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Abstract

In this paper we consider the logics Li
n obtained from the (n + 1)-

valued  Lukasiewicz logics  Ln+1 by taking the order filter generated by
i/n as the set of designated elements. In particular, the conditions of
maximality and strong maximality among them are analyzed. We present
a very general theorem which provides sufficient conditions for maximality
between logics. As a consequence of this theorem it is shown that Li

n is
maximal w.r.t. CPL whenever n is prime. Concerning strong maximality
between the logics Li

n (that is, maximality w.r.t. rules instead of axioms),
we provide algebraic arguments in order to show that the logics Li

n are not
strongly maximal w.r.t. CPL, even for n prime. Indeed, in such case, we
show there is just one extension between Li

n and CPL obtained by adding
to Li

n a kind of graded explosion rule. Finally, using these results, we show
that the logics Li

n with n prime and i/n < 1/2 are ideal paraconsistent
logics.

1 Introduction

In this paper we study the notion of maximality and strong maximality among
finite-valued propositional logics. Recall the usual notion of maximality found in
the literature: a propositional logic L1, that is a sublogic of another logic L2 (in
the sense of inclusionship of their consequence relations over the same signature),
is called maximal with respect to L2 if, roughly speaking, L1 extended with any
theorem of L2 which is not a theorem of L1, coincides with L2. Similarly, recall
the stronger notion of strong maximality following [2, 4, 35]: L1 is called strongly
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maximal with respect to L2 if, roughly speaking again, L1 extended with a rule
of inference valid in L2 but not a valid in L1, coincides with L2.

The problem of finding and characterizing maximal sublogics (in both senses)
of a given logic has already been addressed in the literature, specially in the
context of paraconsistent logics, where being maximal with respect to classical
logic is felt as a desirable or ideal feature, c.f. [3, 10]. Indeed, being maximal
means that, while still allowing non-trivial inconsistent theories, it retains as
much as possible of classical logic.

In the present paper we approach the general problem of characterizing
maximality (not necessarily for paraconsistent logics) in two different scenarios.
The first one considers a very general class of finite-valued logics, those defined
by almost arbitrary finite logical matrices. In such a context, we provide a
sufficient condition for a logic to be maximal w.r.t. another one with less truth-
values under very general conditions. This result, inspired on the notion of
recovery operators from paraconsistent logics, turns out to be very powerful
and encompasses many maximality results scattered in the literature.

The second scenario considers a particular class of finite-valued logics, the
class of n-valued  Lukasiewicz logics  Ln and their related logics defined by order
filters. We show that these logics, for n being prime, are maximal but not
strongly maximal with respect to classical logic. Actually, we show that each of
these logics can always be uniquely extended with a sort of explosion inference
rule such that the obtained logic is the unique one below classical logic, and
hence strongly maximal.

The paper is structured as follows. After this introduction, we provide in
Section 2 a very general condition for a finite matrix logic to be maximal w.r.t.
another one with less truth-values, and we analyze in particular the case of
3-valued logics. In the rest of the paper we focus our attention on the class
of finite-valued  Lukasiewicz logics Lin defined by order filters. In Section 3 we
identify which of these logics are maximal with respect to classical logic, while
in Section 4 we study their status regarding the property of strong maximality.
It is in Section 5 where we fully characterize, by algebraic techniques, conditions
of strong maximality. Finally, in Section 6 the question of ideal paraconsistent
logics (as introduced in [3]) will be analized in the present framework. Specifi-
cally, it will be shown that the logics Lin with n prime and i/n < 1/2 are ideal
paraconsistent logics. In addition, the case L1

3 will be discussed with more de-
tail, and it will be argued that this logic constitutes the 4-valued version of the
well-known 3-valued paraconsistent logic J3 (see [20]). We finish in Section 7
with some conclusions and prospects of future research.

2 Maximality and recovery operators

Let us recall the usual notion of maximality of a (standard) logic with respect
to another:

Definition 1. Let L1 and L2 two standard propositional logics defined over
the same signature Θ such that L1 is a proper sublogic of L2, i.e. such that
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`L1 ( `L2 , where `Li denotes the consequence relation of Li (for i = 1, 2).
Then, L1 is said to be maximal w.r.t. L2 if, for every formula ϕ over Θ, if `L2 ϕ
but 0L1

ϕ, then the logic L+
1 obtained from L1 by adding ϕ as a theorem,

coincides with L2.

By L+
1 above we mean the logic whose consequence relation is obtained from

the one of L1 as follows: for every set of formulas Γ ∪ {ψ} over Θ,

Γ `L+
1
ψ if Γ, {σ(ϕ) : σ is a substitution over Θ} `L1

ψ.

Remark 1. It should be noticed that, according to the above definition, if L1

is a proper sublogic of L2 such that they validate the same formulas (that is:
`L1 ϕ iff `L2 ϕ, for every formula ϕ) then L1 is maximal w.r.t. L2.

In this section, for the class of propositional logics induced by finite logical
matrices, we will provide a very general sufficient condition for a logic to be
maximal w.r.t. another one (see Theorem 1 below), its proof being inspired
in the role played by the so-called recovery operators in paraconsistent and
adaptive logics. Recall from [12] (see also [11, 10]) the definition of the class
of paraconsistent logics called Logics of Formal Inconsistency (LFIs): a given
logic, say L, is an LFI if it is paraconsistent w.r.t. some negation, say ¬ (that
is, there exist formulas α and β such that β does not follows from {α,¬α} in L).
In addition, there is a (primitive of definable) unary connective ◦ in L (called a
consistency operator) such that every formula β follows in L from a set of the
form{α,¬α, ◦α}.1 If L is an LFI which is sublogic of classical propositional logic
(CPL), presented in the same signature of L,2 then the consistency operator ◦
allows to recover CPL inside L by adding additional hypothesis concerning the
consistency (or ‘classicality’, or ‘well-behavior’) of some formulas. Namely, for
every (finite) set Γ ∪ {ψ} of formulas,

Γ `CPL ψ iff (∃Λ)[Γ, {◦α : α ∈ Λ} `L ψ],

where Λ is a set of formulas. This is what is called a Derivability Adjustment
Theorem (DAT). The idea of DATs was proposed by Battens in the context of
Adaptive logics, but this technique (as well as the notion of consistency operator)
was already used by da Costa for his well-known hierarchy of paraconsistent
systems Cn (see [18]).

A more interesting DAT (as, for instance, the ones obtained by da Costa)
requires that the consistency (or well-behavior) operator ◦ can just be applied
to the propositional variables occurring in Γ ∪ {ψ}. This suggests that, given
two standard propositional logics L1 and L2 defined over the same signature Θ
such that `L1 ⊆ `L2 , a DAT between both logics can be defined in terms of a
recovery operator ◦ (generalizing the idea of LFIs): for every (finite) Γ ∪ {ψ},

Γ `L2 ψ iff Γ, {◦p1, . . . , ◦pm} `L1 ψ,

1This is a slightly simplified presentation of the original definition of LFIs.
2In this case, the formulas ◦α take the value 1 for every evaluation in CPL.

3



where {p1, . . . , pm} is the set of propositional variables occurring in Γ ∪ {ψ}.
The idea then is that if one of such recovery operators ◦ϕ can be defined as

a family of instances of a theorem ϕ of L2 which is not derivable in L1, and if
this process can be reproduced for any of such formulas ϕ, then it will follow
that L2 is maximal w.r.t. L1. To be more general, a finite recovery set ©(p) of
formulas depending only on one variable p will be considered instead of a single
formula ◦(p), following the original definition of LFIs. Actually, in Theorem 1
below some sufficient conditions are given in order to define such recovery sets,
which will allow us to determine if one logic is maximal w.r.t. another.

In what follows, L(Θ) will denote the term algebra generated by a proposi-
tional signature Θ from a fixed set P = {pn : n ≥ 1} of propositional variables.
If A is an algebra over Θ then the set of homomorphisms from L(Θ) to A will
be denoted by Hom(L(Θ),A).

Given an algebra A over Θ and a non-empty subset F ⊆ A, the pair 〈A, F 〉
is called a logical matrix [39]. The logic L defined by the matrix 〈A, F 〉 over
L(Θ) is given by the following consequence relation: for every set of formulas
Γ ∪ {ϕ} ⊆ L(Θ),

Γ `L ϕ if, for all e ∈ Hom(L(Θ),A), e(ψ) ∈ F for all ψ ∈ Γ implies e(ϕ) ∈ F.

From now on, with no danger of confusion, given a logical matrix 〈A, F 〉 we will
write L = 〈A, F 〉 to refer to the corresponding induced logic defined as above.
We will also use the term matrix logic to refer a logic defined by a logical matrix.

Lemma 1. Let L1 = 〈A1, F1〉 and L2 = 〈A2, F2〉 be two matrix logics defined
over a signature Θ such that A2 is a subalgebra of A1 and F2 = F1 ∩A2. Then
`L1
⊆ `L2

, that is: for every Γ ∪ {ψ}, if Γ `L1
ψ then Γ `L2

ψ.

Proof. Assume that Γ`L1
ψ. Let e ∈ Hom(L(Θ),A2) be an evaluation for L2

such that e[Γ] ⊆ F2. Let ē : L(Θ) → A1 such that ē(ϕ) = e(ϕ) for every
ϕ ∈ L(Θ). Then ē ∈ Hom(L(Θ),A1), so ē is an evaluation for L1 such that
ē[Γ] ⊆ F1. By hypothesis, ē(ψ) ∈ F1 and so e(ψ) ∈ F1 ∩ A2 = F2. This shows
that Γ `L2

ψ.

After this previous lemma, we can state the main result on this section.

Theorem 1. Let L1 = 〈A1, F1〉 and L2 = 〈A2, F2〉 be two distinct finite matrix
logics over a same signature Θ such that A2 is a subalgebra of A1 and F2 =
F1 ∩A2. Assume the following:

1. A1 = {0, 1, a1, . . . , ak, ak+1, . . . , an} and A2 = {0, 1, a1, . . . , ak} are finite
such that 0 6∈ F1, 1 ∈ F2 and {0, 1} is a subalgebra of A2.

2. There are formulas >(p) and ⊥(p) in L(Θ) depending at most on one
variable p such that e(>(p)) = 1 and e(⊥(p)) = 0, for every evaluation e
for L1.

3. For every k+ 1 ≤ i ≤ n and 1 ≤ j ≤ n (with i 6= j) there exists a formula
αi
j(p) in L(Θ) depending at most on one variable p such that, for every

evaluation e, e(αi
j(p)) = aj if e(p) = ai.
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Then, L1 is maximal w.r.t. L2.

Proof. Let us begin by observing that the family of evaluations for L1 which
take values in A2 for every propositional variable can be identified with the
family of evaluations for L2.3

Notice that, by Lemma 1, `L1
⊆ `L2

. Suppose that there is some formula
ϕ(p1, . . . , pm) such that `L2 ϕ but 0L1 ϕ (otherwise the proof is done, by
Remark 1). Then, e(ϕ) ∈ F2 for every evaluation e ∈ Hom(L(Θ),A2), but
there is an homomorphism e0 ∈ Hom(L(Θ),A1) such that e0(ϕ) 6∈ F1. By the
observation at the beginning of the proof (and by considering that F2 ⊆ F1),
there exists a propositional variable pi (for 1 ≤ i ≤ m) such that e0(pi) 6∈ A2.
Consider now a substitution σ0 such that

σ0(p) =

 >(p1) if e0(p) = 1,
⊥(p1) if e0(p) = 0,
pj if e0(p) = aj (for 1 ≤ j ≤ n)

and let γ(p1, . . . , pn) = σ0(ϕ). Observe that some of the variables pj may not
appear in γ, but at least one variable pj (with k + 1 ≤ j ≤ n) must occur in γ,
by the hypothesis over e0. Now we can state two immediate facts:

Fact 1: Given an evaluation e for L1, if e(pj) ∈ A2 for every 1 ≤ j ≤ n then
e(γ) ∈ F2.

Proof: follows from the observation at the beginning of the proof, and by noting
that γ is an instance of a tautology of L2.

Fact 2: Given an evaluation e for L1, if e(pj) = aj for 1 ≤ j ≤ n then e(γ) =
e0(ϕ) 6∈ F1.

Proof: Observe that, from the hypothesis, it follows that e(σ0(pi)) = e0(pi) for
every 1 ≤ i ≤ m.

Now, for any propositional variable p, let αj
j(p) = p for every 1 ≤ j ≤ n, and

let ©(p) be the finite set of formulas

©(p) = {γ(αi
1(p), . . . , αi

n(p)) : k + 1 ≤ i ≤ n}.

Let e be an evaluation in L1. Observe the following:

(i) If e(p) ∈ A2 then e(αi
j(p)) ∈ A2 (since A2 is a subalgebra). For each

k + 1 ≤ i ≤ n let ei be an evaluation for L1 such that ei(pj) = e(αi
j(p)), for ev-

ery 1 ≤ j ≤ n. Then ei(γ) ∈ F2 , by Fact 1. But ei(γ) = e(γ(αi
1(p), . . . , αi

n(p)))
and so e(γ(αi

1(p), . . . , αi
n(p))) ∈ F2 for every k + 1 ≤ i ≤ n. This means that

e[©(p)] ⊆ F1 if e(p) ∈ A2.

(ii) If e(p) /∈ A2 then e(p) = ai for some k+1 ≤ i ≤ n. From this, e(αi
j(p)) = aj

for all 1 ≤ j ≤ n. Let e′ be an evaluation for L1 such that e′(pj) = aj ,

3This fact was used in the proof of Lemma 1.
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for every 1 ≤ j ≤ n. Then e′(γ) = e(γ(αi
1(p), . . . , αi

n(p))). But, by Fact 2,
e′(γ) = e0(ϕ) /∈ F1 and so e(γ(αi

1(p), . . . , αi
n(p))) /∈ F1. Thus, e[©(p)] 6⊆ F1 if

e(p) /∈ A2. Equivalently, e(p) ∈ A2 if e[©(p)] ⊆ F1.

From the observations (i) and (ii) it follows that

(∗) e[©(p)] ⊆ F1 iff e(p) ∈ A2.

Finally, let L+
1 be the logic obtained from L1 by adding ϕ (and all of its in-

stances) as a theorem. As observed above,

Γ `L+
1
ψ iff Γ, {σ(ϕ) : σ is a substitution in L(Θ)} `L1 ψ.

Fact 3: Let Γ ∪ {ψ} be a finite a set of formulas in L(Θ) depending on the
variables p1, . . . , pt. Then

(∗∗) Γ `L2 ψ iff Γ,©(p1), . . . ,©(pt) `L1 ψ.

Proof: Assume that Γ `L2 ψ and let e ∈ Hom(L(Θ),A1) such that e[Γ ∪⋃t
i=1©(pi)] ⊆ F1. By (∗), e(pi) ∈ A2 for every 1 ≤ i ≤ t. Consider now

an evaluation ē ∈ Hom(L(Θ),A2) such that ē(p) = e(p) if p ∈ {p1, . . . , pt},
and ē(p) = 0 otherwise. Then ē(β) = e(β) for every β in L(Θ) depending on
the variables p1, . . . , pt. Thus, ē[Γ] ⊆ F1 ∩ A2 = F2 whence ē(ψ) ∈ F2, by
hypothesis. That is, e(ψ) ∈ F1 and so Γ,©(p1), . . . ,©(pt) `L1

ψ.
Conversely, assume that Γ,©(p1), . . . ,©(pt) `L1 ψ and consider an eval-

uation ē ∈ Hom(L(Θ),A2) such that ē[Γ] ⊆ F2. Define an evaluation e ∈
Hom(L(Θ),A1) such that e(p) = ē(p) for every variable p. Then e(β) = ē(β)
for every β in L(Θ) and so e[Γ] ⊆ F1 and also e[©(pi)] ⊆ F1 for every 1 ≤ i ≤ t,
by (∗). By hypothesis, e(ψ) ∈ F1 and then ē(ψ) ∈ F1 ∩ A2, that is, ē(ψ) ∈ F2.
This shows that Γ `L2 ψ, proving Fact 3.

Consider now a finite a set of formulas Γ ∪ {ψ} in L(Θ) depending on the
variables p1, . . . , pt. Suppose that Γ `L2

ψ. Then Γ,©(p1), . . . ,©(pt) `L1
ψ, by

Fact 3. But the latter implies that Γ, {σ(ϕ) : σ is a substitution in L(Θ)} `L1

ψ, because each ©(pi) is a set of instances of ϕ. From this, it follows that
Γ `L+

1
ψ, by definition of L+

1 .

On the other hand, suppose that Γ `L+
1
ψ. Given that `L1

⊆ `L2
(by

Lemma 1) and that `L2
ϕ (by hypothesis) then Γ `L2

ψ, by definition of L+
1 .

This shows that L+
1 coincides with L2 and so L1 is maximal w.r.t. L2.

In the next example we show an application of Theorem 1 in order to prove
some maximality conditions for two logics related to the well-known 4-valued
logic FOUR introduced by Belnap and Dunn [21, 5, 6].

Example 1. Consider Belnap-Dunn’s matrix logic BD = 〈M4, {1, B}〉, where
M4 = 〈M4,∧,∨,¬〉 is the algebra associated to the logical lattice M4 (see Fig. 1)
expanded with the De Morgan negation ¬ defined as:
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Figure 1: Lattice M4.

¬
1 0
B B
N N
0 1

Much later, De and Omori considered in [19] the expansion BD∼ of BD by
adding the strong negation ∼, given by the following table:

x ∼x
0 1
N B
B N
1 0

On the other hand, before Belnap and Dunn’s investigations, L. Monteiro al-
ready considered in 1963 (see [33]) the 4-valued algebra M4m obtained from M4

by adding a modal operator � defined as follows:

�

1 1
B 0
N 0
0 0

This led to A. Monteiro to consider the variety TMA of tetravalent modal
algebras, which is the one generated by M4m (cf. [28]). As proven by Font and
Rius in [23], the (degree-preserving) logic of TMA is characterized by the matrix
logic MB = 〈M4m, {B, 1}〉. Previous to [19] and with a different motivation,
Coniglio and Figallo define in [16] the logicM∼B = 〈M∼4m, {B, 1}〉, the expansion
ofMB with the strong negation ∼ described above, characterizing the (degree-
preserving) logic of the variety generated by M∼4m (which was independently
introduced by A. Monteiro in [32] and by G. Moisil in [31].)
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By using Theorem 1, it is easy to show that both M∼B and BD∼ are max-
imal relative to CPL presented in the signature Θ = {∧,∨,¬ ∼,�} and Θ′ =
{∧,∨,¬ ∼} over the two-element Boolean algebra B2, respectively (where �p is
equivalent to p and ¬p is equivalent to ∼p). Indeed, observe that B2 (expanded
by ∼ and �) is a subalgebra of M∼4m, and >(p) = p ∨ ∼p and ⊥(p) = p ∧ ∼p
are as required. Notice that, since there are in M4 just two values besides the
‘classical’ ones, namely a1 = N and a2 = B, the formulas α1

2(p) = α2
1(p) = ∼p

are such that e(α1
2(p)) = B if e(p) = N , e(α2

1(p)) = N if e(p) = B. Therefore,
it follows from Theorem 1 that M∼B is maximal reative to CPL presented over
the signature Θ. Similarly, it also follows that BD∼ is maximal relative to CPL
presented over the signature Θ′ (the latter corresponding to [19, Theorem 3]).
�

As an immediate consequence of Theorem 1, it follows that any 3-valued
logic which extends CPL and it can express the top and the bottom formulas,
is maximal w.r.t. CPL.

Corollary 1. Let A1 be an algebra defined over a signature Θ with domain
A1 = {0, 1/2, 1}, and consider the matrix logic L1 = 〈A1, F1〉 where 0 6∈ F1 and
1 ∈ F1. Further, let A2 be a subalgebra of A1, with A2 = {0, 1}, and assume that
the matrix logic L2 = 〈A2, {1}〉 is a presentation of classical propositional logic
CPL over signature Θ such that L2 is distinct from L1. Suppose additionally
there are formulas >(p) and ⊥(p) in L(Θ) on one variable p such that e(>(p)) =
1 and e(⊥(p)) = 0, for every evaluation e for L1. Then, L1 is maximal w.r.t.
CPL (presented as L2).

Proof. Observe that L1 and L2 are matrix logics as in Lemma 1, since {1} =
F1∩A2. Given that A1 contains just one element out of {0, 1}, namely a1 = 1/2,
then Theorem 1 can be applied (since requirement (3) is satisfied by vacuity).
As a consequence of Theorem 1, L1 is maximal w.r.t. CPL (presented as L2).

In the next example some instances of Corollary 1 are analyzed, showing
the strength of this result: indeed, several well-known 3-valued logics which are
known to be maximal w.r.t. CPL fall inside the scope of Corollary 1.

Example 2. (1) Let us begin with  Lukasiewicz 3-valued logic  L3 = 〈 LV3, {1}〉,
where  LV3 is the usual 3-valued algebra for  L3 over Θ = {¬,→} with domain
{0, 1/2, 1}. Let L1

1 = 〈B2, F 〉 be a presentation of CPL, where B2 is the two-
element Boolean algebra over Θ with domain {0, 1} and F = {1}. It is easy to
see that  L3 satisfies the requirements of Corollary 1 by taking >(p) = (p → p)
and ⊥(p) = ¬(p→ p). This produces a new proof of the maximality of  L3 w.r.t.
CPL. In order to illustrate this fact consider by instance ϕ(p1) = p1 ∨ ¬p1 :=
(p1 → ¬p1) → ¬p1, a formula which is valid in CPL but it is not valid in  L3.
Indeed, any evaluation e0 in  L3 where e0(p1) = 1/2 is such that e0(ϕ) = 1/2,
a non-designated truth-value. By following the construction described in the
proof of Theorem 1 (where α1

1(p) = p), it follows that γ(p1) = ϕ(p1), and so
◦(p) = p ∨ ¬p is a recovery operator for  L3 w.r.t. CPL defined in terms of ϕ.

8



Thus,  L3 plus ϕ coincides with CPL. Notice that the truth-table of the recovery
operator ◦ is as follows:

◦
1 1

1/2 1/2
0 1

(2) Consider now the logic L1
2 = 〈 LV3, {1, 1/2}〉. As it is well known, the

matrices of  L3 are functionally equivalent to that of the 3-valued paraconsistent
logic J3, introduced by da Costa and D’Ottaviano, see [20]. This means that L1

2

coincides with J3 up to language. By item (1) and Corollary 1 it follows that
L1

2 is maximal w.r.t. CPL. This constitutes a new proof of the maximality of J3

(and all of its alternative presentations, such as LFI1 or MPT, see [17]) w.r.t.
CPL. A generalization of J3 to  L4, called J4, will be proposed in Subsection
6.2. As an illustration of how the technique of the proof works, let ϕ(p1) =
¬((¬p1 → p1) ∧ (p1 → ¬p1)). It is easy to see that ϕ(p1) is valid in CPL but
it is not valid in L1

2: any evaluation e0 in L1
2 with e0(p1) = 1/2 is such that

e0(ϕ) = 0. Then, by the proof of Theorem 1 (where α1
1(p) = p), γ(p1) = ϕ(p1)

and so ◦(p) = ¬((¬p→ p) ∧ (p→ ¬p)) is a recovery operator for L1
2 w.r.t. CPL

defined in terms of instances of ϕ. This means that L1
2 plus ϕ coincides with

CPL. The truth-table of ◦ is as follows:

◦
1 1

1/2 0
0 1

(3) In an unpublished draft, J. Marcos [29] (see also [11, Section 5.3]) proposes
a family of 8,192 logics which are 3-valued and paraconsistent, belonging to
the hierarchy of LFIs. Among these logics, there is J3 (whose truth-tables can
define the matrices of all the other logics in the family) and Sette’s logic P1

(see [37]), whose truth-tables are definable by the matrices of any of the logics
in the family. All these logics are maximal w.r.t. CPL presented in the signature
{∧,∨,→,¬, ◦} such that ◦ϕ is valid for every ϕ (that is, algebraically, ◦(x) = 1
for all x ∈ {0, 1}). The proof of maximality of all these logics w.r.t. CPL follows
easily from Corollary 1 by taking >(p) = p→ p and ⊥(p) = p ∧ ¬p ∧ ◦p.
(4) Let I1 be the 3-valued paracomplete logic introduced by A.M. Sette and
W.A. Carnielli in [38]. It is defined over Θ = {→,¬} with domain {0, 1/2, 1}
and designated value 1, and whose operations are given by the tables below.

→ 1 1/2 0

1 1 0 0
1/2 1 1 1
0 1 1 1

¬
1 0

1/2 0
0 1

Once again, the maximality of I1 w.r.t. CPL follows from Corollary 1 by taking
>(p) = p→ p and ⊥(p) = ¬(p→ p).
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(5) Let Gn+1 = 〈Gn+1, {1}〉 be the (n+ 1)-valued Gödel logic defined over the
algebra Gn+1 for Θ = {∧,∨,→,¬} with domain

{
0, 1

n , . . . ,
n−1
n , 1

}
such that

x ∧ y = min{x, y}; x ∨ y = max{x, y}; x → y = 1 if x ≤ y and x → y = y
otherwise; and ¬x = 1 if x = 0 and ¬x = 0 otherwise. In particular, G3 is
defined over {0, 1/2, 1} with the following tables for → and ¬:

→ 1 1/2 0

1 1 1/2 0
1/2 1 1 0
0 1 1 1

¬
1 0

1/2 0
0 1

Clearly G3 falls within the scope of Corollary 1 (where >(p) = p → p and
⊥(p) = p∧¬p) and so it is maximal w.r.t. CPL presented over Θ. Observe that
for n ≥ 3 the algebra Gn+1 does not have enough expressive power to define
all the formulas αi

j in order to apply Theorem 1. For instance, in G4 there

are no formulas α1
2(p) and α2

1(p) such that e(α1
2(p)) = 2/3 if e(p) = 1/3 and

e(α2
1(p)) = 1/3 if e(p) = 2/3. �

Example 3. In [3] the authors introduced the notion of ideal paraconsistent
logics. Together with this, they presented a family Mn+2 of (n + 2)-valued
matrix logics (with n ≥ 2) which are ideal paraconsistent (and so, from the very
definition, they are also maximal w.r.t. CPL, see Definition 4 in Section 6). The
fact that all these logics are maximal w.r.t. CPL (as proved in [3]) can also be
proved by applying Theorem 1, as it will be shown in what follows.

Given n ≥ 2 consider the algebras An+2 over the signature Θ = {¬, �,⊃}
with domain An+2 = {0, 1, a1, . . . , an} such that the operations are defined as
follows: ¬0 = 1, ¬1 = 0 and ¬x = x otherwise; �0 = 1, �1 = 0, �ai = ai+1 if
i < n and �an = a1; x ⊃ y = 1 if x /∈ D = {1, a1} and x ⊃ y = y otherwise. The
logic Mn+2 is defined by the logical matrix 〈An+2, D〉 for every n ≥ 2. Let us
see that the conditions of Theorem 1 are satisfied for every logic Mn+2 w.r.t.
CPL. It is easy to see that {0, 1} is a subalgebra of An+2 and so, by Lemma
1, Mn+2 is a sublogic of CPL presented in the signature Θ in which � coincides
with negation and 1 is the designated value. In addition, it is easy to see that,
given a propositional variable p, the formulas >(p) = (p ⊃ �p) ⊃ (p ⊃ �p) and
⊥(p) = ¬>(p) are such that e(>(p)) = 1 and e(⊥(p)) = 0, for every evaluation
e. Consider now the formulas αi

j(p) = �j−ip if i < j and αi
j(p) = �n−i+jp if

i > j, where �0p = p and �i+1p = ��i p, for every i. An easy computation shows
that e(αi

j(p)) = aj if e(p) = ai, for every i 6= j. Therefore, the conditions of
Theorem 1 are fullfilled and so each logic Mn+2 is maximal w.r.t. CPL.

The question of ideal paraconsistent logics in the present framework will be
treated again in Section 6. �

The examples given above show the value of Theorem 1 in order to state
maximality of logics under certain hypothesis concerning the expressive power of
the given logics. Indeed, several proofs of maximality found in the literature can
be easily obtained as a consequence of Theorem 1: for instance, the ones given
for the 3-valued paraconsistent logic P1 in [37, Proposition 11], for the 3-valued
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logic I1 in [38, Proposition 17] and for J3 (formulated as the equivalent logic
LFI1) in [13, Theorem 4.6], respectively. It is worth noting that all the examples
of maximality of a logic L1 w.r.t. another logic L2 given in this section, as well
as the examples to be given in the rest of the paper, are non-vacuous in the
sense of Remark 1. Indeed, in all the examples of maximality presented here
the set of theorems of L1 is strictly contained in the set of theorems of L2, thus
the notion of maximality holds in a non-trivial way. For instance, the formula
p→ ◦p is a theorem of CPL which does not hold in any of the logics presented in
Example 2(3), while the formula p→ ¬ � p is a theorem of CPL which does not
hold in any of the systems Mn+2 presented in Example 3. On the other hand,
it should be observed that the set of designated values may not play a relevant
role with respect to maximality, for instance, when analyzing maximality with
respect to CPL (recall e.g. Corollary 1 or see Proposition 2 in next section).

As observed above, Theorem 1 cannot be applied to logics which do not have
enough expressive power, as seen in Examples 2(5) for Gödel’s logics Gn (with
n ≥ 4). This is not the case for finite-valued  Lukasiewicz logics, as it will be
shown in the next section.

3 Maximality between finite-valued  Lukasiewicz
logics induced by order filters

In the rest of the paper we will deal with matrix logics based on the family of
finite-valued  Lukasiewicz logics  Ln with n ≥ 2. The (n+ 1)-valued  Lukasiewicz
logic can be semantically defined as the matrix logic

 Ln+1 = 〈 LVn+1, {1}〉,

where  LVn+1 = ( LVn+1,¬,→) with  LVn+1 =
{

0, 1
n , . . . ,

n−1
n , 1

}
, and the oper-

ations are defined as follows: for every x, y ∈  LVn+1,

¬x = 1− x ( Lukasiewicz negation)

x→ y = min{1, 1− x+ y} ( Lukasiewicz implication)

The following operations can be defined in every algebra  LVn+1:

x⊗ y = ¬(x→ ¬y) = max{0, x+ y − 1} (strong conjunction)

x⊕ y = ¬x→ y = min{1, x+ y} (strong disjunction)

x ∨ y = (x→ y)→ y = max{x, y} (lattice disjunction)

x ∧ y = ¬((¬x→ ¬y)→ ¬y) = min{x, y} (lattice conjunction)

Observe that  L2 is the usual presentation of classical propositional logic CPL
as a matrix logic over the two-element Boolean algebra B2 with domain {0, 1}
with signature {¬,→}.

11



The logics  Ln can also be presented as Hilbert calculi that are axiomatic
extensions of the infinite-valued  Lukasiewicz logic  L∞. Recall that  L∞ is al-
gebraizable and the class MV of all MV-algebras is its equivalent quasivariety
semantics [36, 14]. Since algebraizability is preserved by finitary extensions then
every finite valued  Lukasiewicz logic  Ln is also algebraizable, and we will denote
by MVn its corresponding subvariety of algebras.

In this section, finite-valued  Lukasiewicz logics with a set of designated values
possibly different to {1} will be studied from the point of view of maximality.
First, some notation will be introduced.

For every i ≥ 1 and for every x ∈  LVn+1, ix will stand for x ⊕ · · · ⊕ x
(i-times), while xi will stand for x⊗ · · · ⊗ x (i-times).

For 1 ≤ i ≤ n let

Fi/n = {x ∈  LVn+1 : x ≥ i/n} =
{ i
n
, . . . ,

n− 1

n
, 1
}

be the order filter generated by i/n, and let

Lin = 〈 LVn+1, Fi/n〉

be the corresponding matrix logic. From now on, the consequence relation of
Lin is denoted by �Li

n
. Observe that  Ln+1 = Lnn for every n. In particular, CPL

is L1
1 (that is,  L2). If 1 ≤ i,m ≤ n, we can also consider the following matrix

logic:
Li/nm = 〈 LVm+1, Fi/n ∩  LVm+1〉.

Since Fi/n ∩  LVm+1 = Fj/m for some 1 ≤ j ≤ m, L
i/n
m = Ljm for that j. It is

interesting to notice that some of these logics are paraconsistent, and some are
not. Indeed, it is easy to prove the following characterization.

Proposition 1. The logic Lin is paraconsistent w.r.t. ¬ iff i/n ≤ 1/2.

Proof. Lin is paraconsistent w.r.t. ¬ iff there exists x ∈  LVn+1 such that x ≥ i/n
and ¬x ≥ i/n, iff i/n ≤ x ≤ (n− i)/n for some x ∈  LVn+1, iff i/n ≤ (n− i)/n,
iff 2i ≤ n.

Thus, for instance, for n = 5 it follows that L1
5 and L2

5 are paraconsistent,
while L3

5, L4
5 and L5

5 =  L6 are explosive. By its turn, if n = 3 then L1
3 is

paraconsistent, while L2
3 and L3

3 =  L4 are explosive. The paraconsistent logics
of this form which are maximal w.r.t. CPL will be analyzed with more detail in
Section 6.

Theorem 1 can be used in order to analyze the maximality of the logic Lin
w.r.t. L

i/n
m whenever m|n (taking into account that  LVm+1 is a subalgebra of

 LVn+1 iff m|n). In particular, the maximality of certain instances of Lin w.r.t.
CPL can be obtained by using Theorem 1.

The following examples deal with the algebras  LVn which, as observed
above, can define a meet operator ∧ such that, for any order filter F , (a∧b) ∈ F
iff a, b ∈ F . Because of this, a recovery operator ◦(p) will be considered instead
of a recovery set ©(p), consisting of the conjunction of all of its members.
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Example 4. Let us first consider the case of  LV4. For 1 ≤ i ≤ 3 let Li3 =
〈 LV4, Fi/3〉. Then F1/3 = {1/3, 2/3, 1}, F2/3 = {2/3, 1} and F3/3 = F1 =
{1}. As in the previous example, it can be proved that each Li3 satisfies the
requirements of Theorem 1 w.r.t. CPL and so each Li3 is maximal w.r.t. CPL,
presented as CPL = 〈B2, {1}〉. Indeed, B2 is a subalgebra of  LV4 and >(p) =
(p → p) and ⊥(p) = ¬(p → p) are as required. Finally, the formulas α1

2(p) =
α2

1(p) = ¬p are such that e(α1
2(p)) = 2/3 if e(p) = 1/3, e(α2

1(p)) = 1/3 if
e(p) = 2/3. (Observe that there are in  LV4 just two ‘non-classical’ values:
a1 = 1/3 and a2 = 2/3.)

Fix 1 ≤ i ≤ 3. Thus, given a theorem ϕ(p1, . . . , pm) of CPL which is not valid
in Li3, consider the formula γ(p1, p2) as in the proof of Theorem 1. Then, the
formula ◦(p) = γ(p,¬p)∧γ(¬p, p) defines an operator (in terms of a conjunction
of instances of ϕ) which allows to recover classical logic inside Li3. �

From Komori’s characterization of axiomatic extensions of (infinite-valued)
 Lukasiewicz logic  L∞ [27], it directly follows that the logic  Ln+1 is maximal
w.r.t. CPL iff n is a prime number. By adapting our previous arguments, we
can obtain the following extension of this classical result for logics matrix logics
over  LVn+1 with (almost) arbitrary filters.

Proposition 2. Let n ≥ 2 and ∅ 6= F ⊆  LVn+1. Then, the logic L =
〈 LVn+1, F 〉 is maximal w.r.t. CPL provided that 0 /∈ F and n is a prime number.

Observe that, as a direct consequence, all the logics Liq with q prime are
maximal w.r.t. classical logic.

Corollary 2. Let q be a prime number, and 1 ≤ i ≤ q. Then, the logic Liq is
maximal w.r.t. CPL.

Remark 2. Note that, for a given prime q, if i < j the set of theorems of Ljq is

strictly included in the set of theorems of Liq. However this does not contradict
the fact that both logics are maximal w.r.t. CPL, since their consequence rela-
tions are in fact incomparable. For example, the set of theorems of L2

3 is included
in the set of theorems of L1

3, but the inclusion is strict: |=L1
3

(p ∨ ¬p)⊗ (p ∨ ¬p)
while 6|=L2

3
(p ∨ ¬p)⊗ (p ∨ ¬p). It suffices to consider an evaluation e such that

e(p) = 1/3; then e((p∨¬p)⊗(p∨¬p)) = 1/3 6≥ 2/3. On the other hand, L2
3 is not

a sublogic of L1
3: p |=L2

3
(p⊗p)⊕(p⊗p) but p 6|=L1

3
(p⊗p)⊕(p⊗p). In order to see

this, consider an evaluation e such that e(p) = 1/3; then e((p⊗p)⊕(p⊗p)) = 0.

Next examples exploit the fact that  Ln+1 is a sublogic of  Lm+1 iff m divides
n, considering additional filters as designated values, and obtaining maximality
in some cases.

Example 5. Now, the logics asociated to the algebra  LV5 will be analyzed.
For 1 ≤ i ≤ 4 let Li4 = 〈 LV5, Fi/4〉 such that F1/4 = {1/4, 1/2, 3/4, 1}, F2/4 =
F1/2 = {1/2, 3/4, 1}, F3/4 = {3/4, 1}, and F4/4 = F1 = {1}. Since 2 divides
4 then  LV3 is a subalgebra of  LV5 and  L5 is a sublogic of  L3. We will prove

that, indeed, any Li4 (for 1 ≤ i ≤ 4) is maximal w.r.t. L
i/4
2 = 〈 LV3, Fi/4 ∩  LV3〉,

by using Theorem 1.
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By Lemma 1, each Li4 is a sublogic of L
i/4
2 .  LV3 is a subalgebra of  LV5 and

>(p) = (p → p) and ⊥(p) = ¬(p → p) are as required. Let a1 = 1/2, a2 = 1/4
and a3 = 3/4, and consider the formulas α2

1(p) = p⊕p, α2
3(p) = α3

2(p) = ¬p, and
α3

1(p) = p⊗ p. Finally, let αi
i(p) = p for i = 2, 3. Then, the formulas αi

j defined

above are such that e(αi
j(p)) = aj if e(p) = ai, for i = 2, 3 and j = 1, 2, 3.

Fix 1 ≤ i ≤ 4. Thus, given a theorem ϕi(p1, . . . , pmi
) of L

i/4
2 which is not

valid in Li4, consider the formula γi(p1, p2, p3) as in the proof of Theorem 1.
Then, the formula

◦i(p) = γi(p⊕ p, p,¬p) ∧ γi(p⊗ p,¬p, p)

defines a recovery operator (in terms of a conjunction of instances of ϕi) which

allows to recover L
i/4
2 inside Li4. This shows that the latter is maximal w.r.t. the

former. �

Example 6. Consider now the case of  LV7. Since 2 and 3 divide 6, it follows
that  LV3 and  LV4 are subalgebras of  LV7 and so L = 〈 LV7, F 〉 is a sublogic
of both 〈 LV3, F ∩  LV3〉 and 〈 LV4, F ∩  LV4〉 for any non-trivial filter F of  LV7.
However, it is not possible to prove the maximality of L by applying Theorem 1
since, for every formula α(p) and every evaluation e in  LV7, e(α(p)) 6= 1/2 if
e(p) ∈ {1/3, 2/3} (since  LV4 is a subalgebra), while e(α(p)) /∈ {1/3, 2/3} if
e(p) = 1/2 (since  LV3 is a subalgebra). �

As another example of application of Theorem 1, we can obtain the following

maximality condition of a logic Lin with respect to a logic L
i/n
m .

Proposition 3. Let 1 ≤ i,m ≤ n. Then Lin = 〈 LVn+1, Fi/n〉 is maximal w.r.t.

L
i/n
m = 〈 LVm+1, Fi/n ∩  LVm+1〉 if the following condition holds: there is some

prime number q and k ≥ 1 such that n = qk, and m = qk−1.

Proof. We recall that  LVn+1 is singly generated by any element 0 < l
n < 1

such that l and n are mutually prime [24, Lemma 1.2]. Then, since q is prime,
 LVqk+1r  LVqk−1+1 = {0 < r

qk
< 1 : r and q are mutually prime} and therefore

all conditions of Theorem 1 are satisfied.

4 On strong maximality and explosion rules in
the logics Liq

Along this section q will denote a prime number.
In the previous section we have seen that all the logics of the form Liq =

〈 LVq+1, Fi/q〉 are maximal w.r.t. CPL. However, there are maximal logics that
are not maximal w.r.t. CPL in an stronger sense, as firstly considered in [4, 3]
in the context of paraconsistent logics, or in [35] in a more general context of
belief revision techniques for change of logics.
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Definition 2. Let L1 and L2 two standard propositional logics defined over
the same signature Θ such that L1 is a proper sublogic of L2, i.e. such that
`L1

( `L2
. Then, L1 is said to be strongly maximal w.r.t. L2 if, for every

finitary rule ϕ1, . . . , ϕn/ψ over Θ, if ϕ1, . . . , ϕn `L2
ψ but ϕ1, . . . , ϕn 0L1

ψ,
then the logic L∗1 obtained from L1 by adding ϕ1, . . . , ϕn/ψ as structural rule,
coincides with L2.

By L∗1 above we mean the logic whose consequence relation `L∗1 is the mini-
mal extension of `L1 such that σ(ϕ1), . . . , σ(ϕn) `L∗1 σ(ψ) for any substitution
σ over Θ (see e.g. [39, 3]).

For instance, as observed in [19, Remark 14], the logic BD∼ introduced
in Section 2, that is maximal w.r.t. CPL, it is not strongly maximal relative to
CPL. Thus, a natural question is whether a given logic is strongly maximal w.r.t.
another logic. In particular, in this section, we are interested in studying the
status of the logics Liq = 〈 LVq+1, Fi/q〉 with q prime in relation to the notion of
strong maximality w.r.t. CPL. We will show that the answer is negative, as each
of them admits a proper extension by a finitary rule related to the explosion law
w.r.t.  Lukasiewicz negation. In fact, in Section 5.2 it will be shown that such
proper extensions are strongly maximal w.r.t. CPL.

Remark 3. By using the techniques presented in [15], a sound and complete

Hilbert calculus for each Liq (where i < q) can be defined from the one for  L≤q+1

(the degree-preserving counterpart of  Lq+1) by adding additional inference rules.
The negative feature of such approach is that these Hilbert calculi have “global”
inference rules, that is, inference rules such that one of its permises need to be
a theorem of  Lq+1. By a general result by Blok and Pigozzi (see Theorem 4.3
in [8]) and from Theorem 2 in Section 5 below, a standard Hilbert calculus for
Liq (for i < q) can be obtained from the usual one for Lqq =  Lq+1 by means
of translations. That is, such calculi have no “global” inference rules. The
negative side of this approach is that the resulting axiomatization is obtained
by translating connectives from the other logic, and so the resulting calculus
can appear as very artificial. As an alternative, it seems that a direct method
for defining a sound and complete “more natural” Hilbert calculus for each
Liq over a suitable signature can also be obtained by means of a ‘separation’
technique for the truth-values, similar to the one used in Subection 6.2 to define
an alternative axiomatization for L1

3. To verify this conjecture is left as an open
problem. Anyway, from now on it will be assumed the existence of a standard
Hilbert calculus Hi

q which is sound and complete for the logic Liq, where i < q.
Of course Hq

q will stand for the usual axiomatization of  Lq+1.

According to the notation introduced at the beginning of Section 3, iα is an
abbreviation for the formula α⊕ · · ·⊕α (i-times), and the consequence relation
of Lin is denoted by �Li

n
. Recall the following basic property of  LVn+1.

Lemma 2. For every 1 ≤ i ≤ n and x ∈  LVn+1: ix < i/n iff x = 0. Thus,
e(iα) < i/n iff e(α) = 0 for every evaluation e in  LVn+1 and every formula α.

From now on, ⊥ will denote any formula of the form ¬(p→ p), for a propo-
sitional variable p. Observe that e(⊥) = 0 for every evaluation in  LVn+1,
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every n ≥ 1 and every propositional variable p. This is why the choice of p is
inessential for a concrete construction of ⊥.

Consider, for 1 ≤ i ≤ q, the i-explosion law

(expi)
i(ϕ ∧ ¬ϕ)

⊥
.

It is not hard to prove that this rule is not derivable in any Hi
q, the sound and

complete Hilbert calculus given for the logic Liq (see Remark 3).

Corollary 3. For every 1 ≤ i ≤ q, the rule (expi) is not derivable in Hi
q.

Proof. We first observe that if p, p′ are two different propositional variables, then
i(p ∧ ¬p) 6�Li

n
p′ for 1 ≤ i ≤ n. Indeed, let e be an evaluation in  LVn+1 such

that e(p) /∈ {0, 1} and e(p′) = 0. Since e(p ∧ ¬p) 6= 0 then e(i(p ∧ ¬p)) ≥ i/n,
by Lemma 2. Hence, i(p ∧ ¬p) 6�Li

n
p′. Finally, the corollary then follows from

soundness and completeness of Hi
q w.r.t. Liq.

However, the i-explosion rule is clearly admissible in Hi
q since it is a passive

rule, that is: for no instance of the (expi) rule, the premisse can be a theorem
of Hi

q. Indeed, for any classical evaluation over {0, 1} it is the case that e(ϕ) ∈
{0, 1} for every formula ϕ and so e(i(ϕ ∧ ¬ϕ)) < i/n, by Lemma 2. This leads
us to consider the following definition.

Definition 3. H
i

q is the Hilbert calculus obtained from Hi
q by adding the i-

explosion rule (expi). We will denote by `Hi
q

and `
H

i
q

the notions of proof

associated to the Hilbert calculi Hi
q and H

i

q, respectively.

The following is a characterization of `
H

i
q

in terms of `Hi
q
.

Proposition 4. Let Γ ∪ {ϕ} be a set of formulas. Then Γ `
H

i
q
ϕ iff either

Γ `Hi
q
ϕ, or Γ `Hi

q
i(ψ ∧ ¬ψ) for some formula ψ.

Proof. ‘Only if’ part: Suppose that Γ `
H

i
q
ϕ such that Γ 0Hi

q
ϕ. Then, any

derivation in H
i

q of ϕ from Γ must use the rule (expi). Let ϕ1 . . . ϕn be a

derivation in H
i

q of ϕ from Γ. Thus, there exists 1 ≤ m < n such that ϕm =
i(ψ ∧ ¬ψ) for some formula ψ, allowing so the first application of (expi) in the
given derivation. This means that Γ `Hi

q
i(ψ ∧ ¬ψ), since it was assumed that

(expi) was not applied before ϕm in the given derivation.
‘If’ part: Suppose that Γ `Hi

q
ϕ. Then, clearly Γ `

H
i
q
ϕ. Now, suppose that

Γ `Hi
q
i(ψ ∧ ¬ψ) for some formula ψ. Then Γ `

H
i
q
⊥, by using (expi). But

⊥ �Li
q
ϕ and so ⊥ `Hi

q
ϕ, by completeness of Hi

q w.r.t. Liq. This means that
Γ `

H
i
q
ϕ.

The following question is how to characterize semantically the logic H
i

q with

respect to Liq, the original sematics for Hi
q. The answer will be obtained in the
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next section by algebraic arguments (Theorem 7 and Remark 4). Indeed, it will

be shown there that H
i

q is sound and complete w.r.t. L̄iq where, for every i and
n with 1 ≤ i ≤ n,

L̄in = 〈 LVn+1 ×  LV2, Fi/n × {1}〉
such that  LV2 is the two-element Boolean algebra B2 with domain {0, 1}.

5 Translations, equivalent logics and strong max-
imality

5.1 Preliminaries

Blok and Pigozzi introduce the notion of equivalent deductive systems in [8]
(see also [9]). Two propositional deductive systems S1 and S2 in the same
language L are equivalent iff there are two translations τ1, τ2 (finite subsets of
L-propositional formulas in one variable) such that:

• Γ `S1
ϕ iff τ1(Γ) `S2

τ1(ϕ),

• ∆ `S2 ψ iff τ2(∆) `S1 τ2(ψ),

• ϕ a`S1 τ2(τ1(ϕ)),

• ψ a`S2 τ1(τ2(ψ)).

From very general results stated in [8] it follows that two equivalent logic systems
are indistinguishable from the point of view of algebra, provided that one of them
is algebraizable. Indeed, in such case if one of the systems is algebraizable then
the other will be also algebraizable w.r.t. the same quasivariety. By applying
this fact to the systems of the form Lin studied in the previous sections, several
results on relative maximality between these systems and classical logic will be
obtained in the next Subsection 5.2. Actually, these results will be generalized
in Subsection 5.3 to obtain relative maximality results among the systems Lin.
However, for the sake of self containment, we prefer to leave the results of
Subsection 5.2 with their simpler proofs as well.

In the rest of this subsection, we provide the necessary preliminaries that
will be needed in the subsequent subsections.

We recall that  L∞ is algebraizable and the class MV of all MV-algebras
is its equivalent quasivariety semantics [36, 14]. Since algebraizability is pre-
served by finitary extensions then every finite valued  Lukasiewicz logic is also
algebraizable.

Now we can prove that the deductive systems Lin and Ljn are in fact equiv-
alent in the above sense. First, observe that, by the McNaughton functional
representation theorem [30], for every n ≥ 2 and every 1 ≤ m ≤ n there is an
MV-term λm,n(p) such that for every a ∈ [0, 1],

λm,n(a) =

 0, if a ≤ m−1
n ;

na− (m− 1), if m−1
n < a < m

n ;
1, if m

n ≤ a.
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Lemma 3. The restrictions of the λi,m and λn,n functions on LVn+1 are the
characteristic functions of the order filters Fi/n and F1 respectively, i.e. for each
a ∈ LVn+1,

λi,n(a) =

{
0, if a < i

n
1, if a ≥ i

n

λn,n(a) = an =

{
0, if a < 1
1, if a = 1

Theorem 2. For every n ≥ 2 and every 1 ≤ i, j ≤ n, Lin and Ljn are equivalent
deductive systems.

Proof. It is enough to prove that for every 1 ≤ i ≤ n − 1, Lin is equivalent
to Lnn =  Ln+1. Let the translations τ and σ be given by τ = {λi,n(p)} and
σ = {λn,n(p)}. It is easy to check that for every set of formulas Γ ∪ {ϕ},

Γ �Li
n
ϕ iff {τ(ψ) : ψ ∈ Γ} �Ln

n
τ(ϕ)

Γ �Ln
n
ϕ iff {σ(ψ) : ψ ∈ Γ} �Li

n
σ(ϕ)

ϕ ��Li
n
σ(τ(ϕ)) and ϕ ��Ln

n
τ(σ(ϕ)).

Thus, Lin and Lnn =  Ln+1 are equivalent deductive systems.

From the equivalence among Lin and  Ln+1, we can obtain, by translating the
axiomatization of the finite valued  Lukasiewicz logic  Ln+1, a calculus sound and
complete with respect Lin that we denote by Hi

n (see [8, Theorem 4.3]).
Since  L∞ is algebraizable and the class MV of all MV-algebras is its equiv-

alent quasivariety semantics, finitary extensions of  L∞ are in 1 to 1 correspon-
dence with quasivarieties of MV-algebras . Actually, there is a dual isomorphism
from the lattice of all finitary extensions of  L∞ and the lattice of all quasivari-
eties of MV . Moreover, if we restrict this correspondence to varieties of MV we
get the dual isomorphism from the lattice of all varieties of MV and the lattice
of all axiomatic extensions of  L∞. Since  Ln+1 = Lnn is an axiomatic extension
of  L∞,  Ln+1 is an algebraizable logic with the class MVn = Q( LVn+1), the
quasivariety generated by  LVn+1, as its equivalent variety semantics. It follows
from the previous theorem and from [8] that Lin, for every 1 ≤ i ≤ n, is also
algebraizable with the same class of MVn-algebras as its equivalent variety se-
mantics. Thus, the lattices of all finitary extensions of Lin are isomorphic, and
in fact, dually isomorphic to the lattice of all subquasivarieties of MVn, for all
0 < i < n.

Therefore maximality conditions in the lattice of finitary (axiomatic) ex-
tensions correspond to minimality conditions in the lattice of subquasivarieties
(subvarieties). Thus, given two finitary extensions L1 and L2 of a given logic
Lin, where KL1

and KL2
are its associated MVn-quasivarieties, L1 is strongly

maximal with respect L2 iff KL1
is a minimal subquasivariety of MVn among

those MVn-quasivarieties properly containing KL2 . Moreover, if L1 and L2 are
axiomatic extensions of Lin, then KL1 and KL2 are indeed MVn-varieties. In
that case, L1 is maximal with respect L2 iff KL1

is a minimal subvariety of MVn
among those MVn-varieties properly containing KL2

.
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All the axiomatic extensions of  L∞ are characterized by Komori in [27],
where it is shown that every axiomatic extension is finitely axiomatizable and
depends only on two finite sets of natural numbers I, J not both empty. More-
over, Panti proved in [34] that every axiomatic extension can be axiomatized
relative to  L∞ by a single axiom γI,J with a single propositional variable. For
the case of finite valued  Lukasiewicz logics, Komori’s characterization depends
on just a finite set of natural numbers in the following sense: given n > 1, every
axiomatic extension of  Ln+1 is of the form⋂

1≤j≤k

 Lmj+1

for some natural number k where mj |n for every 1 ≤ j ≤ k. Moreover, from
the equivalence of Theorem 2, it follows that every axiomatic extension of Lin is
of the form ⋂

1≤j≤k

Li/nmj

for some natural number k where mj |n for every 1 ≤ j ≤ k, and it is axiomatized

by a single axiom γ
i/n
m1,...,mk which depends on one variable. We denote by

H
i/n
m1,...,mk the calculus obtained from Hi

n by adding the axiom γ
i/n
m1,...,mk . Note

that for every m ≥ 1 such that m|n, the calculus H
i/n
m is the same logic as Hj

m,
where j is the natural number such that Fj/m = Fi/n ∩  LVm.

The lattice of all axiomatic extensions  L∞ is fully described also by Komori
in [27], thus from the equivalence of Theorem 2, we can obtain the following
maximality conditions for all axiomatic extensions of Lin.

Theorem 3. Let 0 < i,m ≤ n be natural numbers such that m|n. If L is an
axiomatic extension of Lin, then

• L is maximal with respect to L
i/n
m iff L = L

i/n
m ∩ L

i/n

qk+1 for some prime

number q with q|n and a natural k ≥ 0 such that qk|m and qk+1 6 |m.

Proof. Using the equivalence of Theorem 2 we obtain that the lattice of ax-
iomatic extensions of Lin is isomorphic to the lattice of axiomatic extensions
of  Ln+1. As mentioned above, every axiomatic extension of  Ln+1 is charac-
terized by a finite set {m1, . . . ,mk} where all of its elements are divisors of
n. Given two such sets {m1, . . . ,mk} and {n1, . . . , ns}, we define the following
relation among finite subsets of divisors of n: {m1, . . . ,mk} � {n1, . . . , ns} iff
for every 1 ≤ i ≤ k there is 1 ≤ j ≤ s such that mi|nj . This relation � is
the dual order of the lattice of axiomatic extensions of  Ln+1 in the following

sense: {m1, . . . ,mk} � {n1, . . . , ns} iff
⋂

1≤j≤s

 Lnj+1 ≤
⋂

1≤i≤k

 Lmi+1. Clearly,

{m} � {m, q} and {m, q} 6� {m} if q is a prime number such that q|n and
q 6 |m; Similarly, {m} � {m, qk+1} and {m, qk+1} 6� {m} if q is a prime num-
ber such that q|n, qk|m and qk+1 6 |m. Moreover if {m} � {m1, . . . ,mk} and
{m1, . . . ,mk} 6� {m}, then there is mi such that m|mi. If m 6= mi then there
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is a prime number q such that mq|mi|n. Thus {m, q} � {m1, . . . ,mk} if q 6 |m
and {m, qk+1} � {m1, . . . ,mk} if qk|m and qk+1 6 |m. If m = mi, then there
is an mj with 1 < j < k such that mj 6 |m. If there is a prime number q such
that q|mj |n such that q 6 |m, then {m, q} � {m1, . . . ,mk}. Otherwise, there are
a prime number q and a natural k > 0 such that qk+1|mj |n, qk|m and qk+1 6 |m,
then {m, qk+1} � {m1, . . . ,mk}. Duality and Theorem 2 close the proof.

As a corollary we obtain that the suficient condition of Proposition 3 is also
necessary.

Corollary 4. Let 1 ≤ i,m ≤ n. Then Lin = 〈 LVn+1, Fi/n〉 is maximal w.r.t.

L
i/n
m = 〈 LVm+1, Fi/n∩  LVm+1〉 if and only if there is some prime number q and

k ≥ 1 such that n = qk, and m = qk−1.

The task of fully describing the lattice of all all finitary extensions of  L∞,
isomorphic to the lattice of all subquasivarieties of MV , turns to be an heroic
task since the class of all MV-algebras is Q-universal (see [1]). For the finite
valued case it is much simpler, since MVn is a locally finite discriminator variety
(cf. [7, 25]). Any locally finite quasivariety is generated by its critical algebras
(see [22]), where an algebra A is said to be critical iff it is a finite algebra
not belonging to the quasivariety generated by all its proper subalgebras. A
description of all critical MV-algebras can be found in [25].

Theorem 4. [25, Theorem 2.5] An MV-algebra A is critical if and only if A
is isomorphic to a finite MV-algebra LVn0+1 × · · · × LVnl−1+1 satisfying the
following conditions:

1. For every i, j < l, i 6= j implies ni 6= nj.

2. If there exists nj, j < l such that ni|nj for some i 6= j, then nj is unique.

Moreover the following result characterizes the inclusion among locally finite
quasivarieties.

Lemma 4. [25, Lemma 2.9] Let F = {LVni1+1 × · · · × LVnil(i)+1 : i ∈ I}
and G = {LVmj1+1×· · ·×LVmjl(j)+1 : j ∈ J} be two finite families of critical
MV-algebras. Then it holds that

Q(F) ⊆ Q(G)

if, and only if, for every i ∈ I there exists a non-empty H ⊆ J such that:

1. For any 1 ≤ k ≤ l(i) there are j ∈ H and 1 ≤ r ≤ l(j) such that nik|mjr.

2. For any j ∈ H and 1 ≤ r ≤ l(j) there exists 1 ≤ k ≤ l(i) such that
nik|mjr.
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5.2 Strong maximality among logics Liq, L̄iq, and classical
logic

As a direct application of Lemma 4, we have the following particular case that
will be used later.

Corollary 5. Consider the following two sets of one critical MV-algebra each:
{LVq+1 × LV2} and {LVk+1}, where q is a prime number such that q > 1.
Then

Q({LVq+1 × LV2}) ⊆ Q(LVk+1)

if and only if q|k.

Proof. The two families of critical algebras above correspond in Lemma 4 to
take I = {1} and J = {1}, with n11 = q, n12 = 1, m11 = k. Then one can check
that these values satisfy the two conditions of the lemma only in the case that
q|k.

Now, for any k > 1, we are able to provide a full description of the minimal
subquasivarieties of MVk = Q(LVk+1) strictly containing the variety of Boolean
algebras.

Theorem 5. Let k > 1. The set of all minimal subquasivarieties of MVk =
Q(LVk+1) among those strictly containing the class of all the Boolean algebras
B = Q(LV2) is

Mk = {Q(LVq+1 × LV2) : q > 1 prime, q|k}.

Proof. By Lemma 4 and the previous Corollary 5, every K ∈ Mk is a subqua-
sivariety of Q(LVk+1) strictly containing B. Moreover, for every K1,K2 ∈Mk,
if K1 6= K2 then K1 6⊆ K2 and K2 6⊆ K1.

On the other hand, let K be a minimal subquasivariety of Q(LVk+1) strictly
containing B. Since K 6= B, it must contain a critical algebra C that, by
Theorem 4, it must be such that C ∼= LVm1+1 × · · · × LVms+1, where mi|k for
every 1 ≤ i ≤ s, and mj > 1 for some 1 ≤ j ≤ s. Hence, for every prime number
q such that q|mj , and hence q|k, we have LVq+1 ×LV2 ∈ Q(C) ⊆ K, and thus
Q(LVq+1 ×LV2) ⊆ K. Since we are assuming the minimality of K, it must be
Q(LVq+1 × LV2) = K.

Theorem 6. If q > 0 is a prime number, then Q(LVq+1×LV2) is axiomatized
by the MV quasi-identities plus:

• γq(x) ≈ 1 (the identity axiomatizing V(LVq+1))

• q(x ∧ ¬x) ≈ 1⇒ y ∨ ¬y ≈ 1

Proof. It is easy to check that LVq+1×LV2 satisfies these two quasi-identities.
Since the MV-identities and γq(x) ≈ 1 axiomatize V(LVq+1), and V(LVq+1) is
a locally finite quasivariety, it is enough to prove that every critical MV-algebra
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C ∈ V(LVq+1) where the quasi-equation q(x ∧ ¬x) ≈ 1 ⇒ y ∨ ¬y ≈ 1 holds,
belongs to Q(LVq+1 × LV2).

Let C be a critical MV-algebra satisfying the axiomatization, then C is
such that C ∼= LVm1+1 × · · · × LVmk+1 satisfying conditions of Theorem 4.
Moreover, every 1 ≤ i ≤ k, is such that either mi = 1 or mi = q because
LVmi+1 belongs to V(LVq+1). If there is c ∈ C such that q(c ∧ ¬c) = 1 then,
by the second quasi-equation of the above axiomatization, b ∨ ¬b ≈ 1 for any
b ∈ C. Thus we have C ∈ B ⊆ Q(LVq+1 × LV2). Otherwise, recalling that
either mi = 1 or mi = q for every i, if for every c ∈ C one has q(c ∧ ¬c) 6= 1
then mi = 1 for some 1 ≤ i ≤ k. In that case, by the characterization of
critical algebras (Theorem 4), we have C ∼= LV2 or C ∼= LVq+1 × LV2. If
C ∼= LV2, then trivially C ∈ Q(LVq+1 × LV2). If C ∼= LVq+1 × LV2, then
clearly C ∈ Q(LVq+1 × LV2).

Above, note that the identity y ∨ ¬y ≈ 1 corresponds to the previously
mentioned Panti’s axiom γI,J(y), with I = {1} and J = ∅, axiomatizing CPL as
an axiomatic extension of  Ln+1 for any n > 1.

Finally, we obtain the following characterization result about strong maxi-
mality of logics L̄jq with respect to classical logic.

Theorem 7. Let q > 1 be a prime number. Then, for every j such that 0 <
j ≤ q:

• L̄jq is strongly maximal with respect to CPL and it is axiomatized by Hj
q

plus the rule j(ϕ ∧ ¬ϕ)/(ψ ∨ ¬ψ)q.

• Ljq is strongly maximal w.r.t. L̄jq.

Proof. By using the equivalence of Theorem 2 and the algebraizability of  Lq+1,
the lattice of subquasivarieties of V(LVq+1) is dually order isomorphic to the lat-
tice of all finitary extensions of  Lq+1. Clearly CPL =  L2 is the finitary extension
of L̄jq corresponding to the subvariety Q(LV2) of Q(LVq+1×LV2), and L̄jq is the

finitary extension of Ljq corresponding to the subquasivariety Q(LVq+1 × LV2)
of V(LVq+1).

By Theorem 4, the only critical algebras of V(LVq+1) are LVq+1, LV2 and
LV2×LVq+1 and, by Lemma 4, all its subquasivarieties are Q(LV2) ( Q(LV2×
LVq+1) ( Q(LVq+1). Therefore, by Theorem 5, L̄jq is strongly maximal with

respect to CPL, while Lj
q is strongly maximal with respect to L̄jq.

Finally, the axiomatization of L̄jq follows from Theorem 6 and the facts that
j ϕ ��Lj

q
q ϕ holds for every formula ϕ and that the equation (qx)q = qx is valid

in the class MVq.

From the above proof, it readily follows the next corollary.

Corollary 6. L̄jq is the unique strongly maximal logic w.r.t. CPL above Ljq. In

fact, L̄jq is the only logic between Ljq and CPL.
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Remark 4. It is worth noting that the rule j(ϕ ∧ ¬ϕ)/(ψ ∨ ¬ψ)q exactly cor-
responds to the explosion rule (expj) introduced in Section 4. Indeed, the rule
j(ϕ ∧ ¬ϕ)/(ψ ∨ ¬ψ)q is clearly derivable from (expj). On the other hand, as-
suming j(ϕ ∧ ¬ϕ), by this rule it follows that (ψ ∨ ¬ψ)q for every ψ. Hence
the logic becomes CPL because the translation of the classical axiom ψ ∨ ¬ψ is
precisely (ψ ∨¬ψ)q, and thus ⊥ follows from j(ϕ∧¬ϕ). This does not come as
a surprise, since as we have proved above, Ljq is strongly maximal w.r.t. L̄jq and

so the latter is the only proper extension of Ljq (with a finitary rule) properly
contained in CPL.

As a corollary of the previous remark, it follows the completeness of H
j

q.

Corollary 7. H
j

q is sound and complete w.r.t. L̄jq.

5.3 Strong maximality with respect to systems Lin

Next theorems are generalizations of Theorems 5, 6 and 7 respectively.

Theorem 8. Let n > 0 and k > 1. The set of all minimal subquasivarieties of
MVnk = Q(LVnk+1) among those strictly containing Q(LVn+1) is

Mnk
n = {Q({LVn+1,LVq+1 × LV2}) : q prime, q|k and q 6 |n}

⋃
{Q({LVn+1,LVqr+1+1 × LV2}) : q prime, q|k, qr|n and qr+1 6 |n}.

Proof. By Lemma 4, every K ∈Mnk
n is a subquasivariety of Q(LVnk+1) strictly

containing Q(LVn+1). Moreover, for every K1,K2 ∈ Mnk
n , if K1 6= K2 then

K1 6⊆ K2 and K2 6⊆ K1.
LetK be a minimal subquasivariety ofQ(LVnk+1) strictly containingQ(LVn+1).

Trivially, LVn+1 ∈ K. Since K 6= Q(LVn+1), then it must contain a critical
algebra C ∼= LVm1+1 × · · · × LVms+1 such that mi|nk for every 1 ≤ i ≤ s and
mj 6 |n for some 1 ≤ j ≤ s. If there is a prime number q|mj such that q 6 |n,
then LVq+1 × LV2 ∈ Q(C) ⊆ K. Otherwise, there is a prime q such that q|mj

and qr|n, and for some r ≥ 1, qr+1 6 |n and qr+1|mj , whence LVqr+1+1 × LV2 ∈
Q(C) ⊆ K. Thus, in both cases K contains some Ki ∈ Mnk

n , from which it
follows that K ∈Mnk

n since we are assuming minimality of K.

Theorem 9. For every n > 0.

• If q is a prime number such that q 6 |n, then Q({LVn+1,LVq+1×LV2}) is
axiomatized by the MV identities plus

– γ{n,q},∅(x) ≈ 1 (the identity axiomatizing V({LVn+1,LVq+1}))
– nq(x ∧ ¬x) ≈ 1⇒ γ{n},∅(y) ≈ 1.

• If q is a prime number such that qr|n and qr+1 6 |n, Q({LVn+1,LVqr+1+1×
LV2}) is axiomatized by the MV identities plus

– γ{n,qr+1},∅(x) ≈ 1 (the identity axiomatizing V({LVn+1,LVqr+1+1}))
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– nq(x ∧ ¬x) ≈ 1⇒ γ{n},∅(y) ≈ 1.

Proof. We prove the first item, the other is proved in a analogous way. It is
easy to check that LVn+1 and LVq+1 × LV2 satisfy all the quasi-identities.
Since the MV-identities with γ{n,q},∅(x) ≈ 1 axiomatize V({LVn+1,LVq+1})
and V({LVn+1,LVq+1}) is a locally finite quasivariety, it is enough to prove that
every critical MV-algebra C ∈ V({LVn+1,LVq+1}) where the quasiequation
nq(x ∧ ¬x) ≈ 1 ⇒ γ{n},∅(y) ≈ 1 holds, belongs to Q({LVn+1,LVq+1 × LV2}).
Therefore, let C be a critical MV-algebra satisfying the axiomatization. Then,
C is such that C ∼= LVm1+1 × · · · × LVmr+1 satisfying conditions of Theorem
4, and moreover for every 1 ≤ i ≤ k, either mi|n or mi = q because C ∈
V({LVn+1,LVq+1}). If there is c ∈ C such that nq(c ∧ ¬c) = 1 then, by
the second quasi-equation of the axiomatization above, γ{n},∅(b) ≈ 1 for any
b ∈ C, thus C ∈ V({LVn+1}) = Q({LVn+1}) ⊆ Q({LVn+1,LVq+1 × LV2}).
If for every c ∈ C, nq(c ∧ ¬c) 6= 1 then mi = 1 for some 1 ≤ i ≤ k. In that
case, by the characterization of critical algebras (Theorem 4), either C ∼= LV2 or
C ∼= LVm+1×LV2. If C ∼= LV2, then trivially C ∈ Q({LVn+1,LVq+1×LV2}).
Otherwise, if C ∼= LVm+1×LV2, since C ∈ V({LVn+1,LVq+1}), either m|n or
m = q. If m|n then C ∈ V({LVn+1}) = Q({LVn+1}) ⊆ Q({LVn+1,LVq+1 ×
LV2}). If m = q then C ∼= LVq+1 × LV2 ∈ Q({LVn+1,LVq+1 × LV2}).

If 1 ≤ i,m ≤ n, by analogy with L
i/n
m , we define the matrix logic

L̄i/nm = 〈 LVm+1 ×  LV2, (Fi/n ∩  LVm+1)× {1}〉.

Then we have the following generalization of Theorem 7.

Theorem 10. Let 0 < i ≤ n be natural numbers and let q be a prime number.
Then we have:

• If q 6 |n then, for every j such that (i− 1)q < j ≤ iq, Lin ∩ L̄
j/nq
q is strongly

maximal with respect to Lin, and it is axiomatized by H
j/nq
n,q plus the rule

j(ϕ ∧ ¬ϕ)/γ
j/nq
n (ψ).

• If qr|n and qr+1 6 |n then, for every j such that (i−1)q < j ≤ iq, Lin∩ L̄
j/nq
qr+1

is strongly maximal with respect to Lin, and it is axiomatized by H
j/nq
n,qr+1

plus the rule j(ϕ ∧ ¬ϕ)/γ
j/nq
n (ψ).

Recall that in the above rules γ
j/nq
n (ψ) refers to the axiom in one variable that

axiomatizes L
j/nq
n relative to Ljnq. Moreover, every finitary extension of some Ljk

is strongly maximal with respect Lin iff it is of one of the two preceeding types.

Proof. Notice that Lin = L
j/nq
n for every j such that (i − 1)q < j ≤ iq. Thus,

Lin is an extension of Ljnq. Now, by using the equivalence of Theorem 2 and
the algebraizability of  Lnq + 1, the lattice of subquasivarieties of V(LVnq+1)
is dually order isomorphic to the lattice of all the finitary extensions of Ljnq.

Moreover, Lin∩ L̄
j/nq
q and Lin∩ L̄

j/nq
qr+1 are the finitary extensions of Ljnq associated
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to Q({LVn+1,LVq+1×LV2}) and Q({LVn+1,LVqr+1+1×LV2}), respectively.
Hence, they are strongly maximal with respect to Lin, by Theorem 8. The
axiomatization follows from Theorem 9 and the facts that j ϕ ��Lj

nq
nq ϕ holds

for every formula ϕ and that the equation (nqx)nq = nqx is valid in the class
MVnq.

Finally, the last statement of this theorem follows from Theorem 8 and
Theorem 2.

6 An application to ideal paraconsistent logics

As mentioned in Example 3, Arieli et al. have introduced in [3] the concept of
ideal paraconsistent logics. We recall here this notion.

Definition 4 (c.f. [3]). Let L be a propositional logic defined over a signature
Θ (with consecuence relation `L) containing at least a unary connective ¬ and
a binary connective → such that:

(i) L is paraconsistent w.r.t. ¬ (or simply ¬-paraconsistent), that is, there
are formulas ϕ,ψ ∈ L(Θ) such that ϕ,¬ϕ 0L ψ;

(ii) → is an implication for which the deduction-detachment theorem holds
in L, that is, Γ ∪ {ϕ} `L ψ iff Γ `L ϕ → ψ, for every set for formulas
Γ ∪ {ϕ,ψ} ⊆ L(Θ).

(ii) There is a presentation of CPL as a matrix logic L′ = 〈A, {1}〉 over the sig-
nature Θ such that the domain of A is {0, 1}, and ¬ and→ are interpreted
as the usual 2-valued negation and implication of CPL, respectively.

(iv) L is a sublogic of CPL in the sense that `L⊆ `L′ , that is, Γ `L ϕ implies
Γ `L′ ϕ, for every set for formulas Γ ∪ {ϕ} ⊆ L(Θ).

Then, L is said to be an ideal paraconsistent logic if it is maximal w.r.t. L′, and
every proper extension of L over Θ is not ¬-paraconsistent.

An implication connective satisfying the above condition (ii) will be called
deductive implication in the rest of the paper.4

Thus, a ¬-paraconsistent logic L with a deductive implication is ideal if it is
maximal w.r.t. CPL (presented over the signature Θ of L) and, if L′′ is another
logic over Θ properly containing L, with Γ ∪ {ϕ} ⊆ L(Θ) such that Γ `L′′ ϕ
but Γ 0L ϕ, then the logic obtained from L by adding Γ/ϕ as an inference rule
is not ¬-paraconsistent.

As already noticed, the logics Lni with i/n ≤ 1/2 are paraconsistent. In
this section, using the results of the previous sections, we study the status of
the logics Lin in relation to ideal paraconsistency. Namely, in the following
subsection, we will show that the logics of the form Liq, where q is prime and
i/q ≤ 1/2 are ideal paraconsistent, while in subsection 6.2 the special case of
L1

3, renamed as J4, is analyzed in more detail.

4Such an implication is called deductive in [11, 16] and proper in [3].
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6.1 The ideal paraconsistent logics Liq

By combining Proposition 1 with Corollary 2 we know a logic Liq is ¬-paracon-
sistent and maximal w.r.t. CPL, provided that q is prime and i/q ≤ 1/2. From
now on we will assume this is the case when referring to a logic Liq.

Recall that H
i

q is the Hilbert calculus obtained from the calculus Hi
q for Liq

by adding the i-explosion rule (expi). Since ϕ ∧ ¬ϕ `Hi
q
i(ϕ ∧ ¬ϕ), the logic H

i

q

is explosive. Then, taking into account Corollary 6, it follows that every proper
extension of Liq defined over its signature is either L̄iq or CPL, and hence not
¬-paraconsistent.

In addition, by Lemma 3, we know there is a definable unary connective ∼i
q

such that, for every evaluation e, e(∼i
q p) = 0 if e(p) ≥ i/q, and e(∼i

q p) = 1
otherwise, for every propositional variable p.5 This is a kind of “classical”
negation defined on Liq. Using this negation, one can define in turn a new

implication ⇒i
q by stipulating ϕ ⇒i

q ψ = ∼i
qϕ ∨ ψ. In fact, one can easily

check that ⇒i
q is a deductive implication on Liq in the sense of Definition 4

and that over {0, 1} it coincides with the classical implication. All the above
considerations lead to the following result.

Proposition 5. Let q is a prime number, and let 1 ≤ i < q such that i/q ≤ 1/2.
Then, Liq is a (q + 1)-valued ideal paraconsistent logic.6

Therefore we have a large family of examples of ideal paraconsistent logics.
In particular, for each prime q, all the logics in the set PCq+1 = {Liq : i < q/2}
are (q + 1)-valued ideal paraconsistent logics. Moreover, if we consider “the
more theorems a paraconsistent logic has, the more well-behaved is the logic”
as a valid further criterion, then we can still refine the set PCq+1. Indeed, if we
denote by Th(L) the set of theorems of a logic L then, as noticed in Remark 2,
we have the strict inclusions Th(Liq) ( Th(Ljq) ( Th(CPL) whenever i > j.
Therefore the logic Jq+1 = L1

q appears to be the “best” ideal logic in the set
PCq+1,7 since it is the logic in that set having the biggest set of theorems from
classical logic.

Finally, it is worth mentioning that all the paraconsistent logics of the form
Lin are, indeed, LFIs (recall Section 2):

Proposition 6. Suppose that i/n ≤ 1/2. Then, the logic Lin is an LFI w.r.t.
¬ and where the consistency operator is defined as ◦α = ∼i

n(α ∧ ¬α).

Proof. Straightforward.

5Namely, ∼i
q p = ¬λi,q(p).

6Strictly speaking, in this claim we implicitly assume that the signature of Liq has been

changed by adding the definable implication ⇒i
q as a primitive connective.

7We have chosen the name Jq+1 to denote the logic L1
q inspired in the 3-valued case, where

the ideal paraconsistent logic J3 coincides with L1
2.
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6.2 The four-valued ideal paraconsistent logic J4

As mentioned in Remark 3, we know from Theorem 4.3 in [8] that it is possible to
obtain a standard (that is, without “global” inference rules) Hilbert calculus for
a logic Lin for i < n from the usual one for  Ln+1 by using translations. However,
the calculi obtained in this manner can lack an intuitive meaning since they
are defined in terms of the implication connective → of  Ln+1, that is naturally
associated to the filter F1 = {1} but not to the filter Fi/n = {i/n, . . . , 1}, which
is the one at work in Lin. Actually, the implication naturally associated to the
filter Fi/n is ⇒i

n, which was considered above, for which modus ponens (MP)
and the deduction-detachament theorem hold.

In this section we focus on the particular case of the (ideal paraconsistent)
logic J4 = L1

3. J4 can be considered as a generalization to four values of the para-
consistent 3-valued logic J3 introduced by da Costa and D’Ottaviano in [20] and
briefly mentioned in Example 2. For this logic a more natural signature Σ will
be considered for describing it axiomatically in terms of a deductive implica-
tion connective (in the sense of Definition 4 item (ii)) and a unary connective ∗
representing the square operation x ⊗ x, which can be seen as a kind of ‘truth
stresser’ (see e.g. [26]). A soundness and completeness result for this calculus
proved by using a ‘separation’ technique for truth-values will be presented. Note
that dealing with logics Jq = L1

q for a prime q > 3 appears to be much more
complicated, and certainly it lies outside the scope of this paper.

The signature Σ that will be used in the rest of the section is given by
two unary connectives ∗ (square) and ¬ (negation), plus a binary connective
∨ for disjunction. Abusing the notation, we formally define next J4 over this
signature, and we will show later that it is an equivalent presentation of L1

3.

Definition 5. J4 is the matrix logic 〈A4, F1/3〉 over Σ, where the algebra is
A4 = ( LV4,∨,¬, ∗), with operations defined by the tables below:

∨ 1 2/3 1/3 0

1 1 1 1 1
2/3 1 2/3 2/3 2/3
1/3 1 2/3 1/3 1/3
0 1 2/3 1/3 0

¬ ∗
1 0 1

2/3 1/3 1/3
1/3 2/3 0
0 1 0

Observe that ¬ is  Lukasiewicz negation in  LV4, while ∗x = x ⊗ x (with ⊗
being  Lukasiewicz strong conjunction) and ∨ is the lattice join in  LV4.

In this signature Σ the following derived connectives can be defined (as usual,
the corresponding operators will be denoted using the same symbol):
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- ∆(p) = ∗∗p ;
- ∼p = ∆(¬p) ;
- p⇒ r = ∼p ∨ r ;
- p⇔ r = (p⇒ r) ∧ (r ⇒ p) ;
- p ∧ r = ¬(¬p ∨ ¬r) ;
- ∇(p) = ¬∼p;
- α1/3(p) = ∇(p) ∧ ∼∗p;
- β1/3(p) = α1/3(p) ∧ ∗¬p.

It is easy to see that ∆ is Monteiro-Baaz Delta-operator) and ∼ is Gödel negation
(∼x = 1 if x = 0, and 0 otherwise). Note that ∼ actually coincides with ∼1

3, and
thus ⇒ is nothing but ⇒1

3. Furthermore, ∇(x) = 0 if x = 0, and 1 otherwise;
α1/3(x) = 1 and β1/3(x) = 1/3 if x = 1/3, and 0 otherwise.

It is worth to remark that  Lukasiewicz implication is definable from these
operators in the following way:

p→ r = ((∇(¬p)∨r)∧(¬p∨∇(r))∧¬β1/3(r))∨((∼p∧α1/3(r))∨(α1/3(p)∧α1/3(r))).

Then, the following result follows easily:

Proposition 7. The algebras  LV4 and A4 are functionally equivalent.

This means that the proposed operators over Σ constitute an alternative
presentation of the algebra  LV4 underlying  L4. Next we define an axiomatic
system for J4.

Definition 6. The Hilbert calculus H4 for the logic J4, defined over the signa-
ture Σ, is given as follows:

Axiom schemas: those of CPL over the signature {∨,⇒,∼} plus

(Ax1) ¬∼α⇒ α

(Ax2) α ∨ ¬α
(Ax3) ¬¬α⇔ α

(Ax4) ¬(α ∨ β)⇒ ¬α
(Ax5) ¬(α ∨ β)⇒ ¬β
(Ax6) ¬α⇒ (¬β ⇒ ¬(α ∨ β))

(Ax7) ∗α⇒ α

(Ax8) ∗(α ∨ ¬α)

(Ax9) ∗α⇒ ∼∗¬α
(Ax10) ∗∗α⇔ ∼¬α
(Ax11) ¬∗α⇔ ¬α
(Ax12) ∗(α ∨ β)⇔ (∗α ∨ ∗β)

Inference rule:

(MP)
α α⇒ β

β
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Observe that, since (MP) is the only inference rule, H4 satisfies the deduction-
detachment theorem w.r.t. the implication ⇒: Γ ∪ {α} `H4 β iff Γ `H4 α ⇒ β,
for every set of formulas Γ ∪ {α, β}. On the other hand, it can be proved that
∗(α ⇒ β) ⇒ (∗α ⇒ ∗β) is derivable in H4, which gives additional support to
consider ∗ as a truth stresser. Soundness of H4 can be proved straightforwardly.

Proposition 8 (Soundness of H4). The calculus H4 is sound w.r.t. J4, that is:
Γ `H4 ϕ implies that Γ �J4 ϕ, for every finite set of formulas Γ ∪ {ϕ}.

In order to prove completeness, since H4 is a finitary Tarskian logic, one
can use the technique of maximal consistent sets of formulas. Indeed, for any
set of formulas Γ ∪ {ϕ}, if Γ 0H4

ϕ then, by Lindenbaum- Los theorem, Γ can
be extended to a maximal set Λ such that Λ 0H4

ϕ. We will call the set Λ
maximal non-trivial with respect to ϕ in H4. Maximal sets w.r.t. a formula
enjoy remarkable properties which directly follow from the axioms and rules of
H4.

Proposition 9. Let Λ be a maximal set non-trivial with respect to ϕ in H4.
Then, Λ is closed, i.e. for every formula ψ, Λ ` ψ iff ψ ∈ Λ. Moreover, for any
formulas α and β the following conditions hold:

(1) α ∨ β ∈ Λ iff α ∈ Λ or β ∈ Λ;
(2) α 6∈ Λ iff ∼α ∈ Λ;
(3) α⇒ β ∈ Λ iff α 6∈ Λ or β ∈ Λ;
(4) α 6∈ Λ implies ¬α ∈ Λ;
(5) α ∈ Λ iff ¬¬α ∈ Λ;
(6) ¬∼α ∈ Λ implies α ∈ Λ;
(7) ¬(α ∨ β) ∈ Λ iff ¬α ∈ Λ and ¬β ∈ Λ;
(8) ∗α ∈ Λ implies α ∈ Λ;
(9) ∗(α ∨ β) ∈ Λ iff ∗α ∈ Λ or ∗β ∈ Λ;

(10) ∗∗α ∈ Λ iff ¬α 6∈ Λ;
(11) ¬∗α ∈ Λ iff ¬α ∈ Λ;
(12) ∗α 6∈ Λ iff ∗¬α ∈ Λ.

Next we prove a Truth Lemma for H4.

Lemma 5 (Truth Lemma for H4). Let Λ be a maximal set of formulas non-
trivial with respect to ϕ in H4. Consider the following evaluation eΛ of proposi-
tional variables for J4:

(T ) eΛ(γ) =


1 iff γ ∈ Λ, and ¬γ 6∈ Λ

2/3 iff γ ∈ Λ, ¬γ ∈ Λ, and ∗γ ∈ Λ

1/3 iff γ ∈ Λ, ¬γ ∈ Λ, and ∗γ 6∈ Λ

0 iff γ 6∈ Λ.

Then, (T) holds for every complex formula γ.

Proof. The proof is done by induction on the complexity of the formula γ. If
γ is atomic then (T) holds by hypothesis. Now, suppose (T) holds for every
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formula with complexity ≤ n (induction hypothesis – IH) and let γ be a formula
with complexity n. In order to prove (T) from (IH) by analyzing all the possible
cases (namely, γ = ¬α or γ = ∗α or γ = α ∨ β), each item of Proposition 9
should be used.8 The details are left to the reader.

Theorem 11 (Completeness of H4). The calculus H4 is complete w.r.t. J4, that
is: Γ �J4 ϕ implies that Γ `H4 ϕ, for every finite set of formulas Γ ∪ {ϕ}.

Proof. Let Γ∪{ϕ} be a set of formulas in the language of J4 such that Γ 0H4
ϕ.

By Lindenbaum- Los, there exists a set Λ maximal non-trivial with respect to
ϕ in H4 such that Γ ⊆ Λ. Let eΛ be the evaluation defined as in the Truth
Lemma 5. Then, it follows that eΛ(γ) ∈ F1/3 iff γ ∈ Λ, for every formula γ.
Therefore eΛ is an evaluation such that eΛ[Γ] ⊆ F1/3 but eΛ(ϕ) = 0 since ϕ 6∈ Λ,
hence Γ 6�J4 ϕ.

Recall that, from Theorem 7 and Remark 4, the Hilbert calculus H4 obtained
from H4 by adding the explosion rule

(exp1)
ϕ ∧ ¬ϕ
⊥

(see Definition 3) is the axiomatization of the (only) proper extension of H4

which is strongly maximal w.r.t. CPL, and that is semantically characterized
by the matrix logic

J̄4 = 〈A4 ×A2, F1/3 × {1}〉,

where A2 is the Boolean algebra over {0, 1} in the signature Σ, where the
operator ∗ is defined as ∗x = x.

7 Conclusions

In this paper we have been concerned with the study of maximality and strong
maximality conditions among finite-valued  Lukasiewicz logics Lin with order fil-
ters as designated values. In particular, we have characterized the conditions
under which a logic Lin is maximal w.r.t. CPL and its unique extension L̄in by an
inference rule is strongly maximal w.r.t. classical logic. This allows us to show
that, although they are not strongly maximal w.r.t. CPL, the logics Lin with n
prime and i/n ≤ 1/2 are in fact ideal paraconsistent logics. Thus, they provide
interesting and well-motivated examples of ideal paraconsistent logical systems
which are (n+ 1)-valued, in contrast with the (n+ 2)-valued logics Mn+2 pre-
sented in [3] and reproduced here in Example 3, whose definition is somewhat
ad hoc.

8Observe that it is enough to prove the ‘only if’ part of (T), since the four conditions
on the right-hand side are pairwise incompatible, and e(γ) can only take one of the values
0, 1, 1/3, 2/3. Thus, if, for instance, the first condition on the right-hand side of (T) holds for
a given formula γ then the other 3 conditions are false and so eΛ(γ) 6∈ {1/3, 1, 0}, by the ‘only
if’ part of (T). Hence, eΛ(γ) must be 2/3. This shows that the ‘if’ part of (T) follows from
the ‘only if’ part.
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As for future work, there are several interesting problems that we leave open
in this paper. Concerning maximality, a natural question is how to obtain a
stronger version of Theorem 1 which give us sufficient conditions to guarantee
that a given matrix logic L1 is strongly maximal w.r.t. another matrix logic
L2. On the other hand, notice that the study of strong maximality developed
in Section 5 was heavily based on results on the algebraic semantics associated
to these systems by means of the Blok and Pigozzi’s techniques. Thus, another
interesting issue to be explored in future work is to obtain more examples of
strong maximality for different families of algebraizable logics

Another question raised here is the axiomatization of the ideal paraconsistent
logics Jq+1 for q > 3 in a “natural” signature containing a deductive implication.
As it was shown in Subsection 6.2, the signature Σ = {∨,¬, ∗} is suitable for
the case q = 3. Moreover, besides being apt for axiomatizing J4 = L1

3, it can
be proved that the (non-paraconsistent) logic L2

3 can also be axiomatized over
Σ in a relatively simple way. Note that α ⇒ β = ¬α ∨ β defines a deductive
implication in L2

3.
The fact that  Lukasiewicz implication is definable in Σ justifies the conve-

nience of using that signature for dealing with the case q = 3. However, this
property does not hold for any prime q > 3. Indeed, there are primes q in which
 Lukasiewicz implication of  Lq+1 cannot be defined over Σ, e.g. q = 17. The
study of the fragments of Liq in the signature Σ is thus a different but closely
related problem, which deserves future research.
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