opposite notion̂  
between which relations must be established. These relations can only fa 
determ ined in the heart o f  the dom ain in which the dia lectic  takes its form'. 
(p. 253 [1971,55-6])

Thus, the dialectic of the concept and the mathematics which give it sub· 
stance find themselves in a relationship of ‘internal exclusion’ This rela
tionship has been maintained according to a strange logic which has yes 
to be reconsidered, that is, ‘mathematical theories develop through their 
own force, in a tight reciprocal interdependence, but without any refer
ence to the Ideas that their movement brings together’ (p. 134). It seemy 
to me that we are moving even further away from a simple Platonism n 
this case and are turning rather towards an operation which Châtelei 
referred to, for his own purposes, as a ‘force of ambiguity’ (force <k 
Vambiguité) and ‘dialectical balances’ (balances dialectiques).8

3) Naturally then one is led to a philosophy of ‘problems’. Dialec
tical Ideas are purely problematic and this is why ‘logical schemas (the; 
ideas working the theories) are not anterior to their realisation within a- 
theory; what we call the extra-mathematical intuition of the urgency of a 
logical problem lacks, in effect, something to dominate so that the idea; 
of possible relations gives birth to the schema of true relations’ (p. 142), 
A ‘problem’ only makes sense in a theory; thus, in his analysis of PiertL 
Boutroux’s U idéal scientifique des mathématiciens (1920), Lautmai; 
affirms that it is wrong to say that there is an ‘ independence of mathe
matical entities in relation to the theories which define them.’ While dis
cussing ‘the logical or algebraic clothing in which we seek to represent 
such an entity’, Boutroux presupposes a kind of neutrality offormalm 
with regards to meaning. However, modern algebra shows how the prop
erties of mathematical entities can vary with the domain under which : 
they are considered. The introduction of the axiomatic method in mathe
matics, on the other hand, makes it absolutely impossible to isolate- 
elementary ‘mathematical facts’ which would be like building bloch.1 
This is sufficient in our opinion, for grasping Lautman’s extremely 
atypical, not to say atopical, dialectic of Ideas. We will now considers 
how this difference tends to offset, in a ‘Heideggerian sense’, the very; 
concept of metaphysical ‘truth’

4) The Heideggerian seam consequently appears as a question of 
the passage from essence to existence. This ‘passage’ ‘the extension; 
of an analysis of essence generating notions relative to the existent,]
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(p. 206) -  and thus, the transformation of comprehending a meaning into 
a generation of objects -  takes up, once again, the Heideggerian onto
logical difference between Being and being. For obvious reasons, I will 
restrict myself to a few initial tracks of this seam which merit excavation. 
Let us restrict ourselves to the Lautmanian ‘concern’:

The order implied by the notion of genesis [the intimate bond between the 
transcendence of Ideas and the immanence of the logical structure of the 
solution to a problem within mathematics] is not the order of the logi
cal reconstruction of mathematics, in the sense that the initial axioms of a 
theory give rise to all the propositions of the theory, because the dialectic 
is not a part of mathematics, and its notions are without relationship to the 
primitive notions of a theory. The anteriority of the Dialectic [is] that 
of the ‘concern’ or the ‘question’ in relation to the answer. It happens to be 
an ‘ontological’ anteriority to take up the Heideggerian expression again, 
exactly comparable to that of ‘intention’ in relation to ‘design’ (p. 210).

A fact never raised by critics, Lautman already introduced this ‘concern’ 
(the Heideggerian Sorge) in the conclusion of his Thesis published two 
years earlier in 1937:

The only a p rio ri element that we conceive is given by the experience of 
this urgency of problems, anterior to the discovery of their solutions 
We understand this a p rio ri  in a purely relative sense, and in relation to 
mathematics; it is uniquely the possib ility  o f  experiencing the concern  for 
a mode of connection between two ideas and of describing this concern 
phenomenologically, independently of whether the sought-after connec
tion can be operable or not. Some of these logical ‘concerns’ are found in 
the history of philosophy, such as for example the concern for the connec
tions between the same and the other, the whole and the part, the continu
ous and the discontinuous, essence and existence.

Heidegger is not named in this passage and yet somehow this passage is 
already about him, through something which is as though telepathically, 
that is anticipatively, promised to him in the name of mathematics. And 
this looking forward is conjugated by an unprecedented and radical mode 
of questioning of Western metaphysics:

but the m athem atical theories w ill conversely be able to give birth to the 
idea o f new problem s which would not have been abstractly form ulated  
beforehand. Mathematical philosophy, such as we conceive it, thus does 
not consist so much in finding a logical problem  o f traditional metaphysics 
within a mathematical theory, than in apprehending overall the structure of 
this theory in order to extract the logical problem which is at the same time 
defined and resolved by the very existence of this theory, (pp. 142-143)9
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Let us return one last tim e to the text o f  ‘39 , w here Heideggerj* 
discussed ad nominem and ‘identified’ perfectly w e ll.10 N ot only doy 
Lautman reinforce the operation o f  the H eideggerian ‘ontological differ, 
en ce’ (o f B eing and being) by affirming that d ialectical Ideas are to mail, 
ematical theories what B eing and the sense o f  B eing , is to being andth* 
existence o f  being, but im m ediately afterwards, and this is a fact whicl 
is passed over in com plete silence in the com m entary, he mobilises % 
Heideggerian category o f  the truth unfolded as the ‘unveiling o f Being 
(‘dévoilement de l ’être'), as this a-letheia, that the Freiburg philosophy 
also translates as Entbergung ( ‘unconcealing’) (la ‘découverture’).

It then  h a p p en s , an d  th is  is fo r  us th e  fu n d a m e n ta l p o in t, th a t th is reveal 
ing  o f  the  o n to lo g ica l tru th  o f  B e in g  c an n o t b e  d o n e  w ith o u t th e  concret 
aspects  o f  o n tic  existence  tak in g  sh a p e  a t th e  sam e  tim e: ‘Characteristi; 
am ong  o th er d eg rees is , fo r  e x a m p le , th e  p ro je c t w h ic h  by  outlining % 
co n stitu tio n  o f  th e  b e in g  o f  th e  e x is ta n t, m ark s  o u t a t th e  sam e  tim e  a deter 
m in ed  field  (N a tu re , H is to ry ) as th e  d o m ain  w h e re  it w ill b e  possib le  fora 
sc ien tific  k n o w le d g e  to  c o n stitu te  o b je c ts ’ (H e id e g g e r 1969) [Trans, trans
lation  m o d ified ]. O n e  th u s se e s , in  th is  te x t, th e  sam e a c tiv ity  duplicate: 
itse lf , o r ra th e r a c tin g  on  tw o  d iffe re n t p lan es: th e  c o n s titu tio n  o f  the Bein̂  
o f  the  ex is tin g  th in g , on  th e  o n to lo g ic a l p la n e , is in se p a ra b le  from tk 
d e te rm in a tio n , on  the  on tic  p lan e , o f  th e  e x is te n c e  in  fa c t o f  a domair 
w here  life  and  m a tte r  are  the  o b jec t o f  a  sc ien tific  k n o w le d g e . T h e  conceit 
w ith  k n o w in g  w h a t c o n stitu te s  the  e sse n ce  o f  ce rta in  c o n ce p ts  is perhaps 
no t d irec ted  o rig in a lly  to w ard s  the  re a lisa tio n  o f  th ese  c o n c e p ts , but,asii 
h ap p en s , the  c o n cep tu a l an a ly s is  n e ce ssa rily  ten d s  to  p ro jec t the  concret 
no tio n s in w h ich  it is re a lised  o r h is to ria lise d  as ah ead  o f  the  concept
(p. 206)

N ow , som ething absolutely remarkable, a few  lines later Lautmac 
goes so far as to grasp certain w eaknesses in what is referred to as the 
‘early H eidegger’ (the H eidegger o f  ‘existen tia l’ analysis) radicalising. 
ante litte ram, the very H eideggerian auto-critique o f  Heidegger: ‘The 
distinction o f  essence and existence, and especially  the consequence or 
an analysis o f essence as generated by notions relative to the existing 
thing, are sometimes masked in the philosophy o f  H eidegger by the 
importance o f the existential considerations, relative to Being-in-the· 
world, such as they appear in Being and Time’ (pp. 2 0 6 -2 0 7 ) . In this 
case, it would hardly be inappropriate to speak o f  a remarkably anticipa· 
five ‘perspicuitas'

It is this consciousness, certainly sharpened by his ow n interests, 
which enabled him to obtain a perfect grasp o f  the stakes and kef
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concepts in Heidegger. The Essence of Reasons (Heidegger 1969) (to 
Which Lautman returns) becomes an epochal principle establishing itself 
in the course of the successive developments through which new fields 
of intelligibility have emerged abruptly and spontaneously since the 
beginning of history: ‘Epoch does not mean here a span of time in 
occurrence, but rather the fundamental characteristic of sending: the 
actual holding-back of itself in favour of the discernibility of the gift5 
(Heidegger 1972, 9). The sudden appearance of an epochal principle is 
nothing other than the arrival of the concrete economy of a metaphysical 
age. An epochal principle appears in the manner of an address, of a 
requisition. It requires a community of men searching for a finite way of 
thinking and acting.

The consequences of this inscription in Heidegger’s wake are 
fundamental for an accurate reconstruction of his thought and philosophy 
in their most current aspects:

1) If, for Lautman, revealing the philosophical meaning of mathemat
ics consists in showing its ‘attachment to a metaphysics (or Dialec
tic) of which it is necessarily the consequence’ (Letter to the 
mathematician Fréchet, February 1,1939), it should be clear by now 
that we are not speaking of just any ‘metaphysics’, and certainly not 
the ‘traditional’ metaphysics which characterises the well-worn and 
blind of the ‘Vienna Circle’ (Cf. the Thesis of ’37). Rather he will 
situate himself on the side of a radical questioning of this ‘traditional 
metaphysics’ which was initiated by Heidegger through what he 
called ‘the going beyond’ and Destruktion',11

2) Such an alignment with the Heideggerian interpretation of A-letheia 
as ‘revealing of Being’ should radically disqualify his all-too famous 
Platonism -  or at least in the sense that it is traditionally, and 
offhandedly, attributed to him. Thus, Cavaillès himself, in a certain 
way, provided a poor example: ‘In the properly mathematical dis
cussions which took place between advocates of the Vienna School 
and the Hilbert School, the question was posed as to whether or not 
there was an ideal realm of objects to which mathematics could refer 
-  this was referred to as a Platonism. I am not totally convinced by 
the word, but what’s in a word’ (Cavaillès 1939,603). What offhand
edness! Lautman takes up, in Heidegger’s theory of truth, the rejec
tion of any conception of truth as omoiosis or as adaequatio rei et 
intellectu, the modern and Cartesian version of Platonic Idealism. 
The question is no longer that of the ‘adequacy of the Idea to the
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Real,’ a point to which Lautman continually returned (Cf. among! 
others, his criticism of Boutroux).

3) His engagement with another concept of truth through a 4 surpassing 
of metaphysics is tied to a deconstruction of sub stantialist schematj 
For Heidegger, the metaphysical quest for first foundations is, bj 
definition, a search for something which is below phenomena, forf 
hypokeimenon, that is a ‘substrate.’ Lautman, on the other hand,r; 
rigorously engaged in a process of de-substantialisation in mathe·; 
matical philosophy (pp. 95-96), or, more precisely, a displacemewi 
and a complicatio of the metaphysically foundational relation 
between/<?rra and matter. I would like to consider a few of the manv! 
possible examples.

Herbrand’s theorem of ‘fields’ presented itself as a pure case of the: 
unity between a set of operations formally defined by a system of axiom; 
and the existence of a domain where these operations are realisable, h; 
1937, Lautman commented on Herbrand’s theorem:

It seems that a certain restriction  still adheres to this logical schema:: 
the genesis indeed only takes place in one w a y , from the operations to the: 
field. However, if a rigorous appropriation can be established between 
the field and the definable operations on it, one can attempt to determine’ 
the operations starting from the domain as well as the domain starting; 
from the operations Our intention being to show that the internai; 
achievement of an entity is affirmed in its creative power (pouvoir), thisi 
conception should perhaps logically imply two reciprocal aspects: tht 
essence o f a form  being realised within a m atter that it would create, till· 
essence o f a m atter giving birth to the form s that its structure designs.... 
In fact, the schema of generation that we will describe within more conk 
plicated theories, gives up the too sim plistic idea  of concrete domains andj 
abstract operations which would possess in themselves a nature of m a tte !  
or a nature of form; this conception would indeed tend to stabilize the; 
mathematical entities in certain immutable roles and would be unaware of: 
the fact that the abstract entities which are born from the structure oH 
more concrete domain can in their turn be used as a base domain for the] 
genesis of other entities, (pp. 95-96)

Here we have the result of a certain philosophical axiomatic and its auto*! 
application through ‘reflection’ (what Lautman affirms of mathematical! 
logic, of the theorems of existence in the theory of algebraic functions,di 
of the theory of the representation of groups as different transcendental] 
domains of investigation, is ‘turned back’ on the philosophical operationj 
itself through symmetry, which, in this initial phase, is located in afij
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operative position—and conversely): it is an extremely powerful operator 
of dialectical interaction which, starting from the domain of mathemati
cal physics, will be induced from the effects in the field and philosophi
cal activity.

Destruktion of metaphysics, deconstruction of the Truth conceived 
as omoiosis, Heideggerian desubstantialisation: Heidegger would come 
to the same conclusions, during the same epoch, in Lautman’s preferred 
domain of mathematical physics. It is the key question for that which 
might be entitled Heidegger and Quantum Physics, linked to the 
‘Heisenbergian’ period of his thought.

b) . . .  to the involutive node o f  m athem atical physics.

Here, in one of its most impressive manifestations the Lautmanian 
approach seems quasi ‘prophetic’ The domain of its greatest philosoph
ical and intuitive inspiration, the dialectical coupling on which all the 
promises of his mathematical philosophy are polarised seems without 
question to touch upon the problematic of symmetry and dissymmetry in 
mathematics and physics}2

This text is perhaps emblematic of the gap in the Cavaillès- 
Lautman binomial. If the impact of mathematical physics on his interests 
had been apparent since his thesis of 1937 (in particular by his attentive 
study of the papers of Élie Cartan on the ‘generalisation of the notion of 
“space”’, ‘Absolute parallelism and the unitary theory’, or of the analy
sis of Herman Weyl on ‘Riemannian spaces’ the work of Eddington, 
Espace, temps, gravitation, or La structure des nouvelles théories 
physiques of Gustave Juvet), it is at the end of his life, before falling in 
combat, that, thanks to his exceptional mathematical background, he 
directs all his epistemological activity towards the questions of physics. 
His very personal and extremely original contribution touches upon 
questions of envelopment inherent in notions of symmetry and dissym
metry. He sets up his thematic with an analysis of the relationship 
between the pioneering work of Louis Pasteur and cellular dissymmetry 
by ‘enantiomorphy’ ‘at the base of all the structural theories of modem 
Stereochemistry’ (p. 240 [1971, 45]). Then he turns to Pierre Curie’s 
foundational work in the field of physics:

the mixture of symmetry and dissymmetry becomes for him a necessary 
condition of physical phenomena in general To each physical 
phenomenon is linked the idea of a saturation of symmetry, of a maximal 
symmetry compatible with the existence of the phenomenon and
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ch arac te ris in g  it. A  p h e n o m e n o n  can  on ly  e x is t in an en v ironm en t p&. 
sessing  its ch a ra c te ris tic  sy m m etry  o r  a le s se r  sy m m etry . T hus if % 
absence  o f  a c e rta in  e le m en t o f  sy m m etry  is c a lled  an  e le m e n t o f  dissym
m etry , it b eco m es p o ss ib le  to  u n d e rs ta n d  w hy  P ie rre  C u rie  w ro te : ‘Certai; 
e lem en ts  o f  sy m m etry  can  co ex is t in c e rta in  p h e n o m e n a , b u t they  are ir 
n ecessary . W h a t is n e ce ssa ry  is th a t c e rta in  e le m en ts  o f  sy m m etry  done? 
ex is t. It is the  d issy m m etry  th a t  c rea te s  th e  p h e n o m e n o n . (C urie  1901, 

126)13

Lautman connects this idea o f  'sym m etry lim its’ to Platof 
Tim aeus, and in particular to his theory o f  the C hora  as a receptacle 
which is a 'p lace’ H ow ever, and this is the extraordinary speculative 
force o f Lautman, it is not, in this instance, a mere cerem onial reference*

T h is re fe ren ce  to  P la to  e n ab le s  o n e  to  u n d e rs ta n d  th a t th e  m ateria ls whicr 
fo rm  the  U n iv e rse  are  n o t so  m u ch  th e  a to m s an d  m o le c u le s  of physica. 
theo ry  as th ese  m a jo r  p a irs  o f  id ea l o p p o s ite s  such  as th e  S am e andtfk 
O ther, S y m m etry  and  D issy m m e try , re la te d  to  o n e  a n o th e r  b y  the lawsr  
a h a rm o n io u s m ix tu re  P la to  su g g e sts  m o re . T h e  p ro p e rtie s  of plact 
and su b stan ce  acco rd in g  to  h im  are  n o t th o se  o f  se n se  p e rcep tio n ; they art 

the  g eo m etric  and  p h y sic a l tra n sp o s itio n  o f  a d ia le c tic a l theory. In k 
sam e w ay, p e rh ap s , th e  d is tin c tio n  b e tw ee n  le f t an d  rig h t as observedii 
the  w orld  o f  sen se , is n o th in g  b u t th e  tran sp o s itio n  to  th e  p lan e  of experi
ence  o f  a d issy m m etric  sy m m etry , w h ich  is e q u a lly  a co n stitu en t of k  
abstrac t rea lity  o f  m a th e m a tic s ’ (p . 241 [46 ]).

Here, in my opinion, at the peak o f  his conviction , it is as if  L au t»  
expressed the true brilliance o f  his thought by doing an about face in tte 
middle o f the realm, or the them atic and operational field , o f  mathemat
ical physics. H e, thus, clarifies his thought like a sketch o f  a thoughtdia« 
gram where the virtual power (pu issance) o f  his schem as w ould cometc 
be visualised in the m ind’s-eye o f  the mathem atician an d  philosopher, 
Thought almost allow s its own ‘v isu a l’ perception o f  itse lf.14 It is attha1 
precise mom ent when he concretely invests in the physico-mathematical 
domain that the absolute power o f  his d ialectical operation is established 
Philosophy reveals its habitation of/in  S cience, thus revealing then 
double reciprocal power (pou vo ir) o f  suggestion , for here, science think- 
(and thinks about itself) , as if  it w ere inhabited by its philosophical spec
tre. It is in such a mom ent o f  suspense in this 'betw een-tw o Worlds’ thr 
the artificial objections brought to bear on the so-called  'arbitrariness’of 
its D ialectic them selves com e to annul them selves. It is as if  the dialecti
cal operation was discovered in one blow , made itse lf suddenly readable 
to the eye o f the theory by its very 'rise towards the absolute’, thus
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procuring for itse lf a kind o f  'universal surface o f  co incidence5 {surface 
universelle de recouvrem ent).

From this point on, the developm ent o f  the Lautmanian argumen
tation only sharpens this im pression. In a final exam ple, Lautman insists 
by bringing out the m athem atical focus o f  the entire operation: the 
operation o f  involution  as 'universal5 operator and core o f any dual 
structure (or principle o f  'duality5) -  this question is approached in an 
identical way by Herman W eyl for the transformation called automor
phism for a zero-dim ensional space (that is, reduced to the structure of 
the point).

We m ust stop  a m o m e n t to  lay stress upon  the  fash ion  in which the 
tinction  o f  le ft and  rig h t in the  real w o rld  can  sy m b o lize  the n o n -co m m u 
tativity o f  c e rta in  a b strac t o p e ra tio n s  o f  a lg eb ra . T h e  fu n d am en ta l p roperty  
of sym m etry  w ith  re sp ec t to  a p lan e  is ap p lied  once it g ives a figure dis
tinct in orientation from the original, and  tha t ap p lied  a second time, 
gives the original figure ag a in , ft is fo r  th is reason  th a t the sym m etry  is 
called an involution. L et us n ex t c o n s id e r  an a lgeb ra ic  o p era tion  defined 
on tw o q u a n titie s  X  and  Y  and  w h ich  w e shall w rite  (X ,Y ); the  p a ren th e 
sis m ay d e n o te  the  o rd in ary  p ro d u c t o r any o th er o p era tio n  defined  fo r the 
two v a riab le s . It is a n o n -c o m m u ta tiv e  o p e ra tio n  if  (X ,Y ) ^  (Y.X) and the 
m ost fecu n d  ty p e  o f  n o n -c o m m u ta tiv ity  in m ath em atics  is th a t in w hich 
(X,Y) = -  (Y ,X ). T h e  p a ren th es is  (X ,Y ) is d issy m m etric  X and Y, bu t it 
m ay be eas ily  v e rified  th a t it de fines an  in v o lu tio n , as does o rd in ary  sym 
m etry. T h e  e x p ress io n s  (X ,Y ) and  (Y ,X) are  ca lled  antisy1 metric, and  this 
w ord tran s la tes  w ell the mixture o f  sy m m etry  and  d issy m m etry  w hich  is 
thus seen to  b e  d e ep ly  e m b e d d e d  in th e  h eart o f  m odern  a lgeb ra. A il o f  the 
theory o f  c o n tin u o u s  L ie  g ro u p s  is b ased  on  the  no n -co m m u tativ ity  o f  the 
product o f  tw o  in fin ites im a l o p e ra tio n s  o f  the  g ro u p . T h is  theory , w hich  is 
closely a sso c ia ted  w ith  th e  th eo ry  o f  P faffian  fo rm s, e x p ress io n s w ith  an ti
sym m etric  m u ltip lic a tio n , p e rm itte d  C artan  to discover a profound anal 
ogy be tw een  the  g e n e ra liz ed  R iem an n  spaces w h ich  ap p ea r in 
p h y sico -g eo m etric  th eo rie s  o f  re la tiv ity  and the  space  o f  L ie  grou;
(p. 48; ad d itio n a l ita lics)

Professional physicists and mathematicians w ould be w ise to take such 
text as a model for its 'structural5, penetrating and definitional clarity.

Passing to the particle theory o f  de Brogliean w ave m echanics, he 
postulates that 'antisym m etry seem s to play a much more fundamental 
role in nature than sym m etry [it] plays a fundamental role in the study 
of chemical bonds5 (p. 245 [49]). After a precise analysis o f the anti
symmetry o f spin, the fold ing back o f  the distinction o f wave functions 
to its mathematical foundation 'o f an internal dissymmetry o f  the group
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of permutations’, he introduces the ‘rise towards the absolute’, that is 
towards the ‘principle of duality’:

Transposed into more abstract language, this situation is equivalent to the 
possibility of distinguishing within a single entity two distinct entities X 
and X ', which will be said to be in a dual relation, if an inverse orientation 
or ordering can be found for each of them such that they are inverse to one 
another, and if, in addition, we can find an involution relating them, that is 
if X is to X' as X' is to X, or if (X')' = X. (p. 247 [50])

Note on the notion of duality

Duality (which is a mathematico-physical property), has analogous terms 
such as those of ‘conjugation’ or ‘reciprocity’ (which returns overall to 
the central idea of ‘symmetry’).

It is a notion which figures more so in the demonstration of generd 
constructions (‘duality’ of linear spaces, ‘adjunct’ functors in Category 
Theory), rather than of particular theorems (Poincare’s ‘duality’ or 
Artin’s laws of ‘reciprocity’).

All of the varied uses of the term contain the idea of the bilateral 
symmetry of an object, a construction or a mathematical theory.

In fact, the idea of duality has an extremely general character 
Among the correlations closest to mathematical duality, one will note, for 
example:

the principle of classification by ‘dichotomy’ (in philosophy, the 
‘dualism’ opposed to ‘monism’ is as old as philosophy itself; it is,for 
example, what is at stake in the operation of ‘deconstruction’ at work 
in the philosophy of Derrida); 
the ‘oppositions’ of contemporary structuralism; 
the ‘complementarity’ in quantum physics, modelled by Heisenberg's 
Inequalities -  certain couples separated from classical magnitude 
are found to function here in combined variables (‘complementari
ties’). The Inequalities then estimate the production of a ‘dispersion’ 
around the average value of these two variables, which no longer 
commute.

The ‘prototype’ of the mathematical duality is without question that 
of linear spaces. One could even go so far as to say that through it is 
constituted the ontological status of linearity, of which the physical con
sequences are ‘phenomenal’ Within this framework, and as an elemen-
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tary example, the rise or fall in the indices (as well as contraction) are 
read as operations of the linear dualisation of tensor operations.15

Lastly, glancing back over the fundamental stages in the constitu
tion of ‘duality’ as a category (Boolean algebra, Poncelet’s projective 
geometry), Lautman concludes with an account of the most recent 
research undertaken in abstract algebra (Birkhoff, von Neuman, 
Glivenko and Ore), through Lattice theory (the importance of which is 
now known for category theory), introducing the notion of the ‘dual’ 
(which he calls ‘duel’) and of anti-isomorphism:

The general theory of lattices thus is based on the possibility of ordering 
the same set in two mutually inverse ways. For us it is a result o f funda
mental philosophical importance to see an internal duality of two distin
guishable antisymmetric entities embedded in one entity, and to see the 
duality become the generating principle behind an immense harvest of 
mathematical results, (p. 250 [53; additional italics])

It is impossible to avoid thinking of the shadow cast by Récoltes et 
semailles (Harvests and Sowing) of one Alexandre Grothendieck.16

To conclude, by opening, the whole cardinal importance of the 
questions and techniques investigated by Lautman has since been 
revealed: the degree to which the ‘non-commutative’ has lived up to its 
promise (one has only to think of Alain Conne’s work on non-commuta- 
tive geometry); the degree to which the concept of ‘duality’ and ‘dual’ 
structure has become the very heart of the most current physico- 
mathematical problems. A concept that Lautman had tackled, as early as 
1937 in his thesis by cultivating the ‘theorems of duality’ defined as 
‘structural schemas’ within the already well-known framework of 
‘intrinsic properties and induced properties’ The importance of 
‘theorems of duality’ in the characterisation of Hopf Algebra has been 
shown, for example, in the case of the development of quantum groups. 
Might I add that the ‘ontological difference’ itself is defined by 
Heidegger as ‘Duality’ (.Zwiespalt)!

And yet, the ideas of Lautman and Weyl on this point would be 
almost entirely ignored until 1956.

With regards to the ‘local-global’ antagonism, he had called upon 
the work of Elie Cartan as well, whose value had elicited very little inter
est before 1935, and whose central place in mathematics has since been 
universally recognised.

And that is to say nothing of what already constituted his interest 
in what later became the fascinating category theory.
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It was a highly-respected mathematician w ho affirmed: 4 We now I 
see that Lautman had foreseen this extraordinary developm ent o f mathe
matics, which destiny did not allow  him to w itness; he filled it with 
enthusiasm, as much by the unequalled harvest o f  new theories and solu
tions to ancient problem s, as by the em inently aesthetic character which 
now offers (to those w ho, like Lautman, seek to understand them) the 
central parts o f this im m ense ed ifice’ (lean  D ieudonné, 'Foreword’ to 
E ssai (Lautman 1977)).

Lastly, I would add that what sets Lautman apart, in m y view , from 
Jean Cavaillès (inversely proportional to their notoriety in the philo
sophical environm ent, I might add. But, o f  course, this is rather a 
question o f personal sensitivity to research approaches, and thus a ques
tion o f style) is Lautman’s creation o f  a philosophy open to the promise 
o f what was then the future o f  philosophy, o f  m athem atics, o f  physics, 
and o f m athem atical-physics, that is, nothing less than our p resen t.

II) Gaston Bachelard and the 6 spectre* o f the ETEL

I w ill pose from the start the syntagm  ‘S chool o f  the E T H ’17 as a spectral 
marker o f a constellation o f  thoughts that are singular, and thus unique, 
but nevertheless articulated (and not isolated in a solipsism ). ‘Spectral’is 
to be taken here first as a ‘d iscrete’ operator o f  declension  o f  the philo
sophical singularities expressed in each referred corpus, like zones of 
‘interference’ o f  domains o f explanation and pronominalisation; the 
model o f this ‘spectral operator’ in this ‘m agica l’ connection takes after 
the Janus o f  m athem atico-physics. It is the pu rely  m athem atica l ‘spec
tral’ characteristic o f the abstract space o f  Hilbert (developed by him in 
1910), which w ill later allow  Heisenberg to induce in a brilliant way what 
constitutes in reality the possib le legib ility  o f  ‘form s’ appearing on the 
frequency spectrum o f a body (on the basis o f  the principle o f  combina
tion or ‘law o f  com position’ o f  R itz-R ydberg).18 H enceforth, any physi
cal body finds its signature in its quantum spectrum .19 N ote in passing 
that the ‘practical’ and paradigmatic exam ple o f  ‘m ixed ’ mathematics in 
Albert Lautman is nothing other than this sam e Hilbert space: continuous 
for the topology o f  its elem ents; discon tinuous  for its structural decom
position.

But ‘spectral’ w ill also relate us back to these ‘phantom nal’ pres-1 

ences w hich haunt the great work o f  Gaston Bachelard, in the form of. 
this epochal constellation that our friend M ario C astellana qualifies as1 
‘Italo-Francophone “neo-rationalism ”’ .20 A s the p lace where an immense
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epistemological tradition was instituted, our present should start by 
taking its measure. In an historically exemplary way, one of the highly 
symbolic referents of this constellation was represented by the group 
theoretically opposed to the ‘Wiener Kreis’ at the time of the Descartes 
Congress in 1937 (Bachelard, ‘silent guest’ of the Congress, Federigo 
Enriques the Italian, Ferdinand Gonseth the Swiss, Jean Cavaillès 
and Albert Lautman the two French. One could add to this the ‘anony
mous protagonists’ such as Paulette Destouches-Février, Jean-Louis 
Destouches, André Lalande, etc.).

It just goes to show that the mobilisation by Bachelard of these 
different mathematical, physical and philosophical systems is no more 
occasional than vague. Because it does not (as is the rule with a number 
of his contemporary philosophers and of ours), happen to portray them 
caught up in pure auto-justification or illustrative references to a philos
ophy already closed-in on its own presuppositions. What is at stake is 
rather to inhabit them in an active and ‘open’ way, to accompany them in 
the asceticism of their specific techniques, to make them foster in situ and 
inactu this speculative power (pouvoir), always ‘available’, committed 
in their gestures of thought: ‘no spectrum is more extended than the spec
trum that helps classify the philosophemes of the physical sciences. It is 
moreover well understood that all the parts of a science are not at the 
same point of philosophical maturity. It is thus always by way of experi
ence and of well defined problems that it is necessary to determine the 
philosophical values of science’ (Bachelard 1949,7).

It is thus insofar as it is located in topoi and on perfectly identifi
able textual nodes that we must try to retrace the spectral presence of the 
‘School of the ΕΤΕΓ (the nature of its theoretical, at the same time scien
tific and philosophical -  not to say ‘metaphysical’ -  stakes, its induced 
solidarity, its produced potentialities). The limited choice of certain ‘loci’ 
of the Bachelardian texts must be met by a choice of signatures limited 
to the representatives of this School whose neighbourhood of ‘proxim
ity’ was not limited to the sole company of the same elite Schule.

We will turn our attention exclusively towards certain names of the 
ETH, the heart of which served to recharge Bachelard on regular occa
sions, diffusing and extending their reflexive work in his own way: 
Herman Weyl, Wolfgang Pauli and, last but not least, Gustave Juvet. It 
would obviously be necessary to thematise the relations of complicity of 
the Bachelardian texts with other eminent representatives of this School: 
Albert Einstein or Ferdinand Gonseth. The first has already been 
explored elsewhere.21
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a) Hermann Weyl and the \phase transition ’ 
towards a physical geometry.

Hermann Weyl appears from the start as an ‘initiatory’ presence in the) 
Bachelardian oeuvre. He is called upon as much in his Essai sur kl 
connaissance approchée which constituted the principal Thesis for his j 
Doctorate presented in front of the Faculty of Arts at the University oj j 
Paris, May 23,1927, as in his complementary Thesis presented 28 Mardi | 
of the same year, under the title Étude sur l'évolution d'un problème à 
physique. La propagation thermique dans les solides?2

Weyl opens and closes the Essai on two important occasions, first 
on page 82, opening the chapter on The formulae of dimension’. Let us ! 
begin then by opening the contextual folds of this inaugural reference,) 
What is Bachelard’s fundamental idea in this chapter? It is the philo-j 
sophical interrogation of the ‘new metrology’ vis a vis absolute (of) 
unity)/arbitrary (of measurement) duality:

By absolute measurement, one should not understand a measurement 
carried out with a particular precision, nor by absolute unity a unit of per 
feet construction; in other words, by making use of the words absolute 
measurement or absolute unity, one doesn’t mean that the measurements 
made or the units of measurement are absolutely perfect, but only that 
these measurements, in place of being established by a simple comparison 
of the quantity to be measured with a quantity of the same kind, are related i 
to fundamental units of which the notion is admitted as an axiom. · 

Thus metrology is itself also preceded by a true axiomatic since it has ! 
as its base the elements of a perfect and arbitrarily posed purity. These 
elements, as axioms, will only be constrained to form a system that is 
coherent, irreducible and to be independent. Lastly, just as diverse 
geometries derive from different sets of postulates, in the same way dif
ferent fundamental systems are offered to support all of the measurements 
of physics. (Bachelard 1927, 85)

The scene is set and would already permit him alone to readjust 
beneath the surface a whole avenue of connected problems to corner 
well as other bundles of quotations. How does the first mobilisation of 
Weyl’s Espace, temps, matière, in its Juvet-Leroy translation of 1922, 
intervene here?

Thus [in connection with the arbitrary, masked out of habit] it is believed 
that the arbitrary is eliminated from the definition of the unity of volume 
as soon as this unit is tied to the unity of length by choosing the cube as 
standard volume? The memory is obviously relieved since it follows die 
direction of traditional elementary geometry But there are points of
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view which would perhaps become clearer with another choice. Thus the 
sphere has in certain regards undeniable rational advantages. It is the 
volume of minimum definition, its sym metry  is of an inexhaustible rich
ness. . In the same way still in a physically anisotropic space, it may be 
of interest to dilate or contract certain co-ordinates following more or less 
complicated functions. It is an artifice often employed in new generalised 
spaces. One can always have the units joined together in complexes to cut 
the numerical coefficients off from various geometrical measurements -  or 
at least to reduce all the coefficients to unity preceded by the + sign or the 
-  sign. In a quadratic form, only the numbers of the + signs and -  signs 
remain invariant characteristics  [Cf. Weyl 1922, pp. 24-7]. (Bachelard 
1927,82)

This citation refers us to the first chapter of Espace, temps, matière, 
‘Euclidean Space. Its mathematical form and its role in physics’ §4 
‘Foundations of metrical geometry’ Weyl confronts there the invariant 
conditions of orthogonal linear transformations into Cartesian co-ordi
nates. In technical terms, it is the crossing point from a theory of invari
ance for linear transformations with conditions of orthogonality, to a 
theory of ‘generalised invariance’ known as tensor calculus, the mathe
matical body of General Relativity. Weyl concludes this §4 with his 
programme: ‘We shall here develop the Theory of Invariance along 
lines which will enable us to express in a convenient mathematical form, 
not only geometrical laws, but also all physical laws.’ Bachelard will 
resume and very precisely follow the thread of this Weylian program two 
years later, in 1929, in the Valeur inductive de la relativitéP The conclu
sion pro domo that the author of the Essai draws from this chapter, after 
this first passage through Weyl, is the following:24 ‘It seems that by going 
from measurements to ideas, knowledge is quickly lost in logicism [not 
likely to give rise to experience]. It is by another route, by returning/rora 
the mind towards things, that knowledge will still be able to be mobilised 
and be given the flexibility sufficient to touch the reaV (Bachelard 1927, 
92). The point of contact is already largely a shared trajectory.

It is page 282 of the concluding chapter of the Essai, entitled ‘Cor
rection and Reality’, that will deploy the whole power of connection and 
fibration of the Weylian and Bachelardian approaches. This is the reason 
why we are going to reconstruct more patiently what is implied by the 
context.

A géométrisation of the material cannot be a starting point, it is a schem a , 
it is a goal, in short a late discovery. In fact, in contemporary science, 
extension conceived a p rio ri as a uniform and general quality has taken the
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place of an extension loaded with character and seized  by its differential 
side. And it is now the differential element that determines the ‘explica
tion’

It is perhaps the most striking feature of the new physics. Riemamfi 
idea to define the mathematical function by its infinitesimal variations has 
just penetrated physics itself. And by a singular reversal of principles 
which will involve a real upheaval of epistemology, it is the integral la« 
which, in principle, becomes the simple consequence of the differentia! 
relation. The daw s o f infinitely near action  [shall be regarded] as the true 
expression of the uniformity of action in nature.’ (Weyl 1922, 55 [1952 
66]. The quotation is drawn from Ch. I, § 9, ‘Stationary Electromagnetic 
Field’)

And the quotation continues:

T he principle of gaining knowledge of the external world from the behav
iour of its infinitesimal parts is the mainspring of the theory of knowledge 
in infinitesimal physics as in Riemann’s geometry.’ (Weyl 1922,79 [1952. 
65]. The quotation is drawn from Ch. II, ‘The Metric Continuum’, §11 
‘Riemann’s Geometry’)

In the first text, Weyl compares ‘Coulomb’s law as the law of ‘actional 
a distance ,’ [which] expresses that the field at one point depends on the 
charges located in all the other points, near or far, in space,’ to the lawsoj 
infinitely near action , ‘which are far simpler ., as a knowledge of the 
values of a function in an arbitrarily small region surrounding a point is 
sufficient to determine the differential quotient of the function at the point, 
the values of r [density of charge] and e [the vector field] at a point andin 
its immediate neighbourhood are brought into connection with one 
another by [the equations] (51) [rot e = 0 ; div  e = r]; we look upon 
[equation] (49) [e =  - f  pr/4nr3dV\ merely as a mathematical result fol
lowing logically from [equations (51)]. In the light of the laws expressed 
by (51), which have such a simple intuitive significance we believe that we 
understand  the source of Coulomb’s Law. In doing this we do indeed 
bow to an epistem ological constrain t.’ [Weyl 1952,66, Trans, translation 
modified]

The research of this ‘epistemological constraint’ is obviouslj 
Bachelard’s purpose; and it is in Riemann that he will seek its original 
axiomatic. It is also in the Riemann-Weyl relation that Bachelard exposes 
to some extent the ‘figure’ of this geometrical revolution in the physics 
actually imposed by Weyl, and particularly within the framework of Gen
eral Relativity. It is the geometrico-physics interface, ensured a promis
ing future, which is thus exposed, with its fundamental displacement of 
the a priori - a posteriori relation:
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From the simple differential laws rot e and div e - r  which express that the 
rotation of the electric field e is null and that its divergence at any point is 
equal to the electrical density at this point, one deduces Coulomb’s law 
according to which electrified bodies are attracted by a force inversely pro
portional to the square of the distance. The general law thus ceases to be a 
priori, in simple agreement with a system of categories, related [the law] 
to logical principles, very close to intellectual intuition. It is, in every sense 
of the word, the consequence of a fact, rather than of an extraordinary 
number of facts. But it does not summarise them, because it is burdened 
with constants of integration, (pp. 282-283)

There are no less than seven Riemannian occurrences in the Essai. This 
is not by chance, and hardly accidental, but it rather results from a lucid 
awareness of the connection with Weyl. Let us partially rebuild the epis
temological spectrum of these Riemannian references:

The definition of the [Riemannian] function by simple correspondence 
still has a very different flexibility. ‘This definition’, says Riemann, ‘does 
not stipulate any law between values isolated from the function, because 
when this function is mapped over a determined interval, the mode of its 
extension outside of this interval remains completely arbitrary.’ Thus the 
perfect knowledge of an analytic entity in a determined domain no longer 
implies the least knowledge outside of this field. The entity, in Analysis, 
thus seems to us the result of a construction which, in principle, if not 
always in fact, is a free construction.

In analysis as in geometry, the restrictive conditions which fix the rules of 
construction do not ruin the hypothetical character of the defined analytic 
element. Thus, in a curious analogy, to define a transcendent, one finds the 
same types of conditional relations as the axioms of geometry. ‘As found
ing principle in the study of a transcendent,’ writes Riemann, ‘it is, first of 
all, necessary to establish a system of conditions, independent amongst 
themselves, sufficient to determine this function.’ The transcendent thus 
only establishes between its elements the sole connections which are spec
ified by the system of conditions. It does not have reality outside this 
system which must be, like a system of postulates, complete and funda
mental (pp. 184-185).

This is the pedestal from which an entire problematic concerning the 
categories ‘reality’, the ‘possible’ and the ‘virtual’ open up, categories at 
work in the entire Bachelardian oeuvre, and particularly thematised in 
the Valeur inductive de la relativité of 1929. And it is here that Bachelard 
points to a ‘functional constructivism’ in Riemann, which could be 
extended to an ‘ontology necessarily projected’ in the ‘metaphorical
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ex is ten ce ' a ttr ib u ted  to  th e  m a th em atica l en tity : a  'c o n s tru c tiv e  ontolô f 
[w hich] is n ev e r at its en d  s ince  it co rre sp o n d s  to  an  ac tio n  rather thanj 
lucky  find, re la ting  to  a 's e c o n d  o rd e r  r e a li ty ’ (B ach e la rd  1929,186· 
B u t w hat also  in te rests  B a ch e la rd  is a  p o in t w h ich  A lb e rt Lautman wjf: 
la ter m ake in his ow n  Thesis o f  1937, n am ely  th e  fac t th a t Riemann 
have been the one who crossed over fro m  the genetic thought of lam 
that o f  structures: 'm a th em a tic s  has in co n tes tab ly  a structural concef 
tion ; 'C erta in ly , in R ie m a n n ’s sen se , which is the m ajor sense, tfif 
[m athem atical] function  only tran s la te s  the  id ea  o f  correspondence' 
(p.201).

L et us re tu rn  to W eyl, 'g e o m e te r  o f  m a tte r ’ , and  to  th e  importance 
o f R iem an n ’s law s o f  infinitely near action  w h ich  B ach e la rd  brings fonl 
A fo rm  o f  spectral com m u n ity  w ill be seen  to  em erg e  as a  result of ceil 
ta in  ep istem o log ica l co n seq u en ces . T h e  R iem ann-W ey l b ond  is due le 
ihe fac t tha t, from  the po in t o f  v iew  o f  th e  th eo ry  o f  k n o w led g e , Riemanr 
understood  tha t im ag in ing  the  in fin ite ly  sm all co n ta in ed  much mort 
essen tia l natural in fo rm atio n , than  im ag in in g  th e  in fin ite ly  b ig . Hethinfc 
o f a k ind  o f  p ro found  unity , n o n co n tin g en t upon  the mathematics 
m odels o f  the in fin itely  sm all and  the  p h y sica l law s acco rd ing  to which 
this infin itely  sm all exp resses itse lf  and  appears  in the  nature oi 
phenom ena. W hat W eyl found  to  be at th e  base  o f  R ie m a n n ’s new dif
feren tia l geom etry  w ere the sam e th eo re tic a l p rinc ip les  w h ich  animate 
the new  physics o f  in fin itely  nea r ac tion . F rom  these  fo llo w ed  the possi
bility  o f  estab lish ing  a p ara lle lism  be tw een  the  geo m etry  o f  Riemann anc 
the physics o f M axw ell, w hich  B ach e la rd , in tu rn , m ark ed  as the turnte 
po in t o f 'n ew  p h y s ic s ’ In an im portan t a rtic le  (contemporaneous wilt 
the first ed ition  o f  RZM, 1918) w here  W eyl u ndertakes the project oi 
e laborating  a 'p u re  in fin itesim al g eo m e try ’ {eine Infinitesimalgeometrk 
and w here, in doing  so, he pu rsues the  construc tion  of a  généralisai 
purely  geom etrical theory  o f  physica l p h en o m en a , he affirm s:

the general theory o f relativity admits, in accordance with the spiritc:, 
modern physics, of infinitely near action, only what has validity in the infi
nitely small [that is locally], and with regard to the metric of the Univeis 
CWeltmetrik) it calls upon the general concept of metrical determinate. 
founded on a quadratic differential form, proposed by Riemann ink 
Habilitationsvortrag of 1854. But the truly important element of this innef 
vation is the view according to which the metric is not a property of the. 
Universe in itself {an sich); but rather, as a form of phenomenon, space·; 
time is a completely amorphous four-dimensional continuum, in the senses 
of the Analysis situs, with the metric expressing however somethingo:.
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reality which has an existence in the Universe, exerting effects on matter 
by means of centrifugal and gravitational forces and whose state, 
inversely, is also conditioned, according to natural laws (naturgesetzlich), 
by the distribution and the constitution of matter. (Weyl 1918, 384)

Finally Weyl concludes:

According to this theory [the ‘pure infinitesimal geometry’], all that is real, 
that is all that exists in the Universe, is a manifestation of the metric of 
the Universe; the concepts of physics are not something other than those 
of geometry (die physikalischen Begriffe sind keine andern als die 
geometrischen) .The only difference between geometry and physics lies in 
what geometry probes in a general way of the essential nature of metric 
concepts, but it is physics which, for its part, inquires into the law in virtue 
of which the real Universe is distinguished from all possible four-dimen
sional metric spaces, according to their geometry. (Weyl 1918,411)

Exploring Riemann’s thought coherently and profoundly, Weyl 
develops the philosophical idea that the metric expresses both an a priori 
and a posteriori element of space. It is thus seen that ‘the Riemannian 
conception does not neglect the existence of an a priori element in the 
structure of space; only, the border between the a priori and the a poste
riori is displaced9 I will not comment on all that this displacement 
implies in relation to Kantianism. But what does Bachelard draw for him
self from the Riemannian change operated by the differential relation of 
the law of infinitely near action?

[Coulomb’s] general law thus stops being a priori It will be objected 
that the general is tangent to the particular, that Euclidean spaces are the 
first simplification of the given infinitesimal itself. But a Euclidean system 
of reference that must little by little be transported in an all-in-all non- 
Euclidean manner in order to follow the pseudo-generality, does it really 
have the Euclidean value that is attributed to it? The on-the-spot descrip
tion could perhaps be put within the framework Euclidean at first approx
imation. But it happens to be an essentially relative description , that is, 
which must serve elsewhere and in another time, which must bind with 
thought the successive and immediate states of reality. The descriptive 
movement must thus fold under the curve of the Universe. From it will 
result an a posteriori post-experimental geometry, which will not have the 
value o f prediction that is allotted to an a priori  informative geometry, but 
which, in exchange , will be ready to record the discontinuous of the future 
and of being . Matter thus appears to us in the form of a contingency that 
is to some extent foliated. (Bachelard 1927,283)
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I will qualify this potentialising echo to Hermann Weyl as thetfy 
ical (and topical) mark of a great capacity for philosophical ‘ausci% 
tion’ responding to the ‘methods of auscultation used by % 
mathematician,’ as he will formulate it in his conclusion (p. 295). Wî  
is ‘auscultated’ here of the Riemann-Weyl relation, ‘is the rectifŷ  
allure of a thought. Nothing is more clear and more captivating than 
junction of the ancient and the new. The rectification is a reality, better̂  
is the true epistemological reality (the ‘constraint’ of Weyl), since it%■ 
thought in action, in its major dynamism’ (p. 300).

It would be worth taking the time to analyse once again the recj| 
ring presence of Hermann Weyl in La valeur inductive de la relativité̂  
1929. It is the Weyl who was creating a ‘true geometry of electrical chi 
acter ., in reciprocal relation with the purely mechanical characteroj 
General Relativity’ This is what he qualifies as ‘Weyl’s fusion’, as ti* 
attempted assimilation of the electrical with dynamics. Once againk 
draws from this an epistemological lesson: ‘Weyl’s method consist 
essentially in a widening of the axiomatic’ Then, in solidarity, Bachelafc 
points to the ‘geometry of gauges’:

Before the work of Weyl, the unity of length held the same valueafe; 
a closed cycle of transformations in space. That the postulate of 
integrability of length is now abandoned, and in the so constitute; 
pangeometry ( ‘the geometry of gauges’) it will be realised that theelet>; 
tromagnetic field is entirely definable by algebraic means, (p. 136-13T);

While he is conscious of the difficulties, he concludes nonetheless ‘ttei 
the sense of the attempt by Weyl must retain the attention of the epistt· 
mologist. This attempt is appropriate, believe me, to prepare this conch; 
sion: the mathematical unity that is constituted in an axiomatic of Phyp 
entirely orders the unity of the phenomenon’ (p. 137). It is in an efforts 
further defend Weyl in a debate with Zaremba, relating precisely to tk 
‘axiomatisation’ and to the definition of a rigid body in General Relativ
ity, that he insists positively on Weyl’s definition, ‘all in virtuality’ (pp 
175-175). Finally he approaches the ‘generalities/specifications’ dialec
tic in his unitary theory (p. 207), to finish with Weyl’s ‘axiomatic fusing1.; 
an ‘axiomatic’ in which he discovered ‘the trace of electrical potentials] 
(again his gauge theory). A reproduction of this ‘divided up’ economvj 
would be meaningful in this case, but I cannot give it here. ■
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b) W olfgang P auli o r the ‘Schola quantorum.925

One can hardly speak of the place of Pauli in Bachelard’s writing with
out pointing out that he was a man of wit and of W itz, that is someone of 
great ‘spirit.’ During a seminar, von Neumann demonstrated a theorem 
It the blackboard. Pauli cut him short, stating, ‘If doing physics was 
amply a question of demonstrating theorems, you would be a great 
physicist.’ It was his way of gently terrorising physicists all over the 
world, including Louis de Broglie or Heisenberg who literally fled from 
the conferences which Pauli attended. I have always thought that, in the 
context of philosophy conferences, there was a little of this type of 
behaviour in Gilles Châtelet. Those who knew him will understand.

a) Pauli in 4principle ’
Far Bachelard, Pauli belongs to the men of ‘Provisional Ontology’, that 
is the ontology of the physical entities of our time. In 1932, Pauli arrived 
on the scene, the scene of ‘spectres’. Book III, chapter XII of Pluralisme 
cohérent de la chimie moderne, entitled ‘From Location to Measure
ment: From Measurement to Mathematical Harmony in the Problems of 
Spectral Analysis’, constitutes the necessary threshold for understanding 
the decisive contribution of the Pauli Principle which is treated in detail 
m chapter XIII, ‘Quantum Description’ Bachelard argues that ‘the 
fundamental discovery of theoretical spectroscopy is the fact that the fre
quency of a line is presented mathematically in the form of a difference 
of two terms. This theorem cannot be contemplated enough’ (Bachelard 
1932, 202). Indeed, by clinging to the philosophy of science emerging 
mit of the work of Fresnel and Maxwell, ‘it was not clear how one could 
fest the necessity of forming a substructure from the notion of frequency’ 
(ibid.). It is an ‘algebraic symmetry’ which confirms the brilliant intuition 
of Walter Ritz: frequency is not the fundamental concept since it is a 
notion that can be constructed from terms that we will find thereafter 
inscribed in the nature of things. And yet, the number of necessary terms 
is smaller than the number of lines:

every procedure that restricts the means o f  explanation puts us on the track 
of the rationalisation o f  the experiment. There again, we see the pluralism 
of phenomena ordering itself while tending systematically towards its 
minimum. This system atic economy  -  quite distant in content from the 
occasional and pragmatic economy advocated by Mach -  sanctions the 
notion of the term which appears thus, in contemporary spectroscopy, as a 
notion that is both prim ordial and organic. . It is with terms that the con
cept derived from frequency, considered for such a long time as a quasi
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immediate notion, will be constructed. These are the terms that wetyjl· 
have to illuminate by schem as. It is the founding of their reality that wif 
occupy a whole generation of physicists, (pp. 204-205)

This will pass by the (incomplete) 'construction of Bohr’ and by % 
(relativistic) ‘rectification of Sommerfield’: it is the passage from tfei 
terms of Balmer to the terms of Rydberg.

Pauli will appear as the great organiser on the path of the ‘spectra’ 
He will to some extent bring coherency to the field. What opens up wif 
the discovery of the eponymous principle is an arithmetic system # 
description which would impose itself little by little on modem chem* 
istry. This general description is coordinated by a new principle, the Paul!· 
principle, ‘which suddenly illuminates with rational light the table of* 
elementary substances. The Pauli Principle creates an arithmetic coher
ence of the diverse’ (p. 215). And from the outset Bachelard situates 
action simultaneously within the framework of the ‘Schola quantorum 
and the ‘quantum arithmetic’ indeed, Bohr’s formula, which condense) 
the principles of quantisation relative to electrons, will be orientée 
towards a thought ‘in tabular form’ and to a summary formula explain
ing square formations. A cardinal enumeration of quanta is put in close 
connection with the ordinal numeration of the lines of the spectrum 
“‘We see clearly,” as Eugène Bloch (1930) points out, that quantum arith
metic “can provide a guide for the theoretical interpretation of tabulai 
formations [electron shells and maximum number of electrons]”’ (p. 
220).

Here, Bachelard draws three lessons directly from the workoi
Pauli:

1 ) The necessity and urgency to build a quantum metaphysics of a non- 
realist type (in the sense of the ‘philosophies of no’):

It could be objected that Bohr’s rule maintains a certain arbitrariness ans 
that it rediscovers in an artificial way the correspondence between the 
number of electrons and the number of elements in the diverse periods! 
It is difficult to see by what characteristic the electrons fix quanta. Be 
what brings this objection is the persistence of the fa lse  idea o f  the realir 
that the electron is directly qualified  by quanta. We suffer from  a deß. 
o f  m etaphysical thought. Indeed, it appears that we still lack a type«, 
thought which would explain, by a kind of group attribution, the distribih 
tion of quanta across different electrons. In other words, the pluralityo:| 
electrons and the plurality of quanta should be put in immediate corr 
spondence. It is in this way that we could perhaps interpret Pauli’s ri, 
directly, (p. 2 2 0 )
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2) The reinforcement of the 'rationalisations of the possible ’:

This rule [of Pauli’s] suitably interpreted leads to Bohr’s restrictive for
mula. It measures the real by fixing the impossible. This rule will not be 
illuminated by contemplating the particular nature of the electron; on the 
contrary it will be affirmed m athem atically  by considerations of general 
suitability, in a thought which encloses and system atises a plurality o f  con
ditions.

Once again, the rationalisation of the possible preceded and prepared  
the rationalisation of the real. (pp. 2 2 0 - 2 2 1 )

This is the extension, in quantum physics, of the previous conclu
sions of ‘relativistic gravitation’s’ detailed analysis. The Anti- 
substantialism and rationally constructive power {puissance) of a 
preparation of possibles which take the form of ‘mathematical 
harmonisation’ through the organization of virtual operations.

3) finally, opening on the ‘Philosophical problem of substantial har
mony’ (the title of the work’s conclusion):

It seems to us that we might, in a certain way, consider the experimental 
reasoning which is confirmed by means of a harmony [rational and no 
longer factual] as an extension  of inductive reasoning. It happens indeed 
to be an extension that overcom es c lasses , which postulates from one qual
ity to another quality, which is entrusted to a homography  of substances. 
Different elements, integrated in a series, receive this series like the reflec
tion o f an ideal unity. ‘The seriality can be considered as a particular case 
of continuity’ ., to the extent that we might speak of the continuity of 
a well-ordered discontinuous. Here, as in mathematics, the law of series 
precedes the structure of the elements, or at least, one only retains of the 
elements’ structure that which clarifies the construction of a general law 
facilitating the most audacious inductions. It can really be said that induc
tive thought passes from the phenomenon to the noumenon; in other 
words, there exists the impression of having found the reason of the induc
tion [Cf. Cassirer 1910, 290 & 292 [1923.]] Just as we’ve defined a 
complete induction, so too perhaps we might speak in this case of a 
complete construction, (p. 227 and p. 230)

Here, the ‘rational’ deciphering of the Pauli principle, by means of its 
‘epistemological substitution’ of a harmony of substances as reasoning, 
with a harmony as ‘fact’, still potentialises the categorical mechanism of 
the ‘inductive’, of ‘constructivity’ and ‘noumenology’ (of the non-Kant- 
ian type) elaborated previously in the field of General Relativity or 
through the analysis of ‘approximate knowledge’
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Two years later, in 1934, the pressing presence of Pauli became! 
erally ‘spectro- scopie' during the time of the The New Scientific Spirit 
Bachelard radicalises the quantum ‘cut’, and thus specifies and enricki 
its consequences for philosophical thought:

Instead of ascribing properties and forces directly to electrons, physic!) 
assigned quantum numbers and from the distribution of these number. 
deduced the (orbital) locations of the electrons within atoms and mole- 
cules. Notice, here, how realism suddenly evaporates: Number become 
an attribute, a predicate, o f substance [B .’s italics}. Four quantum nuir· 
bers are all that is needed to identify an individual electron. The math 
matics respects this individuality, moreover. In any given atom,! 
electron is allowed to take on exactly the same set of quantum numbers! 
any other electron. Two different electrons in the same atom must differ! 
at least one of the four quantum numbers. This is the philosophical mm 
ing o f the Pauli exclusion principle. It is clear that this principle contra- 
diets any attempt to argue that the quantum properties are substantia 
deeply ingrained in the substance of the electrons themselves, for the 
numbers are in a sense attributes in extension. (Bachelard 1934,79 [19% 
81; additional italics])

But the Pauli principle must be extended beyond the molecule,‘to 
all forms of matter’: ‘it follows that the organisation of matter is ilia 
sense synonymous with the quantum principle o f individuation of ! 
constituent elements. Wherever there is true organisation, it is appropri
ate to bring the Pauli principle into play. In philosophical terms, this 
principle entails systematic exclusion of the same, and systematic appeal 
to the other’ (p. 80 [82]). But it is the categorical characterisation cl 
chemical bodies which will consequently find another status: ‘Thus the« 
occurs a surreptitious transition from the corps chimique or chemical 
substance to the corps arithmétique in the technical sense of the term" 
A chemical substance or corps chimique is therefore a corpus of laws, an 
enumeration of numerical characters’ (ibid.).

The affinities with the future Lautmanian approach appear to us 
here to be particularly ‘elective’: ‘This marks the first step in the transi
tion from materialist realism to mathematical realism’ (ibid.).

Finally, the last great lesson for the philosopher of modem chem
istry, and the new task of the detailed study of quantum radicality:

The attribution of the four quantum numbers to each electron has to be 
desusbstantialised still further, however. The crucial point is that this attri
bution is actually statistical in nature; the need for a statistical justification
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of the Pauli principle is fairly clearly understood. Thus quantum arith
metic turns step by step into a kind of statistical arithmetic, (p. 81 [82-3])

In fact, it is the 'metaphysical abyss’ between the mind and the 
external world which appears less formidable:

It is even possible to conceive of a veritable displacement of the real, a 
purification of realism, a metaphysical sublimation of matter. The proce
dure is as follows: First transform reality into mathematical realism, then 
dissolve mathematical realism in the new statistical realism of quantum 
mechanics.. . Let me therefore sum up the supremacy of number over the 
thing and of probability over number in the following polemical formula: 
A chemical substance is but the shadow o f a number (Vombre d ’un 
nombre), (p. 81 [84; additional italics])

Such were the three discursive and principal stages of the schola 
ggmtorum.

ß) Pauli demonstrated by the *postulate of non-analysis.
In 1937, the year of Lautman’s Thesis, Bachelard further extends 
Wolfgang Pauli’s 'initiatory’ gesture, in the heart of a work which is 
central for any detailed comprehension of Quantum Mechanics: 
^expérience de T espace dans la physique contemporaine (1951). The 
aim of the work is to understand categorically (understood in the sense of 
a Kantian ‘categorical imperative’) -  then to implement in thought -  
Heisenberg’s inequalities. For Bachelard it is a question of performing an 
effective experiment (understood in this case as a permanent ‘thought 
experiment’) in the new quantum space, this is the programmatic mean
ing of the title. This is a cathartic and ‘non-Cartesian’ imperative that 
must absolutely be reckoned with:

Let us get a firm idea of this thought: what renders the description of the 
atomic field in the usual terms of space and time inadequate is that we 
neglect the correlation between geometrical and dynamic uncertainties. 
To neglect this correlation is to accept the Cartesian postulate of an 
exhaustive spatial analysis capable of achieving localisation at a point 
We call the postulate o f non-analysis the fundamental postulate of this 
non-Cartesian physics. (Bachelard 1951,42)

Three years later, Bachelard further refines his definition:

we made full use of the principle of Heisenberg, under the name of the pos
tulate o f non-analysis, the generalized function of which is to forbid the 
separation of spatial from dynamic qualities in the determination of the 
micro-object. In accord with this principle, the micro-object is presented
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as an object with two species. Correlatively, if we consider such 
specificity, we come to understand that an object statically localizê  
by ordinary intuition is wrongly specified, if one were desirous foraj: 
knowledge of the second degree o f approximation. To state it eveni%| 
differently, its entirely local specification is a distortion o f the dual speqp 
fication which is henceforth indispensable for the organization of mic&î 
physics In other words, the space o f  ordinary intuition in wfej 
objects find themselves is only a degeneration o f the functional spaceif 
which the phenomena are produced . (Bachelard 1940, 109 [ 1968,93-4]/

F o llo w in g  now  th e  ac co u n t o f  F .A . L in d e m a n n , The Physiĉ , 
Significance of the Quantum Theory (1 9 3 2 ), B ach e la rd  announces arl 
‘ex ten s io n ’ o f  the ex c lu s io n  p rin c ip le : ‘w e w ill show  th a t theappil 
cation  o f  the P au li p rin c ip le  n ec essa rily  fo llo w s fro m  th e  postulates 
n on -ana ly sis . T h is  d em o n stra tio n  w ill b rin g  a  tru e  coherence withquaL 
turn p lu ra lism ’ (B ach e la rd  1 9 51 ,61  ). W h a t fo llo w s is a  r igo rous demon* 
stra tion , w h ich  p roves to he foundational, for a  sim p lified  case (a set of j 
elec trons b ro u g h t to g e th e r  and  lo ca lised  on  a s tra ig h t lin e  segment,!) of * 
the P au li exc lu sion  p rin c ip le . I w ill le av e  th e  rea d e r  w ith  the  spéculatif 
jo y  o f  d iscovering  it in the tex t, pp. 6 0 -6 5 . W h a t is the  immediate aw? 
rational specu la tive  co n seq u en ce  o f  th is  d em o n s tra tio n ?

We witness the birth o f an ordinal arithmetic that no longer has quitet 
the same properties as ordinary cardinal arithmetic. This ordinal aritk 
metic designates objects as fundamentally different from the sole fact tha:i 
they do not appear in identical experiments For us, the electron is onh : 
a summary of experiments The sense of the exploration appears too»

. undeniable: it is necessary to go from the method to the entity, conto ? 
to realist instruction. (Bachelard 1951,65-66)

W hat is found  here  is the  idea  o f  a k in d  o f  ‘in d u c e d ’ and  ‘provisional : 
ontology.

7 ) P au li & his ‘m etaph ysica l p a r tic le . s:
T he referen tia l and ‘sp e c tra l’ re tu rn s o f  P au li co m e to  an  end in 1951 j 
w ith  V a ctiv ité  ra tionaliste  de la  ph ysiqu e  con tem pora in e , an ending 
m arked  by the arrival o f  a  ‘p h an to m ’

L et us recall a bit o f  h istory . A s o f  1930, B o the  and Becker bom-J 
bard  bery llium  w ith  alpha  partic les (a lready  iden tified  by  Rutherford)! 
issuing from  po lon ium  and d iscover tha t a very  energetic  neutral radia-1 
tion is em itted . Two years la ter, F rederic  Jo lio t and  Irene Curie dcf 
the experim en t again  and are able to specify  tha t th is rad ia tion  is com-l 
posed o f  neutral p a rtic le s  capab le  o f  fo rc ing  pro tons ou t o f  the nuclei off
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paraffin. The sam e y ea r (1932 ), C hadw ick  identified  the nuclei as p rac ti
cally identical to  the  p ro ton  and  ca lled  them  neu tron s  in m em ory o f 
Rutherford, w ho had  p red ic ted  th e ir  ex istence .

Protons and n eu trons w ere  then iden tified  as tw o d ifferen t states o f 
the same particle, the  n u c le o n , w h ich  appeared  som etim es w ith a positive 
charge (the p ro ton ), som etim es w ithou t charge (the neutron). Its great 
characteristic, w hich  w as new  at the tim e , w as its in s ta b ili ty . This 
hypothesis, due to C h ad w ick , w as p roposed  as o f  1935, but w as only 
proven in 1948 by  S n e ll, and  w as m ade defin itive in 1950 by R obson. It 
could then be iden tified  w ith  the  ß -d is in te g ra tio n  o f  nuclei d iscovered  in 
1900, and considered  the resu lt o f  an in te raction  (d ifferen t from  the e lec
tromagnetic in te rac tion ) for w h ich  F erm i had  p rov ided  the theoretical 
foundations in 1934. N ow , in th e  m ean tim e, Pauli exam ined  the dynam 
ics of ß -d is in teg ra tio n  and no ted  tha t n e ither energy, nor m om entum  
were conserved. It th en  seem ed  p robab le  to h im  that a n eu tra l a n d  m a ss
less h ypothetical p a r t ic le  m ust carry  w ith  it, after the reaction , the m iss
ing quantities. T h at w as the theo re tica l hypo thesis o f  the n e u tr in o , v, 
which would only be d isco v ered  21 years later, in 1956, by R eines and 
Cowan.

In 1951, B ache lard  thus raises w ith  new  freshness his approxim al- 
ist and m etaphysical rec tifica tion  program :

This corpuscle appears highly appropriate to sensitise the philosophical 
nuances of applied rationalism. In this connection, indeed, many philo
sophical questions can be posed: Does the neutrino correspond to a simple 
working hypothesis? Is this a convenient entity, a convention useful to the 
expression of the facts? If it is a convention, why is it so generally 
accepted? Or, can it be hoped that a new type of experiment, an increased 
sensitivity in detectors will bring evidence of its reality? The philoso
pher must find there true lessons for the spirit o f metaphysical finesse. 
(P-118)

Wolfgang Pau li is aga in  at the cen tre  o f  an im provem ent, an elab 
oration of p h ilo soph ica l th ough t, the in tensify ing  consequence o f  a 
similar gesture inaugu ra ted  in the pro toco ls o f  his p rincip le and con tin 
ued in the fo llow ing  w ords: 'co rp u scu la r ph ilosophy  [takes onj then a 
great variety w hich  will be approached  by the avenue o f theories o r by 
the examination o f  expe rim en ts  T he co rpuscle  thus seem s to us the  
very being o f  an  a p p l ie d  r a tio n a lis m . C orpuscu lar ph ilosophy cannot be 
understood w ithou t an essen tia lly  transactional philosophy, w ithout a 
philosophy o f  tw o  m o v em en ts’ (p. 127). Pauli m ade it possib le 'to  spec
ify how a p artic le  tha t is no t ye t p h y s ic a l , a particle that the rea list m ust

95



CONTI NENTAL G E NE A LO G IE S

hold as m etaphysical, is however a particle indispensible ίο the ration̂  
organisation of experimental thought’ (p .118). Since this time, Pauli 
been one of the great ‘constructors’ of quantum mechanics. He willufe 
mately take part in the ‘interpretation of the notion of spin into an org& 
isation of operators’ (p. 178). His mechanics will have started % 
restarting in another a lgebrism , in an algebrism that, this time, is g 
search of its reality’ (p. 176). Quantum chemist, traditional alchemist,k 
will have taken part ‘in opening a rationalism that is multiple, beyond th 
rationalism of identity.’28

Let us finish with a wish, the surreal wish of Gaston Bachelard:

[W]e should like to give the impression that it is in this area of dialectic! 
surrationalism that the scientific mind dreams. It is here and not elsewhere 
that anagogical dreaming comes into being, dreaming which ventures it 
thought, dreaming which thinks while it ventures, dreaming which seè 
an illumination of thought by thought, which finds a sudden intuitier 
beyond the veils of informed thought.

In our estimation, anagogical dreaming under its present scientii 
impulse, is essentially mathematical. It aspires to more mathematics^ 
to more numerous, more complex, mathematical functions. Whenonefd 
lows the efforts of contemporary thought to understand the atom, ok 
comes close to believing that the fundamental role of the atom is to oblifj 
men to do mathematics. De la mathématique avant toute chose .. Eipoie 
cela préfère Timpair In short, the ars poetica  of physics is done wit
numbers, with groups, with spins, to the exclusion of monotonous distrfr 
utions, repetitive quanta, and without obstacle to the working out of any 
process whatever. What poet will arise to sing of this panpythagorism,# 
synthetic arithmetic which begins by giving its four quanta, its four figure 
number to every existing thing as if the simplest, the poorest, the mos 
abstract of electrons already had, of necessity, more than thousand facet 

The atom is a mathematical society which has not yet told us its secret; 
(Bachelard 1940,49-50 [1968, 32-3])

Referential continuities which take part in the power of the contint 
uum of thought. A single Bachelard, but a prismatic Bachelard, forwhot 
scientific, epistemological and metaphysical perspectivism (the placed 
his Nietzschean  affinities) constitutes the differential unity of a though 
on the move. To surprise the sciences in their successive approximation 
that is what makes the jubila tory surprise o f  thought.
Translated by Simon Duffy and Stephen W. Sawyer
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Notes

1 Quotation from the private correspondence of Jacques Lautman addressed to 
us, as acknowledgement of the constraint.

2 And obviously of Alain Badiou! Ί  must declare here that the writings of 
Lautman are well and truly admirable, and that what I owe them, even in the 
foundational intuitions o f this book, is without measure’ [Additional italics] 
(Badiou 1988, 522, note to pages 18 and 19). It is appropriate to add the fol
lowing occurrences: Badiou 1992, 158 n. 26; Badiou 1989, 83-84 [1999, 
100-101]; Badiou 1997, 144 [2000, 98]; Badiou 1998a, 13, 14, 17; Badiou 
1998b, 56. [Trans, reference to the English translation editions are included, 
where available, in square brackets after the French.]

3 Deleuze 1968, 212-213, 230-238 [1994, 163-4, 178-83, 323-4]. Actually, 
Lautmanian references traverse the whole Deleuzian oeuvre. For example: 
Deleuze 1969 ,32 ,69 ,127  [1990a, 54,337,339]; Deleuze and Guattari 1980, 
462,606-607 [ 1987,485,556 n.39] ; Deleuze 1986b, 85 [ 1988b, 78] ; Deleuze 
1988a, 136 [1993,57].

4 For a clarifying reference to the concept of ‘problem’ in Deleuze, particularly 
in the relation of ‘analogy in [the two] tasks’ of science and philosophy, cf. 
Deleuze and Guattari 1991, 126 [1994,133].

5 In connection with George Bouligand, this is what I will readily qualify as an 
‘incidental revelation’ of his links with Jean Cavaillès. In the reproduction of 
a course manuscript, which have been thoroughly undervalued, the author 
announces in th & foreword: ‘This booklet joins together my notes, drawn up 
in preparation for six conferences, held in March-April-May 1943 with the 
students of the Faculty of Arts in Paris, on the invitation of Professor Emile 
Bréhier, Director of Studies in Philosophy Some students will certainly 
feel the desire to go into the questions [treated here] in depth. The theses 
of Cavaillès will bring to them, in addition to their rich substance, very broad 
bibliographical information. Note. -  the study of this text must precede that 
of the theses of J. Cavaillès. I took advantage in the drafting of this booklet 
to specify, on some points, my background research on the structure of 
theories’ (Bouligand 1948).

6 [Trans, all citations from Lautman are from Lautman 1977, unless otherwise 
indicated.]

7 Here, what Lautman resumes with the term ‘Idea’ that is, in a better 
translation of the Greek, with the concept of ‘Form’ should rather signal the 
operational, ‘schematising’ and ‘structuring’ concept of differential form  
according to the so-called theory of ‘p-form ’, rather than an ‘Idea’, scholarly, 
traditionally and falsely understood as a Platonic hypostasis.

8 Châtelet 1993 [2000]. Cf. in particular, Chapter 4 ‘Geometry and Dialectic’
§ 3 ‘To articulate and generate’; § 5 ‘The intensive/extensive dialectic’ On 
Lautman, see p. 27 [6 ].

9 Let us express here provisionally the hypothesis of a link to the homology
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cohomology relation, and in particular to Whitney’s theorem showing the 
equivalence or the ‘morphism’ of two theories (or operations).

10 Note that he will assert this ‘identification’ until the end, particularly in rela
tion to the philosopher: ‘Hyppolite says to me that to pose a problem is to 
conceive of nothing; I respond to him., after Heidegger, that it is to delimittk 
field of the existant’ -  Response to Hyppolite at the meeting of the Société 
française de philosophie, 4 February, 1939.

11 It is necessary here to compare the metaphysics of another mathematician, 
that proclaimed and shared by his friend André Weil: ‘Nothing is more 
fertile, as all mathematicians know, than these obscure analogies, these con
fusing reflections of one theory on another, these furtive caresses, these inex
plicable disagreements; nothing else gives quite as much pleasure to the 
researcher. The day will come when illusion will dissipate; the presentimen! 
change into certainty; the twin theories reveal their common source before 
disappearing; as the Gita  teaches, one reaches knowledge and indifference at 
the same time. M etaphysics became m athem atical, ready to form matter from 
a treatise whose cold beauty could no longer move us’ (1979,408).

12 This is the title of one of Lautman’s very last papers [1942], first printed ina 
separate booklet in the ‘Actualités Scientifiques et Industrielles’ in 1946, 
before joining other contributions in the project initiated in 1942 by François 
le Lyonnais, Les grands courants de la pensée m athém atique , in 1948 
(Le Lyonnais 1971) [New edition thanks to the initiative of our friend, the 
mathematician Bernard Teissier, Paris: Hermann, 1998].

13 ‘Each physicist makes daily use, in a more or less explicit way, of these 
notions of symmetry; so we are very much surprised not to see them stated in 
any treatise on Physics. These notions are however fundamental and, stated 
from the very beginning, they facilitate much of the pupils’ comprehension 
of phenomena. Many demonstrations are indeed immediately simplified 
when one utilises the concepts of symmetry’ (Curie 1908,150).

14 On this status of the ‘literal metaphor’ {métaphore à la lettre) cf. Alunni 
2001,154-172.

15 Cf. on this essential (and transdiscipl inary) category the remarkable article of 
Gel’fand and Manin 1978, 126-178. This text will be published in a collec
tion that I devote to Manin in my series ‘Pensée des sciences’, Editions-Rue 
d’Ulm.

16 [Trans. Grothendieck 1986. The first quarter of the second unpublished 
manuscript (1500 pages), in circulation in 1986, is available at 
http://mapage.noos.fr/recoltesetsemailles.]

17 ETH  =  Eidgenössische Technische Hochschule or Ecole Polytechnique 
Fédérale of Zürich (Swiss).

18 Walter Ritz, the Swiss physicist who died at 32 years of age (1878-1909),and 
who taught in Zürich and Göttingen, is quoted by Bachelard from 1931, as a 
herald of the ‘new physics’: ‘Here it is that contemporary Physics brings us
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messages from an unknown world. These messages are written in ‘hiero
glyphics’ , following the expression o f Walter R itz’ (Bachelard 1970, 12).

[9 1 return here to the dialogue between Marc Schützenberger and Alain Connes 
in Connes, Lichnérowitz and Schützenberger 2000. Connes, in his recent 
conferences, has consistently insisted on the ‘magic’ of this link between the 
‘spectral’ characteristic o f an abstract space (H ilbert Space) and concrete 
‘spectroscopy’ in Physics. He returns this paradigmatic node of contempo
rary physico-mathematics to the ‘phantom’ of Riemann (to his ‘spectre’ to 
some extent) and to his revolution o f a geom etry  literally ‘made’ for physics. 
We will see how Bachelard very precisely pointed to this in Riemann and 
Hermann Weyl.

20 Cf. on this point, Castellana 2005, in Alunni 2005, treating the School o f  the 
ETH and the su rra tion a list pro g ra m m e .

21 Cf. Alunni 1999 ,73-110 .
22 Bachelard 1927 [Reprinted 1969]. Here, in connection with this founding 

work of the whole oeuvre, is what for example Gilles Deleuze says: ‘Gaston 
Bachelard’s book. E ssai sur la connaissance approchée  (Paris: Vrin, 1927) 
remains the best study of the steps and procedures constituting a whole rigour 
of the inexact, and o f their creative role in science’ (Deleuze and Guattari 
1980,455 n. 27 [1987, 555 n. 33]).

23 Cf. Alunni 1999, passim .
24 On all these Weylian questions, cf. the now ‘classic’ work of Erhard Scholz, 

and in particular Scholz 2001. See also Ria 2005, in Alunni 2005, treating the 
School o f  the ETH and the surrationalist program .

25 ‘the discipline of quantum theory -  the schola quantorum ’ (Bachelard 1984, 
84).

26 [Trans, corps arithm étique  translates into English as ‘field of rational num
bers’, which unfortunately ruins the play on words.]

27 On the Bachelardian ‘anticipation’ of ‘Feynman’s paths or diagrams’ (Trans. 
Feynman’s path integrals) starting from the Buhlian concept of the ‘non- 
analytic trajectory’, cf. Alunni 2001, 168-169.

28 Bachelard 1953,224, last sentence of the text.
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Cavaillès and the historical 
a priori in Foucault

David Webb

6

in the Preface to The Order of Things, Foucault recalls his laughters 
reading Borges’ description of a Chinese encyclopedia in which ammi 
were classified according to whether they looked like flies when sees 
from a distance, were embalmed, innumerable, tame, sirens, or had jug 
broken the water pitcher (Foucault 1970, xv). He also recalls that his 
laughter was tinged with unease, which he attributes to his inability to 
imagine how anyone could arrive at such a classification and to what son 
of world it could belong. Laughter is provoked not by the juxtaposition 
of unlikely classes in itself, but by the fact that they exist in the absence 
of any possible ground for their appearance. There is no space in whicl 
animals that are 'frenzied’ and 'drawn with a fine camelhair brush’ p  
co-exist; and the impossibility of their co-existence in the absence# 
such a space draws our attention to its presence in the overwhelmu| 
majority of cases; usually, things find their places in a common space# 
classification. But where do such spaces of classification come from?As 
Foucault points out, when we say that a cat and a dog resemble each other 
less than two greyhounds do, we appeal to a certain coherence. Genet- 
ally, the origin of this order has been sought either directly in the thing 
perceived, or in an a priori scheme that passes itself off as necessaiy 
Borges reminds us that neither option is satisfactory; order, for that is 
what Foucault is considering here, is neither simply given along with 
things, nor is it a fixed ideal form that makes experience possible.1 fe 
independence from both perception and the transcendental a priori grants 
order the possibility of a history, and it is this history that The Order § 
Things sets out to examine. However, its independence from perception 
and the transcendental a priori also raises the question of how we are# 
understand order, and above all how we are to conceive of the dimension; 
in which it occurs. Insofar as order is closely aligned with the historical!
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a priori, the question can be reformulated in terms of history. If order is 
to be discovered neither in things nor in the transcendental a priori, any 
appeal either to history or to the a priori must be problematic. To speak 
of the historical a priori therefore seems like a deliberate provocation: 
tow can there be an a priori that is not transcendental, and a history that 
ts not of things and wordly events?

Foucault clarifies the conception of order that interests him by con- 
teasting it to two ‘regions’ (Foucault 1970, xx). On the one hand, there 
are the ‘ordering codes’ that determine how those within a given culture 
see and speak, and what values they share. These codes ‘establish for 
every man, from the very first, the empirical orders with which he will be 
dealing and within which he will be at home’ (p. xx). On the other, there 
m  scientific and theoretical reflections on these codes by which we 
come to ground them and to account for them. When Foucault proposes 
that neither of these two regions, and the reflections on them, are as 
fundamental as they presume, it would be easy to misconstrue order as 
occupying a higher level again; as if it were a code that somehow stands 
above both critical philosophy and the human sciences. But, as we shall 
see, this would replicate the problem of foundation that Foucault wishes 
to address, leaving the relation between philosophy and the human 
sciences untouched and merely re-inscribing them within a more general 
or higher order discourse that would ground them both. Foucault’s intent 
is rather to disrupt their relation in order to account for a variability of the 
codes that neither discipline can adequately describe.

Insofar as order lies ‘between the already “encoded” eye and 
reflexive knowledge’ (Foucault 1970, xxi), it plays a dual role with 
respect to the empirical codes and the theoretical reflections on them; at 
once fundamental and transformative. However, as Foucault notes, his
torically speaking the ordering codes to which he refers have been traced 
back either to the empirical order of things or to the transcendental struc
tures of consciousness. If order falls between codes and the reflection on 
them, it therefore works a twofold disruption; mediating both between 
the empirical order of things and the human sciences, and between the 
transcendental structures of consciousness and transcendental or critical 
philosophy. Each form of reflection is distanced from its object by this 
intermediary domain whose very existence remains unknown to them, 
and which exposes the codes and their respective forms of determination 
to a variation for which they cannot account. When a culture finds itself 
‘imperceptibly deviating’ from its current empirical orders, it is con
fronted with the realisation that the orders it lives by are neither fixed in
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things nor determined by a general principle that can be brought 
view in a theoretical reflection. History springs up by slipping the bondi 
on either side. And with this history comes the possibility of critiquê  
a creative engagement that opens a future that cannot be anticipated^ 
reflection on the existing state of things and the codes by which weknoi 
them.

It is important to recognise that order in this sense is not a strategic 
invention on Foucault’s part. He clearly states that ‘between the used 
what one might call the ordering codes and reflections upon order itsel, 
there is the pure experience of order and of its modes of being’ (Foucant 
1970, xxi). These lines might be taken to imply that Foucault is provid
ing an ontological account of order here, as though there were order as 
such over and above its particular configurations. However, one should 
be wary of such a reading. It is hard to substantiate elsewhere in 
Foucault’s work, and there is no real suggestion anywhere of just how 
such an ontology of order would work. Indeed, given that order does not 
provide the condition for the possibility of experience as such, but rather 
the condition for the actuality of this or that particular experience, one 
must be cautious of any supposition that order can be given as such or as 
a whole. As I will show in this essay, for Foucault, the experience of 
order must be an experience of the specific transformations that charac
terise order in its historicity.2 To substantiate this claim will involve 
setting his interpretation of the historical a priori and of archaeology 
apart from phenomenology (at least in its Husserlian and Heideggerian 
forms). This is not to deny the importance of phenomenology for the 
development of this aspect of Foucault’s work. As several recent studies 
have pointed out, Foucault’s debt to phenomenology is considerable, not 
least for the term ‘archaeology’ itself.3 One might also suggest the impor
tance for Foucault of Husserl’s demonstration that a formal ontology 
can be characterised by an historical development that is entirely non- 
dialectical. This aspect of Husserl’s understanding of formal logic 
reflects his interest in mathematics and science, which underwent radical 
change in the late nineteenth and early twentieth centuries, and it is from 
another philosopher of mathematics, Jean Cavaillès, that Foucault draws 
most inspiration. In works written during a short and intense period prior 
to his death in 1944, Cavaillès developed a singular interpretation of the 
historical character of mathematical thought. This included a trenchant 
critique of Husserl, in which he argued that no philosophy still rooted in 
subjective consciousness could adequately account for the structure and 
movement of modern mathematics.4 It is his description of mathematics
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aaa formai discipline whose development, independently of both empir
ical reality and transcendental consciousness, is driven by the internal 
demands of a given problematic that most decisively prefigures Fou- 
oaalt’s work. In a parallel sense, Foucault regarded phenomenology as 
unable to account for the condition of thought operative in contemporary 
culture. Nor could it underpin the critical approach of archaeology that 
Foucault developed to address order and the historical a priori as he 
understood them. To grasp Foucault's deployment of these ideas, we 
fterefore have to clarify the sense in which order is an ‘intermediary’ 
region between the ordering codes and the reflection on them. We must 
also understand the form of development that characterises order and the 
nature of what Foucault calls the experience of ‘pure order’ This will 
allow us to see why the introduction of order and the historical a priori 
does not leave Foucault caught up in the same problems relating to 
the determination of experience that he sought to avoid by following 
Cavaillès’ break with phenomenology in the first place. To approach 
these questions, let us go back to The Order of Things, but this time to the 
chapter ‘Man and his Doubles’

The analytic of finitude

When natural history, the analysis of wealth and the reflection on lan
guage became biology, economics and philology respectively, man took 
up an ambiguous position as both an object of knowledge and the subject 
that knows (Foucault 1970, 312). In their early phases, these new 
sciences sought to mine the truth of their object of study from its own 
depths; life was to be defined from itself, labour to illuminate the mean
ing and conditions of exchange, profit and production, and language to 
yield up the conditions of grammar and discourse (p. 312). Order 
belonged to the things themselves. Yet as the laws of life, production and 
language close in upon themselves, the figure of man is revealed in all its 
ambiguity. It is only in terms of his body, works and his language that he 
can be known at all, yet the sciences on which his disclosure depends 
themselves rely on man as a living being, and above all as the one whose 
labour is exchanged for profit and whose desires and thoughts language 
expresses. At the very point where the laws of life, production and 
language seemed to exclude man, he reappears at their heart; and at the 
very point where man seemed most fully determined by these laws, he is 
revealed as their condition. On the one hand, the articulation of man 
inevitably has recourse to knowledge and language that precedes his
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existence, whereupon he is reduced to an anterior exteriority (a body,a 
capacity for labour, a language) and the growth of the positive sciences 
brought this finitude into ever sharper focus. But on the other hand, these 
very determinations of man’s finitude themselves depend on the figure of 
man, and above all on the finitude of this figure. Empirical positivities 
rest on the finitude of man understood not as a limitation, but as ‘a fun
damental finitude which rests on nothing but its own existence as a fact, 
and opens upon the positivity of all concrete limitation’ (p. 315). The 
determination of this fundamental finitude calls for an analytic of man’s 
mode of being. Here, man is revealed as a transcendental-empirical 
doublet, ‘since he is a being such that knowledge will be attained in him 
of what renders all knowledge possible’ (p. 318). Empirical sciences, 
such as neurophysiology, history and linguistics, depend on the human as 
an object of study. In this sense, they presuppose the existence of a truth 
to be discovered. But they also presuppose that discourse involves a com
mensurate truth, such that it can effectively communicate the truth of 
what it describes. Again, Foucault traces the dilemma faced by modem 
thought: either the truth of the object determines the truth of the discourse 
that describes it, leading to positivism, or the truth of the philosophical 
discourse constitutes the truth of the phenomenon, leading to a form of 
discourse that Foucault calls ‘eschatological’; that is, ‘the truth of the dis
course constitutes the truth in formation’ (p. 320). Far from setting the 
two modes of thought apart, Foucault presents them as indissociable 
from one another. Each alone is incomplete and calls forth the other, yet 
any attempt to combine them condemns discourse to a pre-critical 
naïveté. Modern thought has sought to break open this bond by discov
ering ‘a discourse whose tension would keep separate the empirical and 
the transcendental, while being directed at both’ (p. 320). Such a dis
course would have to illuminate the ground of both the empirical human 
condition and the capacity of the human for knowledge. Foucault sees 
this complex role as having been performed by ‘the analysis of actual 
experience’ (p. 321), which is situated in a Kantian framework as an 
intermediary between a ‘quasi-aesthetics’ and a ‘quasi-dialectics’ and 
grounds each of them in a theory of the subject that is recognisably 
phenomenological.

Actual experience is, he continues, ‘both the space in which all 
empirical contents are given to experience and the original form that 
makes them possible in general and designates their primary roots’ 
(Foucault 1970, 321). In spite of, or perhaps because of, the closeness 
with which the analysis of actual experience traces the contours of man
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as a transcendental-empirical doublet, it appears to contest positivism 
and eschatology, to suppress the naivete of empirical discourse and 
‘restore the forgotten dimension of the transcendental’ (p. 321). It can do 
this only insofar as, beneath the division between positivism and escha
tology, it limits actual experience as a third alternative, ‘an ambiguous 
stratum, concrete enough for it to be possible to apply to it a meticulous 
and descriptive language, yet sufficiently removed from the positivity of 
things for it to be possible, from that starting point, to escape from that 
naïveté, to contest it and seek foundations for it’ (p. 321). In this way, it 
opens up communication between the body and culture, between nature 
and history, but only ‘on condition that the body, and, through it nature, 
should first be posited in the experience of an irreducible spatiality, and 
that culture, the carrier of history, should be experienced first of all in the 
immediacy of its sedimented significations’ (p. 321). What concerns 
Foucault is that the analysis of actual experience, or phenomenology, is 
in this way privileged twice over; the irreducibility of space secures its 
radicality, and the immediacy of experience safeguards its evidential 
basis. As a consequence, while the analysis of actual experience succeeds 
in bringing to light the dimension underpinning both positivism and 
eschatology, its own claim to be fundamental exerts a conservative influ
ence on the very structure it apparently calls into question. Foucault 
recognises that in order for thought to shake off this constraint and move 
freely beyond the division between transcendental and empirical forms 
of inquiry, the irreducibility of the space of actual experience and the 
immediacy of its evidence must both be called into question.

In The Order of Things, Foucault provisionally suggests that 
linguistics can take on this role. Alongside the other human sciences, it 
is first amongst equals, as it were, by virtue of the fact that it deals with 
the common medium through which they are all articulated. Moreover, 
as a study of ‘pure language’ (Foucault 1970, 381) independently of 
the speaking subject, it engages in an order of positivities exterior to 
the human, thereby opening the question of finitude without turning 
to the depths of the human. Linguistics suggests the possibility of re-writ
ing the analytic of finitude without the human. Rather than grounding 
both the transcendental and the empirical in a fundamental articulation of 
human finitude, it permits an analysis of the rules of formation that make 
the positive sciences what they are in their specificity, with regard both 
to their objects and to the discourses that deal with them. In this way, the 
framework that led modernity back to the analysis of actual experience 
is broken down, and the demand for an analysis that establishes the
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conditions under which knowledge becomes possible is satisfied uq 
quite different way; not by a determination of the conditions for thej% 
sibility of knowledge as such, but by an identification of the condition 
under which specific concepts, objects and discourses arise. Howev§ 
linguistics alone cannot supply all that Foucault perceives as necessaî  
to overcome the framework of thought secured by the figure of % 
human. Its historical concern with the possibility of formal language 
reflects its particular interest in dealing with the content of the positive 
sciences, but in pursuing such an interest it has tended to neglect the 
question of language as such, which would be the true analogue of the 
displaced inquiry into the human. In this respect, literature, and in par- 
ticular the tradition of French modernism from Mallarmé to Artaud, 
Roussel and Blanchot, has been far more successful in raising the ques
tion of the being of language. Foucault therefore needs to couch hi$ 
analysis in terms of a combination of linguistics and literature; themes 
that do indeed feature prominently in his work. But he turned to language 
in order to establish, and displace, the conditions under which the frame
work of knowledge in modernity first arose and still continues to hold 
In addition, he sought to determine a method for a critical discourse 
capable of dealing with such conditions as they are modified in the den
sity of historical and theoretical practice. This is where we meet the limit 
of what can be achieved by the discipline of linguistics, even when sup
plemented by literature. For in its deployment of formalism, linguistics 
is indebted to conceptions of form and the formal to which it contributes, 
but which it did not conceive alone. When Foucault writes that the return 
of language is itself encompassed within the modern episteme that 
emerged at the beginning of the nineteenth century, this is only in part to 
say that language was always important and had merely been awaiting its 
moment. It is also to recognise that the new sciences of biology, eau 
nomics and philology all harboured a nascent formalism. So too, of 
course, does mathematics, which is particularly significant here, not 
through any naïve sense of its being a fundamental science, but simply 
because it went further than any other discipline in the articulation of for
malism, the nature of its objects, its historical development and the mode 
of thought appropriate to it. This is why Foucault is so interested in the 
relation between the human sciences and mathematics, which extends the 
promise of ‘a second critique of pure reason on the basis of new forms of 
the mathematical a priori' (Foucault 1970,383). It is clear that Foucault 
believes this mathematical a priori may provide the tools to develop an 
analytic to supplant the analysis of actual experience in its relation to
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wkt Foucault called the ‘quasi-aesthetics’ of empirical knowledge of 
! ttehuman and a ‘quasi-dialectics’ of what makes it possible (p. 320-1). 

Hus confidence in mathematics may seem at first to conflict with 
Foucault’s turn to linguistics and literature, but any such conflict is in fact 
superficial. Each move arises in response to the same impasse in the 
determination of the conditions of knowledge and Foucault draws on 
both mathematics and literature in describing the real character of the 
substratum between positivism and eschatology.

Not only did mathematics blaze the trail with regard to the devel
opment of formalism in the nineteenth century, it did so in a way that 
precisely matches Foucault’s reading of the state of knowledge in moder
nity. The advent of non-Euclidean geometry and the emergence of math
ematical analysis both lent weight to the argument that mathematics 
could be grounded neither in empirical experience nor in the transcen
dental structures of consciousness. As a consequence, mathematics could 
follow neither of the routes that Foucault identifies as open to the human 
sciences in their own deployment of formalism; namely, to discover the 
‘law’ of things in the things themselves or in the transcendental struc
tures of consciousness. In this way, the framework of Kantian thought, 
within which the human sciences had themselves taken shape, was sub
jected to a serious challenge. Moreover, the nature of this challenge was 
itself subjected to scrutiny in the early twentieth century when the foun
dation of mathematics became so problematic that it demanded a 
response. This is the context in which Cavaillès worked and in which he 
came to a singular view on the formal character of mathematics. This 
view will help us to see how Foucault addresses the role of the analytic 
of finitude, departs from phenomenology and sets in place a formalism 
indebted to the philosophy of mathematics.

Cavaillès

Cavaillès’s work can be understood as a response to the question, first 
raised by Poincaré, of how it is that mathematics can exist at all as a 
deductive science (Poincaré 1952, 1). If the force of its reasoning were 
derived from an order embedded in the world, then mathematics would 
be an empirical science, not a deductive one. Such a view was generally 
discounted, not least because the development of non-Euclidean geome
try and mathematical analysis had split mathematical concepts and 
objects away from the world of our experience. On the other hand, if 
mathematics were reducible to a set of a priori laws, then it would
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amount to little more than a tautology. Moreover, in order not to lose its 
purchase on the natural world, it would either have to claim that its basic 
rules enjoyed a fundamental and invariable status, or that they were® 
turn grounded in the structure of consciousness. Either way, it would be 
hard to explain the capacity o f  mathematical thought to create new 
concepts and objects. His recognition of the urgent need to account for 
this creativity led Cavaillès to reformulate Poincaré’s question. For 
Cavaillés, one had to explain how mathematics could be at once a 
deductive science and historical. In a series of closely argued analyses, 
Cavaillès examined the available alternatives in the philosophy of math
ematics, and rejected each of them in turn. Logicism, intuitionism,the 
Kantian solution and ultimately phenomenology, all seek a foundation 
for mathematics outside the discipline itself, in logic or the transcenden
tal structure of consciousness. For Cavaillès, such appeals not only 
undermined the autonomy of mathematics, they also failed to deliver 
what they promised, claiming as a secure foundation what in Cavaillès’ 
view remained no more than a contingent point of departure. For 
example, logicism exhibits a naive realism in its definition of a set of 
elementary signs and the rules governing their organisation, and 
phenomenology appeals to an ideal of evidence that Cavaillès describes 
as merely the point at which thought abandons its effort. He was more 
sympathetic to the idea of mathematics as a practice of demonstration; 
that is, to the break with intuition initiated by Bolzano and continued in 
Hilbert’s conception of an axiomatic foundation. Treating mathematics 
as a conceptual practice that does not depend on the conditions of con
sciousness avoided the appeal to a foundation external to mathematics. 
Moreover, the Hilbertian conception of the sign as a constructed object 
without any further representative function underpinned the indepen
dence of mathematical activity from empirical reality (a point to 
which we shall return shortly). However, Cavaillès believed that the 
legitimacy of an axiomatic basis was fatally damaged by Gödel’s 
theorem of incompleteness. It would be fair to say that in keeping the 
problem of foundation alive, this served to reinforce Cavaillès’ convic
tion that mathematics could not be reduced to a single fixed foundation 
without compromising its capacity to generate new concepts and objects. 
The challenge he faced was therefore to allow for this capacity without 
compromising the necessity of mathematics as a deductive science. In 
order to explain the nature of his response to this challenge, and its 
relevance to Foucault, I shall look at his essay O n Logic and Theory of 
Science’ (Cavaillès 1970).
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Cavaillès begins O n Logic and Theory of Science’ by recalling 
Kant’s observation that to look for the laws of logic in psychology would 
be no better than drawing morality from life. Instead, Kant proposes that 
the rules governing the thought be found in the understanding, where
upon the task is to determine how the understanding itself proceeds. In 
this respect, Foucault’s identification of the role played by the analytic of 
finitude in modem thought is no more than an acknowledgement of the 
influence of Kant, not least on phenomenology in both its Husserlian and 
Heideggerian forms. Cavaillès himself agrees with Kant’s rejection of a 
general ontology abstracted from experience, but he also refuses to 
accept Kant’s alternative that the rules of thought must therefore be 
written in consciousness. The demand that one find the rules either in 
experience, thereby surrendering any notion of necessity, or in con
sciousness, is in Cavaillès’ view based on a false analysis of the event of 
synthesis. It is a mistake, he argues, to suppose that synthesis can work 
on a pre-given multiplicity. However, neither should we assume that this 
unity pre-exists the act of synthesis. In other words, Cavaillès thinks 
Kant was wrong to regard the ground of the formal unity of our experi
ence as pre-existing the act through which that experience is constituted. 
The tendency to do so arises, he suggests, from the separation between 
form and matter in the light of which the question is addressed. This 
separation encourages a conception of formal logic as an ‘inner structure’ 
that remains true for each and every possible experience (Cavaillès 1970, 
361). Analysis thus falls apart into two halves: on one hand, it addresses 
itself to the ‘object as such’ (no longer abstracted from experience as in 
general logic); on the other, it leads to an endless and empty repetition of 
the necessity for thought to agree with itself (p. 361). Either way, all pos
itive content is lost as priority is given to the formal conditions of the 
unity of experience, whether these be the forms of time and space in 
the transcendental aesthetic, the formal characteristics of judgement, or 
ultimately the transcendental unity of apperception. For Cavaillès, such 
an account of the unity of experience can only stand in the way of an 
understanding of science as at once necessary and dynamic.

The challenge is in effect to determine the rules that govern how 
the act of synthesis occurs. In this respect, Cavaillès’ comments on 
Brunschvicg are instructive. Like Cavaillès, Brunschvicg rejects the idea 
that rationality can be determined extrinsically and maintains that 
thought is capable of more than can be determined in advance at any 
given moment. However, he conceives of the historical development 
of thought as a linkage of ideas in consciousness. For Cavaillès, the
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rationality  o f  such linkage co u ld  on ly  be secu red  by  appealing to 
som e further cond ition  o f  ra tiona lity , th e reb y  d raw in g  th e  account of 
m athem atics back  to  th e  ch o ice  b e tw een  an  ab so lu te  g ro u n d  and the 
conditions o f  tran scen d en ta l co n sc io u sn ess . B o th  ca se s , he  w rites, fail to 
d istingu ish  adequate ly  betw een  m a th em atics  and  o th e r sc iences, leaving 
the door open  to  a d ependence  on  the  ex te rn a l w orld . T h is  surrenders 
the creative au tonom y o f  m a th em atics  -  w h ile  a lso  co n fro n tin g  thought 
w ith  the necessity  o f  an on to lo g ica l inq u iry  in to  th e  bein g  o f both 
ex ternal rea lity  and o f  the  sub jec t (C av a illès  1 9 7 0 ,3 6 9 ). H is ow n prefer 
ence is to  m ain ta in  the  focus on w h at in K an tian  te rm s w e have called 
the w ork  o f  syn thesis, o r the  ac t o f  co n s tru c tiv e  th o u g h t itself. The 
ru les govern ing  construc tion  de te rm in e  th e  ac t fro m  w h ich  arises the 
h isto rical d im ension  tha t C availlès  reco g n ises  as essen tia l to  scientific 
thought. O ur a tten tion  is thereby  d raw n  to  th e  h is to ric a l character of 
these ru les. F or C availlès , syn thesis is n o t g o v ern ed  by  ru les  grounded 
in som e m ore fundam en ta l co nd ition . H ow ev er, he  is no t, one might 
have expected , le ft strugg ling  to acco u n t fo r th e ir  n a tu re  and  provenance, 
p recisely  because his u n d erstand ing  o f  m a th em atica l th o u g h t does not 
involve bring ing  a m an ifo ld  o f  in tu itions u n d er the  un ity  o f  a  concept. In 
his view , there  is no d iv is ion  b etw een  ‘fo rm 5 and  ‘co n te n t’ in  mathemat- 
ical though t and its fo rm al aspec t does no t co n s titu te  o u r em pirica l expe
rience; and so the p ro b lem  does no t arise . T he o b jec t o f  mathematical 
thought is no t a syn thesis o f in tu itions; indeed  concep ts  becom e objects 
in an ongoing  series o f  opera tions tha t w ork  on th e  sta te  o f  mathematical 
fo rm alism  at any g iven  tim e. W ith  the  co llap se  o f  th is d iv is io n , a crucial 
change occurs to the constra in ts on  th o u g h t th a t p rev iously  arose from 
the tension  betw een  fo rm al ru les (e.g . th e  de te rm in a tio n  o f  forms of 
judgem en t in form al apophan tics) and  the ob jec t they  d isc lo se  (formal 
onto logy), each dem and ing  a un ity  w hose  con tou rs  w ill change only so 
long as there is a d isc repancy  b etw een  them . A s long  as th is division is 
in p lace , thought w ill en coun ter its lim its e ith er in the transcendental 
subject or in the m ateria l cond ition  o f  w h at is there  to  be thought 
(represented). B ut once the d iv is ion  g ives w ay, the constrain ts on 
thought can only com e from  th ough t itse lf. In th is w ay, the immediacy 
o f ev idence that w e saw  F oucau lt iden tify  as a p rob lem  in the analysis 
o f actual experience is e lim ina ted  and the p o ssib ility  o f  fu rth e r change 
and developm ent necessarily  k ep t o pen .5 T h is  by no  m eans entails 
that ‘anything g o es5 O n the con trary , C availlès h im se lf  is concerned 
w ith how  deductiv ity  can surv ive w ith in  an h isto rica lly  developing 
discipline.
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The elimination of transcendental subjectivity, as well as any fixed 
axiomatic basis, from the account raises the related question of the unity 
of mathematics; that it must have such a unity, Cavaillès readily con
cedes, otherwise its status as a science would be in jeopardy. Instead of 
looking outside mathematics for the ground of this unity, Cavaillès pro
poses that we find it in the very movement of the historical development 
of mathematics, which he describes as 4a conceptual becoming that 
cannot be stopped’ (Cavaillès 1970, 376). Mathematics therefore has 
no need for any transcendental condition or metaphysical ground to 
determine the proper bounds of its legitimacy, since it performs these 
functions itself. If mathematics has an essential nature, it is determined 
by its own development, by the continuity spanning its history, with all 
its bifurcations and revisions. The unity of this movement also deter
mines the historically specific limits of what is possible at any time. And 
yet in doing so it is already indicating the direction in which thought 
must, with a necessity that may only reveal itself retrospectively, step 
into the unknown and undertake what existing rules may tell us is impos
sible. Each step in a problematic is prepared by the last, even as its 
construction modifies the conditions that determine the stage from which 
it emerges. The truth embodied in mathematics at any stage is therefore 
the truth embodied in its own movement and is for this reason historically 
specific; the rules governing the formation of concepts and objects at any 
given time do not pretend to legislate for the future. Indeed, the situation 
is almost the reverse; the rules at any given time call forth a future they 
at once demand and yet exclude. To see the development of a mathemat
ical problematic in this way as a perpetually re-opened breach into the 
future is quite different to seeing it as the adjustment of a structure 
towards an equilibrium with itself, and the difference springs from the 
recognition that the structure is itself the vehicle of change. As Cavaillès 
writes, ‘there is in reality no essential distinction between the hardened 
rings which seem to mark the terms and the movement that traverses 
them’ (Cavaillès 1970,373).

Movement, then, is always of the whole of mathematics (Cavaillès 
1970,372), and is to be understood as the revision of everything that has 
come before (p. 409). In spite of the apparent discrepancy, this is what 
Cavaillès describes when he writes that ‘Progress is materialist, or 
between singular essences, its driving force the overcoming of each in 
turn’ (p. 409). To call the movement of a purely formal discipline such as 
mathematics ‘materialist’ is certainly striking. First and foremost, we can 
say that it is to underline the absence of any division between the form or 111
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concept and the content; in short, it proposes a view of form as itself the 
outcome of a process whose development is governed by rules deter 
mined over again at each new stage. Even if we think we are looking at 
a change in a higher order determination of mathematical concepts and 
objects, in fact we are always dealing with a specific change that has 
emerged from a well defined series of antecedant operations, and which 
is thereby enmeshed in the body of mathematics as a whole. It is pre
cisely because progress is ‘materialist, or between singular essences’ that 
Cavaillès can describe it as a revision of everything that has come before 
(p. 409).

Mathematics, literature, order

Conceiving of the formal in line with Cavaillès’ description of mathe
matics takes thought out of the subject, which no longer conceals the 
ground on the basis of which inquiry supposedly rests. In place of the 
figure of man, described by Foucault as an empirical and transcendental 
doublet combining the object of knowledge and the condition of its pos
sibility, there is now the open and autonomous development of order as 
a formal system with its own historicity. As a result, both empirical 
inquiry and the reflection on transcendental conditions are revealed not 
only as partial approaches unaware of their dependence on one another, 
but more seriously as incapable of recognising the existence of a strata 
that conditions the knowledge that each of them would call its own. The 
analytic of finitude that was to provide them both with a secure basis no 
longer has anything on which to work. The site previously occupied by 
phenomenology has been transformed and the figure of man erased. To 
the extent that Cavaillès indeed influences the course of Foucault’s think
ing here, mathematics provides a model for overcoming the philosophy 
of the subject. What is not yet clear is how its contribution leads to an 
understanding of the historical a priori. To approach this question, we can 
return to the proximity between mathematics and literature to which 
Foucault alludes in The Order of Things. This will make it possible to 
outline two interpretations of what Foucault describes as an experience 
of pure order.

Writing about Blanchot, Foucault departs from the view that 
modem literature is characterised by a ‘doubling back’ that enables it to 
refer only to itself, and thereby to open up an extreme interiority (Fou
cault 1986,11-12). On the contrary, he continues, literature’s break with 
representation has left it free to develop from itself in a ‘network in which
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each point is distinct, distant from even its closest neighbours, and has a 
position in relation to every other position in a space that simultaneously 
holds and separates them all’ (p. 12). The disappearance of the speaking 
subject clears a neutral space in which, far from closing in on itself, lan
guage is exposed to an exteriority more radical than anything the subject 
can experience, since it is the emptying out of the dimension within 
which the subject can call an experience its own. Unable to take up a 
position before language, the subject must relinquish the privilege of 
being present to itself. Only language speaks. As Foucault concludes, 
this may be why Western thought held back from thinking the being of 
language; ‘as if it had a premonition of the danger that the naked experi
ence of language poses for the self-evidence of the “I think’” (p. 13). One 
could begin to pull on the thread that leads from here back to Cavaillès’ 
critique of necessity in phenomenology. However, it is important to see 
how clearly Foucault concedes that a reflection on the being of language 
has taken over from the analytic of finitude. In part, perhaps, because the 
text from which these lines are drawn is dedicated to Blanchot, the reflec
tion on the being of language is characterised by Foucault not as a repre
sentation of any kind, but as an experience of the outside, as the space of 
subjectivity gives way to the ‘naked experience of language’ Foucault 
seems to be writing about an experience of language ‘as such’ which 
usually conveys the mastery of the subject in whom the field in question 
finds its formal or transcendental ground. Yet this experience of lan
guage, without a subject, is the undoing of any thought that aspires 
to such mastery. It is an experience of the outside arising from the 
effacement of the subject in the neutrality of order independent of all 
representation. In this way, the Being of language comes to the fore 
with the disappearance of the human subject, for whom the experience 
of language as such is indissociable from its own perpetual dissolution 
and therefore the impossibility of determining language as such. Contrary 
to what one might expect, to speak of language in this way is still to 
concede a determining role to the subject in shaping the structure of 
thought, even as the subject is overcome. The conservative influence of 
phenomenology is thereby only partially reversed. Where Nietzsche, 
having remarked on the death of God, observed that we shall continue to 
live in his shadow for a hundred years, so Foucault, in welcoming the 
disappearance of man, risks committing us to live in his shadow -  unless 
he can distance himself more fully from the pursuit of the ‘as such’ that 
characterises phenomenology and still haunts the experience of pure 
language conceived in terms of impossibility and the dissolution of the
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subject. Cavaillès is decisive here, insofar as his approach to mathemat
ics steadfastly avoids any idea that it can be determined or experienced 
‘as such’ While it is true that he insists on the autonomy of mathematics 
from other disciplines, it is not the case that this independence is estab
lished formally and once and for all on the basis of a condition that stands 
apart from mathematics itself. Mathematics cannot be given as such, it 
can only be experienced in and through its actual practice. Similarly,the 
experience of mathematical objects is not given to a subject that brings a 
manifold under a form of unity, and so such experience does not point 
back to the ground of that unity in a determination of human finitude 
(such as the analytic). Cavaillès approaches mathematical thought as a 
series of combinatorial gestures or acts determined by rules that are 
immanent to the problematic in which they are lodged. Even the forms of 
time and space themselves are composed through the combinations and 
operations of mathematical thought as it takes each new step.6 What that 
step will be depends on the configuration of the problematic that has led 
up to the point at which the question is asked, but each step will be nec
essary, constrained ultimately by the unity of the movement by which 
mathematics develops as a whole.

This departure from the consideration of any formal order as such 
already takes us some way towards Foucault, but there is at least one fur
ther step that must still be made. Since it does not concern Cavaillès 
directly, it will be outlined only briefly here. Cavaillès insisted on the 
necessity of mathematical reason and derived that necessity from the 
overall unity of mathematics (even if this is not evident to the mathe
matician engaged in a given problem). Foucault, of course, breaks with 
this condition of unity and necessity, and does so at least in part under the 
influence of Michel Serres, whose early work describes a model of ratio
nal systems in which points are linked by multiple paths in such a way 
that both relations and points vary in a complex pattern of reciprocal 
modification (Serres 1966). Serres takes this model as indicative of how 
thought operates in general, beyond the bounds of mathematics itself and 
his work explores similarities in the patterns of relation found between 
different disciplines, including those of science and literature. Although 
this is not the place to develop this point, there is a resonance between 
Serres’ discussion of networks and Foucault’s description of literary 
speech.

From the perspective of Cavaillès’ critique of the philosophy of the 
subject and of the conception of experience as a synthesis of form and a 
manifold of intuitions, reinforced by a rejection that formal systems are
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characterised by unity and necessity at all, there can therefore be no 
encounter with either mathematics or language as such; neither on the 
basis of a totalising condition, nor even, as in Blanchot, as the being of 
language is disclosed by the withdrawal of its expressive and representa
tive functions. Because there is no underlying logic defining its limits, 
and because its formal and material aspects are already combined in the 
concepts and objects it constructs, the experience of mathematics is 
always specific. With regard to language, experience is the relation we 
strike up with the constructed forms that language bears, and it is the 
experience of this construction itself. Order, then, does not lie beneath 
formal thought and language, as though it were a stable ground whose 
determination would legitimise the former’s role and activity. The con
ditions for what is actual at a particular moment lie within the system 
whose development they determine. They cannot be disclosed as deter
mining of a local set of phenomena or acts, since it would be impossible 
to formulate them without changing the system they describe. The con
ditions that Foucault is looking for are the actual regularities occurring 
both within a given discourse and across discourses. Foucault can there
fore describe these conditions as an a priori insofar as they determine 
actuality without themselves appearing as such (they are not even possi
ble objects of experience). At the same time, they are historical because 
the pattern of conditions that determines the effect they have at any given 
time is mutable.

Conditions understood in this way will necessarily be missed by 
the human sciences, which continue to search for the law of phenomena 
in things themselves and trace their development as a defined set of 
phenomena. They will also necessarily be missed by a reflection on the 
transcendental conditions of experience. Each approach fails to treat the 
conditions that lie concealed by their very distribution across a complex 
open system. This is why Foucault can say that order slips between the 
codes and the reflections on them. Order itself changes and the changes 
in the empirical sciences and transcendental philosophy are merely 
symptoms of this change. As such, not only are they not fundamental; 
they cannot even account adequately for transformations within their 
own discipline. The experience of order is therefore not the experience of 
a object, actual or formal. It is the experience of specific and unpre
dictable transformations in the codes of our experience. As Foucault 
writes, it is because there is order that a culture may find itself ‘imper
ceptibly deviating from the empirical orders prescribed for it by its 
primary codes’ (Foucault 1970, xx).
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Foucault is therefore happy to accept the idea that mathematical 
reason can set the conditions for a ‘second critique of pure reason" 
(Foucault 1970,383), as long as it is based on a conception of the ‘mail* 
ematical a priori’ understood via Cavaillès. Moreover, Foucaulft 
deployment of the historical a priori does not leave him having to accoüg 
for the determination of experience by this new a priori, any more than 
Cavaillès continued to confront the problem of synthesis in Kant. For 
Foucault, there is neither actual experience, nor a sovereign subject to 
which such experience belongs. Phenomenological analysis gives way to 
an archaeology of the conditions of knowledge. Against expectations, 
perhaps, this gives a new lease of life to the question of the subject, which 
is released from the constraints of its role as a foundation for forms of 
knowledge ostensibly dedicated to its liberation. What interests Foucault 
is how subjects form by thinking, speaking and acting in the currency of 
such knowledge. Nearly fifteen years after the publication of Les mots et 
les choses, Foucault described critique as a reflection on limits, not in 
order to trace a possible metaphysics, and thereby secure the proper 
bounds of rational knowledge, but as a means of answering the follow* 
ing question: ‘In what is given to us as universal, necessary and obliga
tory, what place is occupied by whatever is singular, contingent and the 
product of arbitrary constraints?’ (Foucault 1994, 315). This conception 
of critique as an experimental and creative engagement with the 
conditions of what one can see, say, know and do has its beginning m 
Foucault’s reading of Cavaillès.

Notes

1 For Foucault, the condition for the possibility of experience as such no longer 
coincides with the condition for the possibility of this object. This releases the 
conditions of this experience from the need to ground experience as such, and 
thereby allows the conditions of particular forms of experience to become 
historical.

2 Borges induced us to have a particularly extreme experience of this kind, but 
one that is nonetheless continually repeated in more discreet ways.

3 See Han 2002; Hyder 2003; el den 2001.
4 Cavaillès 1970. For the original French edition of this essay, see Cavaillès 

1994,473-560.
5 For Cavaillès, and subsequently for Foucault, the problematic character of 

the immediacy of evidence in phenomenology is associated with the way 
phenomenological understanding aims to reach acts and content that no 
longer refer to anything. O n the one hand, there is nothing to question
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beyond the act or the content in their immediate presence. On the other 
hand, the higher authority is this very presence or rather the impossibility of 
dissociating a single part or character from it through variation without losing 
everything. The foundation of all necessity is this “I cannot do otherwise” of 
eidetic variation which however legitimate it may be, is an abdication of all 
thought’ (Cavaillès 1970,408).

I Cf. Cassou-Noguès 2001b: ‘Puisque le temps ne préexiste pas à l’enchaîne
ment des constructions, il doit être tiré de ces constructions mêmes. En 
réalité, le temps n’est que le rythme de la synthèse, un ordre dans le geste’ 
(p.4). Cf. also Cassou-Noguès 2001a, 174ff.



7
The mathematics of Deleuze's 
differential logic and metaphysics1

Simon Duffy

In D ifference and  R ep e titio n , Deleuze explores the manner by means of 
which concepts are implicated in the problematic Idea by using a mathe* 
matics problem as an example, the elements of which are the differentials 
of the differential calculus. What I would like to offer in this essay is a 
historical account of the mathematical problematic that Deleuze deploys 
in his philosophy, and an introduction to the role played by this prob* 
lematic in the development of his philosophy of difference. One of the 
points of departure that I will take from the history of mathematics is the 
theme of ‘power series’ (Deleuze 1994, 114), which will involve a 
detailed elaboration of the mechanism through which power series oper
ate in the differential calculus deployed by Deleuze in Difference and 
R epetition. Deleuze actually constructs an alternative history of mathe
matics that establishes a historical continuity between the differential 
point of view of the infinitesimal calculus and modem theories of the 
differential calculus. It is in relation to this differential point of view that 
Deleuze determines a differential logic which he deploys, in the form of 
a logic of different/ciation, in the development of his project of con* 
structing a philosophy of difference.

The differential point of view of the infinitesimal calculus.

The concept of the differential was introduced by developments in the 
infinitesimal calculus during the later part of the seventeenth century. 
Carl Boyer, in The H istory o f  the C alculus an d  its C onceptual Develop
ment, describes the early stages of this development as being ‘bound up 
with concepts of geometry . and with explanations of the infinitely 
small’ (1959, 11). Boyer presents the infinitesimal calculus as dealing 
with ‘the infinite sequences . obtained by continuing to diminish ad
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infinitum the intervals between the values of the independent variable.
. By means of [these] successive subdivisions the smallest possi

ble intervals or differentials [are obtained]’ (p. 12). The differential can 
therefore be understood to be the infinitesimal difference between con
secutive values of a continuously diminishing quantity. Boyer refers to 
this early form of the infinitesimal calculus as the infinitesimal calculus 
from ‘the differential point of view’ (p. 12). From this point of view, 
Boyer argues that, ‘the derivative would be defined as the quotient of 
two such differentials, and the integral would then be the sum of a 
number (perhaps finite, perhaps infinite) of such differentials’ (p. 12).

The infinitesimal calculus consists of two branches which are 
inverse operations: differential calculus, which is concerned with calcu
lating derivatives, or differential relations; and integral calculus, which is 
concerned with integration, or the calculation of the infinite sum of the 
differentials. The derivative, from the differential point of view of the 
infinitesimal calculus, is the quotient of two differentials, that is, a dif
ferential relation, of the type dy/dx. The differential, dy, is an infinitely 
small quantity, or what Deleuze describes as ‘a vanishing quantity’ 
(1981): a quantity smaller than any given or givable quantity. Therefore, 
as a vanishing quantity, dy, in relation toy, is, strictly speaking, equal to 
zéro. In the same way, dx, in relation to x, is, strictly speaking, equal to 
zero, that is, dx is the vanishing quantity of x. Given that y is a quantity 
of the abscissa, and that x is a quantity of the ordinate, dy = 0 in relation 
to the abscissa, and dx = 0 in relation to the ordinate. The differential rela
tion can therefore be written as dy/dx = 0/0. However, although dy is 
nothing in relation to y, and dx is nothing in relation to x, dy over dx does 
not cancel out, that is, dy/dx is not equal to zero. When the differentials 
are represented as being equal to zero, the relation can no longer be said 
to exist since the relation between two zeros is zero, that is 0/0 = 0; there 
is no relation between two things which do not exist. However, the dif
ferentials do actually exist.2 They exist as vanishing quantities insofar as 
they continue to vanish as quantities rather than having already vanished 
as quantities. Therefore, despite the fact that, strictly speaking, they equal 
zero, they are still not yet, or not quite equal to, zero. The relation 
between these two differentials, dy/dx, therefore does not equal zero, 
dy/dx * 0, despite the fact that dy/dx = 0/0. Instead, the differential rela
tion itself, dy/dx, subsists as a relation. ‘What subsists when dy and dx 
cancel out under the form of vanishing quantities is the relation dy/dx 
itself’ (1981). Despite the fact that its terms vanish, the relation itself is 
nonetheless real. It is here that Deleuze considers seventeenth century
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logic to have made 4 a fundamental leap’, by determining ‘a logic of rela
tions’ (1981). He argues that ‘under this form of infinitesimal calculus is 
discovered a domain where the relations no longer depend on their terms’ 
(1981). The concept of the infinitely small as vanishing quantities allows 
the determination of relations independently of their terms. ‘The differ
ential relation presents itself as the subsistence of the relation when the 
terms vanish’ (1981). According to Deleuze, ‘the terms between which 
the relation establishes itself are neither determined, nor determinable, 
Only the relation between its terms is determined’ (1981). This is the 
logic of relations that Deleuze locates in the infinitesimal calculus of the 
seventeenth century.

The differential relation, which Deleuze characterises as a ‘pure 
relation’ (1981) because it is independent of its terms, and which subsists 
insofar as dy/dx * 0, has a perfectly expressible finite quantity designated 
by a third term, z, such that dy/dx equals z. Deleuze argues that ‘whenyou 
have a [differential] relation derived from a circle, this relation doesn’t 
involve the circle at all but refers [rather] to what is called a tangent’ 
(1981). A tangent is a straight line that touches a circle or curve at only 
one point. The gradient of a tangent indicates the rate of change of the 
curve at that point, that is, the rate at which the curve changes on they- 
axis relative to the x-axis. The differential relation therefore serves in the 
determination of this third term, z, the value of which is the gradient of 
the tangent to the circle or curve.

When referring to the geometrical study of curves in his early 
mathematical manuscripts, Leibniz writes that ‘the differential calculus 
could be employed with diagrams in an even more wonderfully simple 
manner than it was with numbers’ (Leibniz 1920, 53). Leibniz presents 
one such diagram in a paper entitled ‘Justification of the Infinitesimal 
Calculus by That of Ordinary Algebra’, when he offers an example of 
what had already been established of the infinitesimal calculus in relation 
to particular problems before the greater generality of its methods were 
developed (Leibniz 1969, 545). An outline of the example that Leibniz 
gives is as follows:
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since the two right triangles, ZFE and ZHJ, that meet at their apex, point 
Z, are similar, it follows that the ratio y/x is equal to (Y -  y)fX. As the 
straight line EJ approaches point F, maintaining the same angle at the 
variable point Z, the lengths of the straight lines FZ and FE, or y and x, 
steadily diminish, yet the ratio of y to x remains constant. When the 
straight line EJ passes through F, the points E and Z coincide with F, and 
the straight lines, y and x, vanish. Yet y and x will not be absolutely 
nothing since they preserve the ratio of ZH to HJ, represented by the pro
portion (Y -  y)/X, which in this case reduces to Y/X, and obviously does 
not equal zero. The relation y/x continues to exist even though the terms 
have vanished since the relation is determinable as equal to Y/X. In this 
algebraic calculus, the vanished lines x and y are not taken for zeros since 
they still have an algebraic relation to each other. ‘And so,’ Leibniz 
argues, ‘they are treated as infinitesimals, exactly as one of the elements 
which differential calculus recognises in the ordinates of curves for 
momentary increments and decrements’ (1969, 545). That is, the van
ished lines x and y are determinable in relation to each other only insofar 
as they can be replaced by the infinitesimals dy and dx, by making the 
supposition that the ratio y/x is equal to the ratio of the infinitesimals, 
ty/dx. In the first published account of the calculus, Leibniz defines the 
ratio of infinitesimals as the quotient of first-order differentials, or the
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differential relation. He says that ‘the differential dx of the abscissa*1$ 
an arbitrary quantity, and that the differential dy of the ordinate y is 
defined as the quantity which is to dx as the ratio of the ordinate to the 
subtangent’ (Boyer 1959, 210). Leibniz considers differentials to be 
the fundamental concepts of the infinitesimal calculus, the differential 
relation being defined in terms of these differentials.

A new theory of relations

Leibniz recognised integration to be a process not only of summation,but 
also of the inverse transformation of differentiation, so the integral is 
not only the sum of differentials, but also the inverse of the differential 
relation. In the early nineteenth century, the process of integration as a 
summation was overlooked by most mathematicians in favour of deter
mining integration, instead, as the inverse transformation of differentia
tion. The main reason for this was that by extending sums to an infinite 
number of terms, problems began to emerge if the series did not 
converge. The value or sum of an infinite series is only determinable if 
the series converges. Divergent series have no sum. It was considered 
that reckoning with divergent series would therefore lead to false results. 
The problem of integration as a process of summation from the differen
tial point of view of the infinitesimal calculus did, however, continue to 
be explored. It was Augustin Cauchy (b.1789 -  1857) who first intro
duced specific tests for the convergence of series, so that divergent series 
could henceforth be excluded from being used to try to solve problems of 
integration because of their propensity to lead to false results (Boyer 
1959,287).

The object of the process of integration in general is to determine 
from the coefficients of the given function of the differential relation the 
original function from which they were derived. Put simply, given a rela
tion between two differentials, dy/dx, the problem of integration is to find 
a relation between the quantities y and x, themselves. This problem cor
responds to the geometrical method of finding the function of a curve 
characterised by a given property of its tangent. The differential relation 
is thought of as another function which describes, at each point on an 
original function, the gradient of the line tangent to the curve at that 
point. The value of this ‘gradient’ indicates a specific quality of the orig
inal function; its rate of change at that point. The differential relation 
therefore indicates the specific qualitative nature of the original function 
at different points on the curve.
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The inverse process to integration is differentiation, which, in geo
metrical terms, determines the differential relation as the function of the 
(fee tangent to a given curve. Put simply, to determine the tangent to a 
carve at a specified point, a second point that satisfies the function of the 
cfirve is selected, and the gradient of the line that runs through both of 
Éese points is calculated. As the second point approaches the point of 
tangency, the gradient of the line between the two points approaches the 
gradient of the tangent. The gradient of the tangent is, therefore, the limit 
9f the gradient of the line between the two points as the points become 
infinitesimally close to one another.

It was Newton who first came up with this concept of a limit. He con
ceptualised the tangent geometrically, as the limit of a sequence of lines 
between two points, P and Q, on a curve, which he called a secant. As the 
ilistance between the points approached zero, the secants became pro
gressively smaller, however they always retained ‘a real length’ The 
secant therefore approached the tangent without reaching it. When this 
distance ‘got arbitrarily small (but remained a real number)’ (Lakoff and 
Inez 2000,224), it was considered insignificant for practical purposes, 
and was ignored. What is different in Leibniz’s method is that he 
'hypothesized infinitely small numbers -  infinitesimals -  to designate the 
size of infinitely small intervals’ (p. 224). For Newton, on the contrary, 
these intervals remained only small, and therefore real. When perform
ing calculations, however, both approaches yielded the same results. But
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they differed ontologically, because Leibniz had hypothesised a new kind 
of number, a number Newton did not need, since 4his secants always had 
a real length, while Leibniz’s had an infinitesimal length’ (p. 224).

For the next two hundred years, various attempts were made to fed 
a rigorous arithmetic foundation for the calculus. One that relied o| 
neither the mathematical intuition of geometry, with its tangents and 
secants, which was perceived as imprecise because its conception of 
limits was not properly understood; nor the vagaries of the infinitesimal, 
which made many mathematicians wary, so much so that they refused 
the hypothesis outright, despite the fact that Leibniz ‘could do calculus 
using arithmetic without geometry -  by using infinitesimal numbers’ 
(pp. 224-5).

What is at stake in the debate on the legitimacy of the infinitesimal 
is ‘the integration of the infinitesimal into the register of quantity’ (Salan- 
skis 1996, 71), that is, of the infinite in the finite, which comes down to 
the alternative between infinite and finite representations. This is pre
cisely what is at issue in what Deleuze describes as ‘the “metaphysics” 
of the calculus’ (Deleuze 1994,176). Throughout the eighteenth century, 
there was disagreement as to the particular kind of ‘metaphysics’ by 
which ‘to rescue the procedures of the calculus’ from the vagaries of the 
infinitesimal. In speaking of the history of the differential calculus, 
Giorello argues that ‘it was indeed a matter of rival metaphysical frame
works that provided the basis for widely differing programs’ (1992,160).

It was not until the late nineteenth century, that an adequate solu
tion to this problem of rigour was posed. It was Karl Weierstrass (b. 1815 
-  1897) who ‘developed a pure nongeometric arithmetization for 
Newtonian calculus’ (Lakoff and Nunez 2000, 230), which provided 
the rigour that had been lacking. The Weierstrassian program was 
determined by the following question: ‘is the fate of calculus tied to infin
itesimals, or must it not be given a rigorous status from the point of view 
of finite representations?’ (Deleuze 1994,177). ‘Weierstrass’ theory was 
an updated version of Cauchy’s earlier account’ (Lakoff and Nunez 2000, 
309), which had also experienced problems conceptualising limits. 
Cauchy actually begs the question of the concept of limit in his proof.3 In 
order to overcome this problem of conceptualising limits, Weierstrass 
‘sought to eliminate all geometry from the study of derivatives and 
integrals in calculus’ (p. 309). In order to characterise calculus purely in 
terms of arithmetic, it was necessary for the idea of a function, as a curve 
in the Cartesian plane defined in terms of the motion of a point, to be 
completely replaced with the idea of a function that is, rather, a set of
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ordered pairs of real numbers. The geometric idea of ‘approaching a 
limit’ had to be replaced by an arithmetized concept of limit that relied 
on static logical constraints on numbers alone. This approach is com
monly referred to as the epsilon-delta method. Deleuze argues that Tt is 
Weierstrass who bypasses all the interpretations of the differential calcu
l s  from Leibniz to Lagrange, by saying that it has nothing to do with a 
process Weierstrass gives an interpretation of the differential and 
infinitesimal calculus which he himself calls static, where there is no 
longer fluctuation towards a limit, nor any idea of threshold’ (Deleuze 
1972). The calculus was thereby reformulated without either geometric 
secants and tangents or infinitesimals; only the real numbers were used.

Because there is no reference to infinitesimals in this Weierstrass- 
lan definition of the calculus, the designation ‘the infinitesimal calculus’ 
was considered to be ‘inappropriate’ (Boyer 1959, 287). Weierstrass’ 
work not only effectively removed any remnants of geometry from what 
was now referred to as the differential calculus, but it eliminated the use 
of Leibnizian-inspired infinitesimal arithmetic in doing the calculus 
for over half a century. It was not until the late 1960’s, with the develop
ment of the controversial axioms of non-standard analysis by Abraham 
Robinson (b. 1918 -  1974), that the infinitesimal was given a rigorous 
foundation (See Bell 1998), and a formal theory of the infinitesimal 
calculus was constructed, thus allowing Leibniz’s ideas to be ‘fully vin
dicated’ (Robinson 1996,2), as Newton’s had been thanks to Weierstrass.

As far as Deleuze is concerned, it is no longer a question of reluc
tantly tolerating the ‘inexactitude’ of the infinitesimal. They must rather 
be ‘separated from [their] infinitesimal matrix’ (Deleuze 1994,171), that 
is, from their static representation as numbers, which eludes even the 
axioms of non-standard analysis, and this is effected by means of their 
implication in differential relations according to the logic of the differ
ential from the differential point of view of the infinitesimal calculus. 
The undetermined differentials, or infinitesimals, dy or dx, are only 
determinable insofar as each is involved in a differential relation with 
another, that is, in reciprocal relation to one another, dy/dx. What counts 
is that it is within the differential relation itself that the differential pos
sesses rigour and coherence; that the undetermined are determinable, by 
a process of reciprocal determination.

The Deleuzian solution to the debate over the legitimacy of the 
infinitesimal distinguishes itself from the Weierstrassian solution insofar 
as it is not resolved according to the program of discretization. Rather 
than representing one by means of the other, Deleuze argues that the
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alternative between infinite and finite representations, and therefore % 
metaphysics of the calculus, are ‘strictly immanent to the techniques of 
the calculus itself’ (Deleuze 1994,176).

It is specifically in relation to these developments that Deleuze 
contends that, when understood from the differential point of view of that 
infinitesimal calculus, the value of z, which was determined by Leibniz 
in relation to the differential relation, dy/dx, as the gradient of the tangent, 
functions as a limit. When the relation establishes itself between infi
nitely small terms, it does not cancel itself out with its terms, but rather 
tends towards a limit. In other words, when the terms of the differential 
relation vanish, the relation subsists because it tends towards a limit,4. 
Since the differential relation approaches more closely to its limit as the 
differentials decrease in size, or approach zero, the limit of the relation is’ 
represented by the relation between the infinitely small. Of course, 
despite the geometrical nature of the idea of a variable and a limit, where 
variables ‘decrease in size’ or ‘approach zero’ and the differential rela
tion ‘approaches’ or ‘tends towards’ a limit, they are not essentially 
dynamic, but involve purely static considerations, that is, they are rather 
‘to be taken automatically as a kind of shorthand for the corresponding 
developments of the epsilon-delta approach’ (Lakoff and Nunez 2000, 
277). It is in this sense that the differential relation between the infinitely 
small refers to something finite. Or, as Deleuze suggests, it is in the finite 
itself that there is the ‘mutual immanence’ (1981) of the relation and the 
infinitely small.

Given that the method of integration provides a way of working 
back from the differential relation, the problem of integration is, there
fore, how to reverse this process of differentiation. This can be solved by 
determining the inverse of the given differential relation according to the 
inverse transformation of differentiation. Or, a solution can be deter
mined from the differential point of view of the infinitesimal calculus by 
considering integration as a process of summation in the form of a series, 
according to which, given the specific qualitative nature of a tangent at a 
point, the problem becomes that of finding, not just one other point deter
minative of the differential relation, but a sequence of points, all of which 
together satisfy, or generate, a curve and therefore a function in the 
neighbourhood of the given point of tangency, which therefore functions 
as the limit of the function.

Deleuze considers this to be the base of the infinitesimal calculus 
as understood or interpreted in the seventeenth century. The formula for 
the problem of the infinite that Deleuze extracts from this seventeenth
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century understanding of the infinitesimal calculus, is that 'something 
finite consists of an infinity under a certain relation’ (1981). Deleuze 
considers this formula to mark ‘an equilibrium point, for seventeenth- 
century thought, between the infinite and the finite, by means of a new 
theory of relations’ (1981). It is the logic of this theory of relations that 
provides a starting point for the investigation into the logic that Deleuze 
deploys in Difference and Repetition as part of his project of construct
ing a philosophy of difference.

The logic of the differential.

Having located the logic of the differential from the differential point of 
view of the infinitesimal calculus in the work of Leibniz, the subsequent 
developments that this logic undergoes will now be examined in relation to 
the work of some of the key figures in the history of this branch of 
the infinitesimal calculus. These figures are implicated in an alternative lin
eage in the history of mathematics by means of which the differential point 
of view of the infinitesimal calculus is aligned with the differential calcu- 
És of contemporary mathematics. The logic of the differential from the dif
ferential point of view of the infinitesimal calculus is then implicated in the 
development of Deleuze’s project of constructing a philosophy of differ
ence. The manner by means of which these figures are implicated in an 
alternative lineage in the history of mathematics will now be examined.

Ironically, one of the mathematicians who contributed to the 
development of the differential point of view is Karl Weierstrass, who 
considers the differential relation to be logically prior to the function in 
the process of determination associated with the infinitesimal calculus, 
that is, rather than determining the differential relation from a given func
tion, the kinds of mathematical problems with which Weierstrass dealt 
involved investigating how to generate a function from a given differen
tial relation. Weierstrass develops a theory of integration as the approxi
mation of functions from differential relations according to a process of 
summation in the form of series. Despite Weierstrass having eliminated 
loth geometry and the infinitesimal from the calculus, Deleuze recovers 
this theory in order to restore the Leibnizian perspective of the differen
tial, as the genetic force of the differential relation, to the differential 
point of view of the infinitesimal calculus, by means of the infinitesimal 
moms of non-standard analysis.

According to Deleuze’s reading of the infinitesimal calculus from 
die differential point of view, a function does not precede the differential
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relation, but is rather determined by the differential relation. The differ* 
ential relation is used to determine the overall shape of the curve of a 
function primarily by determining the number and distribution of its dis
tinctive points, which are points of articulation where the nature of the 
curve changes or the function alters its behaviour. For example, ia 
geometrical terms, when the differential relation is zero, the gradient of 
the tangent at that point is horizontal, indicating that the curve peaks or 
dips, determining therefore a maximum or minimum at that point. These 
distinctive points are known as stationary or turning points.

The differential relation characterises or qualifies not only the distinctive 
points which it determines, but also the nature of the regular points in the 
immediate neighbourhood of these points, that is, the shape of the 
branches of the curve between each distinctive point. Where the differ
ential relation gives the value of the gradient at the distinctive point, the 
value of the derivative of the differential relation, that is, the second 
derivative, indicates the rate at which the gradient is changing at that 
point, which allows a more accurate approximation of the nature of the 
function in the neighbourhood of that point. The value of the third deriv* 
ative indicates the rate at which the second derivative is changing at that 
point. In fact, the more successive derivatives that can be evaluated at the 
distinctive point, the more accurate will be the approximation of the 
function in the immediate neighbourhood of that point.

This method of approximation using successive derivatives is 
formalised in the calculus according to Weierstrass’ theory by a Taylor 
series or power series expansion. A power series expansion can be
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written as a polynomial, the coefficients of each of its terms being the 
successive derivatives evaluated at the distinctive point. The sum of such 
a series represents the expanded function provided that any remainder 
approaches zero as the number of terms becomes infinite; the polynomial 
then becomes an infinite series which converges with the function in the 
neighbourhood of the distinctive point.4 This criterion of convergence 
repeats Cauchy’s earlier exclusion of divergent series from the calculus. 
A power series operates at each distinctive point by successively deter
mining the specific qualitative nature of the function at that point. The 
power series determines not only the specific qualitative nature of the 
function at the point in question, but also the specific qualitative nature 
of all of the regular points in the neighbourhood of that distinctive point, 
such that the specific qualitative nature of a function in the neighbour
hood of a distinctive point insists in that one point. By examining the 
relation between the differently distributed distinctive points determined 
by the differential relation, the regular points which are continuous 
between the distinctive points, that is, in geometrical terms, the branches 
of the curve, can be determined. In general, the power series converges 
with a function by generating a continuous branch of a curve in the neigh
bourhood of a distinctive point. To the extent that all of the regular points 
are continuous across all of the different branches generated by the power 
series of the distinctive points, the entire complex curve or the whole 
analytic function is generated.

So, according to Deleuze’s reading of the infinitesimal calculus, 
the differential relation is generated by differentials and the power series 
are generated in a process involving the repeated differentiation of the 
differential relation. It is due to these processes that a function is gener
ated in the first place. The mathematical elements of this interpretation 
are most clearly developed by Weierstrassian analysis, according to the 
theorem on the approximation of analytic functions. An analytic func
tion, being secondary to the differential relation, is differentiable, and 
therefore continuous, at each point of its domain. According to Weier- 
strass, for any continuous function on a given interval, or domain, there 
exists a power series expansion which uniformly converges to this func
tion on the given domain. Given that a power series approximates a 
function in such a restricted domain, the task is then to determine other 
power series expansions that approximate the same function in other 
domains. An analytic function is differentiable at each point of its 
domain, and is essentially defined for Weierstrass from the neighbour
hood of a distinctive point by a power series expansion which is
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convergent with a ‘circle of convergence9 around that point. A po% 
series expansion that is convergent in such a circle represents a fiincfa 
that is analytic at each point in the circle. By taking a point interior! 
the first circle as a new centre, and by determining the values of % 
coefficients of this new series using the function generated by the fa 
series, a new series and a new centre of convergence are obtained, whose 
circle of convergence overlaps the first. The new series is continuous 
with the first if the values of the function coincide in the common part of 
the two circles. This method of ‘analytic continuity’ allows the gradual 
construction of a whole domain over which the generated function is 
continuous. At the points of the new circle of convergence which a« 
exterior to, or extend outside the first, the function represented by the 
second series is then the analytic continuation of the function definedby 
the first series; what Weierstrass defines as the analytic continuation of a 
power series expansion outside its circle of convergence. The domain of 
the function is extended by the successive adjunction of more and more 
circles of convergence. Each series expansion which determines a circle 
of convergence is called an element of the function (Kline 1972,643-4). 
In this way, given an element of an analytic function, by analytic contin- 
uation one can obtain the entire analytic function over an extended 
domain. The analytic continuation of power series expansions can be 
continued in this way in all directions up to the points in the immediate 
neighbourhood exterior to the circles of convergence where the series 
obtained diverge.

Power series expansions diverge at specific ‘singular points’ or 
‘singularities’ that may arise in the process of analytic continuity. A 
singular point or singularity of an analytic function is any point which is 
not a regular or ordinary point of the function. They are points which 
exhibit distinctive properties and thereby have a dominating and excep
tional role in the determination of the characteristics of the function.5 The 
distinctive points of a function, which include the turning points, where 
dy/dx = 0, and points of inflection, where d2y/dx2 = 0, are ‘removable sin
gular points’, since the power series at these points converge with the 
function. A removable singular point is uniformly determined by the 
function and therefore redefinable as a distinctive point of the function, 
such that the function is analytic or continuous at that point. The specific 
singularities of an analytic function where the series obtained diverge are 
called ‘poles’ Singularities of this kind are those points where the func
tion no longer satisfies the conditions of regularity which assure its local 
continuity, such that the rule of analytic continuity breaks down. They
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m  therefore points of discontinuity. A singularity is called a pole of a 
{unction when the values of the differential relation, that is, the gradients 
of the tangents to the points of the function, approach infinity as the func
tion approaches the pole. The function is said to be asymptotic to the 
pole, it is therefore no longer differentiable at that point, but rather 
remains undefined, or vanishes. A pole is therefore the limit point of a 
taction, and is referred to as an accumulation point or point of conden
sation. A pole can also be referred to as a jump discontinuity in relation 
to a finite discontinuous interval both within the same function, for exam
ple periodic functions, and between neighbouring analytic functions. 
Deleuze writes that 4 a singularity is the point of departure for a series 
which extends over all the ordinary points of the system, as far as the 
region of another singularity which itself gives rise to another series 
which may either converge or diverge from the first’ (Deleuze 1994, 
278). The singularities whose series converge are removable singular 
points, and those whose series diverge are poles.

The singularities, or poles, that arise in the process of analytic con
tinuity necessarily lie on the boundaries of the circles of convergence of 
power series. In the neighbourhood of a pole, a circle of convergence 
extends as far as the pole in order to avoid including it, and the poles of 
any neighbouring functions, within its domain. The effective domain of 
.an analytic function determined by the process of the analytic continua
tion of power series expansions is therefore limited to that between its 
poles. With this method the domain is not circumscribed in advance, but 
results rather from the succession of local operations.

Power series can be used in this way to solve differential relations 
by determining the analytic function into which they can be expanded. 
Weierstrass developed his theory alongside the integral conception of 
Cauchy, which further developed the inverse relation between the differ
ential and the integral calculus as the fundamental theorem of the 
calculus. The fundamental theorem maintains that differentiation and 
integration are inverse operations, such that integrals are computed by 
finding anti-derivatives, which are otherwise known as primitive func
tions. There are a large number of rules, or algorithms, according to 
which this reversal is effected.

Deleuze presents Weierstrass’ theorem of approximation as an 
effective method for determining the characteristics of a function from 
the differential point of view of the infinitesimal calculus. The mathe
matician Albert Lautman (b. 1908 -  1944) refers to this process as 
integration from ‘the local point of view’, or simply as ‘local integration’
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(Lautman 1938a, 38). This form of integration does not involve the deter* 
mination of the primitive function, which is generated by exercising tbe 
inverse operation of integration. The development of a local point of 
view, rather, requires the analysis of the characteristics of a function at its 
singular points. The passage from the analytic function defined in the 
neighbourhood of a singular point, to the analytic function defined is 
each ordinary point is made according to the ideas of Weierstrass by 
analytic continuity. This method was eventually deduced from the 
Cauchy point of view, such that the Weierstrassian approach was no 
longer emphasised. The unification of both of these points of view, how
ever, was achieved at the beginning of the twentieth century when Ée 
rigour of Cauchy’s ideas, which were then fused with those of Georg 
Riemann (b.1826 -  1866), the other major contributor to the develop
ment of the theory of functions, was improved. Deleuze is therefore able 
to cite the contribution of Weierstrass’ theorem of approximation in the 
development of the differential point of view of the infinitesimal calcu
lus as an alternative point of view of the differential calculus to that 
developed by Cauchy, and thereby establish a historical continuity 
between Leibniz’s differential point of view of the infinitesimal calculus 
and the differential calculus of contemporary mathematics, thanks to the 
axioms of non-standard analysis which allow the inclusion of the infini
tesimal in its arithmetization.

The development of a differential philosophy

While Deleuze draws inspiration and guidance from Salomon Maïmon 
(b. 1753 -  1800), who ‘sought to ground post Kantianism upon aLeib- 
nizian reinterpretation of the calculus’ (Deleuze 1994, 170), and ‘who 
proposes a fundamental reformation of the Critique and an overcoming 
of the Kantian duality between concept and intuition’ (Deleuze 1994, 
173), it is in the work of Hoené Wronski (b.1778 -  1853) that Deleuze 
finds the established expression of the first principle of the differential 
philosophy. Wronski was ‘an eager devotee of the differential method of 
Leibniz and of the transcendental philosophy of Kant’ (Boyer 1959, 
261). Wronski made a transcendental distinction between the finite and 
the infinitesimal, determined by the two heterogeneous functions of 
knowledge, understanding and reason. He argued that ‘finite quantities 
bear upon the objects of our knowledge, and infinitesimal quantities on 
the very generation of this knowledge; such that each of these two classes 
of knowledge must have laws proper [to themselves], and it is in the
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distinction between these laws that the major thesis of the metaphysics of 
infinitesimal quantities is to be found’ (Wronski 1814, 35; Blay 1998, 
158). It is imperative not to confuse 'the objective laws of finite quanti
ties with the purely subjective laws of infinitesimal quantities’ (p. 36; 
158). He claims that it is this 'confusion that is the source of the inexac
titude that is felt to be attached to the infinitesimal Calculus This is 
also [why] geometers, especially those of the present day, consider the 
infinitesimal Calculus, which nonetheless they concede always gives true 
results, to be only an indirect or artificial procedure’ (p. 36; 159). Wron
ski is referring here to the work of Joseph-Louis Lagrange (b. 1736 -  
1813) and Lazarre Carnot (b. 1753 -  1823), two of the major figures 
in the history of the differential calculus, whose attempts to provide a 
rigorous foundation for the differential calculus involved the elimination 
of the infinitesimal from all calculations, or as Wronski argued, involved 
confusing objective and subjective laws in favour of finite quantities (See 
Blay 1998,159). Both of these figures count as precursors to the work of 
Cauchy and Weierstrass. Wronski argued that the differential calculus 
constituted ‘aprimitive algorithm governing the generation of quantities, 
rather than the laws of quantities already formed' (Boyer 1959, 262). 
According to Wronski, the differential should be interpreted 'as having 
an a priori metaphysical reality associated with the generation of magni
tude’ (p. 262). The differential is therefore expressed as a pure element 
of quantitability; insofar as it prepares for the determination of quantity. 
The work of Wronski represents an extreme example of the differential 
point of view of the infinitesimal calculus which recurs throughout the 
nineteenth century.

Another significant figure in this alternative history of mathemat
ics that is constructed by Deleuze is Jean Baptiste Bordas-Demoulin 
(b. 1798 -  1859), who also champions the infinitesimal against those 
who consider that infinitesimals had to be eliminated in favour of finite 
quantities. Bordas-Demoulin does not absolve the differential calculus of 
the accusation of error, but rather considers the differential calculus to 
have this error as its principle. According to Bordas-Demoulin, the 
minimal error of the infinitesimal 'finds itself compensated by reference 
to an error active in the contrary sense. It is in all necessity that the 
errors are mutually compensated’ (Bordas-Demoulin 1874, 414; my 
translation). The consequence of this mutual compensation 'is that 
one differential is only exact after having been combined with another’ 
(p. 414). Deleuze repeats these arguments of Wronski and Bordas- 
Demoulin when he maintains that it is in the differential relation that the
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differential is realised as a pure element of quantitability- Each term of 
the relation, that is, each differential, each pure element of quantitability, 
therefore 'exists absolutely only in its relation to the other5 (Deleuze 
1994, 172), that is, only insofar as it is reciprocally determined in rela
tion to another.

The question for Deleuze then becomes: 'in what form is the# 
ferential relation determinable?5 (Deleuze 1994,172) He argues that it is 
determinable primarily in qualitative form, insofar as it is the reciprocal 
relation between differentials, and then secondarily, insofar as it is the 
function of a tangent whose values give the gradient of the line tangent 
to a curve, or the specific qualitative nature of this curve, at a point. As 
the function of a tangent, the differential relation 'expresses a function 
which differs in kind from the so-called primitive function5 (p. 172). 
Whereas the primitive function, when differentiated, expresses the whole 
curve directly,6 the differential relation, when differentiated, expresses 
rather the further qualification of the nature of the function at, or in the 
immediate neighbourhood of, a specific point. The primitive function is 
the integral of the function determined by the inverse transformation of 
differentiation, according to the differential calculus. From the differen
tial point of view of the infinitesimal calculus, the differential relation,as 
the function of the tangent, determines the existence and distribution of 
the distinctive points of a function, thus preparing for its further qualifi
cation. Unlike the primitive function, the differential relation remains 
tied to the specific qualitative nature of the function at those distinctive 
points, and, as the function of the tangent, it 'is therefore differentiable in 
turn5 (p. 172). When the differential relation is repeatedly differentiated 
at a distinctive point generating a power series expansion, what is 
increasingly specified is the qualitative nature of the function in the 
immediate neighbourhood of that point. Deleuze argues that this conver
gence of a power series with an analytic function, in its immediate neigh
bourhood, satisfies 'the minimal conditions of an integral5 (p. 174), and 
characterises what is for Deleuze the process of 'differentiation5 (p. 209).

The differential relation expresses the qualitative relation between, 
not only curves and straight lines, but also between linear dimensions and 
their functions, and plane or surface dimensions and their functions.The 
domain of the successive adjunction of circles of convergence, as deter
mined by analytic continuity, actually has the structure of a surface. This 
surface is constituted by the points of the domain and the direction 
attached to each point in the domain, that is, the tangents to the curve at 
each point and the direction of the curve at that point. Such a surface can
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be described as a field of directions or a vector field. A vector is a quan
tity having both magnitude and direction. The point of departure of the 
local genesis of functions is from the point of view of the structure of 
such a surface as a vector field. It is within this context that the example 
of a jump discontinuity in relation to a finite discontinuous interval 
between neighbouring analytic or local functions is developed by 
Deleuze, in order to characterise the generation of another function 
which extends beyond the points of discontinuity which determine the 
limits of these local functions. Such a function would characterise the 
relation between the different domains of different local functions. The 
genesis of such a function from the local point of view is initially deter
mined by taking any two points on the surface of a vector field, such that 
each point is a pole of a local function determined independently by the 
point-wise operations of Weierstrassian analysis. The so-determined 
local functions, which have no common distinctive points or poles in the 
domain, are discontinuous with each other; each pole being a point of 
discontinuity, or limit point, for its respective local function. Rather than 
simply being considered as the unchanging limits of local functions 
generated by analytic continuity, the limit points of each local function 
can be considered in relation to each other, within the context of the 
generation of a new function which encompasses the limit points of each 
local function and the discontinuity that extends between them. Such a 
function can initially be understood to be a potential function, which is 
determined as a line of discontinuity between the poles of the two local 
functions on the surface of the vector field. The potential function admits 
these two points as the poles of its domain. However, the domain of 
the potential function is on a scalar field, which is distinct from the 
vector field insofar as it is composed of points (scalars) which are non- 
directional; scalar points are the points onto which a vector field is 
mapped. The potential function can be defined by the succession of 
points (scalars) which stretch between the two poles. The scalar field of 
the potential function is distinct from the vector field of the local func
tions insofar as, mathematically speaking, it is 6cut’ from the surface of 
the vector field. Deleuze argues that ‘the limit must be conceived not as 
the limit of a [local] function but as a genuine cut [coupure], a border 
between the changeable and the unchangeable within the function itself. 
... the limit no longer presupposes the ideas of a continuous variable and 
infinite approximation. On the contrary, the concept of limit grounds a 
new, static and purely ideal definition’ (Deleuze 1994, 172); that of the 
potential function. To cut the surface from one of these poles to the next
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is to generate such a potential function. The poles of the potential func
tion determine the limits of the discontinuous domain, or scalar field; 
which is cut from the surface of the vector field. The ‘cut’ of the surface 
in this theory renders the structure of the potential function ‘apt to a 
creation’ (Lautman 1938a, 8). The precise moment of production, or 
genesis, resides in the act by which the cut renders the variables of cer
tain functional expressions able to ‘jump’ from pole to pole across the 
cut. When the variable jumps across this cut, the domain of the potential 
function is no longer uniformly discontinuous. With each ‘jump’, the 
poles which determine the domain of discontinuity, represented by the 
potential function sustained across the cut, seem to have been removed. 
The less the cut separates the potential function on the scalar field from 
the surface of the vector field, the more the poles seem to have been 
removed, and the more the potential function seems to be continuous 
with the local functions across the whole surface of the vector field. It is 
only insofar as this interpretation is conferred on the structure of the 
potential function that a new function can be understood to have been 
generated on the surface. A potential function is only generated when 
there is potential for the creation of a new function between the poles of 
two local functions. The potential function is therefore always apt to the 
creation of a new function. This new function, which encompasses the 
limit points of each local function and the discontinuity that extends 
between them, is continuous across the structure of the potential fun& 
tion; it completes the structure of the potential function, as what cm 
be referred to as a ‘composite function’ The connection between the 
structural completion of the potential function and the generation of the 
corresponding composite function is the act by which the variable jumps 
from pole to pole. When the variable jumps across the cut, the value of 
the composite function sustains a fixed increase. Although the increase 
seems to be sustained by the potential function, it is this increase which 
actually registers the generation or complete determination of the 
composite function.

The complete determination of a composite function by the 
structural completion of the potential function is not determined by 
Weierstrass’ theory of analytic continuity. A function is able to be deter
mined as continuous by analytic continuity across singular points which 
are removable, but not across singular points which are non-removable. 
The poles that determine the parameters of the domain of the potential 
function are non-removable, thus analytic continuity between the two 
functions, across the cut, is not able to be established. Weierstrass.

136



SIMON DUFFY

however, recognised a means of solving this problem, by extending his 
analysis to meromorphic functions.7 A function is said to be meromor- 
phic in a domain if it is analytic in the domain determined by the poles of 
analytic functions. A meromorphic function is determined by the quo
tient of two arbitrary analytic functions, which have been determined 
independently on the same surface by the point-wise operations of 
Weierstrassian analysis. Such a function is defined by the differential 
relation:

dy _ Y 
dx “ X

where X and Y are the polynomials, or power series of the two local func
tions. The meromorphic function, as the function of a differential rela
tion, is just the kind of function which can be understood to have been 
generated by the structural completion of the potential function. The 
meromorphic function is therefore the differential relation of the com
posite function. The expansion of the power series determined by the 
repeated differentiation of the meromorphic function should generate a 
function which converges with a composite function. The graph of a 
composite function, however, consists of curves with infinite branches, 
because the series generated by the expansion of the meromorphic func
tion is divergent. The representation of such curves posed a problem for 
Weierstrass, which he was unable to resolve, because divergent series fall 
outside the parameters of the differential calculus, as determined by the 
epsilon-delta approach, since they defy the criterion of convergence.

The qualitative theory of differential equations.

Henri Poincaré (b.1854 -  1912) took up this problem of the representa
tion of composite functions, by extending the Weierstrass theory of 
meromorphic functions into what was called The qualitative theory of 
differential equations’ (Kline 1972, 732). In place of studying the prop
erties of complex functions in the neighbourhood of their singularities, 
Poincaré was primarily occupied with determining the properties of com
plex functions in the whole plane, that is, the properties of the entire 
curve. This qualitative method involved initial investigation of the geo
metrical form of the curves of functions with infinite branches; only then 
was numerical determination of the values of the function able to be 
made. While such divergent series do not converge, in the Weierstrassian 
sense, to a function, they may indeed furnish a useful approximation to a
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function if they can be said to represent the function asymptotically. 
When such a series is asymptotic to the function, it can represent an ana
lytic or composite function even though the series is divergent.

When this geometrical interpretation was applied to composite 
functions, Poincaré found the values of the composite function around 
the singularity produced by the function to be undetermined and irregu
lar. The singularity of a composite function would be the point at which 
both the numerator and denominator of the quotient of the meromorphic 
function determinative of the composite function vanish (or equal zero). 
The peculiarity of the meromorphic function is that the numerator and 
denominator do not vanish at the same point on the surface of the 
domain. The points at which the two local functions of the quotient 
vanish are at their respective poles. The determination of a composite 
function therefore requires the determination of a new singularity in rela
tion to the poles of the local functions of which it is composed. Poincaré 
called this new kind of singularity an essential singularity. Observing that 
the values of a composite function very close to an essential singularity 
fluctuate through a range of different possibilities without stabilising, 
Poincaré distinguished four types of essential singularity, which he clas
sified according to the behaviour of the function and the geometrical 
appearance of the solution curves in the neighbourhood of these points. 
The first type of singularity is the saddle point or dip (col), through which 
only two solution curves pass, acting as asymptotes for neighbouring 
curves. A saddle point is neither a maximum nor minimum, since the 
value of the function either increases or decreases depending on the 
direction of movement away from it. The second kind of singularity is 
the node (nœud), which is a point through which an infinite number of 
curves pass. The third type of singularity is the point of focus (foyer% 
around which the solution curves turn and towards which they approach 
in the same way as logarithmic spirals. And the fourth, called a centre,is 
a point around which the curves are closed, concentric with one another 
and the centre.

The type of essential singularity is determined by the form of the 
constitutive curves of the meromorphic function. Whereas the potential 
function remains discontinuous with the other functions on the surface 
from which it is cut, thereby representing a discontinuous group of func
tions, the composite function, on the contrary, overcomes this disconti
nuity insofar as it is continuous in the domain which extends across 
the whole surface of the discontinuous group of functions. The existence 
of such a continuous function, however, does not express any less the
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Centre

properties of the domain of discontinuity which serves to define it. The 
discontinuous group of local functions and the continuous composite 
function attached to this group exist alongside each other, the transfor
mation from one to the other being determined by the process of the 
generation and expansion of the meromorphic function. The potential 
function is actualised in the composite function when the variable jumps 
from one pole to the other. Its trajectory, in the form of a solution curve, 
is determined by the type of essential singularity created by the mero
morphic function. The essential singularity determines the behaviour of 
the composite function, or the appearance of the solution curve, in its 
immediate neighbourhood by acting as an attractor for the trajectory of 
the variable across its domain. It is the value of this function which sus
tains a determined increase with each jump of the variable. Insofar as the 
trajectory of each variable is attracted to the same final state represented 
by each of the different essential singularities, these essential singulari
ties can be understood to represent what Manuel DeLanda describes as 
the ‘inherent or intrinsic long-term tendencies of a system, the states 
which the system will spontaneously tend to adopt in the long run as long 
as it is not constrained by other forces’ (2002,15).

Deleuze distinguishes this differential point of view of the infini
tesimal calculus from the Weierstrassian theory of approximation when 
he writes that: ‘No doubt the specification of the singular points (for 
example, dips, nodes, focal points, centres) is undertaken by means of 
the form of integral curves, which refer back to the solutions for the
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differential equations. There is nevertheless a complete determination 
with regard to the existence and distribution of these points which 
depends upon a completely different instance -  namely, the field of vec
tors defined by the equation itself. The complementarity of these two 
aspects does not obscure their difference in kind -  on the contrary’ 
(Deleuze 1994,177). The equation to which Deleuze refers is the mero- 
morphic function, which is a differential equation or function of a differ
ential relation determined according to the Weierstrassian approach, 
from which the essential singularity and therefore the composite function 
are determined according to Poincaré’s qualitative approach. This form 
of integration is again characterised from the local point of view, by what 
Deleuze describes as ‘an original process of différenciation’ (p. 209). 
Différenciation is the complete determination of the composite function 
from the reciprocally-determined local functions or the structural com
pletion of the potential function, it is the process whereby a potential 
function is actualised as a composite function.

Deleuze states that ‘actualisation or différenciation is always a 
genuine creation’, and that to be actualised is ‘to create divergent lines’ 
(Deleuze 1994,212). The expanded power series of a meromorphic func
tion is actualised in the composite function insofar as it converges with, 
or creates, the divergent lines of the composite function. Différenciation, 
therefore, creates an essential singularity, whose divergent lines actualise 
the specific qualitative nature of the poles of the group of discontinuous 
local functions, represented by a potential function, in the form of a com
posite function. These complex functions can be understood to be what 
Poincaré called ‘Fuschian functions’, which, as Georges Valiron points 
out, ‘are more often called automorphic functions’ (Valiron 1971,171). 
The discontinuous group of local functions can therefore also be under
stood to be Fuschian groups. Poincaré’s pioneering work in this area 
eventually lead to the definitive founding of the geometric theory of ana
lytic functions, the study of which ‘has not yet been completely carried 
out’ (p. 173), but continues to be developed with the assistance of 
computers.

Benoit Mandelbrot (b. 1924) considers Poincaré, with his concept 
of essential singularities, to be ‘the first student of fractal (‘strange’) 
attractors’, that is, of the kinds of attractors operative in fractals which 
occur in mathematics, and cites certain theories of Poincaré as having 
‘led [him] to new lines of research’, specifically ‘the theory of automor
phic functions’ which made Poincaré and Felix Klein (b. 1849 -  1925) 
famous (1982,414).8
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Deleuze does not consider this process of différenciation to be 
arrested with the generation of a composite function, but rather it contin
ues, generating those functions which actualise the relations between 
different composite functions, and those functions which actualise the 
relations between these functions, and so on. The conception of différen
ciation is extended in this way when Deleuze states that There is a 
différenciation of différenciation which integrates and welds together the 
differenciated’ (Deleuze 1994, 217); each différenciation is simultane
ously ‘a local integration’, which then connects with others, according to 
the same logic, in what is characterised as a ‘global integration’ (p. 211).

The logic of the differential, as determined according to both dif
ferentiation and différenciation, designates a process of production, or 
genesis, which has, for Deleuze, the value of introducing a general theory 
of relations which unites the Weierstrassian structural considerations of 
the differential calculus with the concept of The generation of quantities’ 
(Deleuze 1994, 175). Tn order to designate the integrity or the integral
ity of the object’, when considered as a composite function from the dif
ferential point of view of the infinitesimal calculus, Deleuze argues that, 
‘we require the complex concept of differeni/ciation. The t and the c here 
are the distinctive feature or the phonological relation of difference in 
person’ (p. 209). Deleuze argues that différenciation is The second part 
of difference’ (p. 209), the first being expressed by the logic of the 
differential in differentiation. Where the logic of differentiation charac
terises a differential philosophy, the complex concept of the logic of 
different/ciation characterises Deleuze’s ‘philosophy of difference’

The differential point of view of the infinitesimal calculus represents an 
opening, providing a trajectory for the construction of an alternative his
tory of mathematics; it actually anticipates the return of the infinitesimal 
in the differential calculus of contemporary mathematics, thanks to the 
axioms of non-standard analysis. This is the interpretation of the differ
ential calculus to which Deleuze is referring when he appeals to the 
‘barbaric or pre-scientific interpretations of the differential calculus’ 
(Deleuze 1994,171). Deleuze thereby establishes a historical continuity 
between the differential point of view of the infinitesimal calculus and 
modem theories of the differential calculus which surpasses the methods 
of the differential calculus which Weierstrass uses in the epsilon-delta 
approach to support the development of a rigorous foundation for the cal
culus. While Weierstrass is interested in making advances in mathemat
ics to secure the development of a rigorous foundation for the differential
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calculus, Deleuze is interested in using mathematics to problématisé the 
reduction of the differential calculus to set theory, by determining an 
alternative trajectory in the history of mathematics, one that retrospec
tively allows the réintroduction of the infinitesimal into an understanding 
of the operation of the calculus. According to Deleuze, the ‘finitist inter
pretations’ of the calculus given in modern set-theoretical mathematics * 
which are congruent with ‘Cantorian finitism’ (Maddy 1988, 488), that 
is, ‘the idea that infinite entities are considered to be finite within set 
theory’ (Salanskis 1996,66) -  betray the nature of the differential no less 
than Weierstrass, since they ‘both fail to capture the extra-propositional 
or sub-representative source from which calculus draws its power’ 
(Deleuze 1994, 264). He maintains that ‘the derivative and the integral 
have become ordinal rather than quantitative concepts’ (p. 176).

In constructing this theory of relations characteristic of a philoso
phy of difference, Deleuze draws significantly from the work of Albert 
Lautman, who refers to this whole process as ‘the metaphysics of logic’ 
(Lautman 1938a, 3). It is in Difference and Repetition that Deleuze for
mulates a ‘metaphysics of logic’ that corresponds to the logic of the dif 
ferential from the differential point of view of the infinitesimal calculus. 
However, he argues that ‘we should speak of a dialectics of the calculus 
rather than a metaphysics’ (Deleuze 1994, 178), since ‘each engendered 
domain, in which dialectical Ideas of this or that order are incarnated, 
possesses its own calculus. It is not mathematics which is applied to 
other domains but the dialectic which establishes the direct differen
tial calculus corresponding or appropriate to the domain under consider
ation’ (p. 181). Just as he argued that mathematics ‘does not include only 
solutions to problems; it also includes the expression of problems rela
tive to the field of solvability which they define. That is why the dif
ferential calculus belongs to mathematics, even at the very moment when 
it finds its sense in the revelation of a dialectic which points beyond 
mathematics’ (p. 179). It is in the differential point of view of the infini
tesimal calculus that Deleuze finds a form of the differential calculus 
appropriate to the determination of a differential logic. This logic is 
deployed by Deleuze, in the form of the logic of differeni/ciation, in the 
development of his project of constructing a philosophy of difference.

The relation between the finite and the infinitesimal is determined 
according to what Lautman describes as ‘the logical schemas which 
preside over the organisation of their edifices’ (Lautman 1938b, 58). 
Lautman argues that ‘it is possible to recover within mathematical 
theories, logical Ideas incarnated in the same movement of these
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theories’ (p. 58). The logical Ideas to which Lautman refers include the 
relations of expression between the finite and the infinitesimal. He argues 
that these logical Ideas 'have no other purpose than to contribute to the 
illumination of logical schemas within mathematics, which are only 
knowable through the mathematics themselves’ (p. 58). The project of 
the present essay has been to locate these 'logical Ideas’ in the mathe
matical theory of the infinitesimal calculus from the differential point of 
view, in order then to determine how Deleuze uses these 'logical Ideas’ 
to develop the logical schema of a theory of relations characteristic of a 
philosophy of difference.

1 This essay draws on earlier work that was published in Angelaki 9.3 (2004). 
See Duffy 2004b.

2 Deleuze acknowledges that ‘the interpretation of the differential calculus has 
indeed taken the form of asking whether infinitesimals are real or fictive’ 
(Deleuze 1994, 177). However, for Deleuze, the question is rhetorical, for it 
is of little importance whether the infinitely small are real, and if they are not 
this does not signify the contemptible fictive character of their position. What 
is at stake in the debate on the legitimacy of the infinitesimal is ‘the integra
tion of the infinitesimal into the register of quantity’ (Salanskis 1996,71),that 
is, of the infinite in the finite, which comes down to the choice between infi
nite and finite representations. This problem is taken up in the next section of 
this essay entitled ‘A new theory of relations’

3 For a thorough analysis of this problem with limits in Cauchy, see Boyer 
1959,281.

4 Given a function, f(x), having derivatives of all orders, the Taylor series of the 
function is given by

where f (k)(a) is the kth derivative o f /a t  a. A function is equal to its Taylor 
series if and only if its error term Rn can be made arbitrarily small, where

Notes
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The Taylor series of a function can be represented in the form of a power 
series, which is given by

00

2a nxn = a0+aiX+a2x2+- •+anxn +
n=0

where each a is a distinct constant. It can be shown that any such series either 
converges at x = 0, or for all real x, or for all x with -R < x < R for some 
positive real R. The interval (-R, R) is called the circle of convergence, or 
neighbourhood of the distinctive point. This series should be thought of as a 
function in x for all x in the circle of convergence. Where defined, this func
tion has derivatives of all orders. See Reinhardt 1985.

5 Deleuze argues that Tt was a great day for philosophy when . Leibniz pro
posed . that there is no reason for you simply to oppose the singular to the 
universal. It’s much more interesting if you listen to what mathematicians 
say, who for their own reasons think of “singular” not in relation to “univer
sal”, but in relation to “ordinary” or “regular”’ (Deleuze 1980).

6 Note: the primitive function \f(x)dx, expresses the whole curve f(x).
7 It was Charles A. A. Briot (b. 1817 -  1882) and Jean-Claude Bouquet 

(b. 1819 -  1885) who introduced the term ‘meromorphic’ for a function 
which possessed just poles in that domain (Kline 1972,642).

8 Mandelbrot qualifies these statements when he says of Poincaré that ‘nothing 
I know of his work makes him even a distant precursor of the fractal geome
try of the visible facets of Nature’(1982,414).
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Axiomatics and problematics as two 
modes of formalisation: Deleuze's 
epistemology of mathematics*

Daniel W. Smith

1. Introduction: problematics, dialectics, and ideas

Throughout his work, Gilles Deleuze has developed a distinction 
between two modes of formalisation, in mathematics and elsewhere, 
which he terms, respectively, 'axiomatics5 and ‘problematics.’1 The 
axiomatic (or ‘theorematic’) method of formalisation is a familiar one, 
already having a long history in mathematics, philosophy, and logic, 
from Euclid’s geometry to Spinoza’s philosophy to the formalised 
systems of modem symbolic logic. Although problematics has had an 
equally determinate trajectory in the history of mathematics, it is a more 
subterranean and less visible trajectory, but one that has increasingly 
become the object of study in contemporary philosophy of mathematics. 
Deleuze argues that the recognition of the irreducibility of problems and 
their genetic role in mathematics is ‘one of the most original characteris
tics of modem epistemology,’ as exemplified in the otherwise diverse 
work of thinkers such as Canguilhem, Bouligand, Vuillemin, and 
Lautman.2

Deleuze’s contribution to these debates has been to take up the 
mathematical concept of problematics and to give it an unparalleled 
status in philosophy. The fundamental difference between these two 
modes of formalisation can be seen in their differing methods of deduc
tion: in axiomatics, a deduction moves from axioms to the theorems that 
are derived from it, whereas in problematics a deduction moves from the 
problem to the ideal accidents and events that condition the problem and 
form the cases that resolve it. More generally, Deleuze characterises 
axiomatics as belonging to a ‘major’ or royal form of science, which con
stantly attempts to effect a reduction or repression (or more accurately,
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an arithmetic conversion) of the problematic pole of mathematics, itself 
wedded to a ‘minor’ or nomadic conception of science. ‘What we have 
are two formally different conceptions of science, and ontologically a 
single field of interaction in which royal science [e.g., axiomatics] con
tinually appropriates the contents of vague or nomad science [problem
atics] , while nomad science continually cuts the contents of royal science 
loose’ (Deleuze and Guattari 1987,362,367. Emphasis added). Many of 
the most important concepts in Deleuze’s own philosophy -  such as 
multiplicity, the differential, singularity, series, zones of indiscemibility, 
and so on -  were adopted from this problematic pole of mathematics, and 
particularly from the history of the calculus. My primary purpose in tins 
essay will be to elucidate the epistemological differences between 
problematics and axiomatics.

We should note, however, that Deleuze’s interest in the mathemat
ics of problematics is not purely epistemological, but stems from his 
more general interest in the status of problems in philosophy. The activ
ity of thinking has often been conceived of as the search for solutions to 
problems, but this is a prejudice whose roots, Deleuze suggests, are both 
social and pedagogical: in the classroom, it is the mathematics teacher 
who poses the problems, the pupil’s task being to discover the correct 
solution. What the notions of ‘true’ and ‘false’ serve to qualify are 
precisely the responses or solutions that are given to these already- 
formulated questions or problems. Yet at the same time, everyone recog
nises that problems are never given ready-made, but must be constructed 
or constituted -  hence the scandal when a ‘false’ or badly-formulated 
problem is set in an examination. ‘While it is relatively easy to define the 
true and the false in relation to solutions whose problems are already 
stated,’ Deleuze writes in Bergsonism, ‘it is much more difficult to say 
what the true and false consist of when they are applied directly to prob- 
lems themselves’ (1988, 16-17). In fact, philosophy is concerned less 
with the solution to eternal problems than the constitution of problems 
themselves, and the means for distinguishing between legitimate and ille
gitimate problems, that is, between true and false problems.

In the history of philosophy, the science of problems has always 
had a precise name: dialectics. In Plato’s dialectic, for instance, the 
appeal to a foundational realm of essence (Ideas) first appeared as the 
response to a particular way of posing problems, a particular form of the 
question -  namely the question ‘What is. .?’ [ti estinl], ‘The idea, 
writes Deleuze, ‘the discovery of the Idea, is not separable from a certain 
type of question. The Idea is first of all an ‘objectity’ [objectité] that
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corresponds, as such, to a way of posing questions’ (Deleuze 2004, 95. 
Translation modified). The question 'What is. .?’ thus presupposes a 
particular way of thinking that points one in the direction of essence: for 
Plato, it was the question of essence, the only question capable of dis
covering the Idea. Aristotle in turn defined dialectics as the art of posing 
problems as the subject of a syllogism, while analytics gives us the 
means of resolving the problem by leading the syllogism to its necessary 
conclusion. Deleuze’s own dialectic, however, is indexed primarily on 
Kant’s ‘Transcendental Dialectic’ in the Critique of Pure Reason. 
Against Plato, Kant attempted to provide a purely immanent conception 
of Ideas that exposed the illusion of assigning to Ideas a transcendent 
object (such as the Soul, the World, or God). If the Ideas of reason give 
rise to illusion and lead us into false problems, Kant argued, this is first 
of all because reason is the faculty of posing problems in general: the 
object of the Idea, since it lies outside of experience, can neither be given 
nor known, but must be represented in a problematic form, without being 
determined. But this does not mean that Ideas have no real object; more 
profoundly, it means that problems as problems are the real objects of 
Ideas?

This is the source of the link one finds in Deleuze’s work between 
dialectics, problematics, and Ideas: dialectics is the science of problems, 
but problems themselves are Ideas. Deleuze has often been characterised 
(wrongly) as an anti-dialectical thinker, but it would be more accurate to 
say that Difference and Repetition (especially its fifth chapter, ‘Ideas and 
the Synthesis of Difference’) is a book that proposes a new concept of 
dialectics, one that both is indebted to but breaks with the work of the 
great dialectical thinkers such as Plato, Kant, and Hegel. This is where 
Deleuze’s interest in mathematical problematics intervenes: it provides 
him with a model for this new conception of dialectics. If Plato found his 
model in Euclidian geometry, and contemporary philosophers tend to 
turn toward set theory and axiomatics, Deleuze has found his model for 
dialectical Ideas in problematics and the history of the calculus. The 
discussion that follows focuses primarily on the mathematical origins of 
Deleuze’s conception of dialectics, and the problematic/axiomatic dis
tinction that lies at its core. It will examine, in turn, the historical back
ground of Deleuze’s notion of problematics, the precise nature of the 
relation between axiomatics and problematics, and finally, the means by 
which Deleuze has attempted to provide a formalisation of problematics 
in his theory of multiplicities.
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2o Problematics versus axiomatics: historical background

Although Deleuze formulates the problematic-axiomatic distinction m 
his own manner, it in fact reflects a fairly familiar tension within the 
history of mathematics, which can be illustrated by means of three 
historical examples.

1. The first example comes from the Greeks. Proclus, in his Com* 
mentary of the First Book of Euclid’s Elements, had already formulated a 
distinction, within Greek geometry, between problems and theorems.4 
Theorems concern the demonstration, from axioms or postulates, of the 
inherent properties belonging to a figure, whereas problems concern the 
actual construction of figures, usually using a straightedge and compass. 
From this viewpoint, determining a triangle the sum of whose angles is 
180 degrees is theorematic, since the angles of every triangle will total 
180 degrees. By contrast, constructing an equilateral triangle on a given 
finite straight line is problematic, since we could also construct a non* 
equilateral triangle or a non-triangular figure on the line (moreover, the 
construction of an equilateral triangle must first pass through the con
struction of two circles). Classical geometers struggled for centuries with 
the three great unresolved ‘problems’ of antiquity -  trisecting an angfc, 
constructing a square equal to a circle, and constructing a cube having 
double the volume of a given cube -  although only in 1882 was it proved 
(theorematically) that none of these problems was solvable using only a 
straightedge and compass.5

But this is why theorematics and problematics involve two differ
ent conceptions of deduction: if in theorematics a deduction moves from 
axioms to theorems, in problematics a deduction moves from the prob
lem to the ideal events that condition it and form the cases of solution that 
resolve it. In theorematics, for instance, a figure is defined statically,m 
Platonic fashion, in terms of its essence and its derived properties: 
Euclidean geometry defines the essence of the line in purely static terms 
that eliminate any reference to the curvilinear (‘a line which lies evenly 
with the points on itself’).6 Problematics, by contrast, found its classical 
expression in the ‘operative’ geometry of Archimedes, in which the 
straight line is characterised dynamically as ‘the shortest distance 
between two points.’ Here, the problem (How to construct a line between 
two points?), with its determinate conditions, has an infinite set of possi
ble solutions (curves, loops, etc.), and the straight line is simply the case 
that constitutes the ‘shortest’ solution. Similarly, in the theory of conic 
sections, the ellipse, hyperbola, parabola, straight lines, and the point are
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û  ‘cases’ of the projection of a circle onto secant planes in relation to the 
apex of a cone. If Archimedean geometry (especially the Archimedes of 
‘On the Method’) can be said to be an operative geometry, it is because 
it defines the line less as an essence than as a continuous operation or 
process of ‘alignment’, the circle as a continuous process of ‘rounding’ 
Ée square as the process of ‘quadrature’, and so on. In problematics, a 
figure is defined dynamically by its capacity  to be affected  -  that is, by 
le ideal accidents and events that can befall the figure (sectioning, cut
ting, projecting, folding, bending, stretching, reflecting, rotating, and so 
on). As a theorematic figure, a circle may indeed be an organic and fixed 
essence, but the morphological variations of the circle (figures that are 
lens-shaped’, ‘umbelliform’ ‘indented’, etc.) form problematic figures 
that are, in Husserl’s words, ‘vague yet rigorous’ ‘essentially and not 
accidentally inexact.’7

Greek thought nonetheless set a precedent that would be followed 
by later mathematicians and philosophers: Proclus had already pointed 
to (and defended) the relative triumph, in Greek geometry, of the 
theorematic over the problematic. The reason: to the Greeks, ‘problems 
concern only events and affects which show evidence of a deterioration  
Or a projection of essences in the imagination,’ and theorematics could 
lus present itself as a necessary ‘rectification’ of thought.8 This ‘rectifi
cation’ must be understood, in a literal sense, as a triumph of the recti
linear over the curvilinear. In the ‘minor’ geometry of problematics, 
figures are inseparable from their inherent variations, affections, and 
events (the straight line being a simple case of the curve). The explicit 
aim of ‘major’ theorematics is ‘to uproot variables from their state 
of continuous variation in order to extract from them fixed points 
and constant relations,’ thereby setting geometry on the ‘royal’ road 
of theorematic deduction and proof (Deleuze and Guattari 1987, 
408-409).

2. For our second example, we jump ahead two millennia. By the 
seventeenth-century, the tension between problems and theorems, which 
was internal to Greek geometry, had shifted to a more general tension 
between geometry itself, on the one hand, and algebra and arithmetic on 
le other. Desargues’ pro jec tive  g eo m etry , for instance, which was a 
qualitative and ‘minor’ geometry centred on problems-events (as devel
oped, most famously, in Desargues’ D raft P ro ject o f  an A ttem pt to Treat 
the Events o f  the E ncounters o f  a  Cone and a P lane), was quickly 
opposed in favour of the analytic  geom etry  of Fermat and Descartes -  a 
quantitative and ‘major’ geometry that translated geometric relations
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into arithmetic relations that could be expressed in algebraic equations 
(Cartesian coordinates) (Boyer 1968, 393). ‘Royal’ science, in other 
words, now entailed an arithm etisation  of geometry itself. ‘There is a 
correlation,’ Deleuze writes, ‘between geometry and arithmetic, geomê  
try and algebra that is constitutive of major science.’9 Descartes was 
dismayed when he heard that Desargues’ D raft P ro jec t treated conic sec
tions without the use of algebra, since to him ‘it did not seem possible to 
say anything about conics that could not more easily be expressed with 
algebra than without.’10 As a result, Desargues’ methods were repudiated 
as dangerous and unsound, and his practices of perspective baiined. 
Theorematics (in the form of algebra) once again triumphed, and brought 
about an arithmetic conversion of a problematic field.

This triumph of theorematics can be said to have reached its great
est philosophical expression in Spinoza’s E th ics , which assumes a purely 
theorematic or axiomatic form of argumentation and deduction. 1b 
Spinoza,’ Deleuze complains, 'the use o f  the geom etric  m ethod invokes 
no ‘p ro b lem s’ a t alV (1994, 323, n. 21). Indeed, with regard to problem
atics, Deleuze suggests that in fact Descartes actually went further than 
Spinoza, and that Descartes the geometer went further than DescartesÉe 
philosopher. The ‘Cartesian method’ (the search for the clear and dis
tinct) is a method for solving problems, but the analytic procedure thË 
Descartes presents in his G eom etry  is focused on the constitution of 
problems as such (‘Cartesian coordinates’ appear nowhere in the 
G eom etry).n The G eom etry  does not move from axioms to theorems,but 
rather starts with a problem and ‘analyses’ it to find a solution. ‘With the 
[analytic] method I use,’ Descartes wrote, ‘everything falling under the 
geometers consideration can be reduced to as single class of problem 
namely, that of looking for the value of the roots of a certain equation. 
Nonetheless, one of the most significant innovations of Deleuze’s read
ing of Spinoza is to have presented a pro b lem a tic  reading of the Ethics, 
which operates alongside and within Spinoza’s explicit demonstrative 
apparatus. Rather than beginning with the axioms and following 
Spinoza’s theorematic deductions, Deleuze starts his analysis ‘in the 
middle’, that is, with the problematic composition of finite modes and the 
affections that befall them, and undertakes a problematic deduction of the 
concept. Human modes of existence have affections just as geometrical 
figures. ‘The relation between mathematics and humanity,’ Deleuze 
writes in Logic o f  Sense, ‘may thus be conceived in a new way: the ques
tion is not that of quantifying or measuring human properties, but rather, 
on the one hand, that of problematising human events and, on the other.
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that of developing as various human events the conditions of a problem’ 
(p. 55). Spinoza’s work is thus susceptible to two kinds of reading: a con
ceptual (theorematic) reading and an affective (problematic) reading. 
This is why, in his analysis of the Ethics, Deleuze consistently empha
sised the role of the scholia (which are the only elements of the Ethics 
that fall outside the axiomatic deductions, and develop the theme of 
‘affections’) and the fifth book (which introduces problematic hiatuses 
and contractions into the deductive exposition itself).13 Pierre Macherey 
has complained that Deleuze, in approaching Spinoza’s thought in such 
a manner, is attempting to introduce a new version of Spinozism that is 
at variance, if not completely at odds, with the model of ‘demonstrative 
rationality’ explicitly adopted by Spinoza himself.14 But it should be 
clear that Deleuze’s approach to Spinoza is itself a ‘case’ of his broader 
approach to philosophy from the viewpoint of problematics. ‘The whole 
problem of reason,’ Deleuze has suggested elsewhere, ‘will be converted 
by Spinoza into a special case of the more general problem of the affects’ 
(Deleuze 1980c).

The attempt to ‘arithmetise’ geometry would continue well into the 
nineteenth-century, when Desargues’ projective geometry was revived in 
file work of Monge, the inventor of descriptive geometry, and Poncelet, 
who formulated the ‘principle of continuity,’ which led to developments 
in analysis situs and topology. Topology (so-called ‘rubber-band geome
try’) was initially a problematic science that concerned the property of 
geometric figures that remain invariant under transformations such as 
bending or stretching. Under such transformations, figures that are 
theorematically distinct in Euclidean geometry -  such as a triangle, a 
square, or a circle -  can be seen as one and the same ‘homeomorphic’ 
figure, since they can be continuously transformed into one another. This 
entailed an extension of geometric ‘intuitions’ far beyond the limits of 
empirical or sensible perception (à la Kant). ‘With Monge, and especially 
Poncelet,’ writes Deleuze, commenting on Léon Brunschvicg’s work, 
‘the limits of sensible, or even spatial, representation (striated space) are 
indeed surpassed, but less in the direction of a symbolic power of 
abstraction [i.e., theorematics] than toward a trans-spatial imagination, 
or a trans-intuition (continuity).’15 In the twentieth-century, computers 
have extended the reach of this ‘trans-intuition’ even further, provoking 
renewed interest in qualitative geometry, and allowing mathematicians to 
‘see’ hitherto unimagined objects such as the Mandelbrot set and the 
Lorenz attractor, which have become the poster children of the new 
sciences of chaos and complexity. ‘Seeing, seeing what happens,’
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continues Deleuze, 'has always had an essential importance, greater than 
demonstrations, even in pure mathematics, which can be called visual, 
figurai, independently of its applications: many mathematicians nowa
days think that a computer is more precious than an axiomatic’ (Deleuze 
and Guattari 1994, 128. Translation modified). But already in the early 
nineteenth-century, there was a renewed attempt to turn projective 
geometry into a mere practical dependency on analysis, or so-called 
higher geometry (the debate between Poncelet and Cauchy).16 The devel
opment of the theory of functions would eventually eliminate the appeal 
to the principle of continuity, substituting for the geometrical idea of 
smoothness of variation the arithmetic idea of 'mapping’ or a one-to-one 
correspondence of points (point-set topology). Theorematics would once 
again triumph over problematics.

3. Finally, this double movement of major science toward 
theorematisation and arithmetisation would reach its full flowering in the 
late nineteenth-century, primarily in response to problems posed by the 
invention of the calculus. In its origins, the calculus was tied to prob
lematics in a double sense. The first refers to the problems that the 
calculus confronted: the differential calculus addressed the problematic 
of tangents (how to determine the tangent lines to a given curve), while 
the integral calculus addressed the problematic of quadrature (how to 
determine the area within a given curve). The greatness of Leibniz and 
Newton was to have recognised the intimate connection between these 
two problematics (the problem of finding areas is the inverse of deter
mining tangents to curves), and to have developed a symbolism to link 
them together and resolve them. The calculus quickly became the pri
mary mathematical engine of what we call the ‘scientific revolution’ Yet 
for two centuries, the calculus, not unlike Archimedean geometry, itself 
maintained a problematic status in a second sense: it was allotted a para- 
scientific status, labelled a ‘barbaric’ or ‘Gothic’ hypothesis, or at best a 
convenient convention or well-grounded fiction. In its early formula
tions, the calculus was shot through with dynamic notions such as 
infinitesimals, fluxions and fluents, thresholds, passages to the limit, 
continuous variation -  all of which presumed a geometrical conception 
of the continuum, in other words, the idea of a process. For most 
mathematicians, these were considered to be ‘metaphysical’ ideas 
that lay beyond the realm of mathematical definition. Berkeley 
famously ridiculed infinitesimals as ‘the ghosts of departed quantities’; 
D’Alembert famously responded by telling his students, Allez en avant, 
et la foi vous viendra (‘Go forward, and faith will come to you’).17
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The calculus would not have been invented without these notions, yet 
they remained problematic, lacking an adequate mathematical ground.

For a long period of time, the enormous success of the calculus in 
solving physical problems delayed research into its logical foundations. 
It was not until the end of the nineteenth-century that the calculus would 
receive a ‘rigorous’ foundation through the development of the ‘limit- 
concept.’ ‘Rigour’ meant that the calculus had to be separated from 
its problematic origins in geometrical conceptions or intuitions, and 
^conceptualised in purely arithmetic terms (the loaded term ‘intuition’ 
here having little to do with empirical perception, but rather the ideal 
geometrical notion of continuous movement and space).18 This ‘arith- 
metisation of analysis’, as Félix Klein called it,19 was achieved by Karl 
Weierstrass, one of Husserl’s teachers, in the wake of work done by 
Cauchy (leading Guilio Giorello to dub Weierstrass and his followers 
the ‘ghostbusters’).20 Analysis (the study of infinite processes) was 
concerned with continuous magnitudes, whereas arithmetic had as its 
domain the discrete set of numbers. The aim of Weierstrass’ ‘discretisa
tion’ programme was to separate the calculus from the geometry of con
tinuity and base it on the concept of number alone. Geometrical notions 
were thus reconceptualised in terms of sets of discrete points, which in 
turn were conceptualised in terms of number: points on a line as individ
ual numbers, points on a plane as ordered pairs of numbers, points in 
n-dimensional space as π-tuples of numbers. As a result, the concept 
of the variable was given a static (arithmetic) rather than a dynamic 
(geometrical) interpretation. Early interpreters had tended to appeal to 
the geometrical intuition of continuous motion when they said that a 
variable x ‘approaches’ a limit (e.g., the circle defined as the limit of a 
polygon). Weierstrass’ innovation was to reinterpret this variable x arith
metically as simply designating any one of a collection of numerical 
values (the theory of functions), thereby eliminating any dynamism or 
‘continuous variation’ from the notion of continuity, and any interpreta
tion of the operation of differentiation as a process. In Weierstrass’ limit- 
concept, in short, the geometric idea of ‘approaching a limit’ was 
arithmetised, and replaced by static constraints on discrete numbers 
alone (the episilon-delta method). Dedekind took this arithmetisation a 
step further by rigorously defining the continuity of the real numbers 
in terms of a ‘cut’: ‘it is the cut which constitutes, .the ideal cause of 
continuity or the pure element of quantitativity’ (Deleuze 1994, 172). 
Cantor’s set theory, finally, gave a discrete interpretation of the notion of 
infinity itself, treating infinite sets like finite sets (the power set axiom) -
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or rather, treating all sets, whether finite or infinite, as mathematical 
objects (the axiom of infinity).21

Weierstrass, Dedekind, and Cantor thus form the great triumvirate 
of the programme of discretisation and the development of the ‘arith
metic’ continuum (the redefinition of continuity as a function of sets over 
discrete numbers). In their wake, the basic concepts of the calculus - 
function, continuity, limit, convergence, infinity, and so on -  were pro
gressively ‘clarified’ and ‘refined,’ and ultimately given a set theoretical 
foundation. The assumptions of Weierstrass’ discretisation problem 
that only arithmetic is rigorous, and that geometric notions are unsuitable 
for secure foundations -  are now largely identified with the ‘orthodox’or 
‘major’ view of the history of mathematics as a progression toward ever 
more ‘well-founded’ positions.22 This contemporary orthodoxy has often 
been characterised as an ‘ontological reductionism’; as Penelope Maddy 
describes it, ‘mathematical objects and structures are identified with or 
instantiated by set theorematic surrogates, and the classical theorems 
about them proved from the axioms of set theory.’23 Reuben Hersh gives 
it a more idiomatic and constructivist characterisation: ‘Starting from the 
empty set, perform a few operations, like forming the set of all subsets. 
Before long you have a magnificent structure in which you can embed the 
real numbers, complex numbers, quaterions, Hilbert spaces, infinite- 
dimensional differentiable manifolds, and anything else you like’ (1997, 
13). The programme would pass through two further developments. The 
contradictions generated by set theory brought on a sense of a ‘crisis’ in 
the foundations, which Hilbert’s formalist (or formalisation) programme 
attempted to repair through axiomatisation, that is, by attempting to show 
that set theory could be derived from a finite set of axioms, which were 
later codified by Zermelo-Fraenkel (given his theological leanings, even 
Cantor needed a dose of axiomatic rigor). Gödel and Cohen, finally, in 
their famous theorems, would eventually expose the internal limits of 
axiomatisation (incompleteness, undecidability), demonstrating that 
there is a variety of mathematical forms in ‘infinite excess’ over our 
ability to formalise them consistently. Deleuze, for his part, fully recog
nises the position of the orthodox programme: ‘Modern mathematics is 
regarded as based upon the theory of groups or set theory rather than on 
the differential calculus’ (1994,180). Nonetheless, he insists that the fun
damental difference in kind between problematics and axiomatics 
remains, even in contemporary mathematics: ‘Modern mathematics also 
leaves us in a state of antinomy, since the strict finite interpretation that 
it gives of the calculus nevertheless presupposes an axiom of infinity in
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Ée set theoretical foundation, even though this axiom finds no illustra
tion in the calculus. What is still missing is the extra-propositional and 
sub-representative element expressed in the Idea by the differential, 
precisely in the form of a problem ’ (p. 178).

A final example can help serve to illustrate the ongoing tension 
between problematics and axiomatics, even in contemporary mathemat
ics. Even after Weierstrass5 work, mathematicians using the calculus 
continued to obtain accurate results and make new discoveries by using 
infinitesimals in their reasoning, their mathematical conscience assuaged 
by the (often unchecked) supposition that infinitesimals could be 
replaced by Weierstrassian methods. Despite its supposed ‘elimination’ 
as an impure and muddled metaphysical concept, the ghostly concept of 
infinitesimals continued to play a positive role in mathematics as a prob
lematic concept, reliably producing correct solutions. ‘Even now,5 wrote 
Abraham Robinson in 1966, ‘there are many classical results in differen
tial geometry which have never been established in any other way [than 
through the use of infinitesimals], the assumption being that somehow 
the rigorous but less intuitive ε, δ method would lead to the same 
result.’24 In response to this situation, Robinson developed his non- 
standard analysis, which proposed an axiomatisation of infinitesimals 
themselves, at last granting mathematicians the ‘right’ to use them in 
proofs. Using the theory of formal languages, he added to the ordinary 
theory of numbers a new symbol (which we can call i for infinitesimal), 
and posited axioms saying that i was smaller than any finite number 1 In 
and yet not zero; he then showed that this enriched theory of numbers is 
consistent, assuming the consistency of the ordinary theory of numbers. 
The resulting axiomatic model is described as ‘non-standard’ in that it 
contains, in addition to the ‘standard’ finite and transfinite numbers, 
non-standard numbers such as hyperreals and infinitesimals. In the non
standard model, there is a cluster of infinitesimals around every real 
number r, which Robinson, in a nod to Leibniz, termed a ‘monad’ (the 
monad is the ‘infinitesimal neighbourhood’ of r). Transfinites and infin
itesimals are two types of infinite number, which characterise degrees of 
infinity in different fashions. In effect, this means that contemporary 
mathematics has ‘two distinct rigorous formulations of the calculus’: 
that of Weierstrass and Cantor, who eliminated infinitesimals, and that 
of Robinson, who rehabilitated and legitimised them.25 Both these 
theorematic endeavours, however, had their genesis in the imposition of 
the notion of infinitesimals as a problematic concept, which in turn gave 
rise to differing but related axiomatisations. Deleuze’s claim is that the
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ontology of mathematics is poorly understood if it does not take into 
account the specificity and irreducibility of problematics.

3. The relation between problematics and axiomatics

With these historical examples in hand, we can now make several sum
mary points concerning the relation between the problematic and 
axiomatic poles of mathematics, or more broadly, the relation betweai 
minor and major science. First, according to Deleuze, mathematics is 
constantly producing notions that have an objectively problematic status; 
the role of axiomatics (or its precursors) is to codify and solidify these 
problematic notions, providing them with a theorematic ground or rigor
ous foundation. Axiomaticians, one might say, are the iaw  and order" 
types in mathematics: ‘Hilbert and de Broglie were as much politicians 
as scientists: they reestablished order’ (Deleuze and Guattari 1987,144). 
In this sense, as Jean Dieudonné suggests, axiomatics is a foundational 
but secondary enterprise in mathematics, dependent for its very existence 
on problematics: Tn periods of expansion, when new notions are intro
duced, it is often very difficult to exactly delimit the conditions of their 
deployment, and one must admit that one can only reasonably do so once 
one has acquired a rather long practice in these notions, which necessi
tates a more or less extended period of cultivation [défrichement], during 
which incertitude and controversy dominates. Once the heroic age of 
pioneers passes, the following generation can then codify their work,get
ting rid of the superfluous, solidifying the bases -  in short, putting the 
house in order. At this moment, the axiomatic method reigns anew, until 
the next overturning [bouleversement] that brings a new idea.’26 Nicholas 
Bourbaki puts the point even more strongly, noting that ‘the axiomatic 
method is nothing but the “Taylor System” -  the “scientific manage
ment” -  of mathematics’ (1971, 31). Deleuze has adopted a similar 
historical thesis, noting that the push toward axiomatics at the end of 
the nineteenth-century arose at the same time that Taylorism arose in 
capitalism: axiomatics does for mathematics what Taylorism does for 
‘work’.27

Second, problematic concepts often (though not always) have their 
source in what Deleuze terms the ‘ambulatory’ sciences, which includes 
sciences such as metallurgy, surveying, stonecutting, and perspective. 
(One need only think of the mathematical problems encountered by 
Archimedes in his work on military installations, Desargues on the tech
niques of perspective, Monge on the transportation of earth, and so on.)
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The nature of such domains, however, is that they do not allow science 
to assume an autonomous power. The reason, according to Deleuze, is 
that the ambulatory sciences ‘subordinate all their operations to the sen
sible conditions of intuition and construction -  following the flow of 
matter, drawing and linking up smooth space. Everything is situated in 
the objective zone of fluctuation that is coextensive with reality itself. 
However refined or rigorous, “approximate knowledge” is still depen
dent upon sensitive and sensible evaluations that pose more problems 
âan they solve: problematics is still its only mode’ (Deleuze and 
Guattari 1987, 373). Such sciences are linked to notions -  such as 
heterogeneity, dynamism, continuous variation, flows, and so on -  that 
are barred or banned from the requirements of axiomatics, and conse
quently they tend to appear in history as that which was superseded or left 
behind. By contrast, what is proper to royal science, to its theorematic or 
axiomatic power, is ‘to isolate all operations from the conditions of intu
ition , making them true intrinsic concepts, or ‘categories5 .Without this
categorical, apodictic apparatus, the differential operations would be 
constrained to follow the evolution of a phenomenon’(p. 373-374). In 
the ontological field of interaction between minor and major science, in 
other words, ‘the ambulant sciences confine themselves to inventing 
problems whose solution is tied to a whole set of collective, nonscientific 
activities but whose scientific solution depends, on the contrary, on royal 
science and the way it has transformed the problem by introducing it into 
its theorematic apparatus and its organisation of work. This is somewhat 
like intuition and intelligence in Bergson, where only intelligence has 
the scientific means to solve formally the problems posed by intuition’ 
(p. 374).

Third, what is crucial in the interaction between the two poles are 
thus the processes of translation that take place between them -  for 
instance, in Descartes and Fermat, an algebraic translation of the geo
metrical; in Weierstrass, a static translation of the dynamic; in Dedekind, 
a discrete translation of the continuous. The ‘richness and necessity of 
translations,’ writes Deleuze, ‘include as many opportunities for open
ings as risks of closure or stoppage’ (Deleuze and Guattari 1987,486). In 
general, Deleuze’s work in mathematical epistemology tends to focus on 
the reduction of the problematic to the axiomatic, the intensive to the 
extensive, the continuous to the discrete, the nonmetric to the metric, the 
nondenumerable to the denumerable, the rhizomatic to the arborescent, 
the smooth to the striated. Not all these reductions, to be sure, are equiv
alent, and Deleuze (following Lautman) analyses each on its own
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account. Deleuze himself highlights two of them. The first is The com
plexity of the means by which one translates intensities into extensive 
quantities, or more generally, multiplicities of distance into systems of 
magnitudes that measure and striate them (the role of logarithms in this 
connection)’; the second, ‘the delicacy and complexity of the means by 
which Riemannian patches of smooth space receive a Euclidean con
junction (the role of the parallelism of vectors in striating the infinitesi
mal)’ (p. 486). At times, Deleuze suggests, axiomatics can possess a 
deliberate will to halt problematics: ‘State science retains of nomad 
science only what it can appropriate; it turns the rest into a set of strictly 
limited formulas without any real scientific status, or else simply 
represses and bans it’ (p. 362; cf. p. 144). But despite its best efforts, 
axiomatics can never have done with problematics, which maintains its 
own ontological status and rigor. ‘Minor science is continually enriching 
major science, communicating its intuitions to it, its way of proceeding, 
its itinerancy, its sense of and taste for matter, singularity, variation, intu
itionist geometry and the numbering number. Major science has a 
perpetual need for the inspiration of the minor; but the minor would be 
nothing if it did not confront and conform to the highest scientific 
requirements’ (p. 485-6). In Deleuzian terms, one might say that while 
‘progress’ can be made at the level of theorematics and axiomatics, all 
‘becoming’ occurs at the level of problematics.

Fourth, this means that axiomatics, no less than problematics, 
is itself an inventive and creative activity. One might be tempted to 
follow Poincaré in identifying problematics as a ‘method of discovery’ 
(Riemann) and axiomatics as a ‘method of demonstration’ (Weier? 
strass).28 But just as problematics has its own modes of formalisation and 
deduction, so axiomatics has its own modes of intuition and discovery 
(axioms are not chosen arbitrarily, for instance, but in accordance wü 
specific problems and intuitions).29 ‘In science an axiomatic is not at all 
a transcendent, autonomous, and decision-making power opposed to 
experimentation and intuition. On the one hand, it has its own gropings 
in the dark, experimentations, modes of intuition. Axioms being inde
pendent of each other, can they be added, and up to what point (a 
saturated system)? Can they be withdrawn (a ‘weakened’ system)? On 
the other hand, it is of the nature of axiomatics to come up against so- 
called undecidable propositions, to confront necessarily higher powers 
that it cannot master. Finally, axiomatics does not constitute the cutting 
edge of science; it is much more a stopping point, a reordering that pre
vents decoded flows in physics and mathematics [= problematics] from
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escaping in all directions. The great axiomaticians are the men of State 
within science, who seal off the lines of flight that are so frequent in 
mathematics, who would impose a new nexum, if only a temporary one, 
and who lay down the official policies of science. They are the heirs of 
the theorematic conception of geometry’ (Deleuze and Guattari 1987, 
461). For all these reasons, problematics is, by its very nature, ‘a kind of 
science, or treatment of science, that seems very difficult to classify, 
whose history is even difficult to follow’ (p. 361).30

4. The form alisa tion  o f  problem atics:
D eleu ze’s theory o f  m ultiplicities

One of the aims of Deleuze’s new concept of dialectics is to provide a 
formalisation of problematics that would constitute the basis for the 
theory of Ideas -  a parallel to the formalisation that long ago took place 
in axiomatics. The difficulties of such a task, however, should be evident 
from the remarks above. The formalisation of theorematics has had a 
long history in mathematics and philosophy, and the theory of extensive 
multiplicities (Cantor’s set theory) and its rigorous axiomatisation 
(Zermelo-Fraenkel, et al.) is one of the great achievements of modern 
mathematics. Deleuze, by contrast, is proposing to construct a hitherto 
non-existent (philosophical) formalisation of problematic multiplicities 
that are, by his own account, selected against by ‘major’ mathematics. In 
this regard, Deleuze’s relation to the history of mathematics is similar to 
his relation to the history of philosophy: even in canonical figures there 
is something that ‘escapes’ the official histories of mathematics.31 
Nonetheless, there were a number of important precursors in mathemat
ics who were working in this direction: Abel, Galois, Riemann, and 
Poincaré are among the great names in the history of problematics, just 
as Weierstrass, Dedekind, and Cantor are the great names in the discreti
sation programme, and Hilbert, Zermelo, Frankel, Gödel, and Cohen the 
great names in the movement toward formalisation and axiomatisation. 
We can therefore highlight at least three mathematical domains that have 
served as precursors in formalising the theory of problems in mathemat
ics, and which Deleuze appealed to in formulating his own concept of 
problems as multiplicities.32

1. The first domain is the theory of groups, which initially arose 
from questions concerning the solvability of certain algebraic (rather 
than differential) equations. There are two kinds of solutions to algebraic 
equations, particular and general. Whereas a particular solution is given
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by numerical values (x2 + 3 x -4  = 0 has as its solution x = 1), a general 
solution provides the global pattern of all particular solutions to an alge
braic equation (the above equation, generalised as x2 + ax -  b = 0, has the 
solution x = \/a2/2 + b -  a/2). But such solutions, writes Deleuze, ‘whether 
general or particular, find their sense only in the subjacent problem which 
inspires them’ (1994,162). By the sixteenth century, it had been proved 
(Tataglia-Cardan) that genera l solvability was possible with squared, 
cubic, and quartic equations. But equations raised to the fifth power and 
higher refused to yield to the previous method (via radicals), and the 
puzzle of the ‘quintic’ remained unresolved for more than two centuries, 
until the work of Lagrange, Abel, and Galois in the nineteenth-century. 
In 1824, Abel proved the startling result that the quintic was in fact 
unsolvable, but the method he used was as important as the result: Abel 
recognised that there was a pattern to the solutions of the first four cases, 
and that it was this pattern that held the key to understanding the recalci
trance of the fifth. Abel showed that the question of ‘solvability’ had to 
be determined internally by the in trinsic  conditions of the problem itself, 
which then progressively specifies its own ‘fields’ of solvability.

Building on Abel’s work, Evariste Galois developed a way to 
approach the study of this pattern, using the technique now known as 
group th eory . Put simply, Galois ‘showed that equations that can be 
solved by a formula must have groups of a particular type, and that the 
quintic had the wrong sort of group’ (Stewart and Golubitsky 1992,42). 
The ‘group’ of an equation captures the conditions of the problem; on the 
basis of certain substitutions within the group, solutions can be shown to 
be indistinguishable insofar as the validity of the equation is concerned.33 
In particular, Deleuze emphasises the fundamental procedure of adjunc
tion  in Galois: ‘Starting from a basic ‘field’ R, successive adjunctions to 
this field (R’,R ” ,R ’” .) allow a progressively more precise distinction
of the roots of an equation, by the progressive limitation of possible sub
stitutions. There is thus a succession of ‘partial résolvants’ or an embed
ding of ‘groups’ which make the solution follow from the very 
conditions of the problem’ (1994, 180). In other words, the group of an 
equation does not tell us what we know about its roots, but rather, as 
George Verriest remarks, ‘the objectivity of what we do not know about 
them.’34 As Galois himself wrote, ‘in these two memoirs, and especially 
in the second, one often finds the formula, I  d o n ’t kn ow . ’35 This
non-knowledge is not a negative or an insufficiency, but rather a rule 
or something to be learned that corresponds to an ob jec tive  dimension of 
the problem. What Deleuze finds in Abel and Galois, following the
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exemplary analyses of Jules Vuillemin in his Philosophy o f  A lgebra , is ‘a 
radical reversal of the problem-solution relation, a more considerable 
revolution than the Copernican.’36 In a sense, one could say that ‘unsolv
ability’ plays a role in problematics similar to that played by ‘undecid
ability’ in axiomatics.

2. The second domain Deleuze utilises is the calculus itself, and on 
Éis score Deleuze’s analyses are based to a large extent on the interpre
tation proposed by Albert Lautman in his E ssay on the N otions o f  Struc
ture and E xistence in M athem atics  (1938). Lautman’s work is based on 
Ée idea of a fundamental difference in kind between a problem and its 
Solution, a distinction that is attested to by the existence of problems 
without solution. Leibniz, Deleuze notes, ‘had already shown that the 
calculus, .expressed problems that could not hitherto be solved, or 
indeed, even posed’ (1994, 177). In turn Lautman establishes a link 
between the theory of differential equations and the theory of singulari
ties, since it was the latter that provided the key to understanding the 
nature of nonlinear  differential equations, which could not be solved 
because their series diverged. As determined by the equation, singular 
points are distinguished from the ordinary points of a curve: the singu
larities mark the points where the curve changes direction (inflections, 
cusps, etc.), and thus can be used to distinguish between different types 
of curves. In the late 1800’s, Henri Poincaré, using a simple nonlinear 
equation, was able to identify four types of singular points that corre
sponded to the equation (foci, saddle points, knots, and centres) and to 
demonstrate the topological behaviour of the solutions in the neighbour
hood of such points (the integral curves).37 On the basis of Poincaré’s 
work, Lautman was able to specify the nature of the difference in kind 
between problems and solutions. The conditions of the problem  posed by 
the equation is determined by the existence and distribution of singular 
points in a differentiated topological field (a field of vectors), where each 
singularity is inseparable from a zone of objective indétermination (the 
ordinary points that surround it). In turn, the solution  to the equation 
will only appear with the integral curves that are constituted in the 
neighbourhood of these singularities, which mark the beginnings of the 
différenciation (or actualisation) of the problematic field. In this way, the 
ontological status of the problem as such is detached from its solutions: 
in itself, the problem is a multiplicity of singularities, a nested field of 
directional vectors which define the ‘virtual’ trajectories of the curves in 
the solution, not all of which can be actualised. Non-linear equations 
can thus be used to model objectively problematic (or indeterminate)
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physical systems, such as the weather (Lorenz): the equations can define 
the virtual ‘attractors’ of the system (the intrinsic singularities toward 
which the trajectories will tend in the long-term), but they cannot say in 
advance which trajectory will be actualised (the equation cannot be 
solved), making accurate prediction impossible. A problem, in other 
words, has an objectively determined structure (virtuality), apart from its 
solutions (actuality) .38

3. But ‘there is no revolution,’ in the problem-solution reversal, 
continues Deleuze, ‘as long as we remain tied to Euclidean geometry: we 
must move to a geometry of sufficient reason, a Riemannian-type differ
ential geometry which tends to give rise to discontinuity on the basis of 
continuity, or to ground solutions in the conditions of the problems’ 
(1994, 162). This leads to Deleuze’s third mathematical resource, the 
differential geom etry  of Gauss and Riemann. Gauss had realised that the 
utilisation of the differential calculus allowed for the study of curves and 
surfaces in a purely intrinsic and ‘local’ manner; that is, without any ref
erence to a ‘global’ embedding space (such as the Cartesian coordinates 
of analytic geometry).39 Riemann’s achievement, in turn, was to have 
used Gauss’s differential geometry to launch a reconsideration of the 
entire approach to the study of space by analysing the general problem of 
n-dim ensional curved surfaces. He developed a non-Euclidean geometry 
(showing that Euclid’s axioms were not self-evident truths) of a multi
dimensional, non-metric, and non-intuitable ‘any-space-whatever,’ 
which he termed a pure ‘multiplicity’ or ‘manifold’ [,Mannigfaltigkeit). 
He began by defining the distance between two points whose corre
sponding coordinates differ only by infinitesimal amounts, and defined 
the curvature of the multiplicity in terms of the accum ulation  of neigh
bourhoods, which alone determine its connections.40 For our purposes, 
the two important features of a Riemannian manifold are its variable 
number of dimensions (its ^-dimensionality), and the absence of any 
supplementary dimension which would impose on it extrinsically 
defined coordinates or unity.41 As Deleuze writes, a Riemannian multi
plicity is ‘an n-dimensional, continuous, defined multiplicity... .By 
dim ensions, we mean the variables or coordinates upon which a 
phenomenon depends; by con tin u ity , we mean the set of [differential] 
relations between changes in these variables -  for example, a quadratic 
form of the differentials of the co-ordinates; by defin ition , we mean the 
elements reciprocally determined by these relations, elements which 
cannot change unless the multiplicity changes its order and its metric’ 
(1994,182).
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In D ifference an d  R ep e titio n , Deleuze draws upon all these 
resources to develop his general theory of problematic or differential 
multiplicities. The fifth chapter of D ifference an d  R epetition  (‘Ideas and 
the Synthesis of Difference’) draws on all these resources in order to pre
sent a theory of Ideas as  problematic (problems are  Ideas), which in 
effect presents Deleuze’s new concept of dialectics. The formal condi
tions of a problematic Idea can be briefly summarised as follows. (1) The 
elements of the multiplicity are merely ‘determinable’, their nature is not 
determined in advance by either a defining property or an axiom (e.g., 
extensionality). Rather, they are pure virtualities that have neither 
identity, nor sensible form, nor conceptual signification, nor assignable 
function (principle of determinability). (2) They are nonetheless deter
mined reciprocally as singularities in the differential relation, a ‘non- 
localisable ideal connection’ that provides a purely intrinsic definition of 
the multiplicity as ‘problematic’; the differential relation is not only 
external to its terms, but constitu tive  of its terms (principle of reciprocal 
determination). (3) The values of these relations define the complete 
determination of the problem, that is, ‘the existence, the number, and the 
distribution of the determinant points that precisely provide its condi
tions’ as a problem (principle of complete determination).42 These three 
aspects of sufficient reason, finally, find their unity in the temporal prin
ciple of progressive determination, through which, as we have seen in the 
work of Abel and Galois, the problem is resolved (adjunction, etc.) 
(1994,210).

The strength of Deleuze’s project, with regard to problematics, is 
that, in a certain sense, it parallels the movement toward ‘rigour’ that was 
made in axiomatics: it presents a formalisation of the theory of problems, 
freed from the conditions of geometric intuition and solvability, and 
existing only in pure thought (even though Deleuze presents his theory in 
a purely philosophical manner, and explicitly refuses to assign a scien
tific status to his conclusions).43 In undertaking this project, he had few 
philosophical precursors (Lautman, Vuillemin), and the degree to which 
he succeeded in the effort no doubt remains an open question. Manuel 
DeLanda, in a recent work, has proposed several refinements in 
Deleuze’s formalisation, drawn from contemporary science: certain 
types of singularities are now recognisable as ‘strange attractors’; the res
olution of a problematic field (the movement from the virtual to the 
actual) can now be described in terms of a series of spatio-temporal 
‘symmetry-breaking cascades’ and so on.44 But as DeLanda insists, 
despite his own modifications to Deleuze’s theory, Deleuze himself
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‘should get the credit for having adequately p o se d  the p ro b lem ’ of prob» 
lem atics (2002, 102).

Notes

This essay draws on earlier work that was published in the Southern Journal 
of Philosophy 41.3 (2003). See Smith 2003.

1 See Deleuze 1994, 323 n. 22: Given the irreducibility of ‘problems’ in his 
thought, Deleuze writes that ‘the use of the word “problematic” as a substan
tive seems to us an indispensable neologism.’

2 Deleuze 1994, 323 n. 22. Deleuze is referring to the distinction between 
‘problem’ and ‘theory’ in Canguilhem 1978; the distinction between the 
‘problem-element’ and the ‘global synthesis element’ in Bouligand 1949; and 
the distinction between ‘problem’ and ‘solution’ inLautman 1939, discussed 
below. All these thinkers insist on the double irreducibility of problems: prob
lems should not be evaluated extrinsically in terms of their ‘solvability’ (the 
philosophical illusion), nor should problems be envisioned merely as the con
flict between two opposing or contradictory propositions (the natural illusion) 
(see Deleuze 1994, 161). On this score, Deleuze largely follows Lautman’s 
thesis that mathematics participates in a dialectic that points beyond itself to 
a meta-mathematical power -  that is, to a general theory of problems and their 
ideal synthesis -  which accounts for the genesis of mathematics itself. See 
Lautman 1939, particularly the section entitled ‘The Genesis of Mathematics 
from the Dialectic’: ‘The order implied by the notion of genesis is no longer 
of the order of logical reconstruction in mathematics, in the sense that from 
the initial axioms of a theory flow all the propositions of the theory, for the 
dialectic is not a part of mathematics, and its notions have no relation to the 
primitive notions of a theory’ (p. 13-14).

3 When Kant says that Ideas are ‘problems to which there is no solution’ (Kant 
1998, 319, A328/B384), he does not mean that they are necessarily false 
problems, and therefore insoluble; on the contrary, this means that true prob
lems are Ideas, and that these Ideas do not disappear with their solutions, 
since they are the indispensable condition without which no solution would 
ever exist. See Deleuze 1994, 168.

4 Proclus 1970,63-67, as cited in Deleuze 1994,163; Deleuze 1987,554 n.21; 
and Deleuze 1990a, 54. See also Deleuze’s comments in Deleuze 1989,174: 
theorems and problems are are ‘two mathematical instances which constantly 
refer to each other, the one enveloping the second, the second sliding into the 
first, but both very different in spite of their union.’ On the two types of 
deduction, see 185.

5 See E. T. Bell’s comments on this issue in Bell 1937, 31-32.
6 See Deleuze 1994,174: ‘The mathematician Houël remarked that the shortest 

distance was not a Euclidean notion at all, but an Archimedean one, more
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physical than mathematical; that it was inseparable from a method of exhaus
tion; and that it served less to determine the straight line than to determine the 
length of a curve by means of a straight line -  “integral calculus performed 
unknowingly’” (citing Houël 1867,3,75). Carl B. Boyer makes a similar point 
in his 1968: ‘Greek mathematics sometimes has been described as essentially 
static, with little regard for the notion of variability; but Archimedes, in his 
study of the spiral, seems to have found the tangent to the curve through kine
matic considerations akin to the differential calculus’ (p. 41).

7 Husserl 1931, 208, §74. Whereas Husserl saw problematics as ‘proto- 
geometry,’ Deleuze sees it as a fully autonomous dimension of geometry, but 
one he identifies as a ‘minor’ science; it is a ‘proto’-geometry only from the 
viewpoint of the ‘major’ or ‘royal’ conception of geometry, which attempts 
to eliminate these dynamic events or variations by subjecting them to a 
theorematic treatment.

8 Deleuze 1994, 160. Emphasis added. Deleuze continues: ‘As a result [of 
using reductio ad absurdum proofs], however, the genetic point of view is 
forcibly relegated to an inferior rank: proof is given that something cannot not 
be, rather than that it is and why it is (hence the frequency in Euclid of nega
tive, indirect and reductio arguments, which serve to keep geometry under the 
domination of the principle of identity and prevent it from becoming a geom
etry of sufficient reason).’
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9
Problems in the relation between 
maths and philosophy

Robin Durie

How should the relation between Deleuze’s philosophy and mathematics 
be characterised? Does his ontology ‘depend’ upon maths? Does it 
‘reduce’ to maths? Does maths ‘illustrate’, or provide ‘metaphors’ for, 
his ontology? Yet perhaps these are all ill-conceived questions, or prob
lems, in so far as they trade in traditional modes of philosophical 
accounting, the very sorts of accounting that Deleuze’s philosophy seeks 
to call into question. Perhaps, therefore, we should reformulate our 
initial question in the following way: what is the problem in the 
relation between mathematics and ontology, or metaphysics, in 
Deleuze’s philosophy?

In a brief essay entitled ‘A Philosophical Concept. , Deleuze 
argues that concepts function within ‘fields of thought’ which are defined 
by internal variables, but which are also subject to the effects of external 
variables. He then writes:

This means that a concept does not die simply when one wants it to, but 
only when new functions in new fields discharge it. This is also why it is 
never very interesting to criticise a concept: it is better to build the new 
functions and discover the new fields that make it useless or inadequate. 
(Cadava, Connor and Nancy 1991,94)

An example of such a discharge would be the way in which Bergson dis
covered a new field of thought in Matter and Memory within which the 
concept of the virtual functioned, on the basis of which discovery he was 
subsequently able to discharge the classical Aristotelian concept of 
potentiality. But how might it be possible to discover such new fields, and 
so build new functions that would discharge old concepts?

Deleuze consistently expressed his discomfort with the Platonic 
formula of the One and the Multiple, and its subsequent ramification 
into the formulae of the universal and the singular or the general and the
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particular. But must the singular remain within the field of thought 
defined by classical philosophical variables? In the third of a delightful 
series of seminars on Leibniz dating from 1980, Deleuze speaks of the 
‘great mathematical discovery [. .] that singularity is no longer thought 
in relation to the universal, but is thought rather in relation to the ordi
nary or to the regular’ (Deleuze 1980b). Notice here that a new field of 
thought is signalled, to the extent that the variables defining the field do 
not consist in the relations between singular and universal but rather sin
gular and ordinary, or regular. That is to say, not only do the notions of 
regular and ordinary differ from that of universal, but the relations 
between regular or ordinary and singular differ from the relation subsist
ing between singular and universal. As a consequence, the concept of the 
singular itself must differ in kind in this new field. Deleuze continues: 
‘The singular is what exceeds the ordinary and the regular. And saying 
that already takes us a great distance since saying it indicates that, hence
forth, we wish to make singularity into a philosophical concept, even 
if it means finding reasons to do so in a favourable domain, namely 
mathematics.’

Here then is one possible answer to our question regarding the rela
tion of mathematics and philosophy in Deleuze’s work -  the field of 
mathematics can yield concepts whose functions can reveal the inade
quacy of traditional philosophical concepts, at the very moment that they 
displace these concepts. In so ‘discharging’ the old concepts, new fields 
of philosophical thought are necessarily defined. But this answer pro
vokes a further set of questions: What reasons might emerge within the 
field of mathematics that might motivate us to make of singularity a 
philosophical concept? And what might the relations be between the new 
mathematical field within which the concept functions, and the philo
sophical field, such that the concept that functions in the new mathemat
ical field can map on to a new philosophical field in which traditional 
concepts have been discharged?

In order to begin to develop responses to these questions, we must bear 
in mind Deleuze’s stipulation that ‘the creation of a concept always 
occurs as the function of a problem.’1 As he writes in What is Philoso
phy?: ‘All concepts are connected to problems without which they would 
have no meaning and which can themselves only be isolated or under
stood as their solution emerges. Of course, everything changes if we 
think that we discover another problem.’2 What is of the utmost signifi? 
cance for Deleuze in making these claims is the principle, derived froim
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Lautman, that problems (or questions) differ in kind from solutions (or 
answers).3

Deleuze’s discussion of problems in D ifference and R epetition  has 
both an epistemological and an ontological dimension. We shall concen
trate on the section in chapter three of that book which for the most part 
deals with the former dimension, although we shall see that this discus
sion is not isolated from the ontological dimension.4 As is well known, 
chapter three of D ifference an d  R epetition  develops a series of eight 
postulates which, Deleuze argues, define the traditional image of philo
sophical thought -  Deleuze’s seventh postulate, on the 'modality of 
solutions’, pertains to ‘responses and solutions according to which truth 
and falsehood only begin with solutions or only qualify responses’ 
(Deleuze 1994, 158).5 The assumption underlying this traditional philo
sophical position is the belief that ‘problems are given ready-made, and 
that they disappear in the responses or solution’ (p. 158). The problem is 
little more than a trigger for the all-important solution, from which it dif
fers only in degree, to the extent, that is, that the problem simply contains 
less of the solution than the solution does. Furthermore, this difference in 
degree is itself a mere effect of ‘negative empirical conditions imposed 
upon the knowing subject’ (p. 159). We catch a glimpse of this postulate 
in the infamous cases the philosophical tradition affords us as examples 
of thought ‘going wrong’, such as mistaking Theodorus for Theaetetus.

Why should such a mistake -  doubtless the effect of poor light, or 
looking from a distance -  be of any philosophical value? They are exam
ples of, as Plato already emphasised, failures of recognition, just as a fail
ure to arrive at the ‘right solution’ -  in the terms of the 7th postulate -  
would be no more than a failure to recognise this solution in a given prob
lem. Objects of recognition do not ‘fo rce  us to think’ (Deleuze 1994, 
138). What forces us to think is the object which is encountered , and 
encountered objects are precisely not recognised but first and foremost 
sensed (p. 139). This sense constitutes, in effect, a sign of the event of 
the faculty of sensibility or intuition ‘finding itself before its own limit’ 
(p. 140). This limit of the sensible is experienced because sensation is 
unable to perform its regular function, whereby it presents a content to 
the understanding which in turn applies a concept to this content, by 
which the content is recognised. What can only be sensed ‘moves the 
soul, “perplexes” it -  in other words, forces it to pose a problem, as 
though the object of encounter, the sign, were the bearer of a problem -  
as though it were a problem’ (p. 140; referring to Plato, R epublic  524a) 
It is this perplexity in the encounter, forcing the ‘soul’ to ‘pose a
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problem’, which lies behind Deleuze’s claim that ‘recognition’ of the fact 
of the 7th Postulate is not sufficient -  rather it is a discovery which:

must be raised to the transcendental level, and problems must be consid
ered not as ‘givens’ (data) but as ideal ‘objecticities’ [objectiîés] possess
ing their own sufficiency and implying acts of constitution and investment 
in their respective symbolic fields. Far from being concerned with solu
tions, truth and falsehood primarily affect problems. A solution always has 
the truth it deserves according to the problem to which it is a response, and 
the problem always has the solution it deserves in proportion to its own 
truth or falsity -  in other words, in proportion to its sense.

(Deleuze 1994,159)

Deleuze reminds us that the distinction in Aristotle between 
Analytics and Dialectics represents the division between the techniques 
involved in solving a problem already given and those involved in posing 
problems legitimately, how to engender the element of a syllogism. But 
the history of mathematics tended to steer clear of dialectics, preferring 
to concentrate on the method by which solutions are deduced from 
theorems. ‘The reason is that theorems seem to express and to develop 
properties of simple essences, whereas problems concern only events and 
affections. As a result, the genetic point of view is forcibly relegated 
to an inferior rank’ (Deleuze 1994, 160). Mathematics thus develops 
methods ‘for solving supposedly given problems, [rather than] method[s] 
of invention appropriate to the constitution of problems’ (p. 161).

Thus both philosophy and mathematics are determined by the prin
ciple whereby problems are evaluated ‘according to their solvability 
[résolubilitéy (Deleuze 1994, 161). However, ‘solvability’ is an extrin
sic value, an external condition. There is no intrinsic reason why a good 
problem should be solvable, nor a bad problem insoluble -  quite the con
trary.6 What the traditions of philosophy and mathematics miss in their 
insistence on this external ground ‘is the internal character of the prob
lem as such, the imperative internal element which decides in the first 
place its truth or falsity and measures its intrinsic genetic power: that is, 
the very object of the dialectic or combinatory, the “differential” 
Problems are the differential elements in thought, the genetic elements m 
the true’ (p. 161-2).

Let us emphasise what is at stake in this distinction between exter 
nal ground and internal genetic power, for it is a distinction which lies at 
the heart of Deleuze’s attempt to develop a philosophy of immanence. As 
we have seen, the defining characteristic of the traditional conception of
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the relation between problem and solution lies in the reducibility of the 
problem, its 'subservience’ to the solution. The solution is, from this 
perspective, indifferent to the problem -  it remains unaffected by the 
problem as such, since the problem is merely the way to the solution. 
This indifference is a defining characteristic of all philosophies of tran
scendence -  thus, Platonic Forms are paradigmatically indifferent to their 
particular instantiations. A key imperative for Deleuze’s philosophy of 
immanence is therefore to demonstrate that, for instance, the virtual does 
not remain indifferent to its actualisation, that the actual can affect the 
virtual. In the same way, an intrinsic, or immanent, relation between 
problems and solutions must entail that 'the true and the false do not 
suffer the indifference of the conditioned with regard to its condition, nor 
does the condition remain indifferent with regard to what it renders 
possible’ (Deleuze 1994,161)

In order to begin to see how the relation between problem and solution 
can call into question the traditional relation between One and multiple 
or universal and particular, we must inquire into the conditions of prob
lems, into the sufficient reasons for problems, an inquiry which, Deleuze 
suggests, is akin to that of Riemannian differential geometry which, he 
claims, 'tends to give rise to discontinuity on the basis of continuity, or 
to ground solutions in the conditions of the problems’ (Deleuze 1994, 
162).

The key to understanding the nature of problems lies in under
standing what Deleuze means when he writes that 'problems are Ideas 
themselves’ (Deleuze 1994, 162). Ideas are, as Deleuze will go on to 
explain in chapter four of Difference and Repetition, indeterminate, and 
it is in this indeterminacy that their problematicity resides. Propositions 
by themselves, on the other hand, are always determinate, and in this way 
particular. Problems thus differ in kind from propositions. To be sure, 
certain propositions generate general solutions, but this is only because 
of‘the subjacent problem which inspires them’ (p. 162). It is problems, 
Deleuze claims, which are strictly universal, and propositions which are 
particular. To understand or constitute a problem, therefore, must consist 
in determining ‘the conditions under which the problem acquires a 
maximum of comprehension and extension. conditions capable of 
communicating to a given case of solution the ideal continuity appropri
ate to it’ (p. 161). Just as forgetfulness of the problems which generate 
concepts in the history of philosophy renders these concepts abstract, so 
also forgetfulness of the problem leaves us with merely abstract general

173



PROBLEMS IN MATHS AND PHILOSOPHY

solutions. Deleuze has Bergson in mind when he writes that such abstract 
solutions are the effect of separating the continuity which functions as the 
problematic Idea from the discontinuity which is produced by the solv
ing of the problem. It is such abstract discontinuity which leads to the 
conception of solutions as particular cases, which have ‘the status of 
particular propositions whose sole value is designatory’ (p. 163). The 
fundamental task in maintaining the relation between the continuity of 
the Idea with the discontinuity of its solution, therefore, is to regain the 
genuine sense of both universal and singular:

for the problem or the Idea is a concrete singularity no less than a true uni
versal. Corresponding to the relations which constitute the universality of 
the problem is the distribution of singular and distinctive points which 
determine the conditions of the problem, (p. 163)

In order that propositions do not become mere abstract particulars, they 
must maintain their relation with what Leibniz characterised as the 
continuity of the events, the ‘how and the circumstances’ which give 
propositions their sense.

Deleuze characterises such events as ‘ideal’, in distinction to the 
‘real events which they determine in the order of solutions’ (Deleuze 
1994, 163). The sense of the ideal of the problem here is to be distin
guished from the traditional notion of essences, consisting instead in 
‘multiplicities or complexes of relations and corresponding singularities’ 
(p. 163). Thus, rather than a relation of instantiation between essence or 
universal and particular (or indeed a relation between essence and acci
dent), we must first of all think of the problem as a multiplicity. Now, the 
key difference between a multiplicity and a set is that sets still maintain 
a relation with a certain external principle (or essence) which determines 
the elements of the set (the set of whole numbers, for instance), whereas 
the only determining principle of a multiplicity is that certain relations 
are possible between the elements of the multiplicity -  whatever these 
elements might be -  and that there are certain fundamental principles 
or laws which determine the form of these possible relations, these 
laws being the only determinate aspect of the multiplicity. The objects of 
the multiplicity are themselves determined solely by the relations into 
which they can or do enter -  while remaining wholly indeterminate with 
respect to their own form or matter.7 We must therefore understand the 
problem as distributing the elements of the multiplicity according to the 
relations by which they are determined. Singular elements are then sin
gular in relation to the distribution of ordinary or regular elements ‘in the
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neighbourhood’ of them, and in this way owe their singularity to these 
elements. But equally, the distribution of the continuity of regular ele
ments is itself determined by the singular elements. A simple representa
tion of this relation between the regular and the singular would be that 
of the singular point at which the direction of a curve changes, and the 
continua of regular points constituting the curve on either side of the 
singular point. In this case, singularities would represent the maxima and 
minima of curves. Another way of conceiving singularities derives from 
Poincaré, who developed the resources of topology to understand the 
dynamic behaviour of systems. In this context, a singularity can function 
as an ‘attractor’ or ‘basin of attraction’, in such a way that, if, at a given 
point, the trajectory of the system falls within the sphere of influence of 
die basin of attraction, then it will inevitably tend towards the attractor 
(just as a marble spun around the rim of a bowl will have a trajectory the 
end point of which is the centre of the bowl).8

What then is the relation between the continuity of events, the 
distribution of singularities which constitute the conditions of the prob
lem, and the determined particulars that constitute the solution of the 
problem, from this new perspective of the problem which emerges from 
the critique of the 7th Postulate? Deleuze emphasises that while problems 
differ in kind from solutions, they nevertheless do not exist apart from 
their solutions. Rather, the problem ‘insists and persists in the solutions’:

A problem is determined at the same time that it is solved, but its determi
nation is not the same as its solution: the two elements differ in kind, the 
determination amounting to the genesis of the concomitant solution. (In 
this manner the distribution of singularities belongs entirely to the condi
tions of the problem, while their specification already refers to solutions 
constructed under these conditions.) The problem is at once both tran
scendent and immanent to its solutions. Transcendent, because it consists 
in a system of ideal liaisons or differential relations between genetic ele
ments. Immanent, because these liaisons or relations are incarnated in the 
actual relations which do not resemble them and are defined by the field of 
the solution. (Deleuze 1994,163)

There are a number of different courses which an exegetical reading of 
Deleuze could follow at this point, including, among others, a discussion 
of the differential element of problems, or the relation of reciprocal deter
mination between problems and solutions which foreshadows the 
account of the relation between the virtual and the actual to be developed 
in the succeeding chapters of Difference and Repetition.9 However, we 
wish to return to our initial questions regarding the ‘problem’ of the
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relation between mathematics and philosophy. We have followed the 
development of a new way of conceiving the problem as such for 
philosophy. It would be possible to trace a certain mathematical lineage, 
or better, field, within which this concept of the problem developed, sueh 
that it could come, in Deleuze’s philosophy, to discharge the traditional 
philosophical concept of the problem. Rather than do this explicitly, 
however, we propose to outline a series of developments in mathematics, 
developments which determine the field from within which a number of 
concepts that will come to play a decisive role in Deleuze’s philosophy 
emerge. These remarks will in turn pave the way for some more or less 
speculative reflections in which we will seek to address the question 
of the problem that the relation with mathematics in general, and the 
particular field with which we will be interested, poses philosophy. The 
spirit of this gesture is Bergsonian, since it turns on a certain conviction 
regarding the complementarity of developments in science and philoso
phy, a complementarity which entails reciprocal implication between 
developments in both fields.

It is well known that the primary mathematical influence on 
Deleuze’s philosophy is that of the calculus. It is worth recalling the 
motivation for the calculus. Seventeenth century science was charac
terised first and foremost by its concentration on problems of motion. 
This work led to the development of the concept of the function, which 
expressed symbolically the relation between variables. The calculus 
constituted a response to a series of diverse needs, primarily that of cal
culating the velocity and acceleration of a moving body at an instant, 
given the relation between variables which established that the distance 
covered by a moving body is a function of time. The difficulty presented 
is that velocity and acceleration vary from instant to instant. This prob
lem requires a method for finding the instantaneous rate of change of one 
variable with respect to another. In his later work, Newton conceived of 
the variables in the function as generated by the continuous motion of 
points, lines and planes, calling such variable quantities ‘fluents’, and 
their rates of change ‘fluxions’ (what is now called the ‘derivative’ of the 
function). Thus, given a relation between two fluents (which change with 
time), the task for the calculus consists in determining the relation 
between their fluxions (or vice versa). Whereas Newton used infinitely 
small increments in the variables as a means of determining the fluxion, 
Leibniz dealt directly with the infinitely small increments in the van- 
ables, that is, with differentials, and sought to determine the relation 
between these.10
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From the founding work of Newton and Leibniz on the calculus 
stemmed a number of new areas of mathematical inquiry, including dif
ferential geometry and the calculus of variations (dealing with the prob
lem of discovering the maximum and minimum values of a function). 
Differential geometry responded to the need for greater understanding of 
curves and surfaces, to the extent that the paths described by moving 
objects are curves, while the objects that are moving are bounded by 
surfaces. The recourse to the method of the calculus in differential 
geometry enabled the study of curves and surfaces which vary from point 
to point, just as the velocity and acceleration of moving bodies vary from 
instant to instant. The main advance in differential geometry consisted in 
the proposal that a surface can be conceived as a space in itself, rather 
than being embedded within a higher-dimensional space (in classical 
geometry, a surface is studied on the basis that it is a figure lying within 
three-dimensional space). The geometry of a surface conceived as a 
space in itself will be ‘intrinsic’ to the surface, rather than deriving from 
the space which is assumed to surround the surface.11 Thus, if a surface 
is conceived as a space in itself, then it will have a geometry which may 
well turn out to be non-Euclidean. Riemann was the first to generalise 
this notion, developing an intrinsic geometry for any space (whatsoever), 
characterising such ‘n-dimensional spaces’ as ‘multiplicities of n-dimen- 
sions’.12 A point in such a multiplicity is determined by the assignation 
of values in n variable parameters, and the multiplicity consists in the 
aggregate of all such possible points.13

Because there is no extrinsic determination of the nature of the 
points comprising the multiplicity, and because the space varies from 
point to point, Riemann proceeded from the principle that it is only ever 
possible to have local knowledge of a space. On the other hand, Riemann 
also sought to determine the notion of a ‘curvature of a multiplicity’, on 
the basis of which it becomes possible to determine those spaces on 
which figures can be moved without changing shape or magnitude. In 
this case, however, since the ‘curvature of the multiplicity is defined in 
terms of quantities determinable on the multiplicity itself’, then curva
ture must be understood as ‘a property of the metric imposed on the 
multiplicity rather than of the multiplicity itself’ (Kline 1972, 891-2). 
Riemann had earlier distinguished between continuous and discrete 
multiplicities according to whether the ground of the metric relations 
which can subsist between the elements of the multiplicity are an intrin
sic part of the multiplicity or need to be imposed from outside the 
multiplicity. This notion was to prove fundamental in its influence on
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general relativity, since, to the extent that a multiplicity -  in this case, out 
own space to which Euclidean geometry has traditionally been applied - 
is subject to binding physical forces which act upon it, then not only does 
space vary from point to point, but, as matter moves through space 
(understood as the continual passing of a curvature or distortion of space 
from one portion of that space to another in the manner of a wave) so 
space also varies from time to time, or instant to instant. Thus, just as the 
principle of differential geometry determines surfaces as spaces in them
selves rather than being embedded in a containing space, so also this 
latter principle demonstrates the fact that any understanding of the nature 
of physical space depends upon the interrelation between matter and 
space. In both of these ways, therefore, it is clear how traditional philo
sophical conceptions of space, or more strictly, the coherent field of 
concepts from which the philosophical understanding of space derives, is 
not compatible with Riemannian geometry (nor will it be with Einstein’s 
general theory of relativity as a consequence).

This last point offers a brief glimpse of the extent of the displace
ment of philosophical conceptuality which Riemann’s thought might 
be enabled to effect in Deleuze’s philosophy, and what in turn is the 
extent of the conceptual implications involved in his recourse to such 
Riemannian notions as rc-dimensional space and multiplicities. If we now 
briefly turn to the mathematical theory of singularities, we find that it 
consists first and foremost in a new course of development for the theory 
of ordinary differential equations. In general, work had progressed on the 
presupposition that differential equations contain continuous functions in 
the domains in which solutions were to be considered. In the middle of 
the nineteenth century, again based in part on the work of Riemann, focus 
was turned on differential equations which, ‘when expressed so that the 
coefficient of the second derivative is unity, have coefficients that are sin
gular, and the form of the series solutions in the neighbourhood of Ée 
singular points particularly that of the second solution, is peculiar.’ Such 
singular points are to be distinguished from ordinary points, points at 
which all the coefficients are continuous (Kline 1972, 721). Since the 
solutions in the neighbourhood of singular points are series, the form of 
the series has to be determined before these solutions can be calculated. 
Such knowledge can only be obtained from the differential equation, 
prompting the mathematician Fuchs to write that ‘the problem of the 
theory of differential equations’ has become that of ‘deducing from the 
equation itself the behaviour of its integrals at all points of the plane. 
This work was primarily undertaken by Riemann and Fuchs himself.
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Riemann’s approach consisted in assuming that certain relevant func
tions within a linear equation are single-valued continuous (in fact, ana
lytic) functions except at isolated singular points. The task consisted in 
accessing the behaviour of analytic solutions in the neighbourhood of 
such isolated singular points, where these solutions, despite the functions 
being single-valued, are themselves not in general single-valued over the 
entire domain of possible values. What Riemann showed was that, if we 
‘trace the behaviour of an analytic [solution] along a closed path enclos
ing a singular point,’ then that solution ‘will change its value to another 
branch of the same function, though it remains a solution of the differen
tial equation.’ The general solution formed from the linear combination 
of n such particular solutions thus consists in a group, whereby each par
ticular solution ‘undergo[es] a certain linear transformation when each is 
carried around a closed path enclosing a singular point. Such a transfor
mation arises for any closed path around each of the singular points or 
combination of singular points. The set of transformations forms a 
“group”’ (in the technical sense deriving from the work of Galois and 
Abel) (Kline 1972, 722-3).

The work on the theory of singularities was further advanced by 
Poincaré’s ‘qualitative’ theory of non-linear differential equations, which 
he applied to the problem of the stability of planetary motion. In order to 
determine whether a planet’s orbit is stable, Poincaré inquired into 
whether the trajectory of a moving point describes a closed curve, and 
whether or not it remains within the interior of a certain portion of a 
plane. Poincaré began with the simplest form of non-linear differential 
quation appropriate to his inquiry, and found that singular points of the 
quation played a key role. Poincaré qualitatively distinguished four 
types of singular points -  focus (or origin), saddle point, node and centre, 
and described the behaviour of solutions of the equation around these 
points. In the case of the focus, the solution spirals around and 
approaches the origin, whereas in the case of the saddle point, solutions 
approach and then depart from the single point. At a node, an infinity of 
solutions cross, while a centre is a point around which closed trajectories 
exist, one enclosing another and all enclosing the centre (Kline 1972, 
733).

Poincaré’s qualitative theory of differential equations is essentially 
lopological, since it is concerned with the form of integral curves and the 
nature of singular points. Like Riemannian geometry, topology deals 
with the surfaces of figures as spaces in themselves, rather than from the 
perspective of the space within which they might be embedded. As a
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consequence, the properties of figures relevant to topology differ radi
cally from those relevant to traditional geometry. For instance, there is no 
topological difference between a circle, a triangle or a square, nor is there 
a difference, in the infamous example, between a doughnut and a coffee- 
cup (both of the latter being tori -  i.e., surfaces which ‘have’ a hole). 
Furthermore, the relevant ‘domain’ in topology is the local rather than 
the global, since topology is basically concerned with the properties of 
geometric figures which remain invariant when these figures are trans
formed -  where what is meant by invariance is that no new points are 
created in the transformation, there is a one-to-one correspondence 
between the points of the original figure and the transformed figure, and 
where the transformation carries locally nearby points into locally nearby 
points. It is this latter property which is called continuity in topology,and 
the requirement is that the transformation and its inverse both be contin
uous, in which case the transformation is called a homeomorphim 
(Stewart 1995,144ff).

Topological research has divided into two branches -  ‘point set 
topology’ which is concerned with geometrical figures regarded as 
collections of points; and ‘combinatorial topology’, which regards 
geometrical figures as aggregates of smaller building blocks. This latter 
branch owes its provenance to Leibniz, who as early as his Characterise 
tica Geometrica (1679) had sought to identify basic geometric properdes 
of geometric figures, and to combine these properties, utilising a novel 
symbolic representation, to produce new properties, a technique he 
called analysis situs. The aim of this approach was to move away from 
the concern with magnitude typical of Cartesian coordinate geometry 
towards a form of geometric analysis which focused on location [situs] 
directly, just as algebra dealt directly with magnitude.15 Once more, it 
was Riemann who was to make the decisive contribution to the develop
ment of combinatorial topology, by way of his work in complex function 
theory, in which later he found it necessary to introduce the principle of 
the ‘connectivity’ of surfaces.16 On the basis of this principle, Riemann 
was able to classify surfaces according to their connectivity, an intrinsic 
topological property. The combinatorial topology of closed spaces 
initiated by Riemann was subsequently generalised by Poincaré. The 
problem motivating Poincaré’s work was that of determining the struc
ture of four-dimensional ‘surfaces’ prompting him into a systematic 
study of ^-dimensional spaces in general. He developed a purely geo
metric theory of multiplicities, conceived as generalisations of Riemaoil· 
ian surfaces.
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This brief survey has traced certain strains of thought, from calculus 
tough differential geometry and theory of singularities to topology, 
emphasising the roles played in particular by Leibniz, Riemann and 
Poincaré. We have occasionally noted themes and concepts which have 
been influential for Deleuze. Before returning to our opening questions, 
and the concluding, speculative, remarks towards which we gestured, 
Éere is one final mathematical field to which we wish to draw attention. 
Throughout, we have seen that the significant issues in these various 
developments have tended to involve the principles of continuity and 
localness, as we might have assumed having begun from the calculus. 
However, there is one recent development in topology which, while 
maintaining the concentration on the local, has introduced the principle 
of discontinuous processes, namely, the catastrophe theory of René 
Thom. Catastrophe theory involves the topological description of 
systems which display discontinuous changes. Crucially, such discontin
uous changes can themselves be the effects of continuous processes -  the 
motion of a light switch is continuous, but there is a discontinuous 
change between the two states of the light bulb. One of the most impor
tant areas of application for catastrophe theory is biological morphogen
esis, the basis of which is the discontinuous process of cell division. The 
process of evolution, of course, consists in lines of divergence or divi
sion, a theme at the heart of Deleuze’s response to Bergson’s work in 
Creative Evolution (1911). Indeed, a key question here is how evolution, 
conceived as a continuous process, ‘causes’ the discontinuous changes 
involved in such lines of divergence.

In Thom’s analyses, we find that continuous changes to surfaces can 
lead to discontinuous changes in the trajectories of moving bodies on 
these surfaces. For instance, such a change can occur when a continuous 
change in the surface leads to the disappearance of a minimum -  if the 
object were initially located at that minimum, then the disappearance of 
the minimum will ‘cause’ the object to ‘jump’, even though its trajectory 
had been expressive of the object’s tendency to move continuously. Thom 
defines the space of the surface, in this example, as the ‘control space’ 
and the space of the moving object as the behaviour space, and specifies 
that the behaviour of the system is governed by the ‘potential’, or energy, 
in the system. Given that all events in the physical world are determined 
by four variables (three of space and one of time), Thom restricts his 
analyses to four dimensions of control. He then demonstrates that given 
four dimensions of control, there are precisely seven topologically distinct 
kinds of discontinuity which can occur in a dynamical system.17
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Thom characterises what he calls the ‘morphology of a process’ by 
initially defining a domain on which the process takes place, and allow
ing an (ideal) observer the ability to investigate the neighbourhoods of 
any point x in that domain. Then if the observer ‘can see nothing remark
able’ in the neighbourhood of x, that is, ‘if x does not differ in kind from 
its neighbouring points, then x is a regular point of the process.’ These 
regular points form an ‘open set’ in the domain, and the complementary 
‘closed set’ is the set of catastrophe points, ‘the points with some dis
continuity in every neighbourhood’ This closed set, ‘and the description 
of the singularities at each of its points, constitute the morphology of the 
process’ (Thom 1975,38).

With this brief discussion of Thom’s work, we return to the guiding 
principle for Deleuze’s discussion of the problem, namely the relation 
between the singular and the ordinary (or generic), based on a compari
son of neighbouring things, that is, from the perspective of localness. 
This represents an underlying shift of theoretical attention, from things 
(more or less in isolation) to neighbourhoods, and the relations and sin
gularities that define these neighbourhoods within multiplicities.18

As we have indicated, our survey of certain developments in 
mathematics is suggestive of the coherence of a mathematical field of 
research. In Deleuze’s philosophy, it is this field which has enabled vari
ous ‘functions’ to displace a series of traditional philosophical concepts, 
and, more importantly, the philosophical field from which they emerged, 
and to begin to develop a new philosophical ontology, of multiplicities, 
the defining characteristics of which are differential relations and the dis
tribution of singularities. It is an immanent ontology, in keeping with 
Riemann’s shift from surfaces as spaces embedded in higher dimensional 
(and hence transcendent) spaces to surfaces as spaces in themselves, and 
the focus of the work it opens will be fundamentally local.

Can we now then offer a response to our initial question concern
ing the problem of the relation between maths and philosophy? It seems 
as if one principle underpinning the mathematical work that we have 
been considering is that it embodies a fundamentally relational 
approach. There have been occasional relational approaches at the mar
gins of philosophy, such as Saussurean structuralism, but these have for 
the most part been transient. Philosophy remains essentially object- 
focussed, as Heidegger has already demonstrated. On the basis of this 
immanent critique of the history of philosophy, and of the underlying 
principle of the mathematical field of enquiry we have been outlining, we
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may say that a delineation of the relation between maths and philosophy 
in the case of the singularity that is Deleuze precisely poses philosophy 
a problem -  the problem of how to become relational· Furthermore, if we 
follow Deleuze, then this relationality will be differential. If philosophy 
is able to become relational, and differential, then, we believe, the possi
bility is opened up for a new relation to be formed with such emerging 
sciences as those of complexity, which are themselves founded in the 
principle of relationality, but which, as yet, have not been able to develop 
a coherent ontology for their research. It is in the iteration of such rela
tions that new problems will inevitably emerge for philosophy.

Notes

1 Deleuze and Parnet 1996, Ή as in “History of Philosophy’” (overview by 
CJ. Stivale, available online at http://www.langlab.wayne.edu/CStivale/ 
D-G/ABC2.html#anchor700599). This is among the richest of the discus
sions with Parnet in the Abécédaire. Deleuze insists that if one doesn’t dis
cover the problem to which a concept corresponds, then all philosophical 
work remains abstract. To discover the problem is to render a concept con
crete. One reason, we might suggest, why Deleuze’s works in the ‘history of 
philosophy’ remain so engaging today is evident from his claim that to ‘do’ 
history of philosophy ‘is to restore problems and, through this, to discover 
what is innovative’ in the concepts that philosophers create. For example -  
what is Hume’s problem? The traditional discussions of impressions and 
ideas, or of causation, remain abstract because they do not confront this issue. 
Deleuze argues that Hume’s problem is how a mind becomes a subject, or 
human nature. It is only in the context of this problem that Hume’s concept 
of belief becomes concrete, or that his new logic of (external) relations 
becomes concrete.

2 Deleuze and Guattari 1994, 16. Dan Smith argues convincingly that the root 
of Badiou’s failure to engage with Deleuze’s philosophy, and the ill-formed 
critique which follows as a consequence, stems from his initial failure to 
appreciate the true différend for Deleuze’s thought, which is located, as Smith 
shows, ‘in the difference between axiomatics and problematics, major and 
minor science’ (Smith 2003,434). This distinction, between axiomatics and 
problematics, was developed as early as Proclus’ Commentary on the First 
Book of Euclid's Elements -  see Deleuze 1990a, 9th Series Of the Problematic 
-  and has, Deleuze suggests, a lineage which can be traced through the 
history of mathematics. One manifestation of this lineage is the role which 
Poincaré accords to ‘intuition’ in mathematical creativity (see Poincaré 1952, 
On the Nature of Mathematical Reasoning’; and Poincaré 1958, ‘Intuition 
and Logic in Mathematics’). The relation between creative intuition and
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organisational axiomatics echoes that between intuition and intelligence in 
Bergson, whereby ‘only intelligence has the scientific means to solve 
formally the problems [emphases added] posed by intuition’ Deleuze then 
comments in a footnote: ‘In Bergson, the relations between intuition and 
intelligence are very complex, and they are in perpetual interaction’ (Deleuze 
and Guattari 1987, 374, 556 n. 40). It is the nature of this interactivity with 
which we are ultimately concerned, whether it be between intuition and 
intelligence, problematics and axiomatics, problem and solution, or the 
mathematical field and the philosophical field.

3 Deleuze 1994, 108. Dan Smith confirms Deleuze’s derivation of this princi
ple from Lautman. See Smith 2003.

4 Problems and singularities also play a significant role in Deleuze’s Logic of 
Sense (1990a) -  see in particular the 9th and 15th Series.

5 Deleuze’s ‘alternative’ theory of the faculties, developed towards the 
end of his discussion of the fourth postulate, derives from the prob
lem of how the faculties are able to enter into harmonious accord-his 
‘solution’, namely the notion of a discordant, or ungoverned, accord 
itself remains, of course, provocatively problematical. A concept 
from earlier in the book which returns in the context of this problem 
is that of the ‘dark precursor’ [precursor sombre], which enables a 
differential communication between the faculties, which is, as 
Deleuze argues, ‘sufficient to enable the different as such to commu
nicate, and to make it communicate with difference’ (Deleuze 1994, 
145). This most obscure of concepts is amongst the most significant 
in Difference and Repetition.

6 In a similar way, Poincaré was given to arguing that an uninteresting 
true theory was of substantially less value than an interesting theory 
which nevertheless remained unproven.

7 Thus, for a multiplicity of any elements whatsoever, we may specify 
that a possible relation _ subsists between them, where Φ= is commu
tative and associative, such that x 4=y = y 4= x, and x 4= (y 4= z) = (x 4=y) 
Φ z. Addition and multiplication would be two possible instantiations 
of this purely formal relation.

8 A key aspect of problem constitution thus lies in the way in which the 
differential relation between singular and ordinary elements in the 
multiplicity is determined. Consider, for example, an argument about 
the effect on the environment of driving sports utility vehicles (SUVs) 
-  in which I found myself uncomprehendingly participating recently! 
While I was denouncing them for their gas-guzzling tendencies, my 
interlocutor defended them as being relatively efficient. However,fa 
him, their efficiency was relative to other, less efficient cars, whereas 
from my perspective, the contrast was with forms of public transport 
such as trains or buses. The failure of our argument was an effect of
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the different problems which distributed the singular element (SUVs) 
and the ordinary elements from which it was differentiated. In other 
words, we were working on the basis of a poorly defined problem.

9 The reader interested in such issues, and their relation to recent devel
opments in science which can be seen to have had a more or less 
direct influence on Deleuze’s thinking, could do little better than 
consult Manuel DeLanda’s excellent Intensive Science ά  Virtual 
Philosophy (2002).

10 See Boyer 1959, especially Chapter V.
11 The difference between intrinsic and extrinsic features of the surface 

is fundamental. Two surfaces which have equivalent intrinsic features 
may turn out not to be equivalent surfaces, when viewed within their 
embedding space, that is, from the perspective of their extrinsic fea
tures. The surface of a sphere differs intrinsically from the surface of 
a plane. The surface of a plane, on the other hand, does not differ 
intrinsically from that of a cylinder; it does, however, differ extrinsi- 
cally, that is, when viewed from the perspective of its embedding 
3-dimensional space. A further distinction can also be made between 
the local and the global with respect to surfaces. Locally, it is impos
sible to determine any difference in the features at any given point on 
a plane or the surface of a cylinder. Globally, however, a geodesic 
on a plane will extend infinitely, whereas a geodesic on the surface of 
a cylinder will return to its starting point. Thus, the intrinsic similar
ity of plane and cylinder surface is a local, rather than a global, matter 
-  their global difference is, ultimately, an effect of the topological 
structures of the two surfaces. See Sklar 1977,40-42.

12 The concept of a curve, or space, which is not embedded in a higher 
dimensional space, as well as that of the n-dimensional multiplicity, 
were, of course, to have a profound impact on Deleuze’s thinking. 
It would be possible to trace a conceptual lineage from Leibniz to 
Einstein on the basis of their shared rejection of the notion of an 
absolute, or embedding, space, by way of Riemann’s differential 
geometry, which latter was to provide the mathematical means for 
expressing Einstein’s general theory of relativity.

13 Returning to our earlier discussion of multiplicities, we can specify 
that what distinguishes a mere collection of points from a space is that 
in a space, there is some form of relation which ‘binds’ the points 
together, and it is on this basis that we may talk of a multiplicity as a 
space.

14 Cited in Kline 1972,721.
15 Letter to Huygens (1679), cited in Kline 1972, 1163.
16 Riemann defines the connectivity of a surface in the following way: Tf upon 

a surface F [with boundaries] there can be drawn n closed curves aJ, a 2,
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a which neither individually nor in combination completely bound a part of 
this surface F, but with whose aid every other closed curve forms the com
plete boundary of a part of F, the surface is said to be (n + 1 )-fold connected.’ 
(Riemann’s 1851 Thesis on Complex Functions, cited in Kline 1972,1166.)

17 The seven types of discontinuity are: fold, cusp, swallow’s tail, butterfly, 
hyperbolic umbilic, elliptic umbilic and parabolic umbilic. See Thom 1975, 
Chapter 5.

18 This same shift informs the work in theoretical biology of both Robert Rosen 
and Brian Goodwin. See Rosen 1991and 2000; and Goodwin 1994.
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Manifolds: on the concept of space in 
Riemann and Deleuze

Arkady Plotnitsky

1. Concepts, spaces, and sets

Bernhard Riemann is arguably the most significant mathematical pres
ence in and influence upon Gilles Deleuze’s work. I would like, in this 
essay, to explore some of the reasons for this influence and for the con
junction of Riemann’s mathematics and Deleuze’s philosophy, a conjunc
tion that, I would argue, has important implications for our understanding 
of the relationships between mathematics and Deleuze’s philosophy.

The argument of the essay arises from a view of Riemann’s 
mathematics as conceptual mathematics (which gives primacy to 
thinking in mathematical concepts rather than formulas or, as I shall 
explain, sets) and from the view of Deleuze’s philosophy as conceptual 
philosophy. The latter view itself derives from Deleuze’s understanding 
of philosophy as the invention of concepts, an understanding developed 
especially in his and Félix Guattari’s What is Philosophy? (1994). In 
both cases at stake is also, and, I shall argue, correlatively, a conceptual 
mathematics and a conceptual philosophy of spatiality, especially con
tinuous spatiality -  phenomenal, mathematical, or physical, and, in the 
case of Deleuze’s philosophy, cultural and political. Accordingly, I argue 
that what most essentially links Riemann and Deleuze are conceptuality 
and spatiality, especially, again, continuous spatiality, and the relation
ships between them, ultimately coupled to the problematic of materiality. 
My argument is also framed by the work of Leibniz (a key figure for both 
Riemann and Deleuze), at one end, and, at the other, some of the key 
works in twentieth-century mathematics, extending Riemann’s ideas, 
which shape some of the deepest and most significant developments in 
modem mathematics.

Riemann’s conceptual mathematics may be contrasted to set- 
theoretical mathematics. (I am not saying simply opposed, and both
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could often be translated into one another.) The concept of set was intro
duced by Georg Cantor shortly after Riemann’s death (in 1866) and has 
shaped foundational thinking in mathematics from then on.1 Concomi
tant with this difference in Riemann’s case is, I argue, Riemann’s ground
ing of mathematical thinking in a new concept of space, as against that of 
Euclidean geometry and even preceding versions of non-Euclidean 
geometry, through the concept of manifold or manifoldness [Mannig
faltigkeit] . (I shall explain this concept and its Deleuzian counterpart, the 
concept of smooth space, below, noting for the moment that both are 
primarily defined by their constitution as conglomerates of local spaces 
and multiple transitions between them.) At least such is the case when 
Riemann deals with space, whether in corresponding disciplinary 
domains, such as geometry or topology, or elsewhere in mathematics, 
such as analysis. This qualification is not as strange as it might appear. 
Apart from the fact that not all of Riemann’s mathematics is spatial or 
concerns space, the most crucial point here is how one conceives of 
space, what is one’s concept of space, which may, as a concept, have a 
complex structure or architecture. In particular, the question is whether 
in a study of space one considers space as a primary, grounding concept 
or whether, with Cantor and most (but not all) subsequent mathematics, 
one considers it as derived from the concept of set, say, by considering a 
given space as a particular set of points. I suspend for the moment the dif
ficulties (such as those of famous paradoxes) of the concept of set and 
shall use a ‘naïve’ definition, given by Pierre Cartier, via Bourbaki: ‘A 
set is composed of elements capable of having certain properties and 
certain relations among themselves or with elements of other sets’ (2001, 
393). More recently, roughly from the 1950s on, the so-called category 
theory may be argued to offer an approach closer to that of Riemann, 
especially through its connections to such mathematical fields as topol
ogy and algebraic geometry, fields in turn developed following and 
shaped by Riemann’s work.2 In this view, too, spatiality, at least a certain 
conception, topos, of a spatial type, developed in the so-called ‘topes 
theory’ introduced by Alexandre Grothendieck, becomes a primary con
cept, more primary than set. Topos theory also allows for such esoteric 
constructions as spaces consisting of a single point or spaces without 
points, sometimes slyly referred to by mathematicians as ‘pointless 
topology’ Philosophically, however, this notion is far from ‘pointless’, 
for it suggests that space or, again, at least something spatial in character, 
is a more primary object than point, or again, a set of points. By the same 
token, space also becomes a Leibnizian, monadological concept, for
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Example, insofar as points in such a space (when it has points) are them
selves better seen as monads, that is, as certain elemental but structured 
spaces, rather than structure-less entities (classical points).

As will be seen, however, the monadology of this type of concept 
or of Riemann’s concept of space, to begin with, is extended and radi
calized by its nomadology, that is, by mathematical practice in a smooth 
and,thus, itself Riemannian, space of ‘minor’ or ‘nomadic’ mathematics, 
as Deleuze and Guattari call it. Indeed such a concept is more likely to 
arise, and Riemann’s had, in such a space, thus making the concept and 
the mode of its production reflect each other or even on each other in a 
kind, to use Charles Baudelaire’s and Paul de Man’s term, of dédouble
ment (which often defines the concepts of smooth space). By contrast the 
concept of set or the concepts of space based on it are more likely to func
tion and have functioned as a major or state concept. Mathematics and 
specifically geometry, too, may be a state, major science, as in Gaspard 
Monge, or a nomadic, minor science, as in Gérard Desargues, or later in 
non-Euclidean geometry culminating in Riemann’s geometry, and use a 
given mathematical concept accordingly (Deleuze and Guattari 1987, 
362-65).3 Cantor’s set theory, too, started very much as a minor science. 
Besides, Deleuze and Guattari rightly argue, major and minor science 
usually co-exist in complex relationships. Always? At least major 
science would not be possible without minor or something that is, in its 
structure and functioning, minor (1987, 484-86). On the other hand, a 
science that is strictly minor is conceivable, although it could only be a 
minor science as against one major science or another.

Deleuze sees the primary significance or even the very nature 
of philosophy in its invention of new concepts, or, as Deleuze and 
Guattari argue more strongly, concepts ‘that are always new’ (1994, 5). 
This view is underlined by a different understanding or concept of 
philosophical concept, which may be summarized as follows. According 
to Deleuze and Guattari, a philosophical concept is not an entity estab
lished by a generalization from particulars or ‘any general or abstract 
idea’ (p. 11-12, 24), but always has a complex multi-layered structure. 
As they state, ‘there are no simple concepts. Every concept has compo
nents and is defined by them. It therefore has a combination [shiffre]. It 
is a multiplicity [manifold(ness)?]. There is no concept with only one 
component’ (p. 16). Each concept is a multi-component conglomerate of 
concepts (in their conventional senses), figures, metaphors, particular 
elements, and so forth, which may or may not form a unity. This concept 
of concept is traceable to much earlier texts, in particular. Difference and
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Repetition (Deleuze 1994), and may indeed be seen as defining most of 
Deleuze’s philosophical work. At the same time, the argument of What is 
Philosophy? (Deleuze and Guattari 1994) is shaped by spatial thinking, 
beginning with linking the very invention of philosophical concepts to a 
spatial and indeed Riemannian concept, the plane of immanence, thus 
making the space of a given concept a Riemannian, smooth space. The 
concept finds its predecessors and avatars, such as the plane of consis
tency, throughout Deleuze’s work, which may indeed be seen as a kind 
of topo-philosophy.

As the invention and construction of new concepts, philosophy 
may even need to be primarily spatial, at least insofar as it is a minor, 
nomadic science, a science traversing (again, often dedoublement-Ykt) 
smooth Riemannian spaces -  phenomenal, cultural, political, or geo
graphical, or, when we move with Deleuze and Guattari to 4 geophiloso
phy,’ geopolitical (1994, 85-113). Geophilosophy lives in geo-smooth 
spaces, which enables it to resist and overcome all state (in whatever 
sense) borders and striations.

2. Continuums, manifolds, and smooth spaces

I would like to begin my argument by way of a caution, always necessary 
in dealing with mathematics outside its proper disciplinary sphere, with 
Deleuze’s comment in Cinema 2 (1989), which, like Cinema 1 (1986) 
(largely guided by Bergson’s philosophy), has deep connections to Rie
mannian spaces, motivating this comment itself. Deleuze writes:

Of course, we realize the danger of citing scientific propositions outside 
their own sphere. It is the danger of arbitrary metaphor or of forced appli
cation. But perhaps these dangers are averted if we restrict ourselves to 
taking from scientific operators a particular conceptualizable character 
which itself refers to non-scientific areas, and converge with science with
out applying it or making it [simply] a metaphor. (Deleuze 1989, 129; 
emphasis added)

Deleuze amplifies this point in one of his interviews, and in the 
process justifies philosophy’s claim upon the exploration of scientific 
concepts and gives science itself (obviously including mathematics) a 
philosophical and artistic conceptual dimension. He says:

There are two sorts of scientific concepts. Even though they get mixed up 
in particular cases. There are concepts that are exact in nature, quantita
tive, defined by equations, and whose very meaning lies in their exactness:
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a p h ilo so p h e r o r  w rite r  can  u se  th ese  on ly  m eta p h o ric a lly , and  th a t’s qu ite  
w rong , b e ca u se  th ey  b e lo n g  to  e x ac t sc ien c e . B u t th ere  are  a lso  e ssen tia lly  
inexact y e t c o m p le te ly  rig o ro u s  co n ce p ts  th a t sc ien tis ts  c a n ’t do  w ith o u t, 
w hich b e lo n g  e q u a lly  to  sc ien tis ts , p h ilo so p h e rs , and  a rtis ts . T h ey  have 
to be  m ad e  r ig o ro u s  in a  w ay  th a t’s n o t d irec tly  sc ien tific , so th a t w hen  a 
sc ien tis t m an a g es  to  do  th is  h e  b e co m es  a p h ilo so p h e r, an a rtis t, to o . T h is 
sort o f  c o n c e p t’s n o t u n sp ec ific  b e ca u se  so m e th in g ’s m iss in g  b u t b ecau se  
o f  its n a tu re  and  c o n te n t. (D e leu z e  1995, 29; tran s la tio n  m od ified )

I am  no t a lto g e th er sure w h eth e r one shou ld  even  use the w ord 
‘inexact’ here . D e le u ze ’s appeal to  the q u an tita tive , num erical side of 
mathematical and  sc ien tific concep ts is essen tia lly  righ t, and need  no t be 
seen as reduc ing  the d isc ip linary  com plex ity  and richness o f  m athem at
ics and sc ience. It a lso  carries a ce rta in  concep tual specific ity  and s ignh - 
icance for D eleu ze , as is c lea r from  D eleuze  and  G u a tta ri’s d iscussion , 
via Riem ann, on  the one h an d , and B ergson , on the o ther, o f  a ju x tap o si
tion betw een the (qualita tive) concep t o f  d istance  and the (quantitative) 
concept o f  m agn itude . T h is ju x tap o sitio n  becom es corre la tive  to that 
between the sm ooth  and  the  stria ted  spaces in A Thousand Plateaus 
(Deleuze and G uattari 1987, 4 8 3 -8 4 ). B e rg so n ’s duration  m ay be seen 
(causalities are m ore com plex ) as an ex trac tion  o r d istilla tion  o f an inex
act, qualita tive, n o n -num erica l concep t o f  m ultip lic ity  o r m anifo ldness 
from R iem an n ’s concep t o f  m an ifo ld , a concep t that is jux taposed  to 
‘metric m an ifo ldness o r the m an ifo ldness o f  m agn itude , a (m athem ati
cally) exact, num erica l coun te rpart o f  it in R iem a n n ’s overall conceptual 
architecture o f  m an ifo ld  (p. 483; transla tion  m odified).4 M athem atics and 
specifically topo logy , as a m athem atica l d isc ip line, can and m ust give 
‘smooth sp a ce s’ (or those m athem atica l ob jects upon w hich sm ooth 
spaces cou ld  be m odelled ) m athem atica lly  exact, num erical features. 
Once there is m a them atics , inc lud ing  tha t o f  space, there is alw ays a 
number som ew here . T h is need  no t be the case in philosophy , as, for 
example, B e rg so n ’s o r D e le u ze ’s d ep loym en t o f R iem an n ’s ideas, or 
those o f E in s te in ’s re la tiv ity  theory , w ou ld  show  (p. 4 8 3 -8 5 ).

The anc ien t G reeks m igh t be argued  to  have developed  a com plex 
philosophical topo logy  (as in  P la to ’s concep t o f  khora in Timaeus), but 
they did no t have  a m athem atica l d isc ip line  o f  topo logy , and the ir only 
mathematical, exact and  quan tifiab le , sc ience o f  space w as geom etry. 
Geometry and  topo logy , w h ile  bo th  concerned  w ith  space, are d istin 
guished by the ir d iffe ren t m athem atical p rovenances. G eom etry  (geo- 
metry) has to do w ith  m easu rem en t, w hile topo logy  d isregards 
measurement and scale , and deals only  w ith  the structure o f space
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qua space and with the essential shapes of figures. Such figures are 
themselves usually seen as spaces, continuous spaces, as topology is 
primarily a science of continuity. Insofar as one deforms a given figure 
continuously (i.e. insofar as one does not separate points previously con- 
nected and, conversely, does not connect points previously separated) the 
resulting figure is considered the same. Thus, all spheres, of whatever 
size and however deformed, are topologically equivalent. They are, 
however, topologically distinct from tori. Spheres and tori cannot be 
converted into each other without disjoining their connected points or 
joining the disconnected ones. The holes in tori make this impossible. 
Such properties can be related to certain algebraic and numerical proper
ties associated with topological spaces, through, in particular, the so- 
called cohomology theory, one of the great achievements of modern 
mathematics, extending in part from Riemann’s work. Anticipated by 
Leibniz’s 6analysis situs,’ these ideas were gradually developed in the 
late eighteenth century and then in the nineteenth century in the works of 
(in addition to Riemann) Leonard Euler, Karl Friedrich Gauss, Henri 
Poincaré, and others, establishing topology as a mathematical discipline 
by the twentieth-century.

The relationships between our mathematical and philosophical or, 
to begin with, phenomenological intuition, especially that of continuity, 
are a delicate and difficult matter. As Hermann Weyl astutely observed 
in The Continuum [1917]: ‘The conceptual world of mathematics is so 
foreign to what [phenomenal] intuitive continuum presents to us that the 
demand for coincidence between the two must be dismissed as absurd. 
Nevertheless, those abstract schemata supplied us by mathematics must 
underlie the exact sciences of domains of objects in which continua play 
a role’ (Weyl 1994, 108). It is of some interest and significance in the 
present context that Weyl refers on this point to Bergson’s Creative 
Evolution: ‘It is to the credit of Bergson’s philosophy to have pointed 
out forcefully this deep division between the world of mathematical 
concepts and the immediate experience of continuity of phenomenal time 
(la durée)' (Weyl 1994, 90). This ‘deep division’ notwithstanding, 
Bergson’s ideas concerning continuity may have a Riemannian geneal
ogy, in accordance with Deleuze and Guattari’s argument, mentioned 
above. This is not inconsistent. For specific or specifically (disciplinary 
ily) refined forms of intuition and conceptuality can also traffic between 
different domains, disciplinary or other, for example between Riemann 
and Deleuze, as mathematics and its exact concepts enter new rhizomatic 
networks. There may be differences between mathematics (or science)
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and the human sciences (or literature and art) as concerns what Deleuze 
calls inexact rigour, rather than only in terms of the exact (such as numer
ical) rigour of one and the inexact rigour of the other. As such, however, 
mathematics can provide ideas that could be developed elsewhere.

Weyl’s insight concerning the difference in the mathematical and 
phenomenal intuition of continuity occurs primarily in the context of 
Cantor’s work, which adopted and made famous the term ‘continuum’ 
and which led to, for our phenomenal intuition, highly counterintuitive 
conceptions. The concept of continuity is, however, central to Riemann’s 
thinking, mathematically different from Cantor’s, thinking that is gener
ally conceptual rather than set-theoretical, that is, thinking in terms of 
various concepts rather than grounding his mathematics in the concept of 
set. (The concept of set does of course have its philosophical dimensions 
as well, including in Cantor.) Weyl’s view itself could be traced to 
Riemann’s comments on his concept of manifold(ness). Weyl discusses 
Riemann’s work in detail in his classic Space Time Matter [1918] (1952), 
written just after The Continuum, and in his book The Concept of 
Riemann Surface [1913] (1955). Riemann writes in his famous habilita
tion lecture, O n the Hypotheses which Lie at the Bases of Geometry’ 
(Riemann 1873), which introduced the idea of the Riemannian manifold 
and Riemannian geometry:

The concepts of magnitude are only possible where there is an antecedent 
general concept which admits of different specialisations. According as 
there exists among these specialisations a continuous path from one to 
another or not, they form a continuous or discrete manifoldness [.Mannig
faltigkeit]; the individual specialisations are called in the first case points, 
in the second case elements, of the manifoldness. Concepts whose spe
cialisations form a discrete manifoldness are so common that at least in the 
cultivated languages any things being given it is always possible to find a 
concept in which they are included. (Hence mathematicians might unhesi
tatingly found the theory of discrete magnitudes upon the postulate that 
certain given things are to be regarded as equivalent.) On the other hand, 
so few and far between are the occasions for forming concepts whose 
specialisations make up a continuous manifoldness, that the only simple 
concepts whose specialisations form a multiply extended manifoldness are 
the positions of perceived objects and colours. More frequent occasions 
for the creation and development of these concepts occur first in the higher 
mathematics, (sec. l ,pt .  1; translation modified)5

Riemann, thus, thought mathematics a primary, perhaps the pri
mary, source of the concept of ‘continuous manifold(ness)’ (similarly to
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the case of Cantor’s concept of set), at least as concerns simple concepts. 
The statement leaves space to complex concepts of everyday life (or 
those of philosophy) whose mode of determination is analogous to that 
of continuous manifold.

As this description suggests and as his overall discussion makes 
clear, Riemann defines mathematical objects not in terms of ontologi- 
cally pre-given assemblies (‘sets’) of points, which are then given a cer
tain set of relations between them, but in terms of concepts. Each concept 
has a particular mode of determination, such as discrete vs. continuous 
manifold, whose elements, such as points, are related through a given 
determination. Thus, beyond giving an essential priority to thinking and 
specifically to thinking in concepts over calculational or algorithmic 
approaches, Riemann’s mathematics is structurally conceptual. It is 
based on specifically determined concepts, as against the set-theoretical 
mathematics that followed him or the mathematics of formulae that 
preceded him.6 In other words, continuous and discrete manifolds are 
subject to a different conceptual determination and shaped by a different 
conceptual architecture, and thus are, in effect, different concepts, which 
brings Riemann’s conceptuality of manifolds close to Deleuze and 
Guattari’s sense of philosophical concepts.

It is significant that Riemann speaks of ‘points’ only in the case of 
continuous manifolds, and in the cases of discrete manifolds uses the term 
‘elements’ for the simplest constitutive entities comprising them. This is 
astute, since, phenomenologically, points qua points only appear as such in 
relation to some continuous space, ambient or background, present or 
implied, such as a line or a plane (although mathematically, especially set- 
theoretically, the situation involves considerable complexities). Riemann 
allows for a possibility that discrete manifolds may function mathemati
cally as spaces, or that space in nature (or what appears to us as space in 
nature) may be a discrete manifold. He does, however, primarily pursue a 
conception of space as a continuous (three-dimensional) manifold. A 
(continuous) manifold is a conglomerate of (local) spaces, each of which 
can be mapped by a (flat) Euclidean or Cartesian, coordinate map, without 
allowing for a global Euclidean structure or a single coordinate system for 
the whole, except in the limited case of a Euclidean homogeneous space 
itself. That is, every point has a small neighbourhood that can be treated as 
Euclidean, while the manifold as a whole in general cannot. The idea itself 
of mapping a given space with local spaces is, however, significant for our 
understanding of Euclidean spaces as well, beginning with the straight line, 
in part in contrast to the set-theoretical view, for the following reasons.
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Weyl’s concept of continuum, as presented in The Continuum 
(1994), is only partially indebted to Cantor. More significantly, it extends 
the intuitionist ideas of Luitzen E.J. Brouwer, further shaped or at least 
coloured by the phenomenology of Franz Brentano, Edmund Husserl, 
and Henri Bergson, as well as by earlier ideas of such figures as Fichte 
(all mentioned in the book), a philosophical tradition, extending from 
Kant, significant to intuitionist mathematics. Topology describes a space 
not so much by its points but by the class of its so-called open sets, the 
concept that underlies Riemann’s concept of the manifold and that ulti
mately allows for a very general mathematical definition. For the present 
purposes, one can conceive of such sets on the model of open intervals of 
the line, say, all points between 1/4 and 3/4, except these two points 
themselves, which are boundaries. A closed interval will include its 
boundaries. Open or closed intervals can be thought of alternatively as 
spaces or sets, or both. The problem, mathematical and philosophical, of 
the continuum, is how a given continuum is constituted (as a set) by its 
points, and, in particular, whether we can exhaust the straight line by a 
set of real numbers; the problem known as Cantor’s continuum hypothe
sis. The answer to the latter question is a complex issue (even though 
the problem is generally considered solved in mathematics) and cannot 
be addressed here. In any event, the question, mathematical and philo
sophical, of the constitution of the continuum is a separate, if related, 
question.

Brouwer questioned the set-theoretical concept of the continuum 
of the straight line as constituted by real numbers or even by points (i.e. 
point by point) as, in principle, inaccessible to human intuition, general 
or even mathematical, and he was more reluctant to dissociate them than 
Weyl. As Cartier notes, ‘Brouwer criticized the possibility of affirming 
the equality of two numbers [since this presumes that one can verify an, 
in general, infinite number of equalities among the decimal digits com
prising such numbers, which is not possible], but he held that the notion 
of the open interval ] 1/4 3/4[ was legitimate, that is, that it is possible to 
verify the inequalities 1/4 < x < 3/4 (if they hold) by a finite process’ 
(2001,395). Accordingly, a continuous space, say, a straight line (or what 
appears to us as such intuitively), may now be described and even 
defined not by (the set of) its points, to begin with, but by a class of its 
open subspaces, covering it (this last term is actually used in mathemat
ics), which may but need not be seen as sets. Such subspaces may over
lap, as for example would ] 1/4 3/4[ and ] 1/2 1[, generating new open 
subspaces, in this case, ] 1/4 l/2[ , in the overall covering atlas. This
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construction of space is an essential, grounding idea of topology as a 
mathematical discipline. Any such open interval or set containing a given 
point is also called a neighbourhood of this point. Thus both ] 1/4 3/4[ and 
] 1/4 l/2[ would be a neighbourhood of 1/3, and the first of these neigh
bourhoods will contain the second, or will overlap with a neighbourhood 
such as ] 1/6 2/5 [. Topologically, all such intervals are equivalent, and 
]0 1[ would represent any one of them.

The procedure just sketched can be used to define the topology of 
curves or higher-dimensional spaces, flat or curved. It enables Riemann 
to define manifolds of any dimensions, even infinite-dimensional spaces. 
This also allows one, with Gauss and Riemann, to define a space, say that 
of a curved surface or (a more difficult problem, solved by Riemann) a 
manifold of dimensions three and higher, in terms of its inner properties 
rather than in relation to the ambient Euclidean space, where such a sur
face could be placed. The infinitesimal flatness of such spaces does not 
prevent them from having a curvature at any given point.

It is true that, if one appeals, as is usual, to open sets, this concept 
of the line retains the concept of set as a primitive concept. This 
approach, however, offers one a general structure (that of defining space 
as comprised or, again, covered by other spaces) which allows one to use 
this structure as a primitive one by replacing the covering of a space by 
‘open sets’ with its covering by ‘open spaces’, such as open intervals. A 
general topological space is defined as (covered by) a collection of such 
open spaces as sub-spaces of the initial spaces by providing certain 
(algebraic) rules for the relationships between these subsets. These ideas 
ultimately extend to Grothendieck’s topos theory, which is almost pro
hibitively difficult in view of its abstractness and mathematical (exact) 
rigour. The essential philosophical ideas involved may, however, be 
sketched as follows.

What one needs to enact this program is a certain primitive space, 
which could be any space, or in Deleuze’s language and following his 
concept, via Bergson, in Cinema 1 (1986), ‘any space whatever,’ which 
would extend an open interval in the case of the real (straight) line. Such 
a primitive space or indeed all spaces considered may, at least initially, 
be left unspecified, and could thus indeed be, in a certain sense, any 
spaces whatever. What would be specified, for example, in terms of sets 
(sets of relations, as explained above), would be the relationships, such 
as between spaces, such as mapping or covering one or a portion of one, 
by another. We can call this structure the arrow structure Y-+X (X is the 
main space), where the arrow designates the relationship(s) in question,
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and such spaces arrow spaces (The notation itself is used in mathemat
ics). This procedure enables one to specify, to give a space-like structure 
to, a given object not in terms of its intrinsic structure (e.g. a set of points 
with relations among them) but, in Yuri I. Manin’s terms, ‘sociologi
cally’, throughout its relationships with other spaces of the same 
category, say that of Riemannian spaces as manifolds (2002,7). On this 
view, one does not have to start with a Euclidean space, whether seen in 
terms of sets of points or otherwise. Instead the latter is just one, specifi
able object of a large categorical multiplicity, and possibly marked, for 
example, in the case of the category of Riemannian spaces, by virtue of 
a particularly simple way we can measure the distance between any two 
points. Most crucial, however, is that any given space (it may be a point, 
for example) is defined in terms of its relations to other spaces, which 
may but need not necessarily be subspaces of a given space, or, as in the 
case of Riemann’s manifolds, spaces mapping subspaces of a given 
space. This view may be seen as, at least for now, the ultimate extension 
of Riemann’s philosophy of space. One can generalize the notion of 
neighbourhood in this way as well, by defining it as a relation between a 
given point and space associated with it, which, it may be noted, is one 
of the reasons why the (inexact) concept of neighbourhood is so impor
tant for Deleuze and his philosophical topology.

One of the starting points of Riemann’s reflection on space was the 
possibility of non-Euclidean geometry, which also led him to a particular 
new type of the non-Euclidean geometry, that of positive curvature. This 
also means that there are no parallel shortest or, as they are called, geo
desic lines crossing any point external to a given geodesic. In Euclidean 
geometry, where geodesics are straight lines, there is only one such a 
parallel line, and in non-Euclidean geometry of negative curvature or 
hyperbolic geometry of Gauss, Johann Bolyai, and Nikolai I. 
Lobachevsky, the first non-Euclidean geometry discovered, there are 
infinitely many such lines. Riemannian geometry encompasses all of 
these as special cases and, as will be seen, allows for still others. Signif
icant as the discovery of non-Euclidean geometry was for the history of 
mathematics or even intellectual history, it was only a small part and, as 
Weyl says, in retrospect ‘a somewhat accidental point of departure’ for 
Riemann’s radical rethinking of the nature of spatiality and the develop
ments that followed his ideas (1952, 92).

Riemann’s concept of manifold is, arguably, a uniquely crucial 
feature of this rethinking, and Riemannian geometry would more 
properly refer to the study and the very definition of space in terms of
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manifold; the approach that makes both Euclidean and non-Euclidean 
spaces only particular cases of this general understanding of space, 
specifically as a continuous manifold(ness). Riemann, however, also 
considers manifolds of higher dimensions and even of infinite dimen
sions, or of course of lower dimensions, such as one-dimensional straight 
lines or curves or two-dimensional (Euclidean and non-Euclidean) 
planes and surfaces. As we have seen, he also considers discrete mani
folds (which mathematically have the dimension zero), formed by iso
lated, rather than continuously connected, points or, in his terminology, 
elements, and the concept of discrete manifold becomes important for 
his view of space in physics. We recall, however, that, according to 
Riemann, discrete manifolds obey a different principle of conceptual 
determination from that of continuous manifolds, as Deleuze and 
Guattari indeed note (1987,32).

In modern usage the term manifold is reserved primarily for con
tinuous manifolds, Riemann’s most significant contribution to modem 
mathematics and to our understanding of space in general.7 The concep
tual architecture of continuous manifolds, I argue, also provides the 
primary mathematical model of smooth space for Deleuze and Guattari, 
although they acknowledge the role of discrete manifolds in Riemann, 
and their significance or the significance of still other, such as porous, 
spaces in mathematics and elsewhere. Weyl goes so far as to speak of 
Riemann’s mathematics of manifolds as ‘a true g e o m e try ‘This theory 

is a true geometry, a doctrine of space itself and not merely like 
Euclid, and almost everything else that has been done under the name of 
geometry, a doctrine of the configurations that are possible in space’ 
(1952, 102). Deleuze and Guattari agree and take the point further, and 
give it a philosophical inflection, including the sense of creating new 
concepts. They state emphatically, in ‘The Smooth and the Striated’ in A 
Thousand Plateaus: ‘It was a decisive event when the mathematician 
Riemann uprooted the multiple (manifold) from its predicate state and 
made in into a noun, “manifold”[multiplicité]' (p. 482-83; translation 
modified). They describe Riemannian spaces themselves, as (now clearly 
continuous) manifolds, as follows:

But so far we have only considered the first aspect of smooth and non- 
metric multiplicities [manifolds], as opposed to metric multiplicities: how 
the situation of one determination can make it part of another without our 
being able either to assign that situation an exact magnitude or common 
unit, or to discount it. This is the enveloping or enveloped character of 
smooth space. But there is a second, more important, aspect: when the
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situation of the two determinations precludes their comparison. As we 
know, this is the case for Riemannian spaces, or rather, Riemannian 
patches of space: ‘Riemann spaces are devoid of any kind of homogene
ity. Each is characterized by the form of the expression that defines the 
square of the distance between two infinitely proximate points . It fol
lows that two neighbouring observers in a Riemann space can locate the 
points in their immediate neighbourhood but cannot locate their spaces in 
relation to each other without a new convention. Each vicinity is therefore 
like a shred of Euclidean space, but the linkage between one vicinity and 
the next is not defined and can be effected in an infinite number of ways. 
Riemann space at its most general thus presents itself as an amorphous 
collection of pieces that are juxtaposed but not attached to each other. ’ It 
is possible to define this multiplicity without any reference to a metrical 
system, in terms of the conditions of frequency, or rather accumulation, of 
a set of neighbourhoods; these conditions are entirely different from those 
determining metric spaces and their breaks (even though a relation 
between the two kinds of space necessarily results). In short, if we follow 
Lautman’s fine description, Riemannian space is pure patchwork. It 
has connections, or tactile relations. It has rhythmic values not found 
elsewhere, even though they can be translated into a metric space. Hetero
geneous, in continuous variation, it is a smooth space, insofar as smooth 
space is amorphous and not homogeneous. We can thus define two posi
tive characteristics of smooth space in general: when there are determina
tions that are part of one another and pertain to enveloped distances or 
ordered differences, independent of magnitude; when, independent of 
metrics, determinations arise that cannot be part of one another but are 
connected by processes of frequency or accumulation. These are the two 
aspects of the nomos of smooth space. (1987,485; translation modified)8

The essential underlying mathematical conception of this descrip
tion must be apparent from the preceding discussions. It may be useful, 
however, to elaborate on this a bit further, beginning with Riemann’s 
extension of Gauss’s ideas concerning the internal geometry of curved 
surfaces, that is, geometry independent of the ambient (three-dimen
sional) Euclidean space where they could be placed. Riemann’s main 
contribution here was his discovery that Gauss’s concept of (internal) 
curvature could be extended, via the so-called tensor calculus, measure
ment in curved spaces (of dimension three and higher), which Einstein 
brilliantly used in general relativity, his non-Newtonian theory of 
gravitation. For, it is not a matter of curves in a flat space but of the 
curvature of the space itself, which is why Riemann’s concept is so 
important, given that the space in which we live is of three or possibly 
even higher dimensions (although one can of course think of spaces of
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lower dimension as independent rather than embedded). The structure 
and specifically the curvature of space could also be assumed to vary 
from point to point, from neighbourhood to neighbourhood. One of 
Riemann’s key contributions (again, crucial to Einstein’s work), as 
against the previous non-Euclidean geometries, was his understanding 
that the concept of manifold is general enough to allow for such 
variations. These earlier conceptions retained some Euclideanism by 
conceiving of the space as globally homogenous, although possibly non- 
Euclidean, spaces, curved, with the same constant curvature, positive or 
negative. In Riemann’s geometry of manifolds these geometries are, 
again, merely special cases and spaces of variable curvature are allowed 
as well.

A related, but separate, feature of new spatiality, crucial to 
Riemann and then Einstein, extends Leibniz’s ideas concerning the rela
tional nature of all spatiality. On this view, the actual space is no longer 
seen as a given, ambient (flat) Euclidean space or, in Weyl’s words, an 
(infinite) ‘residential flat’ (flat is a fitting pun here), where (phenome
nally) geometrical figures or (physically) material things are put (1952, 
98). Instead it emerges as a (continuous) manifold, whose structure, such 
as curvature, would be determined internally, mathematically or materi
ally (for example, by gravity, as in Einstein’s general relativity theory, 
based in part on Riemannian mathematics), rather than in relation to an 
ambient space, Euclidean or not. I shall return to this subject in the next 
section. In any event, all spaces, mathematical or physical (or still other), 
become subject to investigation in their own terms and, essentially, on 
equal footing, rather than in relation to an ambient or otherwise uniquely 
primary space. This view, as Deleuze and Guattari indeed suggest, leads 
to a kind of horizontal rather than vertical, hierarchical science of space 
as ‘a typology and topology of manifolds’, which they also associate with 
the end of dialectic (1987,483; translation modified).

The internal, constant or variable, structure of a given space may, 
again, be determined ‘sociologically’, by the relations between this space 
and other spaces, ‘any spaces whatever’ In the case of Riemann’s 
manifold, this relation is defined by the locally Euclidean structure of 
neighbourhoods, by Euclidean maps locally covering a given manifold, 
without a global Euclidean map or even in general a single global non- 
Euclidean map, except in special cases of spaces of constant curvature 
(zero, positive, or negative). Thus, a manifold is indeed a kind of patch- 
work of (local) spaces, as Deleuze and Guattari say. This would allow, 
but importantly will not demand, local striation of a given (smooth)
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space, but, except in these special cases, will disallow homogeneous 
global striations. This cartographical terminology and conceptuality, 
crucial to Deleuze (or Foucault, whom Deleuze discusses from this per
spective in his Foucault (1988)), are not accidental and have a historical 
genealogy. Gauss arrived at these ideas in part through his work in land 
surveying.

The concept of manifold can, as I have indicated, be extended even 
beyond these limits, that is, beyond assuming their differential nature or 
even the possibility to define the measurement of distances on them. 
Indeed, it can be extended still further to general topological spaces that 
are not manifolds, to ‘spaces’ that are defined by open neighbourhoods 
that are not Euclidean. Such neighbourhoods could be ‘any (open) spaces 
whatever’, or still more general structures, for example, those defined 
by a relation, an ‘arrow’ between two spaces, as considered earlier. In 
general, such spaces may not be available to our phenomenal spatial (or 
any) intuition. (Could one still speak of space then?) This general under
lying architecture itself is, however, inherent in Riemannian manifolds, 
from which it was in part developed historically.

Although it is inevitably a matter of interpretation, it appears that 
the underlying (exact) mathematical model of ‘Riemann space at its most 
general’ and hence of smooth space in Deleuze and Guattari is a general 
topological space rather than a manifold.9 As indicated, such a space is 
inherent and underlies any Riemannian (metric or metricizable) space as 
a manifold, since manifolds are topological spaces in general in the first 
place. Such spaces may not allow any metric (mathematically) and hence 
striation, Euclidean or Cartesian (by means of coordinate systems), either 
global or local. The global one is, again, in general disallowed by 
Riemannian spaces (apart, again, from special cases such as Euclidean 
spaces or spaces of constant curvatures), while the second is allowed, 
but, importantly, is not required. In the case of Riemannian spaces, one 
might or might not introduce a striation, in contrast to major or state 
mathematics (or other fields or formations), which would insist on 
striations. This general structure is, accordingly, important for the first 
(enveloping) aspect of the smooth space, referred to in Deleuze and 
Guattari’s description of Riemannian spaces cited above, or of certain 
smooth spaces, if one assumes that certain smooth spaces disable our 
capacity for striation altogether. The second, the smoothness of the 
smooth, aspect of the nomos (also vs. logos) of the smooth space reflects 
more the interplay of connectivities between neighbourhoods, which also 
differently (vs. set theoretically, for example) defines continuity. This
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aspect would be preserved in any topological space, Riemannian mani
fold or not, even when no striation is possible. This is why it is topology, 
rather than geometry, that may be the ultimate mathematics of smooth 
space in Deleuze and Guattari’s sense.

4. Manifolds> matter; and mind

The discussion so far has primarily concerned the conceptual and 
phenomenological architecture of Riemannian spatiality and its role in 
Deleuze’s philosophy, and in particular the significance of the concept 
of smooth space. As must, however, be apparent by now, materiality - 
physical, aesthetic, cultural, or political, and possibly even mathematical 
-  plays a crucial role in shaping this architecture and in making it 
possible, and I shall discuss it now in more detail. The role of material
ity in our understanding of spatiality also helps us to see a deeper 
significance of Leibniz for both Riemann and Deleuze, and for the rela
tionships between the thought of all three thinkers and the problematic of 
space as discussed here.

We recall that, according to Leibniz, space cannot be seen as a 
primordial ambient given, as a container of material bodies and the back
ground arena of physical processes, along the lines of Newton’s concept 
of absolute space in his Principia. Indeed, it is also worth recalling, the 
concept ultimately troubled Newton as well. I now speak of the phenom
ena of space, or (since there may not even be ‘space’ as such, only 
distances, areas, volumes, and other measurable entities) spatiality in 
physics, although Leibniz’s point also impacts on our phenomenological, 
or mathematical, conceptions of spatiality. It was Einstein who gave a 
rigorous physical meaning to these ideas and extended them by arguing 
that space, or time, are not given but arise, are the effects of our instru
ments, such as rods and clocks, and, one might add, of our perceptual and 
conceptual interactions with those instruments. Hence, phenomenality 
continues to play a shaping role in the situation, thus, as will be seen, also 
making it Leibnizian in yet another sense; that of monadology. Space is, 
thus, possible as a phenomenon (or concept) by virtue of two factors. The 
first is the presence of matter and technology, such as rods and clocks (or 
natural objects that in fact or in effect assume a similar role). The second 
is the role of our perceptual phenomenal machinery, a role that one might 
argue, with Kant, to be primary, or (in Kant’s language) the condition of 
the possibility of space, along with time (be these given a priori or not), 
which, as will be seen presently, may still be due to materiality.
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Riemann offers some extraordinary intimations of Einstein’s 
theory, which, when Einstein developed his so-called general relativity, 
a non-Newtonian theory of gravitation, was indeed based on Riemann’s 
geometry. (Einstein’s argument concerning the role of measuring instru
ments applies in his so-called special relativity as well, essentially a 
theory of propagation of light in space in the absence of gravity.) In the 
final section of his lecture, 'Application to Space’ (§3), where he refers 
to Archimedes, Galileo, and Newton, Riemann proceeds from the con
trast between discrete and continuous manifolds, and first considers the 
possibility that the physical reality of space corresponds to a discrete 
manifold. This may ultimately prove to be the case, although in most 
physical theories so far (most quantum theories included), space has been 
viewed as a continuous manifold in Riemann’s sense. The main argu
ment in question, however, concerns primarily continuous manifolds and 
space as a continuous phenomenon, since, according to Riemann, it is 
only in this case than the nature of the space will be determined by 
physics rather than mathematics itself (§3, pt. 4). According to Weyl:

Riemann rejects the opinion that has prevailed up to his own time, namely, 
that the metrical structure of space is fixed and [is] inherently independent 
of the physical phenomena for which it serves as a background, and that 
the real content takes possession of it as of residential flats. He asserts, on 
the contrary, that space in itself is nothing more than a three-dimensional 
manifold devoid o f any form; it acquires a definite form only through the 
advent o f the material content filling it and determining its metric relations 
(1952, 98; Weyl’s emphasis).

It would perhaps be more accurate (and closer to Riemann) to say that 
space may be given phenomenally at most as a three-dimensional mani
fold, as a kind of free smooth space with (given its manifold structure) 
possible striations, and then only phenomenally. Physically, it may be, 
and on Riemann’s and then Einstein’s, or Leibniz’s view could only be, 
co-extensive with matter, whether actual bodies, as in Leibniz, or propa
gating fields, such as electromagnetism or gravity, as in Riemann and 
Einstein. As just indicated, however, the phenomenal component 
remains irreducible. Weyl adds: ‘Looking back from the stage to which 
Einstein brought us, we now recognize that these ideas can give rise to a 
valid [physical] theory only after time had been added as a fourth dimen
sion to the three-space dimensions’ (p. 101).10

In sum, the gravitational field determines the manifold in question 
and its, in general variable, curvature. The reverse fact, however -  the 
fact that the gravitational field shapes space and, moreover, shapes it as a
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Riemannian manifold, as primordially a smooth space (in Deleuze and 
Guattari’s sense) with a potentially infinite (although, again, not, by the 
same token, unconstrained) multiplicity -  still remains crucial. This fact 
radically transforms our philosophy of space and matter, and of their rela
tionships, at whatever level -  mathematical, scientific, philosophical, 
aesthetic, cultural, political -  we use these concepts.

The Riemannian or any other phenomenality of space or any phe
nomenally is, however, only possible by virtue of materiality. This mate
riality is that of the material constitution of the bodies we possess and their 
material history from a certain point of the history, even if not from the 
very beginning (from and before the Big Bang) of the material universe 
that we inhabit, and, again, technology which we built or into which we 
convert what the world offers us. This technology is still enabled by our 
bodies (and the mind they enable, on this materialist view) and the uni
verse, the ultimate body without organs, which eventually gives rise to the 
desiring machines of our bodies and the perception, cognition, thinking 
they enable. One can take advantage here of the diverse concepts desig
nated by the term or signifier ‘body’, from the ultimate (quantum) con
stituents of nature, to human bodies, to bodies of stars and galaxies, to the 
body of the universe itself, or political, textual, and other bodies (which 
have their own forms of materiality). The ultimate nature of this material
ity may be unavailable, not only in practice but more crucially in princi
ple, to our phenomenality or conceptual capacities, to our thinking, 
unavailable even beyond the way implied by Kant’s things-in-themselves, 
entailing, accordingly, that even such terms as materiality and matter, or 
body without organs, may be inapplicable. This unavailability is, how
ever, quite different from an unavailability in practice or even unavail
ability in principle defined by theological or quasi-theological arguments, 
such as that of Leibniz’s monadology, in which the ultimate constitution 
and architecture of the world is only available to God, and never to any 
single monads or even any collective of monads (Deleuze 1993, 26). In 
the present, materialist, view of such unavailability of matter the existence 
of such unavailable entities would and could, by definition, only be 
established by virtue of their capacity to affect what is available to us and 
produce available effects. Our thinking, however, and, accordingly, our 
bodies, are capacious enough to arrive at the conception of this unavail
ability concerning material (or possibly certain mental) entities, and, with 
the help of the universe, to build technologies that establish the existence 
of such material objects, say, those considered in quantum mechanics, 
which obey this type of epistemology, at least in certain interpretations.11
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Hence, the crucial significance of the body, both in its own terms 
and cum technology (machines) in Deleuze and his other key precursors 
and influences, such as Nietzsche, or in such contemporary thinkers as 
Jacques Derrida and Paul de Man, or for that matter Kant. Kant was cer
tainly aware of this situation, even if sometimes against himself, as were 
(again often against themselves) his key precursors, such as Leibniz, 
Hume, and even Descartes, and followers, such as Hegel or Husserl.12 
Leibniz’s monadology is implied in this argumentation, and Deleuze and 
Guattari indeed juxtapose ‘monads’ to ‘the unitary Subject of Euclidean 
space’ (1987,574, n. 27).

So Monadology\ nomadology, and the new baroque

The Riemannian world (in either sense, spatial and cultural) becomes 
monadological then? Well not quite, or rather yes and no, or, better, yes 
and more, as monadology must be made nomadology in the new, post- 
Riemannian, Baroque. Leibniz’s monads ultimately interact with each 
other only through their interaction with the world, whose overall inter
active architecture is, in the old Leibnizian Baroque, containable in and 
converging into a harmony, fully available to or calculable only by God 
(Deleuze 1993,26). The divergent harmonies of the new Baroque retain 
the fold, made manifold, but convert monadology into nomadology, a 
nomadology containing but not reducible to monadology. In A Thousand 
Plateaus this move is manifest especially in the musical and aesthetical 
models of the smooth and the striated, in particular in Boulez (who 
indeed introduced the terms themselves) and Cézanne, although the 
discussion of both cases is (rhizomatically) interlaced throughout with 
Riemannian themes, as here considered (1987,477-78,493-94). This is 
how this transition from monadology and nomadology appears in the 
Cézannean or post-Cézannean, such as cubist, model of smooth space, 
and of the smooth and the striated (p. 493-94). Certain smooth-space, 
nomadic features of this model are found much earlier, as early as cave 
paintings, invoked by Deleuze and Guattari, as well as in such ‘marginal’ 
(for whom?) art as carpets or quilts. The image of quilt serves as an 
epigraph to the chapter, again, framed at the other end by a computer
generated portrait of Einstein, a nomad who, with Riemann and Leibniz, 
gave us a patchwork of a Riemannian (as against Newtonian) space 
shaped by gravitation. The portrait may also be seen as an allegory of an 
underlying, including aesthetic (imagined phenomenal or painted, for 
example) smooth space, Riemannian or Einsteinian space, and the
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computer-generated, striated, Cartesian space, superimposed upon it. 
Also, the same type of model will apply to the music of the new Baroque, 
from Boulez on, and, at least by implication all other minor practices, 
certainly literary ones, such as those of Kleist, Kafka, and Woolf, or, 
again, the mathematical and scientific, and the dédoublement of smooth 
spaces found there (1987, 478-79; Deleuze 1993, 33). Indeed this 
nomadological extension of monadology is traced by Deleuze and 
Guattari to Riemannian space:

All of these points already relate to Riemannian space, with its essential 
relation to ‘monads’ (as opposed to the unitary Subject of Euclidean 
space). . Although the ‘monads’ are no longer thought to be closed upon 
themselves, and are postulated to entertain direct step-by-step local 
[Riemannian-space-type] relations, the purely monadological point of 
view proves inadequate and should be superseded by a ‘nomadology’ (the 
identity of striated spaces versus the realism of smooth space). (1987, 
573-74)

I close with Deleuze’s conclusion in The Fold, which this passage 
anticipates and which gives this idea the dimension and the harmony -  
the decentred and divergent harmony -  of the new Baroque, now linked 
to divergent series, on the one hand, and Joycean chaosmos, on the other. 
Infinite series is an area of mathematics (now analysis and algebra, rather 
than geometry) to which both Leibniz and Riemann made crucial contri
butions as well, and, as previously mentioned, Riemann’s work on the 
subject led to Cantor’s discovery of set mathematics. As in the discussion 
of the smooth and the striated in A Thousand Plateaus, music is germane 
here. Deleuze writes:

To the degree that the world is now made up of divergent series (the 
chaosmos), or that crapshooting replaces the game of Plenitude, the 
monad is now unable to contain the entire world as if in a closed circle that 
can be modified by projection. It now opens on a trajectory or a spiral in 
expansion that moves further and further away from a centre. A vertical 
harmonic can no longer be distinguished from a horizontal harmonic, just 
like the private condition of a dominant monad that produces its own 
accords in itself, and the public condition of monads in a crowd that fol
lows the lines of melody. The two begin to fuse on a sort of diagonal, 
where the monads penetrate each other, and modified, inseparable from 
the groups of prehension that carry them along and make up as many 
transitory captures.

The question always entails living in the world, but Stockhausen’s 
musical habitat or Dubuffet’s plastic habitat does not allow the difference
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of inside and outside, of public and private, to survive. They identify 
variation and trajectory, and overtake monadology with a ‘nomadology.’ 
Music has stayed at home: what has changed now is the organization of 
the home and its nature. We are all still Leibnizian, although accords 
no longer convey our world or our text. We are discovering new ways of 
folding, akin to new envelopments, but we all remain Leibnizian because 
what always matters is folding, unfolding, refolding, (p. 137; emphasis 
added)

These processes now take place in spaces that are smooth spaces, 
manifolds, as conceived, at least mathematically, by Riemann, the Leib
niz of the new Baroque. The smoothness of these spaces also enables a 
speedy movement of transition, convergent and divergent, from point to 
point, from neighbourhood to neighbourhood, from concept to concept, 
from field to field, from mathematics to philosophy (or vice versa), for 
example. This movement may and perhaps must be quick but it is not 
always easy, and sometimes dangerous, as skating on thin ice. But then, 
as Nietzsche once said, ‘thin ice is paradise for those who skate with 
expertise.’

Notes

1 It is true that Riemann’s work precedes set theory, which was, accordingly, 
not available to him. (Cantor actually discovered set theory in his work on 
trigonomentric series following Riemann’s work on the subject.) The main 
point here is philosophical, insofar as in question are concepts, mathematical 
and philosophical, that are, in Deleuze and Guattari’s sense, ‘always new.’

2 It should be noted that one could see category theory or Grothendieck’s work 
as an extension of rather than in juxtaposition to set theory and Cantor’s 
philosophy, as Yuri I. Manin argues (2002,8). I might also note (although the 
subject cannot be addressed here) that the encounter between Deleuze and 
Alain Badiou (for example, in Badiou 2000), and Badiou’s work itself (the 
work expressly linked to set theory and more recently to category theory) 
essentially relate to these mathematical problematics, including specifically 
the idea of continuity and discontinuity, and their relationships.

3 Given my space and focus on Riemann, I will not be able to address this chap
ter, ‘12. 1227: Treatise on Nomadology -  The War Machine’ (p. 351-423), 
although it is germane to most subjects discussed here.

4 The English translation by Brian Massumi uses ‘multiplicity’ to render the 
French ‘multiciplité.’ The proper English technical term is manifold, which 
also translates Riemann’s Mannigfaltigkeit and preserves both ‘fold’ and Rie
mann’s apparent suggestion of a folding-unfolding multiplicity of the whole. 
Riemann was originally trained in theology and the German for trinity is
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Dreifaltigkeit. The concept of manifold carries a sense of a multiplicity of 
points, neighbourhoods, mappings, connections, etc., but is richer.

5 The best access to the English translation, originally published in Nature, 
is found at http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/ 
WKCGeom.html, which I shall cite throughout this article.

6 Cf., Laugwitz’s discussion, to which I an indebted here but which takes a 
more conventional view of Riemann’s conceptual mathematics (1999, 
303-7).

7 Riemann actually considered the so-called differential or smooth (in the 
mathematical, rather than Deleuze and Guattari’s sense) manifolds, which 
means that one can define differential calculus on such objects.

8 It is at this juncture that they note that, ‘the confrontation between Bergson 
and Einstein on the topic of Relativity is incomprehensible if one fails to 
place it in the context of the basic theory of Riemannian manifolds, as modi
fied by Bergson’ (1987,484).

9 Deleuze and Guattari see Benoit Mandelbrot’s fractals as moving towards ‘a 
very general definition of smooth space’ (1987,486). I am not altogether cer
tain why fractals (so called because they can, as topological spaces, be given 
fractional, rather than whole, spatial dimensions) are singled out here, espe
cially given that Riemannian spaces (their dimensions are not fractional) are 
offered as a/the primary mathematical model of smooth space a bit earlier. 
There may be, however, aspects of fractal spaces, which indicate that a frac
tal space ‘builds itself’ more naturally or more structurally as a smooth space 
(p. 486-88). This particular point does not appear to me, however, to affect 
the overall argument of this essay.

10 The resulting smooth spaces are not without interest here, including in the 
context of the question of temporality in Bergson and then Deleuze himself, 
as indicated earlier, especially in The Logic o f Sense (1990).

11 On these issues I permit myself to refer to Arkady Plotnitsky, The Knowable 
and the Unknowable: Modem Science, Nonclassical Thought, and the ‘Two 
Cultures’ (2002,1-107).

12 See Paul de Man’s reading of Kant in Aesthetic Ideology (1987). The ques
tion of materiality and the body in phenomenology of Husserl, Bergson and 
Maurice Merleau-Ponty, is also an important reference here, which, however, 
would require a separate analysis.
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{The Surd

Aden Evens

Those who have exposed themselves to mathematics only in small doses 
may have the impression that maths is a done deal. In grade school, a 
maths problem is only ever a contrivance, as the solution is already 
known and indeed precedes the problem: given 2+5 one must produce 7, 
and even when the so-called problems become much more sophisticated, 
they don’t really become more problematic; derived from the solution, 
the problem is only a means of testing the pupil’s ability to return to it.

This is the image of mathematics with which most of us are left, 
where solutions are already contained within their problems, waiting to 
be teased out by appropriate reductive methods; the answers are there 
already, even if they are as yet hidden from us problem-solvers. But there 
is another side of mathematics, where the solution is not a foregone con
clusion and the problem is worthy of its name. Answers do not follow 
immediately from questions, but must be secured through resolute and 
patient labour on the part of the mathematician. This minor mathematics 
- exemplified for instance in the numerous mathematical examples 
throughout the oeuvre of Gilles Deleuze -  contrasts with the static and 
formalised mathematics that we might call State or royal mathematics 
(by analogy with Deleuze and Guattari’s notion of State science (1987, 
367-74)). Whereas State mathematics comprises formal rules and an 
established set of symbols that confine problems to the leading edges of 
research, minor mathematics apprehends maths at its most problematic, 
at its precarious or uncertain moments, when contingency overwhelms 
the security of the solutions, and only the urgent intervention of the math
ematician can rescue a suitable result from the calculation.

Such active nurturing attends every advance in mathematical 
research, but certain examples stand out most clearly, when the mathe
matics ties its fate to that of the mathematician and can be constructed 
and maintained only through her activity. In such moments, it is as
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though the mathematics will not solve itself, as though the solution is not 
yet there in the problem, as though the maths had reached out of the 
abstract into the empirical, and so could not be taken for granted in its 
progress. Historically, such moments of minor mathematics are called
constructivist.

Constructivism underlies each advance in the history of mathe
matics, but the history books relegate it to a small and somewhat forgot
ten niche. Like minor science, minor mathematics is overwritten, 
claimed and formalised by the standard theorems and techniques of 
State mathematics. If constructivism elevates the problem to the highest 
position, then its formalisation by major mathematics strips it of its prob
lematic potential and asserts once again the priority of the solution. Of 
course, State mathematics dominates the history books, so we should not 
be surprised to find constructivism under-represented there.

For example, Deleuze must reach into the obscure history of 
mathematics at the outset of Chapter Four of Difference and Repetition 
(1994), to recover mathematical techniques of differential analysis that 
are ontologically substantive, generative and not merely reductive. Bor
rowing from a usually forgotten history of the calculus, he presents the 
differential, chc, in a process of differentiation, a process that generates 
the world and the ideas that make sense of it. In the modern calculus, the 
differential does not perturb the formulae in which it appears; it is largely 
a placeholder to indicate which variable is to be integrated over or which 
derivative to take. But for earlier mathematicians -  Deleuze draws upon 
the researches of mathematicians Carnot, Lagrange, and Wronski -  the 
differential had to be wilfully and actively manipulated in its equations; 
it was an extra term, left over after the rest of the equation had been 
reduced, and the methods for dealing with it could not be decided in 
advance. Constructive methods, such as successive approximation, 
ensured an active role for the mathematician, who reduced the equation 
bit by bit, sculpted it into a simpler form.

One chapter later, Deleuze offers a prototypical example when he 
proposes that the universe is the remainder in God’s calculations. The 
remainder mandates a construction, for it is an element left over after the 
calculations have been performed, a problematic surplus that does not 
cancel out of the equation and requires contingent methods, techniques 
developed ‘on the ground’

Though constructivism propels even State mathematics, it dis
agrees with the formal essence of mathematics as defined by the 
State. Maths is traditionally marked by its universality, its wholesale
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abstraction, its divorce from contingency, personality, and the empirical. 
Constructivism, on the contrary, clings to contingency, and develops its 
methods in a particular context, outside which they may well lose their 
relevance or their force of solution. Maths claims no politics, but 
constructivism politicises mathematics, as it is no longer a matter of 
determinate formalities. In response, royal mathematics elides or cancels 
out minor mathematics, claiming its results while neutralising or sterilis
ing its activism. The State restores to the mathematics a pure formality, 
universalism, and objectivity.

In the one-and-a-half examples to follow, this essay attempts to 
distil the constructivist moment and generalise it, moving from mathe
matical history to intellectual history: constructivism, and in particular 
the surd, as the motor of becoming. The surd is the anomalous element, 
the unassimilable, that disrupts the linear progress of history, fractures an 
established discipline to open the way to new methods and ideas. At its 
initial appearance, the surd erupts into a constructivist heterodoxy, tech
niques to be determined in the moment, contextual methods that must be 
worked out on the spot. Before long, however, constructivism cedes its 
hold on these methods, as they are formalised and claimed by the State, 
the revolutionary potential of the surd neutralised.

While the mathematical narrative here is historical, the language of 
history is ultimately provisional, like the constructivist methods to which 
it refers. The claims in this paper are not primarily historical but 
genealogical; that is, they account for events in terms of their motive 
forces, but the actions of these forces may not be historically distinct 
from their reclaiming (and official elision) by royal sciences. Thus, as we 
will see, the forces that employ the surd toward new disruptive methods 
are the same forces that attempt to corral the surd and restore to mathe
matics a legitimacy and formality that the surd resists.

Intuitionism and the surd

In mathematics, a surd is an irrational number, a real number that cannot 
be expressed as the ratio of two integers. It is also the name for the Toot’ 
sign, \Γ  These two meanings are not incidentally related: one easy way 
to generate irrational numbers (surds) is to take roots of rational ones. 
The square root of two, for example, is a surd.

Typically, traditional (royal) mathematics has little trouble with the 
surd. In grade school, we just write out the first few digits after the deci
mal point, and then write an ellipsis to indicate the continuation of the
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sequence. The square root of two is 1.41421. ’ The question -  prac
tically ignored by State mathematics -  is the meaning of this ellipsis. In 
a rational number, such as one-third, the ellipsis in the decimal represen
tation seems unambiguous; in 0.333. it means ‘just keep writing 3 Y 
But in the square root of two, the ellipsis feels somehow inadequate, for 
it refers to no pattern; the decimal expansion of the square root of two (or 
of just about any irrational number)2 is a seemingly haphazard sequence 
of digits that is fully determined (by the definition of square root in this 
case), but in a strong sense unpredictable. The ellipsis in the representa
tion of an irrational does not succeed in specifying any particular number, 
so that one must know beforehand what number is being referred to in 
order to interpret those dots correctly. If the ellipsis means continue in 
this manner, an irrational number does not suggest just which manner is 
intended.

Luitzen Egbertus Jan Brouwer (1967, 1983) found this ellipsis 
problematic; even more problematic for Brouwer was the tacit willing
ness of traditional mathematics to leave the ellipsis unexamined. In 
response, he founded intuitionism as a branch of mathematics that pro
ceeds first of all from an epistemological (rather than a mathematical) 
commitment. Amidst the intellectual rubble of post-World War I Europe, 
Brouwer drew together some strands of nineteenth-century construc
tivism to forge a mathematics that restores truth and certainty where none 
had been guaranteed. The principle tenet of intuitionism is this: no math
ematical claim is acceptable that cannot be experienced as certainly true 
by the mathematician; allow only what can be grasped in the mathemati
cian’s immediate intuition.3 (We shall see what this means. .)

In intuitionism, the mathematician is no longer the one who works 
on the mathematics; the mathematician is its vessel and locus. For 
Brouwer mathematics is mental activity, independent of language and 
independent of the notation used to remember and convey it. Only intu
itions are mathematics. Thus, the symbols of maths and other written or 
verbal communications about it are not the genuine item, but only a 
means of reminding oneself or others how to ‘have’ the same mathemat
ics again. Intuitionism insists on the active role of the mathematician in 
doing the mathematics, a constructivism in principle.

But what difference does it make in practice to demand that the 
truth of the mathematics be experienced? Was there something uncertain 
about prior mathematics? Were mathematicians allowing claims into 
mathematics that could not be immediately intuited as true? Brouwer 
argues that, indeed, many claims were being routinely but illegitimately

212



ADEN EVENS

accepted into the calculus. While claims about finite quantities are, in 
principle at least, experience-able as true in an immediate intuition, 
claims about the infinite are another story.4 In particular, it is the surd that 
fractures mathematics in the crucible of post-World War I maths and 
logic. The ellipsis in a surd, say the intuitionists, cannot stand for an 
unwritten infinity of digits, since no such completed infinity can be 
directly experienced in the mind of the mathematician. Instead, Brouwer 
offers a definition of number, including irrational number, that is purely 
finitary, a definition in terms of the construction of the number that does 
not posit some finally constructed infinity of digits.

In Brouwer’s words from his early work in 1913, a number is a 
‘law for the construction of an elementary series of digits after the deci
mal point, built up by means of a finite number of operations’ (1983a, 
85). In other words, a number is some procedure by which we can unfail
ingly specify further digits to arbitrary precision. For instance, start with 
0.74, then continue to add digits, alternating between 7 and 4. This would 
yield a rational number. Another example: start with 1.41421 (the first 
few digits of the square root of two), then continue to add successive 
digits, choosing each next digit to be the highest digit such that the square 
of the resulting rational number is less than 2.5 This would be the 
intuitionist definition of the square root of two.

By defining number in terms of a procedure, intuitionism demands 
that number be not a fixed, eternal entity, existing in some ideal space of 
number-hood. Rather, an intuitionist number is a rule, a method of con
struction. Even in this simple definition, we can already see the surd at 
work, its irrationality calling upon constructive procedures, an engage
ment by the mathematician. But the surd does not stop at this call for 
mathematical commitment; its perturbations are more dramatic, as 
Brouwer illustrates.

He defines a number r, called the pendulum number, as the limit of 
a sequence of elements,

The sequence is

1 1 1 1  
2 ’ 4 ’  8 16 ’
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It is the geometric sequence defined by the inverse powers of two, where 
the sign switches back and forth with each element. The general formula
is

This sequence bounces back and forth around 0, getting closer to 0 
the farther you proceed in the sequence (Figure 1). Its limit is in factO, 
and there is not yet any disagreement between intuitionist and traditional 
mathematics.

I i

- 0 . 5  0 0 . 2 5

Figure 1 : The sequence of c ’s, bouncing back and forth as it approaches 0.

But Brouwer adds a twist. He alters the definition of the sequence 
by freezing it beginning at the mth term of the sequence, so that starting 
at cm, all the rest of the terms will just be equal to cm. Now, under this 
altered definition, the limit of the sequence is no longer 0, but cm. The 
question of course is, What is ml

In an original stroke of genius, Brouwer defines m so as to render 
the limit of the sequence, r, a rather strange number, m is defined as the 
first place in the decimal expansion of π where the digits 0123456789 
occur: Start to write out π, counting its digits. As soon as you reach a 
place where 0123456789 occurs, note how far along you are in your 
count. This is m, as illustrated in Figure 2. (Just to avoid confusion, note 
that π has no prior relationship to r; Brouwer could have chosen any irra
tional number, and picked π arbitrarily because it is a universally-recog
nised irrational number. The essential criterion is that π is a surd, whose 
digits can be successively calculated to arbitrary precision, but whose 
yet-to-be-calculated digits cannot be predicted or patterned in advance of 
their calculation.)6
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The thing is, we don’t know where such a sequence of digits occurs 
in the decimal expansion of π. We don’t even know if such a sequence 
ever occurs in the decimal expansion of π. If such a sequence occurs at 
an even-numbered place in the decimal expansion of π, for instance, at 
the 1000th place, then cm will have an even exponent, it will be equal to

Figure 2: The sequence of digits of π, and the (hypothetical) mth position, 
where 0123456789 occurs.

which is a positive (but small) number. The sequence of c ’s will ‘freeze’ 
at that point, and r, the limit of the sequence, will be equal to this small 
positive number. If, on the other hand, the sequence 0123456789 occurs 
at an odd place in π, then c will have an odd exponent and r will be a 
small negative number. But if (on the third hand!) that sequence never 
occurs in the decimal expansion of π, then there is no m, and the sequence 
of c’s will just keep getting closer to 0, with a limit, r, of 0.

A traditional mathematician, say a Platonist, would not object to 
this definition of the pendulum number. She would allow that r is a well- 
defined real number whose value we don’t at present know, since we 
don’t know where 0123456789 occurs in π (nor whether it occurs at all). 
In spite of our ignorance about r, though, she would insist that as a well- 
defined real number, r is either positive, negative, or equal to zero.

This is where the surd fractures mathematics, splitting intuitionist 
from traditional mathematics. Brouwer too allows that r is a well- 
defined, real number: it meets the definition of an intuitionist real number 
in that we can specify it to arbitrary precision, simply by writing out the 
digits of π. However, we cannot say of r that it is either positive, nega
tive, or equal to 0. We cannot say this because we cannot immediately 
experience the truth of any of these three possibilities, and therefore none 
of them is true. It is not true that r is greater than 0, nor is it true that r is

1000

π -3.14159265358979323...0123456789...

4th digit
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less than 0, nor is it true that r is equal to 0. None of the three usual order
ing relations holds between r and 0. (In effect, Brouwer’s pendulum 
number instantiates a new logical value: it is not true that r > 0, but 
neither is it false.)7

This counterintuitive conclusion of intuitionist analysis deserves 
reemphasis. It is not a deferral in regard to r, a refusal to answer ques
tions about r due to insufficient data. Rather, r, in all its indefiniteness, 
enters the mathematics, carrying its ambiguity along with it. It thereby 
perturbs traditional, even sacred theorems that had held sway for hun
dreds of years. In this case, r defies the fundamental ordering of the 
continuum -  the property that every real number is either greater than, 
less than, or equal to any other real number. Here, uncertainty (about the 
digits of π) is not an extra-mathematical concern that leaves a gap in the 
maths waiting to be filled, but is incorporated directly into the calculus. 
Epistemology intrudes upon ontology, to tie the truth of the mathematics 
to the concrete mental processes of the mathematician. No longer an 
eternal posit, an ideal relation among ideal objects, mathematical truth is 
now a contingent event, something that happens to the mathematician 
and to the mathematics. If at some future moment, the sequence 
0123456789 is discovered in the decimal expansion of π, or if it is some
day proved that no such sequence can ever occur in the decimal expan
sion of π, then r will take on a decimal value, and it will obtain one of the 
three ordered relationships to 0. The future-historical event will change 
the truth of the mathematics. By virtue of the surd (in this case, π), math
ematics bleeds over from the realm of the pure abstract into the empiri
cal. It becomes dependent on human history and human progress. And it 
insists, above all, on the participation of the mathematician as an essen
tial element of the mathematics.

With the entry of the pendulum number into the mathematics, 
Brouwer replaces the ordered continuum of real numbers with a disuni- 
fied set of incommensurables, scattered surds that cannot be adequately 
compared to other numbers. By definition, the surd is incomparable, sin
gular, and it lends this quality to intuitionist number in general. The surd 
makes numbers into immeasurable ordinal quantities whose nature can 
be determined only by pursuing a process that may never yield a certain 
result, r and 0 cannot be compared adequately to each other, for each is a 
singular experience, constructed in such a manner that they diverge, r 
becoming skew to 0.

The pendulum number depends for its definition upon what 
Brouwer terms an opaque fleeing property,8 This is a mathematical
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property that describes a (hypothetical) mathematical object, such that no 
object is known that holds the property, and it is also not known that no 
such object exists. Moreover, there is no finite process that will surely 
determine whether or not there is such an object. Thus, an opaque fleeing 
property is a property such as ‘the first place in the decimal expansion of 
π where the digits 0123456789 occur’ This opaque fleeing property 
locates and rarefies the surdity of π, its uncanny simultaneous contin
gency and necessity, π is contingent for wholly singular, without genus, 
and governed by no law but its own; nevertheless it is woven into the 
fabric of the universe, the singular relationship between circumference 
and diameter of a circle, its specificity defies its abstraction. It is effec
tively split between the empirical and the abstract, a pure abstraction with 
the infinite, irreducible detail that generally accrues only to the concrete. 
n thus reaches out of the eternal mathematical world and into the 
empirical human one.9

It is a strange and disconcerting move, therefore, when Brouwer, 
consistent with traditional mathematical practice, abstracts from this par
ticular opaque fleeing property to speak of opaque fleeing properties in 
general. (For instance, ‘as long as a fleeing property exists such that 
Or, ‘for each fleeing property, / ,  (1981,42).) That is, he ceases to
specify a particular fleeing property, and instead reifies the concept of 
opaque fleeing property, using it as a mathematical effect in the analysis: 
‘Consider a number defined by some fleeing property, d’ This is tanta
mount to taking the form of an opaque fleeing property and voiding it of 
its content. In this formalisation, the surd, formerly crucial to the fleeing 
property, is neutralised, drained of its disturbing singularity so that it can 
serve as a general term.10 Contingency is no longer the contingency of π, 
but becomes a purely formal element of the calculus, with rules to govern 
its manipulations and effects.

When fleeing properties are formalised, the surd is not so much 
evinced as insisted upon, spontaneously generated in its form but with
out content. However, a surd without content is impotent. For a surd is 
precisely an excess of content, an intensity that cannot be contained by a 
form. Though its results persist in the calculus, they no longer require the 
engaged attendance of the mathematician. As a formality, intuitionism 
loses its tie to the human, and becomes just another branch of mathemat
ics, a universal and agreeable formalism. Historically, formalisation of 
the surdity of intuitionism made it acceptable to other mathematicians. 
Troelstra (1977) for instance attempts as his chief project to formalise 
intuitionist mathematics to the point where we no longer need extra-
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mathematical conceptual apparatus, but can regard intuitionism as a set 
of rules for manipulating symbols. The triumph of royal mathematics.

Brouwer, on the other hand, wishes to maintain the surdity of his 
mathematics, for it is just this surdity that attaches the maths firmly to the 
mental activity of the mathematician. Having lost the opaque fleeing 
property to formalisation, he needs to conjure another surd, to trump 
the opaque fleeing property with a more insistent concept. The opaque 
fleeing property was something of a parlour trick anyway, a game to 
demonstrate some of the easy and dramatic implications of intuitionist 
analysis, but not a serious contribution to mathematics.11 To up the ante, 
Brouwer introduces the notion of a free choice sequence, and a new con
cept of number to go with it, more radical still than the pendulum 
number. To generate a free choice sequence, epistemology must be fur
ther twisted, the very notion of choice remade as a mathematical concept.

One of the problems for traditional mathematics was to explain the 
continuum. How is it that points can somehow aggregate to form the con
tinuum, or number line? How do points of dimension 0 fully occupy a 
line segment, which has a dimension of 1? How can discrete points, that 
have no length, form a continuous line? Traditional mathematicians 
posited an axiom of the continuum; they simply asserted as a basic 
assumption of the mathematics that when you take all of the (infinity of) 
rational numbers and all of the (even bigger infinity of) irrational num
bers, you have covered the continuum to form a continuous line.12 (As the 
continuum is most easily conceptualised in geometrical terms, I will 
henceforth refer interchangeably to number or point. The same thing is 
intended by each term.)

This claim, say the intuitionists, is not immediately verifiable as 
true in the mind of the mathematician. In fact, it is altogether counterin
tuitive. Intuitively, no matter how many points you place side-by-side, 
there is no way that they should ever be able to cover a positive linear 
area, no way that they can ever form a continuous line. To compensate 
for this incorrectness in the calculus -  and it is an important claim that 
underlies a great deal of higher mathematics -  the intuitionists offer a fur
ther definition of number, one that is intended to overcome this problem 
by building into number the continuity that number is expected to cover. 
This new definition of number is based on the idea of a free choice 
sequence, and it once again relies on the surd, which imparts to number 
a power of the continuum.

The early intuitionist definition, above, makes of number a process 
for determining with arbitrary precision successive digits of a decimal
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representation. T h e  new  defin ition  in troduces the innova tion  o f  the  free 
choice seq u en ce , w h ich  allow s a certa in  freedom  or la titude in the 
process. N ow , the  ru le  th a t d e term ines successive  d ig its need  no t be 
wholly dete rm in in g ; ra ther, the  ru le  for choosing  successive d ig its can 
allow the  m a th em atic ian  a cho ice  o f  n ex t d ig it, and th is still defines a par
ticular p o in t (num ber'4 in the in tu itio n is t ca lcu lu s. For exam p le , here 
(Figure 3) is an in tu itio n is t point: start w ith 0 .31 , then choose successive 
digits so tha t each  nex t d ig it is e ith er a 4 or a 2. T his defin ition  sim ply  
fails to specify  a nu m b er th a t a trad itional m athem atic ian  w ould  reco g 
nise as w ell-defined . F o r a trad itional m a them atic ian , this is not 
number, bu t a m ethod  fo r gene ra ting  d iffe ren t num bers. A nd w hile 
traditionalist w ou ld  ag ree tha t any n um ber genera ted  accord ing  to  this 
method w ill have  ce rta in  p ro p erd es  (such as the property  o f  being  gr- 
than 0.31 and  less than  0 .32 ), the ex is tence  o f  these p roperties does not 
make the nu m b er itse lf  w ell-defined .

4
031 —  or

2.

or 4 
2 —  or 

2
etc.

4 —  or 
or 2
2 v

or
2

Figure 3; An illustration of a single number, as defined by a free choice 
sequence.

B ut the in tu ition is t understands th is defin ition  d ifferently . For 
Brouwer, th is  ru le  defines a  po in t. T hough  tw o d ifferen t m athem aticians 
might m ake d iffe ren t cho ices, befo re  any choices have been m ade or as 
long as all o f  the cho ices m ade so far co incide , both  m athem aticians are 
working w ith  the sam e po in t. A s soon as they  m ake d ifferen t cho ices, 
they are then  no longer w ork ing  w ith  the sam e po in t. A  given po in t, 
therefore, consists  o f  choices already  m ade plus the possib ility  o f m aking 
various cho ices in the fu tu re . A s a p rocess o f  choice , a po in t includes
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the potential for any number of points, so that each point contains an 
internal difference, equal to itself and different from itself.

Unlike a point in traditional mathematics, an intuitionist point, 
defined in relation to a free choice sequence, is no longer an unimagin
able idealisation of dimension 0, On the contrary, using the definition of 
a free choice sequence, a point is a progressive narrowing of intervals, a 
process of honing in that keeps open an interval and never finally closes 
it down to 0. Points thereby become fuzzy, each equal to itself and to its 
neighbours (but less so). Indeed, in Brouwer’s formal treatment of free 
choice sequences, he does not refer to successive digits of a decimal 
number; rather he posits a sequence of nested intervals, and the choice is 
a matter of how each interval is to be fit within its enclosing interval. The 
first few 'choices’ of intervals for a point are illustrated in Figure 4.

Figure 4: The first few ‘choices’ of nested intervals that define a point.

Now the problem of the continuum is solved almost by default: the 
continuum is just the totality of all choices, or the freedom to make 
choices however one will. Each point, as a process of continual refine
ment, covers a vanishing but positive linear area. The power of the 
continuum is built into the points that constitute it, requiring no extra 
axiom to justify its continuity. The points do not aggregate or bunch 
together side-by-side to create the continuum. Rather, as choices, the 
points are in motion, smearing themselves across intervals, blurring their 
own boundaries to leave the continuum in their wake. Intuitionist math
ematics does not exactly promote the line over the point, but, as Deleuze 
and Guattari recommend, defines both line and point in terms of a motion 
that generates each of them.

The result of this definition of number in terms of free choice 
sequences is to impart a maximum of continuity into relations among 
numbers. But it is a continuity that derives from the fact that the ele
ments, the numbers themselves, incorporate difference into their identity. 
Because each number has difference within itself -  a part still to be deter
mined -  the differences between numbers are less dramatic, generating a 
maximum of continuity among numbers. Every number leaves part of

220



ADEN EVENS

itself not yet determined, and this indeterminacy is a difference that lives 
within number and forms part of its nature.

The continuity of intuitionist number shows up in the calculus 
in the intuitionist theorem that every function of the unit continuum is 
continuous. This departs dramatically from the claims of traditional 
mathematics. Whereas the pendulum number is something of a con
trivance, a rather forced example of the oddball cases allowed by the 
early intuitionist definition of number, this revision of the notion of con
tinuity radically alters the landscape of mathematical analysis and 
demonstrates the vast distance, opened by the surd, between intuitionist 
and traditional conclusions.

In traditional mathematics, the continuity of a function is a ques
tion of its smoothness. A function is continuous if it has no breaks or 
gaps, no jumps in it. For instance, the function in Figure 5A, though quite 
a rollercoaster, is nevertheless continuous: there are no jumps or gaps 
in the graph of the function; it is ‘filled in’ from one end to the other. 
Placing a fingertip at one end of the function, one could trace its entire 
path without lifting one’s finger. The second example, Figure 5B, is a 
discontinuous function; this is called a jump discontinuity, since the 
function jumps suddenly at a point from one value to another. Brouwer’s 
radical claim is that, in spite of this jump, the function in 5B is still 
continuous.

5B represents a continuous intuitionistic function because points 
(or numbers) are themselves defined so as to be smudges or vanishing 
intervals rather than finished points of dimension 0. In traditional math
ematics, the function in 5B is discontinuous because we can specify a 
point, /, at which the function suddenly jumps from one value to another. 
On the left side of this point, the function equals 1, and on the right side, 
the function equals 2. But for the intuitionists, one cannot specify such a 
point because there are no absolute points. There are only neighbour
hoods, intervals surrounding /, honing in on the classical point /, but 
never actually reaching it. And any neighbourhood around the classical 
point I will include space to either side of /. However closely one hones 
in on /, one still keeps open the possibility of making further choices so 
as to determine a value of 1 for the function, or of making other choices 
so as to determine a value of 2. Thus, putting it rather too bluntly, near I 
the function evaluates to both 1 and 2. Instead of a point at which the 
function jumps, the intuitionists see a neighbourhood that effectively 
connects the two sides of the function by tying their ends together in a 
single point, a point that includes difference within itself. The intuition-
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ist point I functions as a kind of wormhole, a black hole or singularity that 
causes two points otherwise distant in space to overlap each other.

B

!
Figure 5: A continuous function and a discontinuous function, at least 
according to the definition of continuity in traditional mathematics.

The surd appears in this case in the guise of the concept of choice. 
The intuitionist definition of a point includes within its formalisms an 
openness, an indeterminacy that, not yet filled in, might be satisfied in 
any number of ways. As other intuitionists have argued (see Troelstra 
1977,12), choice here is not so much about the actual fact of choosing as 
about the form of choice, the fact that one can define a point and work 
with it without having narrowed down all of the intervals that would limit 
that point to a dimension of 0. Choice is thus simultaneously made and 
suspended; proofs are carried out as though only so many choices have 
been made, but the results are valid no matter how many have actually 
been made. There are always more choices to be made, so that the
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interval remains open, with a dimension of 1 but ever shrinking towards 
O.Thus, in Brouwer’s proof of the continuity of every function of the unit 
continuum, he relies crucially on the fact that, as we hone in on /, select
ing increasingly narrow intervals surrounding /, it will always be 
possible to imagine for the 4next’ choice that we are honing in on a point 
to the left of I or that we are honing in on one to the right of /. Once the 
next choice, say the qth choice, is actually made, it will undoubtedly cut 
off certain possibilities that existed prior to choice q, but it will still be 
possible to make the next choice so as to aim toward a point to the right 
or to the left of /. The formal procedure of choice keeps the point from 
collapsing to zero, and calls once again upon the participation of the 
mathematician, this time an ideal mathematician, endowed with a power 
of abstract choice. Choice is the surrogate of the surd.

Though this definition of number is mathematically cumbersome, 
it is nevertheless intuitively appealing, even 'natural’ No longer an 
idealisation of dimension 0, number is now a process of narrowing, 
mirroring the physical or mental process we might go through in deter
mining a point, and incorporating the necessarily inexact and provisional 
endpoint at which we inevitably curtail our process. While empirical 
pointing happens over a specific time period, intuitionist points only refer 
to an abstract time, once again drawing upon form (of time) without 
reference to a specific content.13

Corresponding to the notion of an idealised temporality is the 
positing of an ideal mathematician (or 'creative subject’ in some of 
the literature). Brouwer did not want free choice sequences to subject the 
mathematics to the caprice of the mathematician, as though the results of 
the calculus depend on just which choices the mathematician chooses to 
make. Rather, choice in intuitionism has a Nietzschean resonance, in that 
every choice gets made. Proofs involving free choice sequences do not 
take for granted any particular choice; they assume only that some choice 
gets made, and that some are still to be made. (Again, it is a matter of 
idealisation: choice as a form without content.) Choice is affirmed as a 
principle so that it is not a matter of any particular choice. 'But what is 
relevant from a mathematical point of view is not any individual choice 
sequence as such, but the 'mathematical’ fact that there exist many per
fectly well-defined (lawlike) operations on sequences which can be 
carried out without assuming the arguments to be determined by a law’ 
(Troelstra 1977,12). The principle of choice defines number as a process, 
with a maximum of continuity between numbers and a maximum of 
difference within each number. Every choice is effectively made, every
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choice is affirmed, and this generates the universe of number (the 
continuum).

Formalising or idealising the concept of choice freezes a dynamic 
process into a static element of the mathematics. Whereas traditional 
mathematics idealises number, ignoring its processual aspect, intuition- 
ism formalises the process as process, capturing this motion of 
numbering in vivo, formalising not number but the genesis of number. 
Intuitionism discovers the essence of number in numbering, naming that 
essence and giving it a place amongst the symbols of the calculus. 
Brouwer thus pre-empts the process of numbering, seizes numbering 
with its virtuality intact, before it has cancelled that virtuality with the 
actuality of a fixed and determinate value. Notably, the power of the free 
choice sequence is a power of determination, a finite determination 
that can always be further determined, but is never finally determined. 
Intuitionism knows not to explicate too far, as Deleuze puts it. Brouwer 
thus suspends the mathematics in between virtual and actual, refusing 
complete determination to promote the process that gives rise to the 
determinable.

This hold on the vital essence of number could not endure. Much 
of the language of choice, and the epistemological and ontological 
commitments associated with Brouwer’s intuitionism, were at odds with 
traditional mathematical standards. Later intuitionists attempted to 
preserve the results of the intuitionist calculus while discarding the 
philosophical underpinnings. These intuitionist reformers rejected the 
‘unmathematical’ ideological and epistemological commitments of intu
itionism, but wished to retain its formal results; after all, its alterations to 
traditional numerical analysis and to logic are at least interesting and pos
sibly even useful. Troelstra (1977) and Heyting (1956,1966,1983) each 
formalise significant parts of intuitionism, so that it becomes only 
another system of symbolic manipulation, a formal alternative to tradi
tional calculus stripped of the surd’s original revolutionary power. A 
term like free choice sequence is replaced with the less provocative 
infinitely proceeding sequence, or just a sequence that is lawless or 
even non-law-like. The human operator is thereby eliminated from the 
mathematics, and sterile if productive research can continue without 
epistemological threats to its universality and objectivity.

Such is the history of the surd, in maths as elsewhere. Its introduc
tion disrupts standard practices, opens a break in the linear progress of a 
field, inviting markedly new understandings, concepts, and techniques. 
Initially, these novel elements do not settle comfortably amidst their
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established cousins, and so demand a real labour and lend the whole 
radical enterprise an empirical or contingent character. The arrival of the 
surd involves a struggle that spills over the edges of the discipline, math
ematics becoming politics, philosophy, aesthetics, and other concrete and 
value-laden productions. Eventually -  sometimes it takes centuries while 
other times it is coincident with the appearance of the surd -  these results 
are claimed in the name of State technique, and the surd loses its revolu
tionary force. The discipline seals off the openings that connect it to 
contingency and assumes once again an air of self-sufficiency and even 
self-evidence, its surdity formalised, intuitionism remains of interest 
primarily to historians and philosophers of mathematics. The hopes that 
Brouwer held for practical applications went unrealised, and sometime in 
the middle of the twentieth century, mathematicians mostly stopped 
worrying about epistemology, preferring to go about their business as 
undeclared formalists.

Sound and the surd

With mathematics as a privileged model, my hypothesis is to elevate the 
surd to a general term: the spur of becoming, the juncture where ideas 
diverge. The surd inaugurates new ideas, not just in maths but across dis
ciplines -  arts, sciences, studies of the spirit. History, or rather genealogy, 
shocked ahead by the surd.14 Well short of an adequate demonstration 
of this hypothesis, this essay will content itself with only one further 
example.

Aside from its mathematical usage, English has retained another 
specialised meaning of the term surd. Etymologically, surd is a Latinate 
translation of the Greek alogos, the irrational or rootless. But alogos also 
refers to what is outside of speech, what cannot be spoken. Linguistics 
preserves this connotation: in linguistics, the surd is an unvoiced sound 
or phoneme, that which is not spoken but is nevertheless carried in the 
speech. (French retains an oddly converse meaning in sourd, the word for 
deaf.) Linguists fail to appreciate the broad scope of this phenomenon 
and its essential role in making meaning out of speech. The surd is the 
sonic analogue of the textual supplément, the excess of meaning that 
hides in the pauses between words, the implicit commas, the white noise 
around sounds that surrounds spoken language and lends itself to the pro
gressive and concrete generation of new meaning. A sentence always 
says more than its words: the surd, that which cannot finally be treated in 
words. Deleuze notes in The Logic of Sense (1990) that a word can never
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say its meaning, so that there must always be another word to name the 
meaning of the first. However, he acknowledges one exception to this 
rule: the nonsense word, the absurd, the only word that says its own 
meaning by saying that it does not say. To speak, to sound off, is to draw 
upon an active if unconscious not-saying, to deploy the surd as the very 
possibility of initiating meaning in language.

To detect this linguistic phenomenon that generates meaning, 
examine the edges of spoken language, the thresholds that divide an 
utterance from the silence that surrounds it. The surd marks that point of 
fracture, where sound develops from silence and where silence overtakes 
reverberant sound. Every sound irrupts from silence, beginning with a 
noisy nonsense, and fades eventually back into silence via a senseless, 
irregular chaos. Even the formal symbols and numerical indices of 
acoustics cannot tame sound’s ecstatic origins, which rend a hole in the 
rigid fabric of physics. Two measurable, empirical phenomena evince 
the effect of the surd in sound: the uncertainty principle and the Gibbs 
phenomenon. In both cases, it is a matter of suddenness, of stopping or 
starting, of sharp edges, of singular moments.

Both phenomena relate to the dual nature of oscillating signals 
such as sounds. A sound (or other signal) can be represented in two com
plementary manners. Typically, a sound is represented (on a graph) as an 
amplitude varying over time. Sound is the oscillation of air pressure, and 
by charting this change in air pressure over time, one represents the 
sound in all its details. (For comparison, think of a seismogram that is 
similar but represents the motion of the earth instead of the change in air 
pressure, or a barometer which also measures changes in air pressure but 
over a coarser scale of time.) However, instead of showing a sound as a 
change of pressure over time, one can also represent it as the composite 
of perfectly regular oscillations. Every sound, no matter how complex, 
can be constructed by adding together simple sounds (sine waves), and 
one can therefore identify a sound by noting of which sine waves 
(frequencies) it is comprised. In fact, while it is clearly significant when 
a sound happens -  there is little point in yelling ‘Look out!’ after your 
friend has already been crushed by the falling piano -  it is perhaps 
more significant which frequencies contribute to the sound, as its char
acteristic frequencies determine what it actually sounds like: high or low, 
harsh or soothing, aaaah or ooooo, bell-like, string-like, or percussive.

The surd at the starts and stops of sound places a limitation on the 
complementarity of these dual representations. There is an uncertainty 
principle of acoustics (due to Gabor 1946,1947) -  strictly analogous to
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Heisenberg’s uncertainty principle for quantum mechanics -  which holds 
that a sound cannot be fully determinate with respect to both frequency 
and time. The more precisely located is a sound in time, the less precise 
we can be about its frequency content. And the more precisely we 
describe its frequencies, the less precise we can be about when the sound 
occurs. 4 A signal can be represented either as a function of time or as a 
function of frequency (i.e. its spectrum) and as it is compressed in one 
representation so it expands in the other’ (Stuart 1966,62). Only a sound 
with no beginning or ending has an exact frequency; every sound with a 
duration, every sound that starts and stops must include physically inex
act frequencies, patches of noise describable by Gaussian distribution 
functions (bell curves), wherein pitch is defined statistically over a fuzzy 
range instead of discretely at a specific note. Thus, a singular sound, one 
that occurs at a particular time, in a particular context, must always begin 
and end with noise, indeterminacy, the surd. The most sudden events -  
transients, as they are called by engineers and audiophiles -  these sudden 
transitions are inevitably marked by noise that obscures and even distorts 
them. A sound located at a specific moment loses its definition, becomes 
a smudge of energy across the frequency spectrum, a pure noise whose 
meaning is only its temporal singularity but not its (atemporal) timbrai 
characteristics. Conversely, sounds with an exact frequency or set of 
frequencies cannot be placed in time at all; they are idealisations, 
omnitemporal sounds that can never begin or end.

If the meaning of a sound is a matter of its location in time and its 
frequency spectrum, then the surd guarantees that meaning is irreducible, 
beyond acoustic analysis. Physics cannot account precisely for both com
ponents of sound’s meaning. The surd is that indeterminate excess of 
meaning that slurs the edges of sounds and blurs the contributing 
frequencies, disallowing any absolute distinctions, insisting that every 
sound must already have begun, since its point of origin is precisely 
non-localised.

Frequency analysis is the technique by which engineers analyse 
sound (and many other signals). And the chief method for this analysis is 
Fourier analysis or the Fourier transform. This is a mathematical tech
nique for taking a signal, represented as a changing amplitude over time, 
and generating its complementary representation, as a spectrum of 
frequencies. The claim of the uncertainty principle, manifesting the surd, 
is that sharp or sudden events in either representation will correlate with 
broad and smooth events in the other representation. But there is a 
further wrinkle.
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The sharpest or most singular events, those that are most closely 
anchored to a moment in time, manifest a more severe distortion, a 
behaviour known as the Gibbs phenomenon. Since Fourier analysis 
yields a representation of a sound in terms of frequency, one can take this 
representation as a kind of recipe, such that by recombining these 
frequencies one can recreate the original sound.15 But, for signals that 
have a discontinuity (of the sort discussed in relation to intuitionism 
above), the Fourier analysis does not yield a strictly accurate representa
tion of the frequencies of the sound. Instead, the recreated signal over
shoots the original signal at the point of discontinuity, and this inaccuracy 
persists, as the recreated signal rises above the original signal then drops 
below it in a perpetual oscillation. This oscillatory deviation from the 
original signal near a point of discontinuity is the Gibbs phenomenon 
(Figure 6).

Figure 6: A square wave and an illustration of the Gibbs phenomenon or 
overshoot that is an artefact of its Fourier transform.

The singular point of discontinuity evades capture by the usual 
means of analysis, and engineers are forced to alter their methods, tailor 
their analysis to suit the specific and exceptional case at hand.16

There are ways to compensate for this deviation. By modifying the 
Fourier analysis using a multiplicative factor called the Lanczos sigma, 
one can eliminate the overshoot of the Gibbs phenomenon. Of course, 
this alteration has its own consequences, as the surd does not simply step 
aside. For one thing, the introduction of the Lanczos sigma factors causes 
the entire recreated signal to fall short of the original signal by a small 
percentage. A second result is an increase in the rise time of the recreated
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signal: eliminating the overshoot causes the recreated signal to take 
longer to approach the level of the original signal (Figure 7).

Figure 7: A square wave and its Fourier approximation including 
compensation with Lanczos sigma factors. Though the overshoot of the Gibbs 
phenomenon has been eliminated, note the slow rise time and the overall low 
amplitude of the approximation relative to the original square wave.

The surd -  in this case, a discontinuity that represents the speci
ficity, the unique moment of the original signal -  ensures that no wholly 
accurate recreation is possible, that no analysis can do justice to the orig
inal signal.

The Lanczos sigma factors, responding to the surd inherent in the 
discontinuity in the original function, do not succeed in purging the surd 
from the analysis. Indeed, they reintroduce the surd in another form.

sin xThey represent the sine function, generally defined as —— , which is

effectively a smoothing function; it concentrates its energy at its centre, 
but gently spreads out from that centre so as not to have any sharp or 
sudden events (see Figure 8).

Thus, the Lanczos sigma factors make localised, contextual alter
ations to a function, alterations that soften the function without changing 
its basic form. They are a means of piecemeal or spot-correction, a kluge 
as it is called in engineering. The Lanczos sigma smoothes the sudden 
jump at a discontinuity, but otherwise does not alter the overall form of
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the signal. This smoothing, which is tantamount to spreading the burst of 
energy at the discontinuity over a larger area, is the reason for the slower 
rise time (since the suddenness is smoothed into a diagonal rise) as well 
as the overall shortfall of the function (since the energy required to reach 
the original amplitude has been spread out slightly).

based. The horizontal line is the x-axis, which helps to show how most of the 
energy of the wave is concentrated at its centre.

Which is to say, the distortion of the Gibbs phenomenon (which 
tends to sound like ringing in acoustic signals) can be eliminated only by 
constructive methods that are tailored specifically to the situation at 
hand. The Lanczos sigma factor is the ultimate local intervention; it is a 
tool, a magic wand to wave over particular trouble spots, but its effects 
are mostly local and are designed to tame an otherwise unruly situation. 
Confronted with the surd in the form of a discontinuity, engineers apply 
the Lanczos sigma factor, another surd to combat the effects of the first. 
These are the phenomena that occur at the birth of meaning in sound, the 
jumps where sound arises out of silence.

Clearly, this theory of the surd needs much further testing. Even within 
the domains of mathematics and speech, the surd is more promise than 
result, and there may be better theories of progress, as well as exceptional 
cases that would call into question the very notion of a general theory of 
progress within and without these domains. Moreover, the drastic differ
ence in scope between these two examples raises the possibility that the
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commonality of the term surd in each discipline is an accident of history 
with no further implications. Still, the research thus far is compelling if 
not decisive, and my initial investigation of other fields, from ‘primitive’ 
ethnography to digital technology, discovers the surd there as well at the 
decisive moments of progress. At least in the digital, the pattern holds 
true: the digital encounters events or objects that it cannot accommodate, 
and it must reshape itself in order to make room for these new ideas, but 
eventually settles back into a placid or rigid formula, neutralising the 
novelty that challenged it to develop.

Notes

1 A Thousand Plateaus perpetuates such constructivist examples, from 
Riemann spaces that allow no overarching perspective and must be navigated 
locally and singularly, to fractals that are generally apprehended in the 
process of construction and not as completed figures, to the numbering 
number, which could be a general term for the constructive impulse in math
ematics, for it is the intensive number, determined always in relation to its 
context, and insisting upon a uniqueness, atypical of number, that ensures that 
it can only be understood and manipulated in context.

2 One can construct irrational numbers that have a pattern, and hence are
exceptions to the rule. E.g., 0.030030003000030000030000003. . But this
is a special, contrived case, and does not typify irrational numbers.

3 The flattening of ontology onto epistemology, the sense of reconstruction on 
a firm foundation, the reliance on intuition, and the notion of a critique from 
within all attest to Kant’s parentage in Brouwer’s work.

4 In the finite realm, intuitionist mathematics is pretty much functionally 
identical to traditional math. The breaking point lies between countable and 
uncountable infinities. (Roughly speaking, an infinite number of discrete 
objects is countable, while a continuum is an uncountable infinity.) For the 
intuitionists, uncountable infinities were nearly incomprehensible, while 
countable infinities could be dealt with one discrete element at a time. 
Discrete objects can be intuited, while a true continuum is beyond intuition.

5 In other words, pick a next digit, say 4, and add it to the end of the digits you 
have so far: 1.414214. Multiply this number by itself, 1.4142142 = 
2.0000012378. This is slightly greater than 2 so replace the terminal 4 with a 
3 and repeat: 1.4142132 = 1.99999840937. 3 is thus the largest digit that can 
be appended to make the square of the result less than 2. Continue in like 
manner to generate the next digit and each successive digit ad infinitum.

6 As such, it may be significant that π is not only an irrational number, but also 
a transcendental one, i.e., a real, irrational number that cannot be expressed 
as the root of a polynomial. This intensifies the ‘surdity’ of π, inasmuch as it
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has a singular relationship to the universe and does not just express a rela
tionship among numbers. It is as though π reaches beyond mathematics, 
generating its identity in the empirical domain (in the relationship of a circle’s 
area to its diameter). Other transcendental numbers, such as e, share this 
property of reaching out of mathematics and into nature. Perhaps this is also 
true of certain algebraic (non-transcendental) numbers, such as the golden 
mean, but the relationship between the golden mean and natural phenomena 
is more approximate, not exact like π.

7 Different versions of intuitionism treat this other truth-value differently. 
Brouwer adhered to the belief that there are only two truth-values, true and 
false, so that this value of not-true was not a formal element of the calculus 
but only a step in thinking about it. Other intuitionists codified the value of 
not-true, making it a third term alongside true and false.

8 A fleeing property is any property such that (1) it can be determined for each 
natural number n that either holds or is absurd, (2) no method is known for 
calculating a number with the property , and (3) the assumption that some 
number exists with the property is not known to be absurd. The stipulation of 
opaqueness adds the further condition that (4) the assumption that some 
number exists with the property is also not known to be non-contradictory.

Verification for ‘0123456789 in π’: (1) For each number, n, we can check 
whether it is the first place in the decimal expansion of where the series 
0123456789 occurs (or not), simply by expanding out to the n+9th place. (2) 
We have no way of calculating the first place where that series occurs, except 
by calculating the successive digits of π. (3) We have no reason to believe that 
the series never occurs in π. Thus, this property is fleeing. (4) We have no 
reason to believe that the series does occur. Thus, this property is also opaque.

9 In one sense, Brouwer’s use of π ties intuitionist mathematics to time and 
space. The math becomes spatial inasmuch as π is a geometric quantity, a 
relationship among (abstract or ideal) spatial phenomena. More significantly, 
though, the math becomes temporal to the extent that π is treated in intu
itionism as an object to be discovered, a process for generating digits but a 
process that necessarily takes its time.

10 Brouwer seems mildly concerned about formalising the opaque fleeing 
property, as though he suspects that he may be losing the surd so crucial to 
the radical consequences of his calculus. On occasion, he laments the fact that 
his proofs (such as those involving the pendulum number) depend on the 
existence of unsolved mathematical problems (such as the existence of 
0123456789 in π). In general, Brouwer is somewhat torn between his 
commitment to a constructivist mathematics, in which the math is empirical, 
and an adherence to the traditional epistemology of mathematics, in which 
math is universal and atemporal. He doesn’t desire that the conclusions of 
intuitionism actually change over time, but neither does he want to allow a 
universalisability.
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\\ Brouwer tends to use the opaque fleeing property in discussions aimed at 
more general audiences and not so much in his formal papers. (Compare with 
the conference address 1967a which, while still mathematically rigorous, is 
not so laden with formalities as some of his other writings.) On the other 
hand, as an intuitionist, Brouwer did not distinguish sharply between formal 
and ‘everyday’ modes of mathematics, and has been criticised for using a 
plain language style even in his formal presentations.

12 Technically, there are not just an infinite number of irrationals, but a non- 
denumerable or uncountable infinity of them, more irrationals than integers. 
A higher level infinity of points is required to create a sufficient density to 
constitute the continuum.

13 Though Charles Parsons, editor of Brouwer (1967c) and himself a mathe
matician, refers to the free choice sequence as ‘a process in time’ (notes to 
p. 446), this is merely heuristic, as they function atemporally. Free choice 
sequences imply the formal structure of time, for there is always a part of the 
sequence that has already been chosen, a part that has not yet been chosen, 
and the immediate choice to be made. However, proofs involving free choice 
sequences demonstrate that each of these three dimensions of time (past, 
future, present) exists all at once at different stages. That is, the proof treats a 
free choice sequence as having at the same time many different (but related) 
pasts, many different (but related) futures, etc. It is as though the free choice 
sequence establishes a notion of past per se, future per se, without having a 
wholly specific past or future. Phenomenologist van Atten (1999) argues that 
Brouwer is committed philosophically to the identification of a choice 
sequence with its specific moment of origin, but though possibly true in prin
ciple, this temporal localisation seems to be nearly irrelevant in practice.

14 As this essay offers primarily two examples, generalisations about the surd 
are relegated here to a footnote. In general, the surd can be recognised by the 
following phenomena: (1) a lack of official sanction or recognition, (2) a 
pressure to formalise one’s results, (3) the conflation of theory and practice 
(or of epistemology and practical knowledge), (4) an emphasis on the con
tingent and contextual as opposed to the general case (nothing can be taken 
for granted, each result must be thought each time), (5) an insistence on 
thought as an activity and not just an arrival or end, (6) labour and genius 
side-by-side, (7) interdisciplinarity, (8) rediscovery of the simplest ideas as 
now problematic and complex again, (9) a suspicion of the abstract and a faith 
in the immediacy of experience, (10) activity or motion in the objects under 
consideration, (11) a willingness to let objects have their way, to work with 
them rather than to dominate them, (12) a sense of precariousness, a real risk 
that things might not work out, that they are still up in the air or in develop
ment, and (13) maximum libidinal investment.

15 Fourier analysis includes a large family of mathematical techniques. One 
primary distinction is between the Fourier transform, in which a signal is
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represented as a continuous function of its component frequencies, and a 
Fourier series, in which a signal is represented as the sum of (an infinite 
number of) discrete sinusoidal components. While the Gibbs phenomenon 
does apply to the Fourier transform, the discussion here refers chiefly to the 
Fourier series.

16 This is not just a hypothetical example. Engineers routinely deal with dis
continuities in signals, as the square wave, whose edges are discontinuities, 
is a frequent basis for signal construction. Other discontinuities occur when, 
for example, a signal is ‘brick wall’ filtered, or when a noise gate is applied 
that suddenly shuts off the signal when it falls below a certain level of ampli
tude. The Gibbs phenomenon is a genuine hurdle for engineers, whose audio 
and stereo component designs include attempts to combat it.
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DeÎeuze in phase space

Manuel DeLanda

The semantic view of theories makes language largely irrelevant to the 
subject. Of course, to present a theory, we must present it in and by 
language. That is a trivial point. In addition, both because of our own 
history -  the history of philosophy of science which became intensely 
language-oriented during the first half of [the last] century -  and because 
of its intrinsic importance, we cannot ignore the language of science. But 
in discussion of the structure of theories it can largely be ignored. 
(Van Fraassen 1989,222)

Van Fraassen is perhaps the most important representative of the empiri
cist tradition in contemporary analytical philosophy. But why use a 
quotation from an analytical philosopher, however famous, to begin a 
discussion of the work of an author who many regard as a member of the 
rival continental school of philosophy? The answer is that Gilles Deleuze 
does not belong to that school, at least if the latter is defined not geo
graphically but in terms of its dominant traditions (Kantian and 
Hegelian). As is well known, Deleuze himself argued for the superiority, 
in some respects, of Anglo-American, or empiricist, philosophy 
(Deleuze and Parnet 2002, ch. 2). In addition, Deleuze’s work was in 
large part a sustained critique of language (or more generally, of repre
sentation) as the master key to philosophical thought and, as the opening 
quotation attests, van Fraassen is also a leader of the emerging faction of 
philosophers of science disillusioned with the linguistic approach. There 
are, then, several points of convergence between the two authors but also 
many divergences. This essay will explore both.

Let us first of all clarify van Fraassen’s position. What does it mean 
to say that in discussing the structure of scientific theories the language 
in which they are expressed is irrelevant? Or to put it differently, in what 
approach towards the nature of scientific theories is language itself
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crucial and why is that stance, according to van Fraassen, wrong? The 
stance in question is the so-called ‘axiomatic approach’ according to 
which a theory may be modelled as a set of axioms, a set of self-evident 
factual sentences, and all the theorems that may be derived from such 
axioms using deductive logic. Although there are many versions of this 
approach (some regarding the axioms purely syntactically, others treat
ing them as part of natural language), what they all have in common is a 
disregard for the actual mathematical tools used by real scientists when 
creating a theory; tools such as the differential calculus. It is, of course, 
through the use of these non-linguistic tools that scientists create models 
of physical phenomena and it is these mathematical models which have 
become the object of intense interest for analytical philosophers. The 
question of whether the set of models which makes up a theory is 
axiomatisable or not, that is, whether they can be given a rigid hierarchi
cal logical structure or not, has now become a less important concern. For 
all we know, a theory’s models may constitute a heterogeneous popula
tion accumulated over time (Giere 1988, 82).

One may think that a theory’s models may converge towards a neat 
logical structure over time but the truth is that the heterogeneity of this 
population has in fact increased, particularly in the twentieth century. 
While before most models used differential equations as their basis, 
suggesting that there may exist a general theory of models, in the last 
century many other kinds of equations (finite difference equations, 
matrix equations) were added to the reservoir of modelling resources 
available to scientists (Bunge 1979,75). More recently digital computers 
have increased this reservoir even more with tools like cellular automata. 
Hence, rather than searching for a general modelling theory, what 
matters now is the detailed study of each type of model belonging to 
those increasingly heterogeneous populations we call scientific theories. 
In this essay I will explore only the oldest modelling technology, the one 
based on the differential calculus, partly because it is the one best under
stood and partly because it is the one actually discussed by both Deleuze 
and van Fraassen.

Differential equations are used to capture the rate of change of a 
given property in a physical system being modelled, as it relates to other 
properties which also change. Therefore, to use these equations one must 
first specify all the relevant ways in which a physical system can change. 
A simple system like a pendulum, for example, can change in only two 
ways, position and speed. We could, of course, explode the pendulum or 
melt it at high temperatures, and these would also constitute ways in
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which it can change; they would just not be significant ways of changing 
from the point of view of its intrinsic dynamics. The relevant ways of 
changing for a given system are referred to as its ‘degrees of freedom’ 
As the different properties of a system change, its overall state changes. 
This implies that a model of the system must capture all the different 
possible states in which it can exist. This set of states may be represented 
as a space of possibilities with as many dimensions as the system has 
degrees of freedom. This space is referred to, naturally, as ‘state space’ 
In this space each point represents one possible state for a physical 
system, the state it has at a given instant of time. As the states of a 
physical system change with time, that is, as the system goes through 
temporal sequences of states, its representation in state space becomes a 
continuous sequence of points, that is, a curve or a trajectory. A state 
space filled with such trajectories is called the ‘phase portrait’ of a 
system, or its ‘phase space’ for short (Abraham and Shaw 1985,1: 20-1).

Each point in this space, each possible state, may have the same or 
different probabilities of existing. A space in which all the points are 
equally probable is a space without any structure, and it represents a 
physical system in which states change in a completely random way. Van 
Fraassen discusses two ways in which this space may be given more 
structure: through rules which restrict the areas that may be occupied 
(thus assigning different probabilities to different parts of the space, 
including forbidden areas with zero probability) and through rules which 
specify which states must follow other states, that is, rules governing 
trajectories. Van Fraassen refers to these two kinds of rules as Taws of 
coexistence’ (exemplified by Boyle’s law of ideal gases) and Taws 
of succession’ (exemplified by Newton’s laws of motion) (Van Fraassen 
1989,223). Both types of rules are given by equations and so, in a sense, 
for van Fraassen it is the equations that give us the structure of the space 
of possibilities. Deleuze, as I will argue shortly, gives a more original 
account of this structure, one that does not depend on the concept of 
‘law’ But the main point remains the same in both accounts: if the 
possible states of phase space are all équiprobable, then no regularity 
may be discerned in the dynamics of the system. To the extent that this 
equiprobability is broken (by laws or by something else) then regularities 
may be detected. It is, of course, the latter case that is the most interest
ing to scientists and philosophers. The question to be answered shortly 
is whether the immanent patterns of becoming (or the recurring regular
ities) we observe in the real world are best thought of as Taws’ or as 
something else.
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I will postpone answering this question until later since it involves 
switching from talk of models to talk of reality. That is, we can discuss 
phase space as a means for studying the characteristics of certain mathe
matical models and leave it at that, or we can go on to argue that, to the 
extent that these models manage to capture the dynamical nature of a real 
system (the recurring regularities in its behaviour), phase space may also 
provide insights into physical reality. This latter question, the question of 
the ontological status of different features of phase space, is highly con
troversial. For example, discussing the ontological status of possible, yet 
unrealised, states of a system is a task fraught with danger. Philosophers 
studying modal logic, the branch of logic which deals with such concepts 
as possibility and necessity, have struggled to clarify the issue for 
decades with little success. So for the time being let us simply view phase 
space as a useful tool in the exploration of models. Even if phase space 
had no implications for our understanding of reality, now that models 
have replaced linguistic statements as the 'stuff’ out of which scientific 
theories are made, these spaces have become important philosophical 
objects in their own right. So first of all let us explore the question of 
what kind of mathematical objects these spaces are supposed to be.

A mathematical space is characterised by a set of points and by a 
definition of proximity between points, in other words, by the relations 
which define a given subset of points as a neighbourhood. If proximity is 
defined via a minimum length (e.g. all points less than a given distance 
away from a centre form a neighbourhood) the space is said to be metric 
(or 'striated’ in Deleuze’s terms). If some other criterion is used to spec
ify which points are nearby other points the space is said to be non-metric 
(or 'smooth’ in Deleuzian terminology). Euclidean geometry is the prime 
example of a striated space, while projective, differential and topological 
geometries exemplify smooth spaces (Deleuze and Guattari 1987, 361). 
But how can proximity be defined without rigid lengths? In differential 
geometry, for example, one takes advantage of the fact that the calculus 
operates on equations expressing rates of change and that one of its oper
ators (differentiation) gives as its output an instantaneous value for that 
rate of change. The points that form a space can then be defined not by 
distances from a fixed coordinate system (as in the striated case) but by 
the instantaneous rate at which curvature changes at a given point. Some 
parts of the space will not be changing at all, other parts may be chang
ing slowly, while others may be changing very fast. A differential space, 
in effect, becomes a field of rapidities and slownesses, and via these 
infinitesimal relations one can specify neighbourhoods without having to
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use rigid lengths. A space so defined is called a ‘manifold’ or ‘multiplic
ity’. Given that phase spaces are used to study models made out of dif
ferential equations it should come as no surprise that these spaces are 
always manifolds.

To obtain a better idea of how spatial representations can give 
insight into the nature of a model we need to discuss how a model works. 
Any equation, whether differential or not, has numerical solutions, that 
is, sets of values for its unknown variables which make the equation 
come out true. Each such solution represents one state of the system 
being modelled (one point in phase space). But in order to learn about a 
physical system, scientists need to know more than just a few numerical 
solutions: they must have a sense of the pattern formed by all the 
solutions of a given equation. This pattern, which in some cases can be 
given by yet another equation, is called an ‘analytic’ or an ‘exact’ solu
tion. Without being exactly solvable an equation is of limited value as a 
model. The main incentive driving the use of phase spaces was the resis
tance which some recalcitrant equations offered to being solved exactly, 
such as differential equations in which there are interactions between the 
variables (that is, equations which are nonlinear). This is one reason why 
most models used in classical physics are either linear, or if they are non
linear, used only for ranges of values within which their behaviour can be 
linearised. This, of course, limits the kinds of physical phenomena which 
may be modelled this way, and worse, it may lead to the false idea that 
the world is in fact linear. As the mathematician Ian Stewart puts it:

C lass ica l m a th e m a tic s  c o n ce n tra ted  on  lin e a r  e q u a tio n s  fo r  a so u n d  
p ra g m a tic  reaso n : it c o u ld n ’t so lv e  a n y th in g  e l s e . . . .  S o  d o c ile  are  lin e a r 
eq u a tio n s  th a t c la ss ic a l m a th e m a tic ia n s  w e re  w illin g  to  c o m p ro m ise  th e ir  
p h y sic s  to  g e t th em . S o  th e  c la ss ic a l th eo ry  d ea ls  w ith  shallow  w av es , 
/o w -a m p litu d e  v ib ra tio n s , sm all te m p e ra tu re  g ra d ie n ts  [tha t is , lin ea rizes  
n o n lin e a ritie s ] . S o  in g ra in ed  b e c a m e  th e  lin e a r  h a b it th a t by  th e  1940s and  
1950s m an y  sc ien tis ts  an d  e n g in e e rs  k n e w  little  e lse . . .  . L in e a rity  is a 
trap . T h e  b e h a v io u r o f  l in e a r  e q u a tio n s  . . .  is fa r  fro m  ty p ic a l. B u t i f  y ou  
d e c id e  th a t on ly  lin e a r  e q u a tio n s  a re  w o rth  th in k in g  a b o u t, se lf-ce n so rsh ip  
se ts  in . Y our tex tb o o k s  fill w ith  tr iu m p h s  o f  lin e a r  a n a ly s is , its fa ilu res 
b u ried  so  d eep  th a t th e  g ra v es  go  u n m ark e d  an d  th e  e x is te n ce  o f  th e  g rav es 
g o es  u n re m a rk ed . A s th e  18th c en tu ry  b e lie v ed  in  a  c lo c k w o rk  w o rld , so 
d id  th e  m id -2 0 th  in  a lin e a r  o n e . (S te w a rt 1989 , 83)

Henri Poincaré, the mathematician who pioneered the use of phase 
space, was motivated by the desire to overcome these limitations. In 
essence he asked himself ‘If there is no analytical way of capturing the
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pattern of all numerical solutions, can there be a round-about way?’ 
Dealing with differential manifolds, instead of equations, Poincaré was 
able to bring further mathematical resources, geometrical resources, to 
bear on the answer to the question. Specifically, he was able to study the 
manifolds and figure out whether they contained special, or singular, 
points. One thing that made these points special was that they remained 
unaltered if the manifold was transformed in a variety of ways. That is, 
these singularities constituted the most stable and characteristic aspect of 
the manifold (its topological invariants). In addition, in some cases 
(when the physical system is not isolated from its surroundings) these 
singularities have a direct effect on the many trajectories representing 
sequences of states in the physical system: the trajectories become 
attracted to the singularities. Thus, given that the set of trajectories is the 
geometrical counterpart to the numerical solutions of the equation, and 
that their behaviour in phase space is governed by these special points, 
the distribution of singularities gives us information about the pattern of 
all the solutions. This is not exactly an analytical solution, but it is the 
next best thing. By the time he was finished, Poincaré had discovered 
several types of point singularities (dips, nodes, focal points, centres), 
loop singularities (called ‘periodic attractors’) and even caught a dis
turbing glimpse of the fractal singularities that would later on be referred 
to as ‘chaotic attractors’ (Barrow-Green 1997, 32-8). Using Poincaré’s 
discoveries we can now phrase more precisely one of the points of diver
gence between van Fraassen and Deleuze’s views on phase space: while 
for van Fraassen what give structure to the space of possibilities are laws 
(of coexistence and of succession) for Deleuze it is the distribution of sin
gularities itself. (Although there are singularities which are not attractors, 
in what follows I will restrict my discussion to those which are).

This is, in a nut shell, the reason why phase space commands so 
much attention today: as philosophers of science have turned away from 
the linguistic to the mathematical expression of scientific concepts, the 
study of differential equations (and of the behaviour of their solutions) 
has become top priority, and the best way to study these equations 
(particularly if they are nonlinear) is using the geometrical methods 
pioneered by Poincaré. But this still does not explain in what sense phase 
space is important outside the philosophy of science, that is, what 
insights such spaces may yield about the physical reality studied by 
scientists. If these models were nothing but mathematical constructs 
there would be no reason to think that they may throw some light on the 
nature of reality. But many of these models actually work, that is, they
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manage to capture the regularities in the behaviour of real systems. Let 
me give an admittedly oversimplified example. Let us assume we have a 
laboratory where we can manipulate real physical systems, that is, we 
can restrict their degrees of freedom (by screening out other factors) and 
we can place a system in a given state and then let it run spontaneously 
through a sequence of states. Let us assume that we can also measure 
with some precision the values of the degrees of freedom (say, tempera
ture, pressure and volume) at each of those states.

After several trials we generate data about the system starting it in 
different initial states. The data will consist, basically, of sequences of 
numbers giving the values of temperature, pressure and volume which 
the system takes as it evolves from different initial conditions. (These 
number series may be plotted, turning them into a trajectory.) We then 
run our mathematical model, giving it the same values for initial 
conditions as our laboratory runs, and generate a set of phase space tra
jectories. Finally, we compare the two sets of curves. If the trajectories 
display geometrical similarity (or approximate similarity, since the pre
cision of measurements is always finite) we will have evidence that the 
model works. As one analytical philosopher puts it, ‘we can say that a 
dynamical theory is approximately true just if the modelling geometric 
structure approximates (in suitable respects) to the structure to be 
modelled: a basic case is where trajectories in the model closely track 
trajectories encoding physically real behaviours (or, at least, track them 
for long enough)’ (Smith 1998,72).

Thus, it is the success in practice of models based on differential 
equations that motivates an ontological analysis of phase space. But this 
analysis will closely depend on our prior ontological commitments 
which may have nothing to do with the success of mathematical models 
or even with anything related to scientific practice. The most basic com
mitment is expressed by the belief that there is, or that there is not, a 
world which exists independently of our minds. If the world is believed 
to be not mind-independent, if ideas in our heads (whether transcenden
tal categories or arbitrary signifiers) are believed to shape the very 
contents of the world, then one has idealist ontological commitments. If, 
on the other hand, the world is assumed to be autonomous then a variety 
of commitments are possible. One may believe in the mind-indepen
dence of objects of direct experience (pets, automobiles, buildings) but 
assume that entities like oxygen, electrons, causal relations and so on, are 
merely theoretical constructs. Ontological commitments of this sort are 
typically associated with positivism and empiricism, though different
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philosophers will draw the line of what is ‘directly observable’ in differ
ent places. (Van Fraassen, for instance, seems to believe that objects 
perceived through telescopes, but not microscopes, count as directly 
experienced (Van Fraassen 1980,16).) Finally, if one rejects direct expe
rience as the criterion of autonomous reality one is said to have realist 
ontological commitments, although what exactly one assumes are the 
contents of this mind-independent world varies enormously. Religious 
realists will count spiritual entities, such as angels or demons, as part of 
these contents, while materialists will not.

To return to phase space, the first candidates for ontological 
evaluation, given their critical role in the testing of a model, are the 
trajectories. These, as I said, represent possible sequences of states. The 
problem here is, of course, the status of possibilities in general. Empiri
cists are particularly sceptical about possible entities. Quine, one of the 
most famous representatives of this school, is well known for the fun he 
pokes at these entities. As he writes: ‘Take, for instance, the possible fat 
man in the doorway; and again, the possible bald man in the doorway. 
Are they the same possible man, or two possible men? How do we 
decide? How many possible men are there in that doorway? Are there 
more possible thin ones than fat ones? How many of them are alike? Or 
would their being alike make them one?’ (Quine 1979, 177). In other 
words, it seems impossible to individuate possible entities, to assert their 
identity in the midst of all the possible variations. There just do not seem 
to be enough constraints within a possible world to know whether we are 
dealing with one or several entities as we modify the details. But, it may 
be argued, this is a problem only for linguistically specified possible 
worlds. The target of Quine’s ridicule is the modal logician who believes 
that the fact that people can understand counterfactual sentences like; ‘If 
J.F.K. had not been assassinated the Vietnam War would have ended 
sooner.’ implies the objective existence of possible worlds. (Clearly, the 
possible world where J.F.K survived does have reality, just not mind- 
independent reality.) On the other hand, realist philosophers like Ronald 
Giere have argued that while Quine’s sceptical remarks are valid for 
counterfactuals the extra constraints which structure phase space can 
overcome these limitations:

A s Q u in e  d e lig h ts  in  p o in tin g  o u t, it is o ften  d ifficu lt to  in d iv id u a te  possi
b ilitie s . [B ut] m any  m o d els  in w h ich  the  sy s te m  law s a re  ex p ressed  as 
d ifferen tia l e q u a tio n s p ro v id e  an u n a m b ig u o u s  c rite r io n  fo r  indiv iduating  
the  p o ss ib le  h is to rie s  o f  th e  m o d el. T h ey  are  th e  tra jec to rie s  in state-space 
c o rre sp o n d in g  to all p o ss ib le  initial conditions. T h re a te n e d  am b ig u ities  in
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the  se t o f  p o ss ib le  in itia l c o n d itio n s  can  be  e lim in a ted  b y  ex p lic itly
re s tric tin g  the  se t in th e  defin itio n  o f  th e  th eo re tic a l m o d el. (G ie re  1985 ,
83- 1)

Let us assume for a moment that Giere is right and that within the 
restricted world of phase space the possible histories of a system are 
indeed well individuated, avoiding the inherent ambiguities in counter- 
factual sentences. Why should we commit ourselves to assert the exis
tence of these well-defined possibilities (and other forms of physical 
modality)? Empiricists like van Fraassen would still deny the need for 
such commitment to modalities given that for him the point of building 
theoretical models is simply to achieve empirical adequacy, that is, to 
increase our ability to make predictions and to control outcomes in the 
laboratory. For this purpose all that matters is that we generate one single 
trajectory for a given initial condition, then try to reproduce that particu
lar combination of values for the degrees of freedom in the laboratory, 
and finally observe whether the sequence of actual states matches that 
predicted by the trajectory. Given the one trajectory we associate with 
the actual sequence in an experiment, the rest of the population of 
trajectories is merely a useful fiction, that is, ontologically unimportant. 
Giere refers to this ontological stance towards modalities as ‘actualism’ 
(Giere 1985,44).

But as he goes on to argue, this ontological stance misses the fact 
that the population of trajectories as a whole displays certain regularities 
in the possible histories of a system, global regularities which play a role 
in shaping any one particular actual history. In the terms I used above, the 
space of possibilities has structure, and this structure is not displayed by 
any one single trajectory. For Giere, understanding a system is not know
ing how it actually behaves in this or that specific situation, but knowing 
how it would behave in conditions which may in fact not occur. And to 
know that, we need to use the global information embodied in the 
population of possible histories. Van Fraassen may reply, of course, that 
this information is given by the laws of succession that control the 
evolution of trajectories. This would seem to commit him, however, to 
assert the existence of another modal property, necessity, and that would 
bring him back to square one since necessity and possibility are interde- 
finable (if something necessarily exists, for example, then it is not possi
ble that it would not exist). But when van Fraassen speaks of laws he does 
not refer to the objective patterns of becoming shaping sequences of 
states in the laboratory (or in nature) but to mathematical rules con
straining trajectories in the model. Thus, the debate between analytical
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realists and empiricists seems to offer only two alternatives: either be 
ontologically committed to traditional modalities or reject the latter but 
lose your ability to explain why there are recurrent regularities in the 
world. This alternative, however, is a trap, and the significance of 
Deleuze’s realist approach is precisely that it supplies us with an escape 
route.

Deleuze is not an actualist but he is not a realist about traditional 
modalities either. Rather, he creates a new form of physical modality to 
account for both the regularities in the models and the immanent patterns 
of becoming in nature. This new modality he refers to as ‘virtuality’. Let 
me first discuss how he derives this notion at the level of models. As 
I mentioned above there is an alternative to laws when it comes to 
specifying the structure of spaces of possibilities: the distribution of 
singularities or attractors. While each of the trajectories that fill phase 
space is a solution (obtained through the integration operator) to an 
equation, the equation itself, or more exactly, the singularities that 
govern the behaviour of its solutions, specify a problem. The key to this 
alternative interpretation lies in not subordinating the problem to its 
solutions (the integral curves or trajectories) but to become aware of 
its relative autonomy. What happens, for example, if we examine 
phase space without any trajectories? I mentioned before that this 
space may be viewed as a field of rapidities and slownesses. This field 
is technically referred to as a ‘vector field’ because each rapidity and 
slowness with which the curvature changes at any given point can be 
assigned a direction. Now, while it is true that we become aware of 
the existence of singularities by observing that the integral curves 
become attracted to certain special places, the singularities are 
topological features (invariants) of the vector field itself. As Deleuze 
writes:

Already Leibniz had shown that the calculus expressed problems 
which could not hitherto be solved or, indeed, even posed. One thinks 
in particular of the role of the regular and the singular points which enter 
into the complete determination of a species o f curve. No doubt the 
specification of the singular points (for example, dips, nodes, focal points, 
centres) is undertaken by means of the form of integral curves, which 
refers back to the solutions of the differential equations. There is never
theless a complete determination with regard to the existence and distrib
ution of these points which depends upon a completely different instance 
-  namely, the field of vectors defined by the equation itself. . Moreover, 
if the specification of the points already shows the necessary immanence
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of the problem in the solution, its involvement in the solution which covers 
it, along with the existence and the distribution of points, testifies to the 
transcendence of the problem and its directive role in relation to the organ
isation of the solutions themselves. (Deleuze 1994, 177)

Thus, the first step in this alternative interpretation consists in 
sharply differentiating these two components of phase space, the popula
tion of trajectories and the vector field, a step that, to my knowledge, has 
not been taken by any analytical philosopher. Indeed, in the analytical 
literature there seems to be no awareness of the role which vector fields 
play in the modelling process. There are, for example, events in phase 
space (referred to as ‘bifurcations’) which change one distribution of 
singularities into another, topologically inequivalent, one. These are very 
important events, as far as the modelling process is concerned, because 
they capture abrupt changes in the dynamics of real systems, like the 
change from one regime of flow (periodic or convective) to another (tur
bulent) in a flowing liquid. But in order to model such critical transitions, 
scientists must operate not on the trajectories but on the vector field itself. 
In particular, they must perturb the system by adding a small vector field 
to the main one and check the resulting distribution of singularities for 
topological equivalence (Abraham and Shaw 1985, 2: 37-41). So let us 
add vector fields to the list of things that must be given an ontological 
interpretation. At first, this would seem to bring us back to the endless 
and fruitless discussions which, from the time of Leibniz to the early 
nineteenth century, tended to surround the notion of an ‘infinitesimal 
quantity’, since each vector in the field is one such infinitesimal. These 
entities were eliminated from mathematics via the notion of a limit, a 
notion which presupposes only the concept of number and nothing else. 
But what must be given an ontological interpretation is not the vectors 
themselves but the topological invariants of the entire field, and these 
have nothing whatsoever to do with infinitesimals.

A clue to the modal status of these invariants, that is, of the distri
bution of singularities, is the fact that, as is well known, trajectories in 
phase space always approach an attractor asymptotically, that is, they 
approach it indefinitely close but never reach it (Abraham and Shaw 
1985,1: 35-6). Although the sphere of influence of an attractor, its basin 
of attraction, is a subset of points of phase space, and therefore a set 
of possible states, the attractor itself is not a possible state since it can 
never become actual. In other words, unlike trajectories which represent 
possible histories which may or may not be actualised, attractors can 
never be actualised since no point of a trajectory ever reaches the
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attractor itself. Despite their lack of actuality, attractors are nevertheless 
real since they have definite effects. In particular, they confer on trajec
tories a certain degree of stability, called ‘asymptotic stability’ (Nicolis 
and Prigogine 1989, 65-71). Small shocks may dislodge a trajectory 
from its attractor but as long as the shock is not too large to push it out of 
the basin of attraction, the trajectory will spontaneously return to the 
stable state defined by the attractor. It is in this sense that singularities 
represent only the long-term tendencies of a system, never a possible 
state. Thus, it seems, we need a new form of physical modality, distinct 
from possibility and necessity, to account for this double status of singu
larities: real in their effects but incapable of ever being actual. This is 
what the notion of virtuality is supposed to achieve. As Deleuze argues:

The virtual is opposed not to the real but to the actual. The virtual is fully 
real in so fa r  as it is virtual. Indeed, the virtual must be defined as 
strictly a part of the real object -  as though the object had one part of itself 
in the virtual into which it plunged as though into an objective dimension.

The reality of the virtual consists of the differential elements and rela
tions along with the singular points which correspond to them. The reality 
of the virtual is structure. We must avoid giving the elements and relations 
that form a structure an actuality which they do not have, and withdraw
ing from them a reality which they have. (Deleuze 1994,208-209)

Deleuze uses his analysis of phase space as evidence for the real 
existence of virtual entities, entities he calls ‘virtual multiplicities’ 
Unlike essences or eternal archetypes, virtual multiplicities do not exist 
in some transcendent space but in a space which is fully immanent to that 
of matter and energy. And unlike the instantiations of essences, which 
typically resemble the model of which they are imperfect copies, multi
plicities do not bear any resemblance to the processes which actualise 
them. This is, in part, a consequence of defining multiplicities exclu
sively in terms of topological invariants (singularities, dimensionality), 
that is, in terms of features so abstract that they are compatible with many 
features of metrically defined entities. Thus, the simplest virtual multi
plicity, one defined by a single point singularity (a minimum) may be 
actualised in a variety of processes yielding a variety of actual entities 
with very different metric properties: soap bubbles, crystals of a variety 
of shapes, light rays and, indeed, certain mathematical objects. I said 
above that the term ‘multiplicity’ is synonymous with ‘manifold’, that is, 
both refer to differential geometry spaces with a variable number of 
dimensions. But once the term ‘virtual’ is attached to it, the term ‘multi
plicity’ designates a real entity of which mathematical spaces are only
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one actualisation among others. This implies that a given phase space and 
the physical system it models may both be actualisations of the same 
virtual multiplicity. This, in turn, implies that the crucial relation between 
model and reality is not one of resemblance (phase space trajectories 
resembling plotted series of laboratory measured values) but one of co- 
actualisation. Whatever resemblance one does obtain between plots and 
trajectories is a consequence of this deeper isomorphism. Thus, unlike 
other philosophers who cannot explain the success of mathematical 
models, falling back on the physicist Eugene Wigner’s thesis about ‘the 
unreasonable effectiveness of mathematics in the natural sciences’ 
(Wigner 1979, 222), Deleuze is at least in a position to offer a hypothe
sis to explain that unreasonable success.

On the other hand, by postulating the existence of virtual entities, 
Deleuze does flirt with essentialism. The thesis of divergent actualisa
tion, which removes the resemblance between archetypes and their 
realisations, can only take us so far: essences may be topological rather 
than metric, but they remain essences. Thus, many other aspects of this 
novel realist ontology must be developed to ensure that essentialism is 
kept at bay. To begin with, it is not enough to simply affirm that the space 
formed by virtual multiplicities is immanent rather than transcendent: 
specific mechanisms of immanence must be given to show how that 
space is continuously constructed. In addition, a theory of non-metric 
time must be created, to complement the non-metric nature of virtual 
space, so that multiplicities may acquire their own historicity and may 
therefore be distinguished from eternal archetypes. Deleuze made some 
progress towards both of these goals and, elsewhere, I have tried to show 
how his valuable insights may be extended, but clearly much work 
remains to be done (DeLanda 2002). Yet even at this early stage in the 
development of his ontology, its sheer originality, particularly when con
trasted with the more traditional empiricist and realist approaches, must 
be acknowledged. It is to be hoped that as language and representation 
cease to be the centre of the philosophical universe a renewed material
ism free from the trappings of dialectics will take their place. In this long 
term project the line of flight away from the linguistic turn sketched by 
Gilles Deleuze will surely remain one of the most viable and promising 
routes.
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