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Implementationalism maintains that conventional, silicon-

based artificial systems are not conscious because they fail

to satisfy certain substantive constraints on computational

implementation. In this article, we argue that several

recently proposed substantive constraints are implausible,

or at least are not well-supported, insofar as they conflate

intuitions about computational implementation generally

and consciousness specifically. We argue instead that the

mechanistic account of computation can explain several of

the intuitions driving implementationalism and non-

computationalism in a manner which is consistent with

artificial consciousness. Our argument provides indirect

support for computationalism about consciousness and the

view that conventional artificial systems can be conscious.
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1 | INTRODUCTION

Driven by scientific motivations (Dehaene et al., 2017) and ethical concerns (Dung, 2023a;
Metzinger, 2021; Saad & Bradley, 2022), researchers have become increasingly interested in the
prospects of AI consciousness: What would it take for an AI system to be (phenomenally) con-
scious? One prominent strategy in this line of research is the application of computational theories
of consciousness, which aim to specify the computational processes involved in consciousness
(Seth & Bayne, 2022). While theories of consciousness are mainly tested against experimental
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evidence from humans, the computational strategy seeks to identify features which are robustly, or
even necessarily, tied to consciousness such that they generalize to artificial systems.

The computational strategy has proven popular given that other approaches face serious
obstacles. Reasoning based on behavioral and superficial cognitive analogies to conscious
humans, common in animal consciousness research (Dung, 2022; Tye, 2017), is problematic
insofar as humans and AI systems are often considered too different in physical constitution
and causal history to place much weight on such analogies (Shevlin, 2020). Inferences based on
verbal reports, moreover, are problematic insofar as it is unclear how to elicit reports from AI
systems which are genuinely introspective (Birch & Andrews, 2023).1 Furthermore, since AI
systems lack brains, using neurobiological theories of consciousness seems to be a non-starter.
Thus, refining computational theories of consciousness and exploring how they can be general-
ized to AI systems are important research priorities.

However, despite its general promise, the computational strategy faces several challenges. First,
it is not obvious that computationalism is true—that is, it is unclear that implementing the right
kinds of computations is sufficient (and necessary) for consciousness (Anderson & Piccinini, 2024;
Piccinini, 2020). Second, even if computationalism is true, it is an open question which computa-
tional theory of consciousness is correct, for example, global-workspace theory (Mashour
et al., 2020) or perceptual reality monitoring theory (Lau, 2022). Third, even if we agree on
the correct computational theory, it is not obvious what it takes to implement the requisite
computations (Chalmers, 1994, 2011). In what follows, we focus on the third challenge
(computational implementation), but it is worth briefly commenting on the first two.

With respect to the first challenge, as Sebo and Long (2023) note, there are two salient alter-
natives to computationalism. The first, known as the biological substrate view, says that con-
sciousness necessarily depends on having a biological, carbon-based substrate. This view may,
for example, be true if consciousness is type-identical to a certain brain state (Place, 1956;
Smart, 1959). The second, known as the biological function view and most prominently
championed by Godfrey-Smith (2016, 2020), holds that consciousness depends on fine-grained
biological functions, such as metabolism, system-wide synchronization, or other functions
whose implementation depends on specifics of the physical features of neurons or brain bio-
chemistry.2 This view is functionalist, though not computationalist (e.g., Piccinini, 2020,
Chap. 14), as the functions are impossible for standard digital computers to implement.

In what follows, we say little to rule out the biological substrate or function views. However, as
Sebo and Long (2023) point out, since many researchers are computationalists it is of considerable
interest what computational theories entail about artificial consciousness. A recent influential report
on artificial consciousness, for instance, even presupposed at the outset that computationalism is
true (Butlin et al., 2023). Moreover, the preceding non-computationalist views are often conflated
with the view we will discuss here: that there are substantive constraints on computational imple-
mentation. However, these are distinct views, we will suggest, supported by distinct arguments. In
the following section, we will further explicate the distinction between non-computationalism and
the view that there are substantive constraints on computational implementation.

With respect to the second challenge, we note that recent research is making rapid progress
on the question of what different computational theories may entail for artificial consciousness
(Butlin et al., 2023). The hope is that this work may inform evidence-based assessments of the

1Although see Dung (2023b) and Perez and Long (2023) for attempts to make questions of artificial consciousness
amenable to behavioral tests.
2See also Cao (2022) and Seth (2021).
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likelihood that different AI systems are conscious, even if we do not know which computational
theory is true (de Weerd, 2024). However, without an account of computational implementation
suitable for artificial consciousness questions, this research tells an incomplete story. To inform
assessments of AI consciousness, we need to know both (i) what computations an AI system
needs to implement to be conscious and (ii) what it takes to implement such computations. As
mentioned, we will take up this second question.

To be specific, we will argue against so-called “implementationalist” views of consciousness,
according to which conventional, silicon-based AI systems are not conscious because they fail to sat-
isfy certain substantive constraints on what it takes to implement the relevant computations. More-
over, we will argue that the mechanistic account of computational implementation can account for
the intuitions motivating implementationalist views, and also some non-computationalist views, in a
manner consistent with computationalism and the view that conventional AI systems can be con-
scious. Thus, the mechanistic account indirectly supports the latter views.

The article is divided into five parts. We begin in Section 2 by surveying a recent
implementationalist proposal from Shiller (2024), detailing three “integrity constraints” on arti-
ficial consciousness and the supporting arguments. In Section 3, we argue that the integrity con-
straints are implausible, or at least not well-supported, insofar as they are based on conflations
of intuitions about computational implementation generally and consciousness specifically. We
suggest that, in light of the troubles facing implementationalists in formulating constraints,
researchers should look in a different direction. Thus, in Section 4, we outline three general
accounts of computational implementation, arguing that the mechanistic account emerges as
the most plausible view. This leads us in Section 5 to articulate two mechanistic-inspired con-
straints on implementation. In Section 6, we argue that these constraints capture many of the
intuitions which drive non-computationalist and implementationalist views, such as Shiller's,
but nonetheless refrain from supporting more substantive constraints. Consequently, our argu-
ment indirectly supports computationalism and the view that conventional AI systems can be
conscious.

2 | IMPLEMENTATIONALISM ABOUT CONSCIOUSNESS

As mentioned, we understand computationalism about consciousness as the view that
implementing the right kinds of computations is necessary and sufficient for consciousness. As
formulated, the view expresses a rather weak claim. Since it does not entail that the nature of
consciousness is exhausted by computational properties, it is even compatible with a dualist
account of consciousness (Chalmers, 1996, Chap. 9). The view is favorable towards the possibil-
ity of AI consciousness because AI systems are paradigmatic examples of computing systems.

A common claim by skeptics of AI consciousness is that silicon-based systems at most
“merely simulate conscious beings”, rather than being conscious themselves (Wiese &
Friston, 2021). As Piccinini (2021) presents the view: “[A] computational simulation doesn't
actually reproduce the computations performed by the original brain—it merely represents
them” (p. 139). According to this idea, computers cannot be conscious merely by virtue of run-
ning the right program; they may simulate but not implement the right computations which is
why they may not qualify as conscious.

Our target here are views which, for principled metaphysical reasons, are skeptical of the
possibility of consciousness in conventional, silicon-based computers. However, the views we
are interested in can nevertheless endorse computationalism about consciousness, which is also
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to say that they are not committed to the biological function and biological substrate views. This
is a surprising combination. The underlying thought is that there are demanding constraints,
not fulfilled by conventional silicon-based computing systems, which are necessary to imple-
ment, rather than merely simulate, consciousness. We will call this view, to be further
unpacked later, implementationalism about consciousness.

To further flesh out our target, we first describe Shiller's (2024) recent view, which appears
to be the most detailed and systematic example of an implementationalist account in the litera-
ture. Shiller grants that computationalism may be true, at least for the sake of the argument,
but proposes three “integrity constraints” on implementation.

First, a system does not implement a computation if its degree of material complexity is too
high. A system has a higher degree of material complexity if its functional parts and states have
a more indirect relationship to the states and relations of its underlying physical components.
For instance, a company has a high degree of material complexity because its states (e.g., its
economic health) depend on things like ownership, balances and intellectual property, which
do not have a straightforward relationship to underlying physical properties, being mediated,
among other things, by complicated legal rules.

Second, a system does not implement computations if its parts are not sufficiently causally
integrated. A system's degree of causal integration is determined by the degree to which their
parts play their functional roles because of their intrinsic causal powers. For instance, the
effects of bombs are produced by their internal chemistry, whereas books' effects on the world
are extrinsic, that is, determined by their readers' responses. While neurons make causal contri-
butions in virtue of their intrinsic properties, the thought-experiment below outlines a scenario
in which their causal powers are extrinsic.

Third, a system does not implement computations if it is not sufficiently continuous. A sys-
tem's continuity is determined by the degree to which its parts have persisting identities over
time, which are distinct from their specific functional roles. If a system lacks continuity, its
physical components may be subject to constant massive changes or replacements, so that they
are only related by playing the same functional role. For example, the role of the US's com-
mander in chief during the first world war has only been played by one person, whereas the
role of vanguard has been occupied by different people at different times, making the former
more continuous.

Shiller argues, convincingly to our minds, that computers built using current AI paradigms
do not and cannot satisfy these three integrity constraints, although advances in neuromorphic
computing might eventually allow non-conventional systems to satisfy the constraints. So, if
these constraints hold, then conventional silicon-based computers cannot be conscious, in
which case we do not have to worry about AI consciousness for the foreseeable future.

While Shiller expresses uncertainty about the metaphysics of consciousness, he also
advances several sets of considerations in favor of the integrity constraints. Before unpacking
his arguments, we need to briefly provide some background about computational implementa-
tion in general. To assess whether a system implements a computation, it seems clear we need
to evaluate whether its parts are organized in accordance with the relevant computational
description. However, for any system, there are many possible ways to carve it into parts
(Shiller, 2024). For this reason, one possible view is that the presence of any carving which sat-
isfies the computational description is sufficient, such that the system implements the relevant
computation. However, it is not plausible to let all carvings count. As previous work has shown,
such a liberal view leads to triviality (e.g., Chalmers, 2011; Putnam, 1975; Sprevak, 2018;
Shiller, 2024). It entails that any system implements computations or, even more strongly, that
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any system implements any computation, thus depriving computationalism of its content. So,
some constraints on computational implementation are, independently of Shiller's ambitious
claim, necessary merely to avoid triviality concerns—that is, not all carvings of systems which
satisfy a computational description count. However, Shiller argues, if we grant some constraints
on computational implementation, then this raises the question of why such requirements
should be limited to the minimal number of requirements needed to rule out triviality; perhaps
more constraints obtain.

Second, Shiller suggests that positing substantive constraints conforms to the spirit of com-
putationalism and functionalism about consciousness. According to Shiller, an animating idea
of functionalism is that a system is conscious if its parts interact in certain ways. In conforma-
tion to this idea, it is intuitive that the parts have to “possess some independent existence meta-
physically prior to playing their roles” (Shiller, 2024). If substantive constraints ensure that this
condition is fulfilled, we get a reason to believe in them.

Third, Shiller uses thought experiments to support his integrity constraints. For instance,
Shiller asks us to imagine a massive brain, composed of trillions of neurons, which produce
apparently arbitrary firing patterns. Additionally, there is a spreadsheet with rules for inter-
preting the states of each neuron and how they interact. These rules have no effect on the brain.
Imagine now that “if we apply the rules included in these spreadsheets in sequence to reinter-
pret the state of each neuron in this brain, we would get an interpretation of the activity state of
those neurons which exactly mirrors the functional dynamics of a human brain” (Shiller, 2024).
Without substantive constraints on computational implementation, we may have to concede
that this massive brain is conscious. And yet, arguably, it is not intuitive that such a system,
whose underlying physical states only map in very indirect and intricate ways onto a computa-
tional description, is conscious. If so, substantive constraints are needed to explain why the sys-
tem is not conscious.

Having outlined Shiller's view, we can now provide a general characterization of
implementationalism. The view can be understood as a conjunction of the following claims:

1. Implementing some computations C is necessary for consciousness (implied by
computationalism).

2. Implementing computations C is more demanding than merely simulating C since
implementing computations (such as C) requires satisfying appropriate constraints.

3. Conventional AI systems fail to satisfy the relevant constraints.
4. Therefore, conventional AI systems cannot implement C, and thus cannot be conscious.

So, implementationalism holds that there are substantive constraints on computational imple-
mentation which conventional, silicon-based computers cannot fulfil. Importantly, this implies
that such systems cannot be conscious regardless of the computational description they satisfy,
and even if computationalism is true. At best, such systems merely simulate consciousness, in
virtue of satisfying the right computational description (in the sense that there is some way, not
giving rise to triviality, to carve the elements of the system so that they map onto the computa-
tional description). But the systems are not conscious, because they do not implement the com-
putations specified in this description. Shiller's view is implementationalist, according to this
formulation, because it admits the possibility of computationalism while rejecting AI consciousness
in conventional computers via the integrity constraints. In Section 3, we will reject 3 and 4,
while accepting 1 and 2.
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We will call implementation constraints substantive if and only if they rule out the presence of
consciousness in some cases where, if one accepts computationalism and based on some influential
computational theory of consciousness, researchers would—absent these constraints—think that it
is present. The typical case, of which Shiller is an example, is to rule out consciousness in conven-
tional silicon-based computing systems, while allowing it in biological organisms or neuromorphic
computing systems, which closely model biological features of human brains.

However, as we have seen, if one wants to avoid trivializing the notion of computation,
some constraints on implementation are necessary. We call implementation constraints light-
weight if and only if they are not substantive. In the typical case, they only serve to rule out triv-
iality arguments, without affecting judgements on the distribution of AI consciousness. One
can be an implementationalist about various cognitive features in virtue of postulating con-
straints which are substantive in that they restrict attributions of cognitive states more narrowly
than what purely computational theorizing would suggest. But we focus here on consciousness.

Typically, skeptics of artificial consciousness are ambiguous regarding whether they adopt
an implementationalist view, believing in substantive implementational constraints, a fine-
grained functionalist view (e.g., the biological function view), thus rejecting computationalism,
or both. Godfrey-Smith (2009) (not specific to consciousness), Piccinini (2021), Wiese and
Friston (2021), and Wiese (2024) are relevant examples. Some of them seem to reject com-
putationalism. Yet they can be interpreted as claiming that, even if computationalism were true,
systems are not conscious if they do not satisfy a specific substantive constraint on implementa-
tion. This additional commitment would make these researchers implementationalists.
Godfrey-Smith (2009) and Piccinini (2021) leave open what exactly this substantive constraint
amounts to, while Wiese and Friston (2021) ground it in the free-energy principle.

Suffice it to say, we are not convinced by Shiller's arguments for implementationalism. In
the next section, we will present a dilemma for Shiller's view, extend it to implementationalism
in general, and then diagnose what has gone wrong.

3 | A DILEMMA FOR IMPLEMENTATIONALISM

Implementationalist views, such as Shiller's, face a dilemma, we think, owing to two possible
interpretations. The first is that implementationalist accounts posit general conditions for com-
putational implementation. That is, they state, in general terms, necessary conditions for physi-
cal systems to count as computing systems. On this interpretation, implementationalist views,
such as Shiller's, apply to the same domain as accounts of computational implementation (such
as those we will discuss in Section 4). On this view, we can come up with substantive con-
straints based on a more general connection to theories of computational implementation. This
view is attractive, because it allows us to evaluate proposed substantive constraints via recourse
to general, independently motivated implementation theories.

However, this first interpretation immediately runs into trouble. One reason is that all
prominent theories of computational implementation (see below) are considerably more liberal
than the integrity constraints permit. All prominent theories of computational implementation
entail that conventional computers are implementing computations, such as common laptops
or artificial neural networks (Piccinini, 2015). And yet, conventional computers, at least
according to Shiller's (2024) argument, fail to satisfy the integrity constraints. Thus, on this first
interpretation, the integrity constraints conflict with prominent theories of computational
implementation.
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Notice that this is not an accident. Rather, it is a direct product of how theories of computa-
tional implementation are developed. It is widely agreed that a plausible desideratum for
accounts of implementation is that they must include paradigmatic computing systems, such as
laptops, as implementing computations and exclude paradigmatic non-computing systems, such
as digestive systems. Otherwise, they fail to be “extensionally adequate”, that is, capture the sys-
tems we pre-theoretically want to count as computing systems (Piccinini, 2015). The trouble is
that a theory, such as Shiller's (on this interpretation), which does not count conventional com-
puters (such as laptops) as implementing computations, cannot satisfy such a condition. What
this seems to suggest is that any account which is as restrictive as the integrity constraints is
deeply implausible when treated as a general account of computational implementation. More-
over, notice the scope of the problem here. It applies, at least to some extent, to all
implementationalist views, not just Shiller's. By definition, substantive constraints on computa-
tion rule out some systems as having consciousness which are (otherwise) thought to be com-
puting systems, which brings them in conflict with the extensional adequacy desideratum.

A second interpretation is that implementationalist views like Shiller's do not propose general
constraints on computational implementation but, rather, specific conditions applying only to the
kinds of implementation relevant to consciousness. For instance, one might distinguish proper from
improper implementation, wherein the former is necessary for consciousness and the latter suffices
for implementing various kinds of computations not involved in consciousness.

This second interpretation, however, is implausible for two reasons. First, it is ad hoc. Since
it is assumed here that computationalism may be true, nothing more than implementing the
right kinds of computations may be required for consciousness. However, if no extra stuff is
needed for consciousness, then it is unmotivated to say that the implementation of computa-
tions relevant to consciousness is subject to different constraints than implementation of other
kinds of computations. In both cases, we are dealing with the same types of things: namely,
computational states and properties.

For example, suppose one were to hold that there are different constraints on what it takes to
constitute a house, depending on whether the house is made from wood or concrete. This would
be a strange view indeed. While myriad empirical factors certainly influence when wood versus
concrete parts constitute a house, it is implausible to suggest that the metaphysical relation of
constitution itself works differently in both cases. There is simply no relevant metaphysical differ-
ence between wood and concrete. By the same token, there are no relevant metaphysical differ-
ences between consciousness and other computational properties once one grants, as
implementationalists do, that computational properties may be sufficient for consciousness.

To be clear, we are not arguing that it is impossible to justify any substantive consciousness-
specific constraints on physical processes. Rather, we are raising challenges for a specific subset
of views which would need to be overcome.

Let us consider two further potential views.3 First, one could hold that there are substantive
constraints on the physical processes realizing consciousness. Lau's perceptual reality monitor-
ing theory, for instance, entails that consciousness involves analog computation (see Lau, 2022,
sections 9.5–9.7). Since standard accounts of analog computation require computational vehi-
cles with properties that mirror their contents, it may appear that such a view would entail sub-
stantive constraints on physical realization which are specific to consciousness.

Second, one could think that there are substantive constraints on the physical processes
realizing consciousness concerning having a mind, rather than being specific to consciousness,

3Thanks to an anonymous reviewer for these suggestions.
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which would be independent of any demands on computational implementation. For example,
possessing mental representations might require having the right kind of causal history, as tele-
osemantic views maintain. If consciousness requires having a mind, then this causal history
constraint would apply to consciousness as well.

Consider the first view. Here it is worth distinguishing analog modeling and analog comput-
ing (Piccinini, 2015, p. 198). On the one hand, “analog modeling” refers to inferences about a
target system and model using differential equations—the system of differential equations is
the “analogy” between the model and the target system. On the other hand, “analog computers”
refers to models of target systems which implement mathematical methods that solve systems
of differential equations satisfied by a target system.

Notice that, on this interpretation of the view, something like Lau's view blends these two
senses of analog computation. Strictly speaking, analog computation only concerns the func-
tional/mechanistic properties of different classes of computers (e.g., differential analyzers). The
“contents” in an analog computation do not “mirror” the contents of a target system in a
semantic sense. Rather, they implement methods that solve differential equations which are
analogously described in a target system. So, if one wanted to claim that analog computation, in
this second sense, was necessary for consciousness, then, indeed, it would count as an
implementationalist view (see condition 3). However, there would still be little reason to worry.
This is because, in an important sense, digital computers can do everything general purpose
analog computers can do. As Rubel (1989) shows, given any system of algebraic differential
equations and initial conditions that describe a general-purpose analog computer, it is possible
to effectively derive an algorithm that will approximate that computer's output to an arbitrary
degree of accuracy. In other words, even assuming analog computing was a necessary condition
for consciousness, it would still not rule out conscious digital computers.

Now consider the second view. Unlike the first view, the second view would not count as
implementationalist. This is because it does not place constraints on computational implementa-
tion per se, but instead imposes implementation-independent constraints on consciousness. How-
ever, while it might be the case that there are independent reasons to think certain physical
systems are or are not conscious (e.g., having the right causal history), our concern here is solely
those views which grant that possession of computational states or properties may be sufficient.
Thus, if the second kind of view proposes representationalist constraints on consciousness, then
while we acknowledge that such constraints might hold, they are, strictly speaking, orthogo-
nal to the present concern, which is limited to computational approaches. That being said, for
what it is worth, it seems to us that most or all prominent theories of mental representation
can be satisfied by some conventional AI systems (Harding, 2023; Mollo & Millière, 2023).

Moving to the second argument against consciousness-specific substantive constraints on com-
putational implementation, such a view undermines many of the motivations initially thought to
be in favor of implementationalism. Recall that Shiller argued that implementationalism conforms
to the spirit of functionalism, suggesting that the parts of a system should have some independent
existence prior to the functions they take part in. If the integrity constraints are not general condi-
tions on implementation, but specific to consciousness, then it is doubtful that they can capture this
intuition. This intuition seems to address a general constraint on what it takes to implement func-
tions. It is not distinctive in any way of consciousness.4

4While Shiller (2024) is quite loose in how the notion of “intuition” is used, we think it is best understood along the
lines of van Inwagen’s (1997) dispositional account. Thus, intuitions here are understood as tendencies to make certain
beliefs attractive; they “move” us in the direction of accepting certain propositions without taking us all the way to
acceptance.
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Shiller also claims that the existence of some constraints on computational implementation,
required to avoid making computational implementation trivial, suggests that there may be sub-
stantive constraints on computational implementation. However, this argument fails if the
integrity constraints do not address computational implementation in general. Considerations
of triviality arguments do nothing to support the view that requirements on computational
implementation which are specific to consciousness are needed. Indeed, given this interpreta-
tion of the integrity constraints, the integrity constraints and the requirements on computa-
tional implementation posited to address triviality concerns are about different kinds of
implementation, a consciousness-specific one and a general one, and thus do not have much to
do with each other.

Shiller's thought experiments invoke intuitions specific to consciousness and so are compatible
with this interpretation of implementationalism. However, one may be skeptical of them on
independent grounds. One reason for doubt is that different people may have different intui-
tions on such thought-experiments. In particular, many will be inclined to attribute conscious-
ness to the systems Shiller describes, once they focus on the fact that such systems may be
behaviorally and psychologically identical to humans, making, for example, elaborate verbal
reports of their putative conscious experiences. Also, the intuitive judgements about cases
Shiller relies on cannot distinguish between implementationalism and non-computationalism.
Non-computationalists can explain just as well why the systems Shiller considers are not con-
scious, by pointing out that implementing the same computations as conscious humans is not
sufficient for consciousness. In light of the theoretical problems, noted above, of motivating
why one should believe in a kind of implementation specific to consciousness, the non-
computationalist option seems preferable.

So, on this second interpretation, the integrity constraints are in need of a plausible motiva-
tion. It is not clear why one should posit them. We concede that AI consciousness questions are
pervaded by much uncertainty and not yet scientifically tractable, so even mere plausibility con-
siderations can have some force. But, as it stands, our impression is that there is no compelling
reason at all to adopt the integrity constraints.

Moreover, these arguments extend to implementationalism in general. If substantive con-
straints are not interpreted as general necessary conditions on computational implementation
but as specific to consciousness, then the connection between implementationalism and general
views on computational implementation is severed. One cannot use general considerations
about computationalism and functionalism as arguments for computationalism. Hence, on
this second interpretation, it is unclear how one can present credible arguments for
implementationalism. To make a robust case, implementationalists would need to show that
they can do more than to appeal to intuitions about consciousness which are controversial and
unstable and can also be captured by non-computationalists.

To recap, implementationalists accept that implementing the right computations may be
sufficient for consciousness (computationalism) and that conventional, silicon-based systems
may in principle satisfy any computational description which is a plausible candidate for a suffi-
cient condition on consciousness. If one nevertheless wants to claim that such systems cannot
be conscious, then one must say that they cannot implement the computations involved in con-
sciousness. This may be either because they cannot implement computations at all or because
they specifically cannot implement the computations relevant for consciousness, although they
can implement other kinds of computations. Both routes are problematic. We do not see any
viable alternative. So, the preceding dilemma seems exhaustive.
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So, to escape this dilemma, one option is to abandon computationalism. This likely means
accepting either a view where consciousness requires specific, fine-grained functional roles that
conventional computers cannot play, such as the biological function view, or a view where con-
sciousness is fundamentally tied to a certain kind of physical material, such as the biological
substrate view. The other option is to grant that standard, silicon-based computers can be con-
scious, simply by virtue of implementing the right kinds of computations. Both options are
incompatible with implementationalism.

The upshot, then, is that implementationalism is not viable. Our diagnosis is that the view
conflates intuitions about computational implementation and non-computationalist as well as
non-functionalist intuitions about consciousness. Discussions of triviality arguments and the
need to restrict computational implementation somewhat are important for general accounts of
computational implementation, but they do not get us to constraints which are restrictive
enough to affect attributions of artificial consciousness. Intuitions about systems which satisfy
computational descriptions of consciousness but, intuitively, are not conscious, are problems
for computationalism, not for accounts of computational implementation. So, to the extent that
one takes these intuitions seriously, they should be taken as evidence for non-computationalist
views of consciousness, or perhaps even non-functionalist views, not for implementationalism.
Thus, the implementationalist constraints lack a coherent rationale. They are motivated par-
tially by non-computationalist intuitions and partially by intuitions regarding computational
implementation, but both kinds of intuitions do not fit into one coherent whole.

Given the difficulties facing Shiller's requirements, and implementationalism more gener-
ally, we should only believe in lightweight constraints on implementation. In the next section,
we will motivate constraints on implementation from a different direction. We outline three
general accounts of computational implementation, and, in the subsequent sections, focus on
one particular type of account of implementation: the mechanistic account. Then, we show that
the mechanistic account can capture some of the intuitions about necessary conditions for the
material substrate of consciousness which drive Shiller, as well as non-computationalist and
other implementationalist views, while supporting neither implementationalism nor non-
computationalism. This removes a source of support for implementationalism and non-
computationalism.

4 | COMPUTATIONAL IMPLEMENTATION

The question of computational implementation (or the implementational problem) asks under
what conditions it is true or false to say of a physical system that it implements a computation
(Chalmers, 1994, 2011; Sprevak, 2018). It is a question of how to best explain the putative rela-
tion between physical and computational states within a physical system. Several accounts have
been proposed to make sense of the relation, each with its own set of conditions.

4.1 | The causal mapping account

Historically one prominent answer is that a system must have the right causal structure to qual-
ify as implementing a computation (Chalmers, 1994, 2011; Chrisley, 1995; Scheutz, 2001).
According to this “causal mapping” account, implementing a computation requires mapping a
subset of physical states of a system to a subset of computational states within a model which
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support counterfactual relations—the counterfactual clause is supposed to rule out spurious
mappings. For any computational state transition of the form s1 ! s2 within a system, the
physical state p1 (which maps onto computational state s1) must cause the system to go into
physical state p2 (which maps onto computational state s2). Concrete computation involves an
isomorphism between physical and computational states such that it respects the causal struc-
ture of a physical process. A variant on this theme is that the mapping relation must appeal to
dispositions. That is, for any computational state transition of the form s1 ! s2, if the system is
in the physical state p1, the system will manifest a disposition to move from p1 to physical state
p2, provided also that p1 maps to s1 and p2 maps to s2 (Klein, 2008); dispositional accounts are
often considered “causal” insofar as dispositional properties also support counterfactual
relations.

4.2 | The semantic account

A second proposal is that a physical system must manipulate representations with semantic
content to count as computational (Fodor, 1981; Pylyshyn, 1984; Sprevak, 2010). According to
this “semantic” view, only those physical states which qualify as representations can be mapped
to computational states—this is, in addition satisfying the previous causal mapping constraints.
If a physical state is not representational, then it is not computational. The motto here is “no
computation without representation”. An important question for the semantic account is how
to specify the form a representation must take, for example, pictures, maps, and so forth.
According to Fodor's (1981) view, for instance, representations must be language-like structures
which support combinatorial semantics—that is, they must have the kind of syntactic structure
exhibited by sentences in a language. Thus, a physical system is computational only if it
involves the manipulation of language-like representations in a way that is sensitive to their
syntactic structure and preserves their semantic properties. It is worth distinguishing here
implementational views involving semantic properties and individuation views, where the for-
mer deals with whether semantic properties are “essential” to computation and the latter
addresses whether semantic properties can be used to distinguish one computation from
another (Shagrir, 2022).

4.3 | The mechanistic account

A third, more recent view is that the implementational question is best explicated within a
mechanistic framework (Fresco, 2014; Kersten, 2024a; Miłkowski, 2013, 2015; Piccinini, 2007,
2015, 2020). For these “mechanistic” accounts, computational properties are mechanistic prop-
erties, computational explanation is a species of mechanistic explanation, and computational
mechanisms are a special type of mechanism (e.g., ones with teleological functions).
Piccinini (2015, 2020) offers a good example of the approach. For Piccinini, there are three con-
ditions on implementation. First, a physical system must be a kind of functional mechanism—
that is, a mechanism with teleological functions. The system has to possess properties that orga-
nize in such a way so as to produce or support some behavior—the reverse of which is that if a
system fails to perform its function it must be the result of a breakdown in the organization of
the system's component parts. Second, one of the capacities of the mechanism must be the abil-
ity to compute at least one mathematical function—a system's behavior must satisfy at least
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one abstract description mapping of inputs to outputs, which also suffices to show that a system
is following a rule. Third, a physical computing system must process medium-independent
vehicles. If the input–output mapping is sensitive to at least some portion of the
medium-independent vehicle over which it is defined, then it counts as a computation.
According to Piccinini's version of the mechanistic account, only functionally integrated sys-
tems (mechanisms) that compute at least one abstract function via vehicle manipulation qualify
as concrete computing systems.

4.4 | Assessing implementational adequacy

How should we decide between competing implementational accounts? One plausible method
is to weigh up different accounts against independently plausible desiderata (Kersten, 2020;
Piccinini, 2015, 2020; Sprevak, 2018). If one account does a better job accommodating a given
set of desiderata than its competitors, then it offers a superior theory of implementation. Ritchie
and Piccinini (2018, p. 193) offer three such desiderata:

1. Metaphysical adequacy: A theory of implementation should entail a fact of matter as to
whether a physical system computes.

2. Explanatory adequacy: A theory of implementation should explain the behavior of a system
in virtue of the computations it performs.

3. Extensional adequacy: A theory of implementation should ensure that paradigmatic cases of
computing systems count as computing, and paradigmatic cases of non-computing systems
do not.

Call these the “adequacy conditions”.5

How do the causal mapping, semantic and mechanistic accounts fare with respect to the
adequacy conditions? First, note that while the causal mapping account offers a form of objec-
tivity about computation (metaphysical adequacy), in that concrete computation is a causal pro-
cess of physical systems, it fails to explain the behavior of a system in terms of the procedures it
executes (explanatory adequacy) or exclude non-paradigmatic cases of computing (extensional
adequacy). For example, although the causal mapping account describes where a program is
represented by causal transitions, it does not show how a physical system deploys programs in
the production of behavior. It does not offer a computational explanation but a description or
model (explanatory adequacy). Furthermore, many non-paradigmatic cases, such as weather
or respiratory systems, will also trade in the kind of causal transitions such that they could be
mapped to computational state descriptions. This means that while the causal mapping account
manages to capture some instances of computing, for example, digital and analog computation,
it also entails that systems that should otherwise not count as computing qualify. It is too liberal
(extensional adequacy).

Second, notice that the semantic account trips up on two fronts. First, many computers exe-
cute their programs whether or not they have content, such as digital computers or automatic
looms. Computing systems are sensitive to parts of computational vehicles rather than content

5While there are other desiderata that are sometimes invoked, such as miscomputation, these three broadly capture the
majority of views on what matters for computational implementational (see, e.g., Fresco, 2014; Miłkowski, 2013;
Piccinini, 2015; Sprevak, 2018).
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carried by those vehicles (explanatory adequacy). Second, few would want to include all manip-
ulations of representations as computational, such as painting a picture or recording a speech
(Piccinini, 2015, p. 152). Because there is no clear way to draw the boundary around which rep-
resentational manipulations count as computational, the semantic account ends up being either
too liberal, including non-paradigmatic cases (e.g., painting pictures), or too restrictive, exclud-
ing extant forms of computing (e.g., analog). Either way it fails to appropriately taxonomize
computing systems (extensional adequacy).

Finally, consider the mechanistic account. First, notice that only those systems which impli-
cate functional mechanisms processing medium-independent vehicles qualify as computing sys-
tems (at least according to Piccinini's account). The mechanistic account ties implementation
directly to specific features of the world. It provides a matter of fact as to whether a physical sys-
tem computes (metaphysical adequacy). Second, one of the core features of the account is that a
computing system must be able to produce some behavior in virtue computing a particular
function. A system only implements a computation if it is the result of the activities of a mecha-
nism's component parts. The behavior of a system is explained directly in terms of its underly-
ing mechanistic activity (explanatory adequacy). And third, because only those functional
mechanisms that process medium-independent vehicles count as computing systems, paradig-
matic cases, such as Turing machines or calculators, qualify as computing systems while non-
paradigmatic cases, such as digestive systems or solar systems, do not. The mechanistic account
is not only sufficiently restrictive so as to be useful for explanatory purposes, but it is also liberal
enough to cover a number of important types of computing, for example, Turing machines,
neural networks, and digital/analog computers (extensional adequacy). The mechanistic
account appears to fare better than its causal mapping and semantic counterparts.

The takeaway is that the mechanistic account offers one, if not the, promising theory of
implementation. As we saw, it satisfies a range of demands on any account of computational
implementation, offering not only a metaphysically and explanatory desirable account but one
which aligns intuitively with taxonomic practices. Given this, we want to suggest that a mecha-
nistic approach may offer a fresh starting point in thinking about the constraints facing artificial
consciousness.

5 | IMPLEMENTATIONAL CONSTRAINTS

If the mechanistic account is indeed a strong candidate for an adequate theory of computational
implementation, then what follows for artificial consciousness? As we have seen, the exten-
sional adequacy conditions suggest that, contra implementationalism, no substantive con-
straints follow. Nevertheless, we claim that the mechanistic account motivates two lightweight
constraints which may prove relevant to artificial consciousness.

5.1 | The medium-independence constraint

The first is that computations must be described in terms of the relevant degrees of freedom
(or variation) within a physical computing system.

Recall that the mechanistic account says that concrete computations can be defined
independently of the physical media that implement them (Piccinini's third condition).
Computational processes and their vehicles can be said to be “medium-independent”
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(Garson, 2003; Piccinini, 2015). A vehicle is medium-independent if the mapping rule that
defines a computation is sensitive to different portions (spatiotemporal components) of the
vehicle along specific dimensions of variation (i.e., degrees of freedom). For example,
“digits” are medium-independent in virtue of the fact that a physical computing system can
always distinguish different types from each other according to where they lie along the
string (under normal operating conditions).

The concept of medium-independence entails that computational properties can only be
implemented in physical media that possess sufficient dimensions of variation. For example,
when the amplitude of an input signal to a neuron is above a certain threshold it fires. This is
what is known as the all-or-one principle. Strung together over time the firing rates of a neuron
produce a “neural spike train”. Neural spike trains convey information across the nervous sys-
tem. Importantly, though, while many aspects of neural spike trains depend on the physical
properties of the medium, such as the opening or closing of ion channels, the spike timing and
spike rates do not (Piccinini & Bahar, 2013). These features can be specified in terms distinct
from the physical medium. They can be realized by either neural tissue or by other physical
media, such as silicon-based circuits. Neurocognitive systems can be said to compute because
they respect medium-independence.

By the same token, to implement computations, artificial systems need to be realized in
physical media that respect medium-independence. To assess whether a physical medium can
implement a computational process, the mechanistic account requires that the physical
medium, such as silicon chips, preserves the right degrees of freedom. According to this first
requirement, those physical systems which do not possess the requisite functional organization
will fail to support computational states.

5.2 | The mechanistic constraint

The second constraint is that artificial systems must have a multi-level mechanistic structure
within a physical computing system.

Recall, as previously noted, that for the mechanistic account computational explanation is a
special kind of mechanistic explanation. According to Piccinini's (2015, 2020) view, for instance,
it is the form mechanistic explanation takes when the activity of a mechanism can be accurately
described as processing medium-independent vehicles in accordance with rules (i.e., input–
output mappings). If a mechanistic level produces its behavior in virtue of the action of its com-
puting components, it counts as a computational level. Which types of computation are per-
formed at each level is an open empirical question.

One implication is that computational explanation requires attention to the multilevel struc-
ture of computational mechanisms. Computational explanations must not only provide
abstract, functional characterization of a system, but also a detailed, structural description of
how the system's component parts are organized and operate, what are respectively referred to
as the “functional” and “structural” aspects of constitutive explanation (Miłkowski, 2013;
Piccinini, 2015, 2020). For example, to explain horizontal eye movement, a computational
explanation not only has to describe the function being computed by the ocular-motor system,
such as an integration relation, but also how the neurons in the ocular-motor system carry out
the particular function via preserving morphic-relations between eye-velocity and eye-position.
To qualify as a case of physical computing, the ocular-motor system must be capable of sustain-
ing a functional description in terms of an input–output relation and a structural description in
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terms of the activities and organization of its component parts. A mechanism's ability to per-
form computations is explained mechanistically in terms of its components, their functions,
and their organization.

Any description of computations will need to attend to such multi-level structure. To fully
explain how a macro-state property is realized by a computational process at a lower mechanistic
level, attention will need to be paid to the underlying computational components, their function,
and their organization. Neither a purely information processing nor a decompositional analysis suf-
fices for such an explanation. If a theory contains more explanatorily relevant detail about the
underlying computational mechanism than some alternative, then that theory has more explana-
tory force, other things being equal. To be clear, the mechanistic constraint does not entail that a
computational explanation must describe all the relevant details of an underlying mechanism to
have explanatory force. Rather, it need only describe all the entities, activities and organizational
features which prove constitutively relevant to the target phenomenon (e.g., a conscious state).

These, then, are our two implementational constraints, each derived from one or more elements
of the mechanistic account. The first says that implementing computations entails preserving the
requisite degrees of freedom within a system, while the second says that computational systems
require a multi-level structure within the underlying computational mechanism. If com-
putationalism is true, then these general constraints on computational implementation are also con-
straints on consciousness. Yet, these constraints are lightweight: If they exclude consciousness in
some paradigmatic computing system, then something has gone wrong. In the next section, we
show that the medium-independence and mechanistic constraints are related to Shiller's integrity
constraints. While they do not imply them, they can be used to capture some of the non-
computationalist and implementationalist intuitions underlying the integrity constraints. If so, this
entails that a source of support for the latter views disappears.

6 | THE INTEGRITY CONSTRAINTS: REDUX

Let us return, then, to Shiller's integrity constraints.
Let us assume, for simplicity, that they, too, are intended as general constraints on computa-

tional implementation (the first interpretation from earlier). The first constraint, recall, claimed
that the more indirect a system's functional properties are to the states and relations of its
underlying physical components the higher degree of material complexity it possesses. A sys-
tem's material complexity needs to be low in order to implement a computation. The second
maintained that if a system's parts are not sufficiently causally integrated, then it cannot be said
to implement a computation—a system's degree of causal integration is a function of the degree
to which their parts play their functional roles in virtue of their intrinsic causal powers. The
third was that a system had to be sufficiently continuous to implement a computation, a sys-
tem's continuity is determined by the degree to which its parts have persisting identities over
time. Each of the constraints was used to rule out consciousness in various cases. But, as we
have seen, there are strong reasons to reject them.

Nevertheless, Shiller seems to take these constraints to capture important, independent
intuitions about the necessary conditions for consciousness. Of central significance here is the
general intuition that satisfying the computational description of consciousness (i.e., simulating
consciousness) is not sufficient for consciousness, but that something more is required. More-
over, as the thought-experiments suggest, Shiller takes the specific constraints themselves to be
intuitively attractive. These intuitions are not only relevant for implementationalists, but also
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form a source of support for non-computationalism. Non-computationalists, too, take it to be
intuitive that satisfying a computational description of consciousness should be distinguished
from actually being conscious.

Granted, some researchers are non-computationalists for reasons unrelated to the integrity
constraints—for instance, because they subscribe to a mind-brain identity theory to overcome
the exclusion problem of mental causation (Kim, 2005). However, it is plausible that others
believe in non-computationalism (e.g., the biological function view), and thus deny conscious-
ness in conventional computing systems, partly because they find something like the integrity
constraints intuitively attractive. If they are not implementationalists, they cannot hold that the
integrity constraints describe constraints on computational implementation. However, they can
nevertheless say that the integrity constraints capture something correct about the functions
required for consciousness.

What we now want to suggest is that the two implementational constraints introduced in
the previous section can account for the intuitive appeal of the integrity constraints, even
though they do not entail the integrity constraints. The aim is to show that the various intui-
tions which seem to be in conflict with computationalism, and the view that conventional AI
can be conscious, can, in fact, be explained in a manner consistent with these views. Thus, we
present a challenge for the view that some common implementationalist and non-
computationalist intuitions can be taken at face value.

First, notice that the general thrust of the point about material complexity can be captured
by saying that a system's computational properties must be constrained in important ways by a
physical system. For example, a transistor can be only interpreted as a logic gate when its states
are assigned the values 1 and 0. This interpretation is only possible if the transistor is able to
support two stable but different states. If the transistor is not bi-stable, then it conflicts with the
requirements of being a computational vehicle, that is, having the requisite two degrees of free-
dom. It is in virtue of attending to a subset of the features of the transistor (its degrees of
freedom), as they accord with computational theory, that the description of the physical transis-
tor turns into a mathematical description of a device that processes 1 and 0 s, that is, a logic gate
(Kersten, 2024a).

If one key intuition about artificial consciousness is that material complexity cannot be too
high, then the notion of medium-independence naturally accommodates this fact. It contains
the idea that consciousness is constrained in important ways by its underlying physical compo-
nents without being a substantive constraint.

Next, consider how the idea of causal integration emerges from the mechanistic account. It
is constitutive of being a computational mechanism that a mechanism's ability to perform a
computation is explained directly by the activity of its underlying component parts. For exam-
ple, as we saw, to qualify as a case of physical computing, the ocular-motor system must be
capable of sustaining a structural description in terms of the activities and organization of its
component parts. For mechanistic explanation to make sense, the component parts of the
mechanism have to be causally efficacious; otherwise, behavior would not be explained by
the mechanism.

Notice, though, that the mechanistic account is not committed to the specific, demanding
notion of intrinsic causal powers proposed by Shiller. Instead, the relevant notion for the mech-
anistic account is constitution, not causality. To be specific, the relation between higher and
lower-level components within a computational mechanism is one of “constitutive relevance”
(Craver, 2007; Kersten, 2024b). Roughly put, the idea is that in order for a lower-level compo-
nent's activity (X's ψ -ing) to be constitutively relevant to a higher-level component's activity
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(S's φ-ing), one must be able to manipulate the higher-level component's activity by intervening
on the lower-level component's activity (by stimulating or inhibiting), as well as the reverse.
For example, to say that synaptic depolarization is constitutively relevant to action potentials,
one must be able to show how changes in the distribution of neurotransmitters, such as Sodium
(N+) and Potassium (K+), affect the occurrence of action potentials, and one must be able to
show that intervening on action potentials, such as through ET, in turn affects the distribution
of neurotransmitters.

For this reason, the non-integrated mechanisms Shiller envisages (e.g., a book and its
readers) can implement computations on the mechanistic account, provided they are function-
ally isomorphic to more typical mechanisms. So, while conventional computing systems do not
satisfy Shiller's constraint, they do satisfy a weaker causal constraint: They are mechanisms
organized so as to perform computational functions. This means that the mechanistic account
can make sense of the general observation that the physical components of an artificial con-
scious system have to be causally efficacious. The intuition underlying the causal integration
constraint specifically is accounted for because the mechanistic account entails a similar, but
lightweight, constraint.

Finally, notice that the requirements on being a computational mechanism also account for
the intuitions underlying the continuity constraint. This is because to explain behavior mecha-
nistically one must appeal to the spatiotemporal components of a mechanism and their interac-
tions. If the components of a physical system switch or change constantly, then one cannot
appeal to them in explaining behavior. If so, one would need to appeal to different components
every time to account for each different instance of behavior, and none of them could be said to
be involved in the “regular” production of behavior. Thus, in the simple case, mechanistic
explanation requires a certain constancy in the components of the mechanism. While Shiller
argues that conventional computers violate continuity, the mechanistic account classifies them
as computing systems. So, if a mechanism is functionally organized in just the right way, persis-
tence of the component parts of a mechanism is not actually required. Nevertheless, the mecha-
nistic account explains why the continuity constraint appears attractive in the first place. It
explains why different functionally organized physical systems can persist through time, carry-
ing out different types of behaviors.

So, to summarize, it appears that the mechanistic account can accommodate the insights of
each of the integrity constraints. Yet while the mechanistic account captures the intuitions
which often motivate implementationalist and non-computationalist views, it does not thereby
entail substantive constraints on artificial consciousness. The mechanistic account helps to
explain why consciousness might be implemented in conventional artificial computing systems,
such as digital or analog computers, while simultaneously accounting for various intuitions
which pull in the opposite direction.

But why should there be such a close fit between the mechanistic account and Shiller's con-
straints? What explains the neat conceptual harmony? One important factor here, we want to
suggest, is that the integrity constraints implicitly require computational systems to have multi-
level structure. Computational systems, recall, are constituted by computational mechanisms
with multiple levels. For a given level of a computational hierarchy C1, consisting of compo-
nent parts (e.g., transistors and circuits), their function, and their organization, the components
of C1 are implemented by subcomponents of level C0, such as logic gates. Moving between
levels involves either abstracting from or detailing the constitutively relevant factors within the
computational hierarchy. For example, abstracting from the specific dimensions and shapes of
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transistors at one level might lead to a generalized description of the functional properties of a
logic gate at another level.

Our suggestion is that the intuitions underlying the integrity constraints are tracking
this multilevel organization. To be specific, material complexity addresses the medium-
independence of computational descriptions within a mechanistic hierarchy, causal integration
focuses on the relation between the activity of a mechanism's component parts and some phe-
nomenon of interest, while continuity deals with the functional integrity of a computational
mechanism over time. The intuitions underlying the integrity constraints find natural expres-
sion within the mechanistic account because it systematically captures the multilevel, func-
tional organization of physical computing systems.

So, to sum up, we have shown that the intuitions underlying the integrity constraints can be
accounted for by the lightweight constraints entailed by the mechanistic account. We have pro-
vided reasons to think that Shiller's specific integrity constraints are likely false, but that their
underlying intuitions can be explained. These intuitions capture something correct, even
though they do not entail the strong conclusions implementationalists envisage. Moreover, as
we have seen, a natural reaction to our argument in Section 3, for opponents of consciousness
in conventional computers, is to believe that the systems which Shiller describes are not con-
scious, but for the reason that computationalism about consciousness is false. Since our account
is compatible with computationalism but accounts for the intuitiveness of Shiller's constraints,
it also explains why this non-computationalist response seems attractive, even if com-
putationalism is true. For this reason, it provides an indirect argument for computationalist
views of consciousness. Computationalists have an appealing explanation of some of the intui-
tive resistance to their own view.

One interesting implication briefly worth mentioning is that the current proposal also
opens up connections to more biologically-inspired approaches, such as the biological func-
tion and substrate views. This is because, as mentioned, computational mechanisms are spe-
cial types of functional mechanisms. On Piccinini's (2015, 2020) account, for instance,
computational mechanisms are mechanisms which perform at least one teleological func-
tion. For example, the neural network in the ocular-motor system responsible for horizontal
eye movement computes at least one abstract function (an integration relation) in virtue of
preserving the relationship between eye-velocity and eye-position (Leigh & Zee, 2006). To
qualify as a physical computing system, a system must possess properties that organize in
such a way so as to produce or support some function of interest—the reverse of which is
that if a system fails to perform its function it must be the result of a breakdown in the orga-
nization of the system's component parts.

This is interesting because if, as Piccinini (2015, 2020) suggests, a teleological function is a
stable contribution towards a goal of an organism, then goals can be either biological or non-
biological. Biological goals include survival, development, reproduction or helping, whereas
non-biological goals are any others pursued by an organism, such as using a Tobacco pipe to
hold tobacco or crafting digital calculators to compute sums. If conscious states are tied to com-
putational structure, then such structures may play a role in facilitating a system's biological tel-
eological functions. Because conscious states occur spontaneously and are not subject to
intentional control, the goals in question might relate to survival and development
(Piccinini, 2020, pp. 319–320). There might yet be a telic role for conscious states within artifi-
cially conscious systems, assuming computational states provide a regular contribution to the
goals of a system.
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7 | CONCLUSION

Our aim in this article has been to articulate an account of physical computation that can pro-
ductively inform investigation of artificial consciousness. We think there are three key
takeaways from our analysis. First, pronouncements about artificial consciousness based on
reflection about computational implementation generally should be met with skepticism or
avoided if possible. Discussions of triviality arguments, for instance, are important for general
accounts of computational implementation, but they are not restrictive enough to affect attribu-
tions of consciousness. Second, by accounting for intuitions driving implementationalist and
non-computationalist views about consciousness based on a view consistent with com-
putationalism, the mechanistic account provides independent support for (non-
implementationalist) computationalist views of consciousness. Finally, as Piccinini (2007, 2020)
intones, researchers are best served when functionalism and computationalism are pulled apart,
whether when thinking about natural or artificial mentality. A good deal of the confusion sur-
rounding artificial consciousness, we think, such as which forms of evidence or methods are
relevant to the investigation, hinges on the conceptual boundaries between these two views
being blurred. In pulling apart several intersecting lines of thought, we hope to have further
clarified the discussion around artificial consciousness going forward.

ACKNOWLEDGEMENTS
We would like to thank Christian de Weerd, Wanja Wiese, Renee Ye, and two anonymous
reviewers for helpful comments on earlier drafts of the manuscript.

DATA AVAILABILITY STATEMENT
There is no data available.

ORCID
Luke Kersten https://orcid.org/0000-0001-7054-8942

REFERENCES
Anderson, N. G., & Piccinini, G. (2024). The physical signature of computation. Oxford University Press.
Birch, J., & Andrews, K. (2023). What has feelings? Aeon. https://aeon.co/essays/to-understand-ai-sentience-

first-understand-it-in-animals.
Butlin, P., Long, R., Elmoznino, E., Bengio, Y., Birch, J., Constant, A., et al. (2023). Consciousness in artifi-

cial intelligence: Insights from the science of consciousness. arXiv. https://doi.org/10.48550/arXiv.2308.
08708.

Cao, R. (2022). Multiple realizability and the spirit of functionalism. Synthese, 200(6), 1–31. https://doi.org/10.
1007/s11229-022-03524-1

Chalmers, D. (1994). On implementing a computation. Minds and Machines, 4(4), 391–402. https://doi.org/10.
1007/BF00974166

Chalmers, D. (1996). The conscious mind: In search of a fundamental theory. Oxford University Press.
Chalmers, D. (2011). A computational foundation for the study of cognition. Journal of Cognitive Science, 12(1),

323–357.
Chrisley, R. (1995). Why everything doesn't realize every computation. Minds and Machines, 4, 403–430.
Craver, C. (2007). Constitutive explanatory relevance. Journal of Philosophical Research, 32, 1–20. https://doi.

org/10.5840/jpr_2007_4
de Weerd, C. (2024). A credence-based theory-heavy approach to non-human consciousness. Synthese, 203(171),

1–26. https://doi.org/10.1007/s11229-024-04539-6

DUNG and KERSTEN 19

https://orcid.org/0000-0001-7054-8942
https://orcid.org/0000-0001-7054-8942
https://aeon.co/essays/to-understand-ai-sentience-first-understand-it-in-animals
https://aeon.co/essays/to-understand-ai-sentience-first-understand-it-in-animals
https://doi.org/10.48550/arXiv.2308.08708
https://doi.org/10.48550/arXiv.2308.08708
https://doi.org/10.1007/s11229-022-03524-1
https://doi.org/10.1007/s11229-022-03524-1
https://doi.org/10.1007/BF00974166
https://doi.org/10.1007/BF00974166
https://doi.org/10.5840/jpr_2007_4
https://doi.org/10.5840/jpr_2007_4
https://doi.org/10.1007/s11229-024-04539-6


Dehaene, S., Lau, H., & Kouider, S. (2017). What is consciousness, and could machines have it? Science,
358(6362), 486–492. https://doi.org/10.1126/science.aan8871

Dung, L. (2022). Assessing tests of animal consciousness. Consciousness and Cognition, 105, 103410. https://doi.
org/10.1016/j.concog.2022.103410

Dung, L. (2023a). How to deal with risks of AI suffering. Inquiry: An Interdisciplinary Journal of Philosophy,
1–29. https://doi.org/10.1080/0020174X.2023.2238287

Dung, L. (2023b). Tests of animal consciousness are tests of machine consciousness. Erkenntnis. https://doi.org/
10.1007/s10670-023-00753-9

Fodor, J. (1981). Representations: Philosophical essays on the foundations of cognitive science. MIT Press.
Fresco, N. (2014). Physical computation and cognitive science. Springer.
Garson, J. (2003). The introduction of information into neurobiology. Philosophy of Science, 70(5), 926–936.

https://doi.org/10.1086/377378
Godfrey-Smith, P. (2009). Triviality arguments against functionalism. Philosophical Studies, 145(2), 273–295.

https://doi.org/10.1007/s11098-008-9231-3
Godfrey-Smith, P. (2016). Mind, matter, and metabolism. Journal of Philosophy, 113(10), 481–506. https://doi.

org/10.5840/jphil20161131034
Godfrey-Smith, P. (2020). Metazoa: Animal minds and the birth of consciousness. William Collins.
Harding, J. (2023). Operationalising representation in natural language processing. The British Journal for the

Philosophy of Science. https://doi.org/10.1086/728685
Kersten, L. (2020). How to be concrete: Mechanistic computation and the abstraction problem. Philosophical

Explorations, 23(3), 251–266. https://doi.org/10.1080/13869795.2020.1799664
Kersten, L. (2024a). An idealised account of mechanistic computation. Synthese, 203(281), 1–24. https://doi.org/

10.1007/s11229-024-04526-x
Kersten, L. (2024b). Wide computationalism revisited: Distributed mechanisms, parsimony and testability.

Philosophical Explorations, 27(3), 280–297. https://doi.org/10.1080/13869795.2024.2332171
Kim, J. (2005). Physicalism, or something near enough. Princeton University Press.
Klein, C. (2008). Dispositional implementation solves the superfluous structure problem. Synthese, 165, 141–153.

https://doi.org/10.1007/s11229-007-9244-z
Lau, H. (2022). In consciousness we trust: The cognitive neuroscience of subjective experience. Oxford University

Press.
Leigh, J., & Zee, D. (2006). The neurology of eye movements. Oxford University Press.
Mashour, G. A., Roelfsema, P., Changeux, J.-P., & Dehaene, S. (2020). Conscious processing and the global

neuronal workspace hypothesis. Neuron, 105(5), 776–798. https://doi.org/10.1016/j.neuron.2020.01.026
Metzinger, T. (2021). Artificial suffering: An argument for a global moratorium on synthetic phenomenology.

Journal of Artificial Intelligence and Consciousness, 8(1), 43–66. https://doi.org/10.1142/S270507852150003X
Miłkowski, M. (2013). Explaining the computational mind. MIT Press.
Miłkowski, M. (2015). Computational mechanism and models of cognition. Philosophia Scientiae, 18(3), 1–14.
Mollo, D. C., & Millière, R. (2023). The vector grounding problem. arXiv. https://doi.org/10.48550/arXiv.2304.

01481.
Perez, E., & Long, R. (2023). Towards evaluating AI systems for moral status using self-reports. arXiv. https://

doi.org/10.48550/arXiv.2311.08576.
Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 4(74), 501–526. https://doi.org/10.1086/

522851
Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford University Press. https://doi.org/10.

1093/acprof:oso/9780199658855.001.0001
Piccinini, G. (2020). Neurocognitive mechanisms: Explaining biological cognition. Oxford University Press. https://

doi.org/10.1093/oso/9780198866282.001.0001
Piccinini, G. (2021). The myth of mind uploading. In I. Hip�olito, R. W. Clowes, & K. Gärtner (Eds.), The mind-

technology problem: Investigating minds, selves and 21st century artefacts (pp. 125–144). Springer.
Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive

Science, 37(3), 453–488. https://doi.org/10.1111/cogs.2013.37.issue3
Place, U. T. (1956). Is consciousness a brain process? British Journal of Psychology, 47(1), 44–50. https://doi.org/

10.1111/j.2044-8295.1956.tb00560.x

20 DUNG and KERSTEN

https://doi.org/10.1126/science.aan8871
https://doi.org/10.1016/j.concog.2022.103410
https://doi.org/10.1016/j.concog.2022.103410
https://doi.org/10.1080/0020174X.2023.2238287
https://doi.org/10.1007/s10670-023-00753-9
https://doi.org/10.1007/s10670-023-00753-9
https://doi.org/10.1086/377378
https://doi.org/10.1007/s11098-008-9231-3
https://doi.org/10.5840/jphil20161131034
https://doi.org/10.5840/jphil20161131034
https://doi.org/10.1086/728685
https://doi.org/10.1080/13869795.2020.1799664
https://doi.org/10.1007/s11229-024-04526-x
https://doi.org/10.1007/s11229-024-04526-x
https://doi.org/10.1080/13869795.2024.2332171
https://doi.org/10.1007/s11229-007-9244-z
https://doi.org/10.1016/j.neuron.2020.01.026
https://doi.org/10.1142/S270507852150003X
https://doi.org/10.48550/arXiv.2304.01481
https://doi.org/10.48550/arXiv.2304.01481
https://doi.org/10.48550/arXiv.2311.08576
https://doi.org/10.48550/arXiv.2311.08576
https://doi.org/10.1086/522851
https://doi.org/10.1086/522851
https://doi.org/10.1093/acprof:oso/9780199658855.001.0001
https://doi.org/10.1093/acprof:oso/9780199658855.001.0001
https://doi.org/10.1093/oso/9780198866282.001.0001
https://doi.org/10.1093/oso/9780198866282.001.0001
https://doi.org/10.1111/cogs.2013.37.issue3
https://doi.org/10.1111/j.2044-8295.1956.tb00560.x
https://doi.org/10.1111/j.2044-8295.1956.tb00560.x


Putnam, H. (1975). The mental life of some machines. In H. Putnam (Ed.), Mind, language and reality,
philosophical papers (Vol. 2, pp. 408–428). Cambridge University Press. https://doi.org/10.1017/
CBO9780511625251.022

Pylyshyn, Z. (1984). Computation and cognition: Toward a foundation for cognitive science. MIT Press.
Ritchie, B., & Piccinini, G. (2018). Computational implementation. In M. Sprevak & M. Colombo (Eds.),

Routledge handbook of the computational mind (pp. 192–204). Routledge.
Rubel, L. A. (1989). Digital simulation of analog computation and church's thesis. Journal of Symbolic Logic,

54(3), 1011–1017.
Saad, B., & Bradley, A. (2022). Digital suffering: Why it's a problem and how to prevent it. Inquiry: An Interdisci-

plinary Journal of Philosophy, 1–36. https://doi.org/10.1080/0020174X.2022.2144442
Scheutz, M. (2001). Causal versus computational complexity. Minds and Machines, 11(4), 534–566.
Sebo, J., & Long, R. (2023). Moral consideration for AI systems by 2030. AI and Ethics. https://doi.org/10.1007/

s43681-023-00379-1
Seth, A. K. (2021). Being you: A new science of consciousness. Penguin Random House.
Seth, A. K., & Bayne, T. (2022). Theories of consciousness. Nature Reviews Neuroscience, 23(7), 439–452. https://

doi.org/10.1038/s41583-022-00587-4
Shagrir, O. (2022). The nature of physical computation. Oxford University Press.
Shevlin, H. (2020). General intelligence: An ecumenical heuristic for artificial consciousness research? Journal of

Artificial Intelligence and Consciousness, 7, 245–256. https://doi.org/10.17863/CAM.52059
Shiller, D. (2024). Functionalism, integrity, and digital consciousness. Synthese, 203(2), 47. https://doi.org/10.

1007/s11229-023-04473-z
Smart, J. J. C. (1959). Sensations and brain processes. The Philosophical Review, 68(2), 141–156. https://doi.org/

10.2307/2182164
Sprevak, M. (2010). Computation, individuation and the received view on representation. Studies in the History

of Philosophy of Science, Part A, 41, 260–270.
Sprevak, M. (2018). Triviality arguments about computational implementation. In M. Sprevak & M. Colombo

(Eds.), The Routledge handbook of the computational mind (pp. 175–191). Routledge.
Tye, M. (2017). Tense bees and shell-shocked crabs: Are animals conscious? Oxford University Press. https://doi.

org/10.1093/acprof:oso/9780190278014.001.0001
van Inwagen, P. (1997). Materialism and the psychological-continuity account of personal identity. Philosophical

Perspectives, 11, 305–319.
Wiese, W. (2024). Artificial consciousness: A perspective from the free energy principle. Philosophical Studies,

181(8), 1947–1970. https://doi.org/10.1007/s11098-024-02182-y
Wiese, W., & Friston, K. J. (2021). The neural correlates of consciousness under the free energy principle: From

computational correlates to computational explanation. Philosophy and the Mind Sciences, 2. https://doi.org/
10.33735/phimisci.2021.81

How to cite this article: Dung, L., & Kersten, L. (2024). Implementing artificial
consciousness. Mind & Language, 1–21. https://doi.org/10.1111/mila.12532

DUNG and KERSTEN 21

https://doi.org/10.1017/CBO9780511625251.022
https://doi.org/10.1017/CBO9780511625251.022
https://doi.org/10.1080/0020174X.2022.2144442
https://doi.org/10.1007/s43681-023-00379-1
https://doi.org/10.1007/s43681-023-00379-1
https://doi.org/10.1038/s41583-022-00587-4
https://doi.org/10.1038/s41583-022-00587-4
https://doi.org/10.17863/CAM.52059
https://doi.org/10.1007/s11229-023-04473-z
https://doi.org/10.1007/s11229-023-04473-z
https://doi.org/10.2307/2182164
https://doi.org/10.2307/2182164
https://doi.org/10.1093/acprof:oso/9780190278014.001.0001
https://doi.org/10.1093/acprof:oso/9780190278014.001.0001
https://doi.org/10.1007/s11098-024-02182-y
https://doi.org/10.33735/phimisci.2021.81
https://doi.org/10.33735/phimisci.2021.81
https://doi.org/10.1111/mila.12532

	Implementing artificial consciousness
	1  |  INTRODUCTION
	2  |  IMPLEMENTATIONALISM ABOUT CONSCIOUSNESS
	3  |  A DILEMMA FOR IMPLEMENTATIONALISM
	4  |  COMPUTATIONAL IMPLEMENTATION
	4.1  |  The causal mapping account
	4.2  |  The semantic account
	4.3  |  The mechanistic account
	4.4  |  Assessing implementational adequacy

	5  |  IMPLEMENTATIONAL CONSTRAINTS
	5.1  |  The medium‐independence constraint
	5.2  |  The mechanistic constraint

	6  |  THE INTEGRITY CONSTRAINTS: REDUX
	7  |  CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES


