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Abstract. This paper initiates the reverse mathematics of social choice the-
ory, studying Arrow’s impossibility theorem and related results including Fish-
burn’s possibility theorem and the Kirman–Sondermann theorem within the
framework of reverse mathematics. We formalise fundamental notions of social
choice theory in second-order arithmetic, yielding a definition of countable so-
ciety which is tractable in RCA0. We then show that the Kirman–Sondermann
analysis of social welfare functions can be carried out in RCA0. This approach
yields a proof of Arrow’s theorem in RCA0, and thus in PRA, since Arrow’s
theorem can be formalised as a Π0

1 sentence. Finally we show that Fishburn’s
possibility theorem for countable societies is equivalent to ACA0 over RCA0.

1. Introduction

Arrow’s 1950 impossibility theorem [3, 4] is a foundational result in social choice
theory. If a society contains only finitely many voters, then any aggregation of
individual preference orderings (called a social welfare function) respecting Arrow’s
conditions of unanimity and independence of irrelevant alternatives is dictated by
a single voter. The theorem therefore appears to place substantial limits on the
existence of methods for social decision-making that are fair, rational, and uniform.
It has a wide range of applicability including the problems of selecting candidates in
elections, deciding on public policies, and choosing between rival scientific theories.
As such it has exerted a substantial influence on economics [45, 19], political science
[41], and philosophy [25, 37].

Although Arrow’s theorem is essentially a result in finitary combinatorics, later
developments in social choice theory in the 1970s brought in more powerful meth-
ods such as non-principal ultrafilters, which Fishburn [14] used to show that infi-
nite societies have non-dictatorial social welfare functions. This result and others
like it have led mathematical economists to grapple with non-constructivity and
applications of the axiom of choice [33]. However, for economically and philosoph-
ically relevant models such as societies which are countable or continuous, reverse
mathematics offers a more appropriate framework for gauging where (and what)
non-constructive set existence axioms are actually necessary in social choice theory.

This paper initiates the reverse mathematics of social choice theory, studying
Arrow’s impossibility theorem and related results including Fishburn’s possibility
theorem within the framework of reverse mathematics. By defining fundamental
notions of social choice theory in second-order arithmetic, we show that an influ-
ential analysis of social welfare functions in terms of ultrafilters by Kirman and
Sondermann [29] can be carried out in RCA0. This allows us to establish that
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Arrow’s theorem, when formalised as a statement of first-order arithmetic, is prov-
able in primitive recursive arithmetic. Fishburn’s possibility theorem, on the other
hand, uses non-constructive resources in an essential way, and we prove that its
restriction to countable societies is equivalent to ACA0.

In the classical Arrovian framework, a society S consists of a set V of voters, a
set X of alternatives (or candidates), together with the set W of all weak orders of
X (representing the different ways in which the set of alternatives can be rationally
ordered), a set A of coalitions of voters, and a set F of profiles, i.e. functions f :
V →W representing different elections or voting scenarios. In Arrow’s framework,
A and F satisfy a condition known as unrestricted domain (or universal domain),
meaning that A = P(V ) and F =WV , the set of all functions f : V →W .

Given alternatives x, y ∈ X, a profile f : V →W , and a voter v ∈ V , we write

x ≲f(v) y

to mean that voter v ranks x at least as highly y under profile f , and

x <f(v) y

to mean that voter v strictly prefers x to y under profile f . A social welfare function
σ for a society S maps profiles in F to weak orders in W , and represents one way
of consistently aggregating individual preference orderings into an overall social
preference ordering. We write

x ≲σ(f) y

to mean that the social welfare function σ ranks x at least as highly as y under
profile f , and similarly for x <σ(f) y. If R is a weak ordering and Y ⊆ X, we write
R↾Y to mean R ∩ Y 2. This lets us state Arrow’s conditions more precisely.

(1) Unanimity: If x <f(v) y for all v ∈ V , then x <σ(f) y.
(2) Independence of irrelevant alternatives: If f(v)↾{x,y} = g(v)↾{x,y} for all

v ∈ V then σ(f)↾{x,y} = σ(g)↾{x,y}.
(3) Non-dictatoriality: There is no d ∈ V such that for all f ∈ F , if x <f(d) y

then x <σ(f) y.

Theorem 1.1 (Arrow’s impossibility theorem). Suppose S = ⟨V,X,A,F⟩ is a
society satisfying unrestricted domain such that V is a nonempty and finite set
of voters, and X is a finite set of alternatives with |X| ≥ 3. Then there exists
no social welfare function σ : F → W satisfying unanimity, independence, and
non-dictatoriality.

Fishburn [14] offered a way out of Arrow’s impossibility result, showing that
Arrow’s conditions are consistent if we drop the requirement that V is finite.1

Theorem 1.2 (Fishburn’s possibility theorem). Suppose S = ⟨V,X,A,F⟩ is a
society satisfying unrestricted domain such that V is an infinite set of voters, and
X is a finite set of alternatives with |X| ≥ 3. Then there exists a social welfare
function σ : F →W satisfying unanimity, independence, and non-dictatoriality.

1The result was apparently already known to Julian Blau in 1960, although Blau never pub-
lished his proof [15, p. 16]. It should therefore perhaps be called the Blau–Fishburn possibility
theorem, as suggested in [42, p. 283].
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Infinite societies are widely used in mathematical economics [5, 22, 20, 21].2
Fishburn’s theorem is therefore of antecedent interest in its application domain,
despite the prima facie implausibility of infinite ‘societies’.

On a mathematical level, Fishburn’s possibility theorem is best understood in
the context of an influential analysis by Kirman and Sondermann [29] which shows
that social welfare functions satisfying unanimity and independence correspond to
ultrafilters. Arrow had already introduced the notion of a σ-decisive coalition for a
social welfare function σ: a set C ⊆ V such that if x <f(v) y for every v ∈ C, then
x <σ(f) y. Kirman and Sondermann established that the collection of all σ-decisive
coalitions forms an ultrafilter which is principal if and only if σ is dictatorial.

Theorem 1.3 (Kirman–Sondermann theorem). Suppose S = ⟨V,X,A,F⟩ is a
society satisfying unrestricted domain such that V is a nonempty set of voters, and
X is a finite set of alternatives with |X| ≥ 3. For any social welfare function
σ : F →W satisfying unanimity and independence, the set

Uσ = {C ∈ A : C is σ-decisive},
forms an ultrafilter on A which is principal if and only if σ is dictatorial.

Arrow’s theorem is an immediate consequence of the Kirman–Sondermann the-
orem: as every ultrafilter on a finite set is principal and hence generated by a
singleton {d}, any social welfare function for a society with a finite set V of voters
must be dictatorial. The Kirman–Sondermann theorem also provides us with our
first reverse mathematics-style result. Since it is provable in ZF, any non-dictatorial
social welfare function σ for a society with an infinite set V of voters will give rise
to a non-principal ultrafilter Uσ on P(V ).

Theorem 1.4. Fishburn’s possibility theorem is equivalent over ZF to the statement
that for every infinite set V there exists a non-principal ultrafilter on P(V ).

The existence of non-principal ultrafilters is unprovable in ZF [6], but is (strictly)
implied by the axiom of choice [26, 40]. Many therefore consider Fishburn’s pos-
sibility theorem to be highly non-constructive [36, 8, 9, 10]. At least prima facie,
this is a substantial problem for any genuine application of Fishburn’s possibility
theorem in social choice theory, a field which is supposed to apply to everyday
social decision-making processes such as national elections or votes in a hiring com-
mittee.3 This kind of concern with applicability lies behind a wide range of studies
of Arrow’s theorem using tools from computability theory and computational com-
plexity theory. Amongst the former are the work of Lewis [32] in the 1980s and
Mihara [35, 36] in the 1990s, while the latter is the preserve of the flourishing field
of computational social choice theory [11, 7].

Lewis [32] worked principally with a notion of “recursively enumerable society”
in which V = ω, the algebra of coalitions A is restricted to include only computably
enumerable sets, and the set F of profiles is restricted to include only computable
functions. The set X of alternatives must be have at least 3 elements, and be at

2Schmitz [44, p. 193] writes that “measure spaces (V,V, µ) of infinitely many agents with
µ-atoms [are] of some interest since these spaces can serve as models for large economies with
preformed coalitions (e.g., religious, regional or social groups) and/or with powerful companies or
political parties”. See also the introductory discussion of countably infinite societies in [35], and
the references on population ethics for infinite societies in §7.4 of [13].

3For a detailed discussion in this vein see §§2–3 of [33].
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most countably infinite. Lewis proved a weak version of Arrow’s theorem for such
societies, showing that if σ is a computable social welfare function for a recursively
enumerable society S, then for each profile f ∈ F there exists a ‘dictator’ d such
that for all x, y ∈ X, if x <f(d) y, then x <σ(f) y. This ‘dictator’ is not necessarily
unique across all profiles, and hence not a dictator in Arrow’s original sense.4

Mihara’s approach in [35] is somewhat different, working with a single society
S in which V = ω, and the coalition algebra A is precisely the set REC of all
computable sets. Mihara allows a broader range of profiles in F , namely those
which are measurable by sets in REC.5 The set of alternatives X can be any
set with at least 3 elements, although the computability requirements mean that
only countably many alternatives will actually end up being considered by any
given social welfare function. Unlike Lewis, Mihara defines a dictator as Arrow
does: a single individual whose preferences determine the social ordering across all
profiles. Mihara proves that any computable non-dictatorial social welfare function
for the society based on the coalition algebra REC must compute 0′. The recursive
counterexample which we give to Fishburn’s possibility theorem at the end of §5
improves on Mihara’s result by constructing a countable society which does not
contain all computable sets as coalitions, and can be coded as a single computable
set, but all of whose non-dictatorial social welfare functions compute 0′. In [36],
Mihara shows that there exist non-dictatorial social welfare functions for this society
which are computable relative to 0′′.6

The aim of this paper is to provide a more nuanced analysis of the situation re-
garding Arrow’s theorem, Fishburn’s theorem, and their relative (non-)constructivity
in terms of the hierarchy of subsystems of second-order arithmetic studied in re-
verse mathematics. After briefly introducing the relevant background from reverse
mathematics and social choice theory in §2, we present a canonical sequence of
definitions in §3 for investigating the proof-theoretic strength of theorems in so-
cial choice theory. This investigation begins with Arrow’s impossibility theorem
and Fishburn’s possibility theorem, but the framework is sufficiently general and
flexible to accommodate future research on other landmark results in social choice
theory such as the Gibbard–Satterthwaite theorem [17, 43].

The central definition is that of a countable society: a structure S = ⟨V,X,A,F⟩
in which V ⊆ N, and the algebra of coalitions A ⊆ P(V ) and the set of profiles
F ⊆WV are both countable. Key to this definition and to the results in the paper
are conditions on A and F called uniform measurability and quasi-partition embed-
ding that ensure their richness and relative compatibility, and which are substan-
tially weaker than previously proposed alternatives to Arrow’s unrestricted domain
condition. Using this framework we prove the following results.

Theorem 1.5. Arrow’s impossibility theorem is provable in RCA0.

In §4 we establish that the Kirman–Sondermann analysis of social welfare func-
tions for countable (and hence finite) societies in terms of ultrafilters of decisive

4For a more detailed appraisal of Lewis’s framework and results, see appendix F of Mihara’s
dissertation [34].

5Measurable profiles are introduced at the start of §3.
6A natural question left open by [36, p. 270] is whether there exist non-dictatorial social welfare

functions for Mihara’s society which are computable relative to 0′. A generalisation of this question
is discussed at the end of §5.
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coalitions can be formalised in RCA0. It follows that Arrow’s impossibility theo-
rem is also provable in RCA0. Moreover, by replacing finite sets with their codes,
Arrow’s theorem can be formalised as a Π0

1 sentence which is provable in PRA.

Theorem 1.6. Fishburn’s possibility theorem for countable societies is equivalent
over RCA0 to the axiom scheme of arithmetical comprehension.

This shows that Fishburn’s possibility theorem requires the same set existence
principles for its proof as theorems of classical analysis like the Bolzano–Weierstrass
theorem, and combinatorial principles like König’s infinity lemma or Ramsey’s the-
orem RTn

k for n ≥ 2 and k ≥ 3. §5 is devoted to proving this equivalence, which can
be seen as an analogue in second-order arithmetic of theorem 1.4 above. This result
can also be understood as generalising the results of Lewis and Mihara discussed
above to the broader class of countable societies introduced in §3.

2. Preliminaries

This section provides a brief overview of subsystems of second-order arithmetic
(§2.1), ultrafilters on countable algebras of sets (§2.2), and weak orders in social
choice theory (§2.3).

2.1. Subsystems of second-order arithmetic. Reverse mathematics is a sub-
field of mathematical logic devoted to determining the set existence principles nec-
essary to prove theorems of ordinary mathematics, including real and complex
analysis, countable algebra, and countable infinitary combinatorics. This is done
by formalising the theorems concerned in the language of second-order arithmetic,
and proving equivalences between those formalisations and systems located in a
well-understood hierarchy of set existence principles. The equivalence proofs are
carried out in a weak base theory known as RCA0, which roughly corresponds to
computable mathematics and is briefly described below. For details of the mate-
rial in this subsection we refer readers to Simpson’s reference work Subsystems of
Second Order Arithmetic [48], Dzhafarov and Mummert’s textbook Reverse Math-
ematics [12], and Hirschfeldt’s monograph Slicing the Truth [23].

Second-order arithmetic L2 is a two-sorted formal language, with number vari-
ables x1, x2, . . . whose intended range is the natural numbers N, and set variables
X1, X2, . . . whose intended range is the powerset of the natural numbers P(N). The
non-logical symbols are those of Peano arithmetic (0, 1,+,×, <) plus the ∈ symbol
for set membership. The atomic formulas of L2 are those of the form t1 = t2,
t1 < t2, and t1 ∈ X1, where t1, t2 are number terms and X1 is a set variable.
As well as the usual logical connectives, it contains both number quantifiers (some-
times called first-order quantifiers) ∀x and ∃x, and set quantifiers (sometimes called
second-order quantifiers) ∀X and ∃X. Formulas of L2 are built up from atomic
formulas using logical connectives and set and number quantifiers.

The base theory RCA0 has three sets of axioms: the basic arithmetical axioms,
the Σ0

1 induction scheme, and the recursive comprehension axiom scheme. The basic
arithmetical axioms are those of Peano arithmetic, minus the induction scheme:
in other words, the axioms of a commutative discrete ordered semiring. The Σ0

1

induction axiom scheme consists of the universal closures of all formulas of the form

(Σ0
1-Ind) (φ(0) ∧ ∀n(φ(n) → φ(n+ 1))) → ∀nφ(n),
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where φ is a Σ0
1 formula, i.e. one of the form ∃kθ(n, k) where θ contains only

bounded quantifiers. Finally, the recursive or ∆0
1 comprehension axiom scheme

consists of the universal closures of all formulas of the form
(∆0

1-CA) (φ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ φ(n)),

where φ is a Σ0
1 formula and ψ is a Π0

1 formula, i.e. one of the form ∀kθ(n, k) where
θ contains only bounded quantifiers.

Other subsystems of second-order arithmetic are obtained by extending RCA0

with additional axioms. The present paper is concerned only with one of these
systems, ACA0, which is obtained by augmenting the axioms of RCA0 with the
arithmetical comprehension scheme, which consists of the universal closures of all
formulas of the form
(ACA) ∃X∀n(n ∈ X ↔ φ(n)),

where φ is an arithmetical formula, i.e. which may contain number quantifiers but
no set quantifiers, although it may contain free set variables.

2.2. Countable algebras and ultrafilters. Our approach to ultrafilters on count-
able algebras of sets is based on that of Hirst [24]. We use the standard coding
of a sequence of sets by a single sets using the primitive recursive pairing map
(m,n) = (m+ n)2 +m. Y ⊆ N is a sequence of sets, Y = ⟨Yi : i ∈ N⟩, if

(i, v) ∈ Y ↔ v ∈ Yi

for all i, v ∈ N.

Definition 2.1 (countable algebras of sets). Let V ⊆ N and let A = ⟨An : n ∈ N⟩
be a countable sequence of sets such that for every i ∈ N, Ai ⊆ V . A is a countable
algebra over V if it contains V and it is closed under unions, intersections, and
complements relative to V . A countable algebra A over V is atomic if for all v ∈ V ,
there exists k ∈ N such that Ak = {v}.

If A is a countable algebra over a set V , we write Ac
i to denote its relative

complement V \ Ai. Repetitions are allowed, so given a countable algebra A we
can computably construct an algebra A′ which contains the same sets (typically
in a different order) in which we can uniformly compute the operations of com-
plementation, union, and intersection. We make this precise through the following
definition.

Definition 2.2 (boolean embeddings). A boolean formation sequence is a finite
sequence s ∈ Seq with |s| ≥ 1 such that for all j < |s|, one of the following obtains
for some n,m < j:

(1) s(j) = (0, n, n),
(2) s(j) = (1, n, n) and n < j,
(3) s(j) = (2, n,m) and n,m < j.

If s is a boolean formation sequence then we write s ∈ BFS.
Fix a set V ⊆ N and suppose that S = ⟨Si : i ∈ N⟩ is a countable sequence of

subsets of V and that A = ⟨Ai : i ∈ N⟩ is an algebra of sets over V . A function
e : BFS → N is a boolean embedding of S into A if for all boolean formation
sequences s with k = |s| − 1, there exist n,m < s such that

(1) If s(k) = (0, n, n) then Ae(s) = Sn,
(2) If s(k) = (1, n, n) and n < k then Ae(s) = Ac

e(s↾n+1)
,
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(3) If s(k) = (2, n,m) and n,m < k then Ae(s) = Ae(s↾n+1) ∩Ae(s↾m+1).
The following lemma is a straightforward exercise in primitive recursion.

Lemma 2.3. The following is provable in RCA0. Suppose S = ⟨Si : i ∈ N⟩ is a
sequence of subsets of V ⊆ N. Then there exists an algebra A over V , a boolean
embedding e of S into A, and a boolean embedding e∗ from A into A.

Moreover, if S is already a countable algebra over V , then
(1) For all m ∈ N, Sm = Ae(⟨(0,m,m)⟩), and
(2) For all n ∈ N there exists k ∈ N such that An = Sk.

Definition 2.4 (ultrafilters). Suppose A = ⟨An : n ∈ N⟩ is a countable algebra
over V ⊆ N. U ⊆ N is an ultrafilter on A if it obeys the following conditions for all
i, j, k ∈ N.

(1) (Non-emptiness.) If Ai = V , then i ∈ U .
(2) (Properness.) If Ai = ∅, then i ̸∈ U .
(3) (Upwards closure.) If i ∈ U and Ai ⊆ Aj , then j ∈ U .
(4) (Intersections.) If i, j ∈ U and Ak = Ai ∩Aj , then k ∈ U .
(5) (Maximality.) If Aj = Ac

i , then i ∈ U or j ∈ U .
An ultrafilter U is principal if it obeys the following condition, and non-principal
otherwise.

(6) (Principality.) There exist k, d ∈ N such that k ∈ U and Ak = {d}.
The next lemma is elementary, but worth stating as it is used a number of times.

Lemma 2.5. The following is provable in RCA0. Suppose A is a countable atomic
algebra over V ⊆ N and U ⊆ N is an ultrafilter on A. Then U has the following
properties for all i, j, k ∈ N.

(1) If i ∈ U and Aj = Ac
i , then j ̸∈ U .

(2) If Ak = Ai ∪Aj and k ∈ U , then either i ∈ U or j ∈ U .
(3) Suppose ⟨Yi : i < k⟩ is a finite sequence of sets and s ∈ Seq is such that

|s| = k + 1. If Yi = As(i) for all i < k, (
∪

i<k Yi) = As(k), and s(k) ∈ U ,
then there exists j < k such that s(j) ∈ U .

(4) The following conditions are equivalent:
(a) U is principal;
(b) There exists k ∈ N such that Ak is finite and k ∈ U ;
(c) There exists d ∈ V such that for all i ∈ N, i ∈ U if and only if d ∈ Ai.

When we come to consider Fishburn’s possibility theorem in §5, we will need the
following well-known result: the existence of non-principal ultrafilters on countable
algebras is equivalent to arithmetical comprehension. This equivalence appears
in its present guise as theorem 9 of Kreuzer [31], but it has many antecedents.
The proof of the forward direction presented here follows a partition construction
from Kreuzer [30], although similar ideas have been used by others, going back to
Kirby and Paris [28] and Solovay [49]. The reversal uses the fact that non-principal
ultrafilters refine the Fréchet filter in order to code the jump, an idea drawn from
Kirby [27, theorem 1.10].
Lemma 2.6. The following are equivalent over RCA0.

(1) ACA0.
(2) For every infinite set V ⊆ N and every atomic countable algebra A over V ,

there exists a non-principal ultrafilter U on A.
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Proof. We first show that 1 implies 2. Working in ACA0, let V ⊆ N be infinite and
let A be a countable algebra over V ; we do not need the additional assumption
that A is atomic. Given s ∈ 2<N, let

(1) As =
∩
i<|s|

{
Ai if s(i) = 0,
(Ai)

c if s(i) = 1.

By Σ0
0 induction we have that for all v ∈ V , ∀n∃!s ∈ 2n(v ∈ As). In other words,

⟨As : s ∈ 2n⟩ is a partition of V . To see this, let t ∈ 2n be the unique sequence
such that z ∈ At. v ∈ At⌢⟨0⟩ ↔ v ∈ An+1, so if v ∈ An+1 we set s = t⌢⟨0⟩ and if
v ̸∈ An+1 then we set s = t⌢⟨1⟩. Since these possibilities are exclusive, either way
s ∈ 2n+1 is the unique sequence such that v ∈ As as desired. Now let
(2) T = {s ∈ 2<N : As is infinite}.
T exists by arithmetical comprehension. We claim that T is an infinite tree. Sup-
pose not, so there is some n such that for all s ∈ 2n, As is finite. Let A′ = ∪s∈2nA

s.
A′ is finite since every As is, so let m bound the elements of A′. By assumption V
is infinite, so there exists v ∈ V such that v > m. v ̸∈ A′ so v ̸∈ As for all s ∈ 2n,
contradicting the fact that ⟨As : s ∈ 2n⟩ partitions V . By weak König’s lemma
that there exists an infinite path P in T , so let U = {k : P (k) = 0}, which exists
by recursive comprehension in the parameter P . To complete the proof we show
that U is a non-principal ultrafilter on A.

To establish non-principality it suffices to note that every Ai such that i ∈ U
is infinite because AP ↾i+1 is an infinite subset of Ai. To show maximality, let
i ∈ U be arbitrary with (Ai)

c = Aj , and suppose j ∈ U . Let k = max{i, j} + 1.
Since, by our assumption, P (i) = P (j) = 0, we have that AP ↾k = ∅, contradicting
the fact that P ↾k ∈ T and so AP ↾k is infinite. To show that U is closed under
intersections, let i, j ∈ U , let Am = Ai ∩ Aj , and let An = (Am)c. Suppose for a
contradiction that m ̸∈ U , so by maximality n ∈ U . Let k = max{i, j,m, n} + 1.
Then AP ↾k = ∅, contradicting the fact that P ↾k ∈ T . A similar argument establishes
upwards closure. Take i ∈ U and suppose Ai ⊆ Aj . Towards a contradiction assume
that j ̸∈ U , so by maximality and intersections if Ak = Ai ∩ (Aj)

c = ∅ then k ∈ U ,
contradicting non-principality.

Working now in RCA0, we show that 2 implies 1. To prove arithmetical compre-
hension it suffices to prove that the range of any one-to-one function h : N → N
exists [48, lemma III.1.3, pp. 105–106]. The sequence
(3) B = {(2n, v) : v ∈ V ∧ (∃k < v)(h(k) = n)} ∪ {(2n+ 1, n) : n ∈ V }
exists by recursive comprehension since all quantifiers in its definition are bounded,
and by lemma 2.3 there exists a countable algebra A = ⟨Ai : i ∈ N⟩ over N and a
boolean embedding e : BFS → N of B into A. The right-hand-side of the union
defining B ensures that A is atomic, i.e. it contains all singletons {v} for v ∈ V .

For convenience we write n′ to mean e(⟨(0, 2n, 2n)⟩), i.e. the index in A such
that An′ = Bn.

By 2 there exists U ⊆ N such that U is a non-principal ultrafilter on A, and
by recursive comprehension, the set Y = {n : n′ ∈ U} exists. We show that
Y = ran(h) = {n : ∃k(h(k) = n)}.

Suppose n ∈ Y , so n′ ∈ U and thus by non-principality An′ is non-empty,
meaning there is some v such that (∃k < v)(h(k) = n). It follows that ∃k(h(k) = n),
i.e. n ∈ ran(h). For the converse note that if ∃k(h(k) = n) then An′ is cofinite.
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To see this, fix any m ∈ An′ and any j ∈ N. Assume v + j ∈ An′ , so there exists
some k < v + j such that h(k) = n. k < v + j + 1, so by Σ0

0 induction, for all j,
v + j ∈ An′ . Consequently An′ is cofinite and so by maximality n′ ∈ U , and thus
n ∈ Y . □

2.3. Orderings in social choice theory. The paper aims to be self-contained
where notions from social choice theory are concerned, but a good starting point
for a deeper study is Taylor’s monograph Social Choice and the Mathematics of
Manipulation [51]. In social choice theory, voters express their preferences as orders
on the set of alternatives X (e.g. ranking candidates in an election). These orders
are required to be transitive and strongly connected, but ties are permitted to
express indifference between alternatives. This notion is standardly called a weak
order in the social choice theory literature, and we follow this terminology here,
noting that it is synonymous with the notion of a total preorder. In this paper we
will be concerned exclusively with finite sets of alternatives X, and hence all our
weak orders will be assumed to be coded by natural numbers.

Definition 2.7 (weak orders). Suppose X ⊆ N is nonempty and R ⊆ X ×X. R
is strongly connected if (x, y) ∈ R or (y, x) ∈ R for all x, y ∈ X.

If R is a transitive and strongly connected relation then we call it a weak order
and write x ≲R y to mean (x, y) ∈ R, x <R y to mean (x, y) ∈ R ∧ (y, x) ̸∈ R, and
x ∼R y to mean (x, y) ∈ R ∧ (y, x) ∈ R.

Many basic properties of weak orders can be established in RCA0. For example,
if R is a weak order then

(1) ≲R is reflexive;
(2) ∼R is an equivalence relation on X;
(3) If x <R z then x <R y or y <R z (negative transitivity).
Given a set V ⊆ N of voters and a finite set X ⊆ N of alternatives, we let W be

the set of all (codes for) weak orders on X. A profile is a function f : V → W . In
practice we will always be concerned with countable sequences F = ⟨fi : i ∈ N⟩ of
profiles. If fi is a profile and v ∈ V is a voter then we write x ≲i(v) y to mean that
x ≲R y where R = fi(v), i.e. that alternative x is preferred to y by voter v in the
voting scenario represented by the profile fi. Similarly we write x <i(v) y to mean
x <R y, and x ∼i(v) y to mean x ∼R y.

A coalition is simply a set C ⊆ V of voters; by convention, we allow both the
empty set and singleton sets containing only one voter to count as coalitions. Given
a coalition C, we write x ≲i[C] y to mean that x ≲i(v) y for all v ∈ C, and x <i[C] y
and x ∼i[C] y have their obvious meanings.

If Y ⊆ X, we write fi(v) = fj(v) on Y to mean that x ≲i(v) y ↔ x ≲j(v) y for
all x, y ∈ Y , i.e. that v’s preferences regarding all x and y in S are the same under
both the voting scenarios represented by the profiles fi and fj . We write fi = fj
on Y to mean that fi(v) = fj(v) on Y for all v ∈ V .

3. Countable societies

In the classical social choice literature, the notion of a society has been gener-
alised by Armstrong [1] to allow A to be any algebra of sets over V , rather than
all of P(V ). In Armstrong’s generalisation F is always the set of all A-measurable
profiles, i.e. those f : V → W such that for all x, y ∈ X, {v : x ≲f(v) y} ∈ A. This
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paper only addresses the countable case, i.e. when not only V but also A and F
are countable objects that can be coded by sets of natural numbers.7

A countable society consists of a set of voters V ⊆ N, a finite set of alternatives
X ⊆ N and the associated set W of weak orders on X, an atomic countable algebra
of coalitions A, and a countable sequence of profiles F = ⟨fi : i ∈ N⟩ over V,X
(i.e. for all i, fi is a function from V to W ). However, in order for theorems about
countable societies to continue to make sense in the way they do when A = P(V )
and F = WV , we need to impose certain conditions on A and F . The first such
condition is that profiles in F are measurable by coalitions in A. Measurability
must also be uniform, to ensure that proofs using it can be carried out in RCA0.

Definition 3.1 (uniform measurability). Suppose V ⊆ N is nonempty and X ⊆ N
is finite, and that A is a countable algebra of sets over V and F is a countable
sequence of profiles over V,X. If there exists µ : N×X ×X → N such that for all
n ∈ N, x, y ∈ X, and v ∈ V ,

x ≲n(v) y ↔ v ∈ Aµ(n,x,y),

then we say F is uniformly A-measurable.

Lemma 3.2. The following is provable in RCA0. Suppose V ⊆ N is nonempty and
X ⊆ N is nonempty and finite, and that A = ⟨Ai : i ∈ N⟩ is a countable algebra of
sets over V and F = ⟨fi : i ∈ N⟩ is a countable sequence of profiles over V,X. If
F is uniformly A-measurable then there exist functions µ<, µ∼ : N ×X ×X → N
such that for all n ∈ N, x, y ∈ X, and v ∈ V ,

x <n(v) y ↔ v ∈ Aµ<(n,x,y)

and
x ∼n(v) y ↔ v ∈ Aµ∼(n,x,y).

The second condition, quasi-partition embedding, ensures that finite sequences
of coalitions in A can be recovered uniformly from profiles in F . This condition
emerges naturally from the proofs of the Kirman–Sondermann theorem and Fish-
burn’s possibility theorem, although to the best of our knowledge it is isolated
here for the first time.8 Quasi-partitions of V , in which overlaps are allowed, are
preferred to partitions since they are more computationally tractable.9

Definition 3.3 (quasi-partition embedding). Suppose V ⊆ N is nonempty and
X ⊆ N is finite with |X| ≥ 3, and that A is a countable algebra of sets over
V and F is a countable profile algebra over V,X. A permutation of a finite set
W is a finite sequence p ∈ Seq such that for all (codes for) weak orders R ∈ W
there exists a unique i such that p(i) = R. We write p ∈ Perm(W ) to indicate
that p is a permutation of W . A quasi-partition is a finite sequence s ∈ Seq

7A different approach, following that of Towsner [52], would be to introduce new symbols U

and S standing for third-order objects like ultrafilters and social welfare functions. However,
the approach via countable algebras pursued in this paper is more congenial to both the reverse
mathematics and the underlying motivation of viewing social welfare functions as potentially
computable (and hence countable) objects.

8Other weakenings of Arrow’s universal domain condition are well-known, such as the free
triple property and the chain property, but when V is infinite these conditions still guarantee that
F is uncountable.

9One way of thinking of this condition is as providing a uniform way of transforming finite
covers of V into finite partitions of V .
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such that 1 ≤ |s|. We write s ∈ QPart(k) to indicate that s is a quasi-partition
with |s| ≤ k. A is quasi-partition embedded into F if there exists a function e :
Perm(W )×QPart(|W |) → N such that for all v ∈ V ,

fe(p,s)(v) =

{
p(i) if (∃!i < |s| − 1)(v ∈ As(i)),

p(|s| − 1) otherwise.

Definition 3.4 (countable societies). A countable society S consists of a nonempty
set V ⊆ N of voters, a finite set X ⊆ N of alternatives with |X| ≥ 3, an atomic
countable algebra A over V , and a sequence F = ⟨fi : i ∈ N⟩ of profiles over V,X
such that F is uniformly A-measurable and A is quasi-partition embedded into F .

A countable society S is finite if V is finite, and infinite otherwise.

Definition 3.5 (social welfare functions). Suppose that S is a countable society.
σ : N →W is a social welfare function for S if it obeys the following conditions.

(1) (Unanimity.) For all x, y ∈ X and i ∈ N, if x <i[V ] y then x <σ(i) y.
(2) (Independence.) For all x, y ∈ X and all i, j ∈ N, if fi = fj on {x, y} then

σ(i) = σ(j) on {x, y}.
If σ obeys the following additional condition then it is non-dictatorial.

(3) (Non-dictatoriality.) For all v ∈ V there exists i ∈ N and x, y ∈ X such
that x <i(v) y and y ≲σ(i) x.

Definition 3.6 (decisive coalitions). Suppose S = ⟨V,X,A,F⟩ is a countable
society and that σ is a social welfare function for S.

(1) An is σ-decisive for x, y if for all i, x <i[An] y implies x <σ(i) y.
(2) An is σ-decisive if it is σ-decisive for all x, y ∈ X.
(3) An is almost σ-decisive for x, y at i if x <i[An] y, y <i[Ac

n]
x, and x <σ(i) y.

(4) An is almost σ-decisive for x, y if
∀i((x <i[An] y ∧ y <i[Ac

n]
x) → x <σ(i) y).

(5) An is almost σ-decisive if it is almost σ-decisive for all x, y ∈ X.

The notion of a decisive coalition is due to Arrow [4, definition 10, p. 52], while
almost decisiveness was introduced by Sen [45, definition 3*2, p. 42]. The non-
dictatoriality condition for social welfare functions can be rephrased in terms of
decisive coalitions, namely by saying that no singleton {d} ⊆ V is σ-decisive. This
gives rise to some natural strengthenings of non-dictatoriality (definition 5.1).

4. Arrow’s theorem via ultrafilters

In this section we show how the Kirman–Sondermann analysis of social welfare
functions in terms of ultrafilters can be carried out in RCA0 (theorem 4.4). This
immediately gives a proof of Arrow’s theorem in RCA0 (theorem 4.5).

Definition 4.1. The Kirman–Sondermann theorem for countable societies (KS) is
the following statement: Suppose S = ⟨V,X,A,F⟩ is a countable society and that
σ is a social welfare function for S. Then there exists an ultrafilter

Uσ = {i : Ai is σ-decisive}
on A which is principal if and only if σ is dictatorial.

Arrow’s theorem is the statement that if S is a finite society and σ is a social
welfare function for S, then σ is dictatorial.
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A crucial step in many proofs of Arrow’s theorem is sometimes known in the
social choice literature as the “spread of decisiveness” [47, pp. 35–37] or the “conta-
gion lemma” [9, pp. 44–45]. Kirman and Sondermann’s version of this is a lemma
showing that there exists a profile f and a pair of alternatives x, y ∈ X such that
C ⊆ V is almost σ-decisive at f for x, y if and only if C is almost σ-decisive
for every profile and every pair of alternatives [29, lemma A]. In our arithmetical
setting, the corresponding versions of these two conditions are Σ0

2 and Π0
2 respec-

tively, so formalising Kirman and Sondermann’s lemma A establishes that the set
{i : Ai is almost σ-decisive} is ∆0

2 definable relative to S and σ. However, the def-
inition of a countable society in fact allows us to uniformly find witnesses for this
last condition, and thereby obtain a Σ0

0 definition.
This and subsequent proofs are made easier by the use of some notation for weak

orders. Given distinct alternatives x, y, z ∈ X,
R = x < y < z ∼ ∗

means that R is a weak order such that x <R y and y <R z, and hence x <R z.
We use the wildcard symbol ∗ to quantify over all c ∈ X not explicitly mentioned,
so in the example above, any other c ∈ X is such that y <R c but z ∼R c. This
notation thus denotes a unique weak order, or rather, the natural number coding
it as a finite set.

Lemma 4.2. The following is provable in RCA0. Suppose S = ⟨V,X,A,F⟩ is a
countable society and σ is a social welfare function for S. Then there exists a
function g : N → N and alternatives a, b ∈ X such that the following conditions are
equivalent for all n ∈ N.

(1) An is almost σ-decisive.
(2) There exist x, y ∈ X such that An is almost σ-decisive for x, y.
(3) There exist k ∈ N and x, y ∈ X such that An is almost σ-decisive for x, y

at k.
(4) a <σ(g(i)) b.

Proof. It follows immediately from the statements that 1 implies 2, and 2 implies
3. We show that 3 implies 2. Let fm be arbitrary, let An be almost σ-decisive for
x, y at k, and assume that x <m[An] y and y <m[Ac

n]
x. Given v ∈ V , if v ∈ An then

x <k(v) y by almost σ-decisiveness and x <m(v) y by assumption, while if v ̸∈ An

then y <k(v) x and y <m(v) x, so fm = fk on {x, y} and thus σ(m) = σ(k) on {x, y}
by independence. Since x <σ(k) y it follows that x <σ(m) y, establishing that An is
almost σ-decisive for x, y.

Now we show that 2 implies 1. Let An be almost σ-decisive for x, y and let
z ∈ X \ {x, y}. Assume that x <m[An] z and z <m[Ac

n]
x for some fm. Since F

quasi-partition embeds A, there exists j such that

fj(v) =

{
x < y < z ∼ ∗ if v ∈ An,
y < z < x ∼ ∗ if v ∈ Ac

n.

By the almost σ-decisiveness of An and the construction of fj , it follows that
x <σ(j) y, and by unanimity, y <σ(j) z, so by transitivity we have that x <σ(j) z.
By our initial assumption, and the construction of fj , fm = fj on {x, z}, so by
independence x <σ(m) z.

A similar argument yields that(
z ≲m[An] y ∧ y ≲m[Ac

n]
z
)
→ z ≲σ(m) y.
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Now fix w ∈ X. If w ∈ {x, y, z} we are done, so assume otherwise. Running the
argument twice more we get that(

z ≲m[An] w ∧ w ≲m[Ac
n]
z
)
→ z ≲σ(m) w,

and since w, z were arbitrary, we have established that An is almost σ-decisive.
Finally we show that g exists and that 1 and 4 are equivalent. Pick any a, b ∈ X

and let p be a permutation of W such that p(0) = a < b < ∗ and p(1) = b < a < ∗.
A is quasi-partition embedded into F by some e : N → N, so we have

fe(p,⟨n⟩)(v) =

{
a < b < ∗ if v ∈ An,

b < a < ∗ if v ∈ Ac
n.

The function g(n) = e(p, ⟨n⟩) exists by recursive comprehension.
If An is almost σ-decisive then a <σ(g(n)) b by the definition of g, so suppose for

the converse implication that a <σ(g(n)) b. a <g(n)[An] b and b <g(n)[Ac
n]
a by the

definition of g, meaning An is almost σ-decisive for a, b at g(n). By the equivalence
between 1 and 3, An is almost σ-decisive. □

Lemma 4.3. The following is provable in RCA0. Suppose S = ⟨V,X,A,F⟩ is a
countable society and σ is a social welfare function for S. Then the set

Uσ = {i ∈ N : Ai is almost σ-decisive}

exists and forms an ultrafilter on A.

Proof. Working in RCA0, fix a countable society S = ⟨V,X,A,F⟩ and a social
welfare function σ for S. For all of the arguments below we fix distinct x, y, z ∈ X.

To show that Uσ exists, note that by lemma 4.2 there exists a function g : N → N
and x, y ∈ X such that

x <σ(g(i)) y ↔ Ai is almost σ-decisive.

The left-hand side of this definition is Σ0
0 in the parameters S, σ, g, so Uσ exists

by recursive comprehension in those parameters. In the remainder of the proof we
show that Uσ is an ultrafilter on A.

That Uσ contains an index for V and no index for ∅ follows straightforwardly from
unanimity, so we next prove upwards closure under the subset relation. Suppose
i ∈ Uσ and Ai ⊆ Aj , and partition V into

V0 = Ai,

V1 = Ac
i ∩Aj ,

V2 = Ac
j .

Since A is quasi-partition embedded into F , there exists some m such that

fm(v) =


x < y < z ∼ ∗ if v ∈ V0,

y < x < z ∼ ∗ if v ∈ V1,

y < z < x ∼ ∗ if v ∈ V2.

x <m[Ai] y by the definition of fm, so since Ai is almost σ-decisive we have that
x <σ(m) y. The definition of fm also gives us that y <m[V ] z, so by unanimity,
y <σ(m) z, and by transitivity, x <σ(m) z, which suffices to establish that j ∈ Uσ

by clause 3 of lemma 4.2.
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Next we prove that Uσ is closed under intersections. Suppose that i, j ∈ Uσ and
that k is such that Ak = Ai ∩Aj . Partition V into

V1 = Ai ∩Aj ,

V2 = Ai ∩Ac
j ,

V3 = Ac
i ∩Aj ,

V4 = Ac
i ∩Ac

j .

By quasi-partition embedding let the profile fn be defined as follows.

fn(v) =


z < x < y ∼ ∗ if v ∈ V1,

x < y < z ∼ ∗ if v ∈ V2,

y < z < x ∼ ∗ if v ∈ V3,

y < x < z ∼ ∗ if v ∈ V4.

Since Ai = V1 ∪ V2 we have that x <n[Ai] y by the definition of fn. Similarly
since Ac

i = V3 ∪ V4, y <n[Ac
i ]
x, so by the almost σ-decisiveness of Ai it follows

that x <σ(n) y. By a parallel piece of reasoning we have that z <σ(n) x, and so
by transitivity z <σ(n) y. It follows by clause 3 of lemma 4.2 that Ak is almost
σ-decisive.

Finally we prove that Uσ satisfies maximality. Suppose that Aj = Ac
i . By

quasi-partition embedding there exists some m ∈ N such that

fm(v) =

{
y < z < x ∼ ∗ if v ∈ Ai,

x < y < z ∼ ∗ if v ∈ Ac
i .

By unanimity we have that y <σ(m) z, so either y <σ(m) x or x <σ(m) z. In the
former case, m, y, x witness that Ai is almost σ-decisive by clause 3 of lemma 4.2,
while in the latter case m,x, z witness that Aj is almost σ-decisive. □

Theorem 4.4. KS is provable in RCA0.

Proof. We work in RCA0. Let S = ⟨V,X,A,F⟩ be a countable society and let
σ : N → X be a social welfare function for S. By lemma 4.3 there exists an
ultrafilter Uσ ⊆ N on A such that

Uσ = {i ∈ N : Ai is almost σ-decisive}.

It only remains to be shown that (i) i ∈ Uσ if and only if Ai is σ-decisive, and (ii)
Uσ is principal if and only if σ is dictatorial.

For (i), the backwards direction is immediate from the definitions. For the
forward direction fix Ai such that i ∈ Uσ, i.e. Ai is almost σ-decisive. Let fm and
x, y be such that x <m[Ai] y; we will establish that x <σ(m) y.

Start by partitioning V into the sets

V0 = {v : x <m(v) y},
V1 = {v : y <m(v) x},
V2 = {v : x ∼m(v) y} = (V0 ∪ V1)c.
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By uniform A-measurability, there exist e0, e1, e2 ∈ N such that Aej = Vj for all
j ≤ 2, and because F quasi-partition embeds A, there exists n ∈ N such that

fn(v) =


x < z < y ∼ ∗ if v ∈ V0,

y < z < x ∼ ∗ if v ∈ V1,

x ∼ y < z ∼ ∗ if v ∈ V2.

By hypothesis we have that Ai is almost σ-decisive and Ai ⊆ V0, so V0 is almost
σ-decisive by upwards closure. V c

0 = V1 ∪ V2, so since z <n[V0] y and y <n[V1∪V2] z,
it follows from the almost σ-decisiveness of V0 that z <σ(n) y.

Let e3 be such that Ae3 = V0∪V2, and hence Ac
e3 = V1. By upwards closure again,

Ae3 is almost σ-decisive, and so because x <n[Ae3 ]
z and z <n[Ac

e3
] x, x <σ(n) z. It

follows by transitivity that x <σ(n) y. Finally, by definition fn = fm on {x, y}, and
so by independence x <σ(m) y as desired.

For the forward direction of (ii), assume that there exist k, d such that Ak = {d}
and k ∈ Uσ. It follows from i) that Ak is σ-decisive, and so d is a dictator for σ.

For the backwards direction of (ii), suppose that σ has a dictator d ∈ V . A is
atomic, so let k be any index such that Ak = {d}. Since F quasi-partition embeds
A, there exists an n such that fn is defined as follows.

fn(v) =

{
x < y ∼ ∗ if v ∈ Ak,

y < x ∼ ∗ if v ∈ Ac
k.

By the definition of fn we have that x <n[Ak] y and y <n[Ac
k]
x, and by the

dictatoriality of d we have that x <σ(n) y, so by lemma 4.2, k ∈ Uσ and hence Uσ

is principal. □

Theorem 4.5. Arrow’s theorem is provable in RCA0.

Proof. We work in RCA0. Suppose S = ⟨V,X,A,F⟩ is a finite society, and let
σ : N →W be any social welfare function for S. By KS (theorem 4.4), there exists
an ultrafilter Uσ on A which is principal if and only if σ is dictatorial. Since V is
finite, Uσ is principal by part 4 of lemma 2.5. Therefore, σ is dictatorial. □

Since all the objects involved in Arrow’s theorem are finite, it can be formalised
as a sentence θ in the language of first-order arithmetic, by replacing quantification
over finite sets of natural numbers with quantification over the numbers that code
them (for details see §II.2 of [48] or §5.5.2 of [12]). The first-order sentence θ then
follows in RCA0 from the second-order statement of Arrow’s theorem in virtue of
the coding. As long as one is careful with writing down the relevant bounds, θ
will be a Π0

1 statement, i.e. of the form ∀nψ(n) where ψ(n) contains only bounded
quantifiers. By results of Friedman [16] and Parsons [38], RCA0 is conservative
over primitive recursive arithmetic (PRA) for all Π0

2 statements [48, §IX.1]. We
therefore have that Arrow’s theorem (in the form of its first-order formalisation θ)
is provable in PRA, and hence it is finitarily provable in the sense of Tait’s analysis of
Hilbert’s program [50]. Moreover, the bounds in θ are exponential, which suggests
the following stronger result.

Conjecture 4.6. The first-order formalisation of Arrow’s theorem is provable in
I∆0 + exp.
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5. Fishburn’s possibility theorem

The main result of this section, theorem 5.4 is that Fishburn’s possibility theorem
for countable societies is equivalent to ACA0 over RCA0. We also show that non-
dictatorial social welfare functions actually satisfy more general non-dictatoriality
conditions than Arrow’s original condition (lemma 5.2).

Definition 5.1. Fishburn’s possibility theorem for countable societies (FPT) is the
following statement: For all countable societies S = ⟨V,X,A,F⟩ where V is infinite,
there exists a non-dictatorial social welfare function σ for S.

A social welfare function σ for S is k-non-dictatorial if for all s ∈ Seq(V ) such
that |s| ≤ k, there exists j and x, y ∈ X such that for all i < |s|, x <j(s(i)) y and
y <σ(j) x. FPTk is the statement obtained by replacing non-dictatoriality in FPT
with k-non-dictatoriality for some fixed k ≥ 1.
σ is finitely non-dictatorial if for all k ≥ 1, σ is k-non-dictatorial. FPT<N

is the statement obtained by replacing non-dictatoriality in FPT with finite non-
dictatoriality.
σ has the cofinite coalitions property if for every profile j ∈ N, if cofinitely many

v ∈ V are such that x <j(v) y, then x <σ(j) y. FPT+ is the statement obtained by
replacing non-dictatoriality in FPT with the cofinite coalitions property.

One concern with the interpretation of Fishburn’s possibility theorem has been
that the choice of ultrafilter seems arbitrary. When faced with an infinite set with
a complement of the same cardinality, there seems to be no reason to consider one
to genuinely constitute a majority rather than the other. This is not the case for
cofinite sets which, in an infinite society, clearly constitute a majority. A social
welfare function with the cofinite coalitions property therefore satisfies a version of
Condorcet consistency: if a majority (a cofinite set) of voters prefer x to y, then
so does the social welfare function. Since an ultrafilter on a given algebra is non-
principal exactly when it refines the Fréchet filter, the cofinite coalitions property
is also the strongest non-dictatoriality property a social welfare function can have.
We now show that all non-dictatorial social welfare functions have this property.

Lemma 5.2. The following is provable in RCA0. Suppose S is a countable so-
ciety and σ is a social welfare function for S. Then the following conditions are
equivalent.

(1) σ is non-dictatorial.
(2) σ is k-non-dictatorial for some fixed k ≥ 1.
(3) σ is finitely non-dictatorial.
(4) σ has the cofinite coalitions property.

Proof. The implications from 4 to 3, 3 to 2, and 2 to 1 are immediate. Working
in RCA0, we show that 1 implies 4. Let S = ⟨V,X,A,S⟩ be a countable society
and let σ be a non-dictatorial social welfare function for S. By KS (theorem 4.4)
the ultrafilter Uσ of (indexes of) σ-decisive coalitions exists and is non-principal.
Moreover, V is infinite by Arrow’s theorem.

Fix an arbitrary profile fm and two alternatives x, y ∈ X, and suppose that for
some k, if v ∈ V is such that v ≥ k then x <m(v) y. By the closure of A under finite
unions and relative complements there exists a j such that Aj = {v ∈ V : v ≥ k},
which is cofinite since V is infinite. Since Uσ is non-principal, j ∈ Uσ by part 4 of
lemma 2.5. Therefore, Aj is σ-decisive and x <σ(m) y. □
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The following lemma 5.3 is a partial converse of the Kirman–Sondermann theo-
rem for countable societies—partial because for any given ultrafilter U there may be
distinct social welfare functions with U as their set of decisive coalitions. Various re-
strictions allow a one-to-one correspondence between ultrafilters and social welfare
functions to be recovered, for example by restricting to profiles and social welfare
functions which output linear orders as in [51, theorem 6.1.3], or by imposing a
monotonicity condition as in [2].

These restrictions are less interesting from a computability-theoretic point of
view, since the resulting bijective functionals between ultrafilters and social welfare
functions are themselves computable, while without these restrictions there are
social welfare functions σ such that Uσ <T σ. This can occur most strikingly when
σ is dictatorial, and hence Uσ is computable (since to compute membership in Uσ

one simply needs to check for any given Ai if d ∈ Ai, where d is the dictator).
There will remain infinitely many profiles fi and alternatives x, y such that neither
µ<(i, x, y) nor µ<(i, y, x) are in Uσ. Some of these gaps of indifference can be filled
in by appealing to another, non-principal and non-computable ultrafilter, resulting
in a social welfare function that is dictatorial but not computable. For details of
this construction see proposition 1 of [35].

Lemma 5.3. The following statement is provable in RCA0. Suppose S = ⟨V,X,A,F⟩
is a countable society. If U is an ultrafilter on A, then there exists a social welfare
function σU for S with the following properties.

(1) For all i ∈ N, i ∈ U if and only if Ai is σU -decisive.
(2) The following conditions are equivalent:

(a) U is non-principal,
(b) σU has the cofinite coalitions property.

Proof. Working in RCA0, let S = ⟨V,X,A,F⟩ be a countable society and U ⊆ N
be an ultrafilter on A.

Let φ(n,R) be the following Σ0
0 formula in the displayed free variables.

φ(n,R) ≡ (∀x, y ∈ X)((x, y) ∈ R↔ µ(n, x, y) ∈ U).

Note that here we are considering R as a natural number coding a finite set. Let
b code the finite set X ×X. Since our coding of finite sets by natural numbers is
monotonic, b ≥ R′ for all R′ ∈ W . By Σ0

1 induction, for all n there exists R ≤ b
such that φ(R,n). This is just an application of comprehension for codes of finite
sets; for details see e.g. [18].

We show that R is a weak order. To show strong connectedness, let x, y ∈ X
be arbitrary. If x = y then since x ≲n(v) x for all n ∈ N and v ∈ V , we have that
Aµ(n,x,x) = V , so µ(n, x, x) ∈ U by non-emptiness and thus (x, x) ∈ R. Suppose
instead that x ̸= y, let i = µ(n, x, y) and let j be such that Aj = Ac

i . Since U
is an ultrafilter, by maximality either i ∈ U or j ∈ U . If i ∈ U then (x, y) ∈ R,
so assume the latter. Aj = Aµ<(n,y,x) ⊆ Aµ(n,y,x), so µ(n, y, x) ∈ U by upwards
closure, establishing that (y, x) ∈ R.

For transitivity, suppose (x, y) ∈ R and (y, z) ∈ R, so µ(n, x, y) ∈ U and
µ(n, y, z) ∈ U . Let j be such that Aj = Aµ(n,x,y) ∩ Aµ(n,y,z), so j ∈ U by clo-
sure under intersections. Then x ≲n[Aj ] y and y ≲n[Aj ] z, so by transitivity we
have that x ≲n[Aj ] z. Thus, Aj ⊆ Aµ(n,x,z) and µ(n, x, z) ∈ U by upwards closure.
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This lets us define σ ⊆ N by

(n,R) ∈ σ ↔ R = minR′ such that φ(R′, n).

Since W is finite, the use of minimisation is bounded and so the definition of σ is
Σ0

0 in the parameters µ< and U , meaning that σ exists by recursive comprehension.
By the claim, σ ⊆ N×W and for all n ∈ N there exists R ∈W such that (n,R) ∈ σ.
Thus, since minimisation is a function, so is σ, i.e. σ : N →W .

We now show that m ∈ U if and only if Am is σ-decisive. For the forwards
direction, suppose m ∈ U and x, y ∈ X and n ∈ N are such that x <n[Am] y. By
this hypothesis, Am ⊆ Aµ(n,x,y), so µ(n, x, y) ∈ U by upwards closure. Aµ(n,x,y) =
Aµ<(n,x,y)∪Aµ∼(n,x,y), and thus either µ<(n, x, y) ∈ U or µ∼(n, x, y) ∈ U by part 2
of lemma 2.5. Suppose the latter. By hypothesis, Aµ∼(n,x,y) ∩ Am = ∅, and since
U is closed under intersections it would have to contain an index for ∅, contradict-
ing properness. So µ<(n, x, y) ∈ U , µ∼(n, x, y) ̸∈ U , and µ<(n, y, x) ̸∈ U , which
establishes that x <σ(n) y by the definition of σ. For the reverse direction, suppose
Am is σ-decisive and let x, y ∈ X be arbitrary. By quasi-partition embedding there
exists fk such that x <k(v) y if v ∈ Am, and y <k(v) x if v ∈ Ac

m. By σ-decisiveness,
x <σ(k) y, so µ(k, x, y) ∈ U . Am = Aµ(k,x,y), so m ∈ U by upwards closure.

To show that σ satisfies unanimity, let x, y ∈ X and fn be arbitrary, and suppose
that x <n[V ] y. Because Aµ(n,x,y) = V by uniform A-measurability, it follows by
the non-emptiness condition for U that µ(n, x, y) ∈ U . Moreover, we also have that
Aµ<(n,y,x) = Aµ∼(n,x,y) = ∅, so µ<(n, y, x) ̸∈ U and µ∼(n, x, y) ̸∈ U . It follows that
by the construction of σ, x <σ(n) y.

To show that σ satisfies independence, let x, y ∈ X and suppose fi = fj on
{x, y}. Aµ(i,x,y) = Aµ(j,x,y) by uniform A-measurability. Upwards closure of U
under ⊆ then gives us that µ(i, x, y) ∈ U ↔ µ(j, x, y). By the construction of σ,
x ≲σ(i) y ↔ x ≲σ(j) y as desired.

Finally we prove that U is non-principal if and only if σ has the cofinite coalitions
property. For the forwards direction, suppose U is non-principal and let Ai be
cofinite, so i ∈ U by part 4 of lemma 2.5. Suppose that x <k[Ai] y for some x, y ∈ X
and k ∈ N. Since i ∈ U , Ai is σ-decisive, and so x <σ(k) y. For the backwards
direction, suppose σ has the cofinite coalitions property and let Ai be cofinite. By
quasi-partition embedding, let j be such that Aµ(j,x,y) = {v : x <j(v) y} = Ai.
x <σ(j) y by the cofinite coalitions property since Ai is cofinite, so µ(j, x, y) ∈ U ,
and hence i ∈ U by upwards closure under ⊆. Since i was arbitrary, U is non-
principal by part 4 of lemma 2.5. □

Theorem 5.4. The following are equivalent over RCA0.
(1) FPT.
(2) FPTk for any k ≥ 1.
(3) FPT<N.
(4) FPT+.
(5) Arithmetical comprehension.

Lemma 5.5. The following is provable in RCA0. Suppose V ⊆ N is nonempty and
X ⊆ N is finite with |X| ≥ 3 and A = ⟨Ai : i ∈ N⟩ is a countable algebra over V .
Then there exists a sequence F = ⟨fi : i ∈ N⟩ of profiles over V,X such that F is
uniformly A-measurable and A is quasi-partition embedded into F .



ARROW’S THEOREM, ULTRAFILTERS, AND REVERSE MATHEMATICS 19

Proof. We first apply lemma 2.3 to replace A with an extensionally equivalent
algebra A′ in which we can uniformly compute boolean combinations via a boolean
embedding. We abuse notation in the remainder of this proof by referring to A
rather than A′.

The infinite set Perm(W )×QPart(|W |) exists by recursive comprehension, and
by primitive recursion there exists a function en : N → Perm(W ) × QPart(|W |)
enumerating it. Let θ(n, v, w) be a Σ0

0 formula which says that en(n) = (p, s) and
either there exists a unique j < |s| − 1 such that v ∈ As(j) and w = p(i), or there
exists no such unique j and w = p(|s| − 1). The set F = {(n, v, w) : θ(n, v, w)}
exists by recursive comprehension and codes a sequence of profiles ⟨fi : i ∈ N⟩.

We now show that e = en−1 is a quasi-partition embedding of A into F . Let p
be a permutation of W , s a quasi-partition, and k = e(p, s). Suppose v ∈ V . We
reason by cases.

(1) Suppose there exists a unique j < |s| − 1 such that v ∈ As(j). Then
(k, v, p(j)) ∈ F by the construction of F , i.e. fk(v) = p(j).

(2) Now suppose there is no such j. Then (k, v, p(|s| − 1)) ∈ F by the con-
struction of F , i.e. fk(v) = p(|s| − 1).

Finally we show that F is uniformly A-measurable. Fix x, y ∈ X and a profile fn.
By the construction of F , en(n) = (s, p) for some quasi-partition s and permutation
p of W . For all j < |s|, let tj be a boolean formation sequence for the set

As(j) \
∪

i<|s|−1

{
As(i) if i ̸= j,
∅ otherwise.

and given boolean formation sequences t1 and t2, let
u(t1, t2) = t1 ⌢ t2 ⌢⟨(1, |t1| − 1, |t1| − 1),

(1, |t1|+ |t2| − 1, |t1|+ |t2| − 1),

(2, |t1|+ |t2| , |t1|+ |t2|+ 1)⟩.

Let h0(s, p, x, y) = ⟨⟩ and

hr(t,m, s, p, x, y) =

{
u(t, tj) if x <p(s(m−1)) y,

t otherwise.

Let h be the function defined by primitive recursion from h0 and hr. Define µ :
N × X × X → N by µ(n, x, y) = e∗(h(|s| , s, p, x, y)), where e∗ : BFS → N is a
boolean embedding of A into itself (this exists by lemma 2.3). We can then verify
by Σ0

0 induction that F is uniformly A-measurable via µ. □

Proof of theorem 5.4. Statements 1, 2, 3, and 4 are equivalent by lemma 5.2. To
complete the proof it suffices to show that 5 implies 4 and 1 implies 5. To show
that 5 implies 4, we work in ACA0 and suppose that S = ⟨V,X,A,F⟩ is a countable
society and that V is infinite. By lemma 2.6, there exists a non-principal ultrafilter
U on A, and hence by lemma 5.3 there exists a social welfare function σU for S
with the cofinite coalitions property.

Finally we show that 1 implies 5. Working in RCA0, let V ⊆ N be infinite and
let A be a countable atomic algebra over V . Fix X = {x, y, z}. By lemma 5.5
there exists a countable sequence of profiles F over V,X such that A is quasi-
partition embedded into F and F is uniformly A-measurable. S = ⟨V,X,A,F⟩ is
thus a countably infinite society, and so by FPT there exists a non-dictatorial social
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welfare function σ for S. By KS (theorem 4.4), there exists an ultrafilter Uσ on A
which is non-principal since σ is non-dictatorial. Since A is an arbitrary infinite
atomic algebra, this implies arithmetical comprehension by lemma 2.6. □

We conclude this section with a few remarks on the computability-theoretic
status of FPT. Early work in effectivising social choice theory emphasised the non-
computability of non-dictatorial social welfare functions, and thus an extension of
Arrow’s theorem from finite sets to computable sets. For example, Mihara [35]
showed that when V = N, A = REC, and F consists of all A-measurable profiles,
any non-dictatorial social welfare function for this society is non-computable. In the
present setting this is not automatic: there are countable societies with computable
non-dictatorial social welfare functions. The natural minimal example of this is
provided by a society based on a computable presentation of the finite–cofinite
algebra. There is a single non-principal ultrafilter on this algebra, and both it and
the non-dictatorial social welfare function derived from it via the construction in
lemma 5.3 are computable.

On the other hand, there are recursive counterexamples to Fishburn’s possibility
theorem far less complex than the societies considered by Lewis [32] or Mihara [35]
which we discussed in §1. The following argument is based on Kirby’s proof of the
reverse direction of lemma 2.6 [27, theorem 1.10]. Let h : N → N be a computable
enumeration of the halting problem 0′. Using lemma 2.3 we computably embed a
sequence of sets B = ⟨Bi : i ∈ N⟩ into a countable atomic algebra A, where B is
defined by

B = {(2n, v) : (∃m < v)(h(m) = n)} ∪ {(2n+ 1, n) : n ∈ N}.

By lemma 5.5 there exists a countable society S = ⟨N, 3,A,F⟩. We can then
construct a primitive recursive function g : N → N that computes the indexes of a
family of profiles such that x <g(n)(v) y if v ∈ B2n, and y <g(n)(v) x otherwise. If σ
is any non-dictatorial social welfare function for S, then 0′ ≤T σ, since 0′ = ran(h)
is Σ0

0 definable in the parameter σ by the formula φ(n) ≡ x <σ(g(n)) y. There will
only exist a v such that v ∈ B2n if n ∈ ran(h), but when there is, the cofinite
coalitions property ensures that x <f(v) y. S is thus a computable society all of
whose non-dictatorial social welfare functions compute 0′. Nevertheless, this non-
computability result is ‘easy’ since it only requires coding a single jump. A natural
question is thus whether we can obtain more precise degree-theoretic information
about the complexity of non-dictatorial social welfare functions.

6. Conclusion and further work

The results presented in this paper initiate the reverse mathematics of social
choice theory. In doing so, they demonstrate both the suitability of reverse math-
ematics as a framework in which to assess the effectivity of theorems from social
choice theory, and the fruitfulness of social choice theory as a source for reverse
mathematical results. It is straightforward within the present setting to define ad-
ditional types of collective choice rules for countable societies, allowing further the-
orems like Sen’s liberal paradox [46] or the Gibbard–Satterthwaite theorem [17, 43]
to be formalised in L2, and their reverse mathematical status to be investigated.
The latter theorem, which concerns strategic voting and the manipulability of elec-
tions, is a classical impossibility result from the 1970s. Like Arrow’s theorem, it
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has a corresponding possibility theorem when the set of voters is infinite [39]. Fi-
nally, the equivalence between FPT and arithmetical comprehension shows that
the existence of non-computable sets is essential to proving the existence of non-
dictatorial social welfare functions. On the one hand, this is a far weaker notion
of non-constructivity than that measured by equivalences to choice principles over
ZF. On the other, it shows that we cannot in general hope for computable rules for
social decision-making in countably infinite societies, even for countable societies
whose coalitions do not include all computable sets of voters.
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