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Abstract: Resemblances obtain not only between objects but between properties.  
Resemblances of the latter sort – in particular, resemblances between quantitative 
properties – prove to be the downfall of David Armstrong’s well-known theory of 
universals.  This paper examines Armstrong’s efforts to account for such 
resemblances, and explores several ways one might extend the theory in order to 
account for quantity.  I argue that none succeed. 

 
A theory of universals takes at face value the idea that things share properties.  
Such a theory holds that universals can be instantiated by numerically distinct 
objects.  One of the natural applications of this theory is to explain how two things 
resemble one another, and thus to offer an answer to the so-called Problem of 
Resemblance: two things intrinsically resemble one another if and only if they 
share some of their universals.1 
 David Armstrong claims that universals provide the only tenable account 
of resemblance, because they provide the only reductive account (see Armstrong).2  
But whether universals provide an attractive analysis of resemblance hinges on a 
crucial question: can a theory of universals account for resemblance relations 
among properties as well as resemblance relations among objects?  Armstrong 
believes so.  He offers an account according to which the more parts two properties 
share, the more similar they are.3 
 This strategy is fatally flawed.  As a result, I argue, a theory of universals 
cannot count an analysis of resemblance among its virtues.  Since one of its 
alleged strengths is an elegant and reductive analysis of resemblance, the failure to 
produce such an account is a mark against the theory.  (I will not be weighing 
other costs and benefits here.)  
 In this paper I will look at how Armstrong’s theory deals with quantitative 
properties, particularly those of classical mechanics.  I do this for three reasons.  
First, Armstrong himself claims that universals are in a unique position to 
accommodate quantitative properties.4  Second, a world where the laws of classical 
mechanics hold is metaphysically possible, and Armstrong should be able to 
                                                
1 In this paper I am interested only in intrinsic resemblance, not extrinsic resemblance.  For instance, 
I do not address cases where there is some sense in which two things resemble (perhaps each has the 
property of being five feet from a poodle), but where this resemblance does not arise from the 
intrinsic properties of each object alone. 
2 See Armstrong (1978) and (1989a). 
3 See Armstrong (1988) and (1989a, pg. 101-105). 
4 See Armstrong (1989a, pg. 101). 
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account for such a world.  Third, if Armstrong’s theory cannot accommodate the 
properties of classical mechanics, there is little hope it will be able to accommodate 
the quantitative properties of more sophisticated physical theories. 
 
I.  Armstrong’s Picture: Resemblance as Partial Identity 
On Armstrong’s picture, universals are sparse; they carve nature at the joints.  The 
paradigmatic universals are the fundamental quantities expressed by predicates in 
an ideal physics.5  Gruesome predicates have no correlates in the world of 
universals.  Armstrong is especially conservative with his ontology of higher-order 
universals, or universals instantiated by universals.  (The relation of nomic 
necessitation is one of the few higher-order relations he allows.)  Although positing 
higher-order universals may seem a natural way to account for property 
resemblance, Armstrong has several reasons to reject this approach.6  As a result, he 
instead proposes a different strategy to account for resemblances among 
properties. 
 Armstrong claims that universals can be constituents of other universals, 
just as objects can be parts of other objects.  Universals made up of constituents 
are structural universals, while universals with no constituents are simple 
universals.  On his account, the structure of universals mirrors the structure of the 
objects that instantiate them.  Any object that instantiates a structural universal 
must have proper parts which instantiate that universal’s constituents.  Consider a 
structural universal F with constituents F1 through Fn.  If object a instantiates F, 
then a must have numerically distinct proper parts a1 through an which instantiate 
F1 through Fn, respectively.7 
 Two structural universals resemble one another to the extent to which they 
share constituents.  If two universals do not share any constituents, they do not 
resemble one another in any respect.  If they share at least one constituent, they 

                                                
5 See Armstrong (1988, pg. 87). 
6 One reason is the desire for ontological parsimony.  Another is the fact that the natural candidates 
for such higher-order universals are instantiated necessarily by first-order universals, which is at 
odds with Armstrong’s combinatorial view of possibility.  See Armstrong (1978, pg. 105-108), 
(1983), and (1989b) for more discussion. 
7 If one axiomatizes the part-whole relation using a mereology that abandons the axiom of unique 
fusion, then Armstrong’s constituency relation can be identified with the mereological relation of 
part to whole.  On the other hand, if the part-whole relation is constitutively tied to the unique fusion 
axiom of classical mereology, then Armstrong must accept the constituency relation as a primitive in 
his ontology, albeit one that closely approximates the notion of traditional parthood.  See Lewis 
(1986) for discussion. 
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resemble one another at least somewhat.  The more constituents they share, the 
more similar they are: all resemblance is reduced to partial or whole identity. 
 Armstrong claims that every quantitative property is a structural universal.  
Think of quantitative universals as Russian nesting dolls.  Within each doll there is 
a smaller doll, and a smaller one, ad infinitum.  The largest doll “contains” all the 
other dolls: it shares many nested dolls with the second-largest doll, slightly fewer 
nested dolls with the third-largest doll, and so on.  In terms of the quantity of 
shared dolls, the largest is more similar to the second-largest than to the third-
largest.  Likewise for quantitative universals – every quantitative property has an 
infinite number of “nested” constituent universals.  Intuitively, the more 
constituents two quantitative universals share, the more similar they are.  For 
example, the five grams mass universal shares many constituents with the four 
grams mass universal; hence the property of five grams mass closely resembles the 
property of four grams mass. 
 Armstrong’s remarks can be usefully formalized by the following two 
principles.  The first principle provides an intuitively plausible way to determine 
the constituents of a structural universal.  Call it the constituency principle: a 
universal x is a constituent of universal y iff every object in every possible world 
that instantiates y has some proper part that instantiates x.  This principle links the 
structure of universals to the structure of objects – universals have constituents 
when the objects that instantiate them have parts.  The second principle provides 
an intuitively plausible connection between the constituency relation and the 
resemblance relation.  Let “x < y” mean “y has all of the constituents of x but x 
does not have all of the constituents of y,” where x and y are universals.  Call this 
the resemblance principle: a is more similar to b than to c, and c is more similar to 
b than to a, iff a < b < c.  This principle links resemblance to constituency – two 
properties are similar when they share constituents.  Note that the resemblance 
principle applies only in cases where a, b, and c share at least one constituent.  If 
they have no constituents in common, they are utterly dissimilar and so cannot be 
compared along any axis of similarity.8 
 The constituency principle does a tremendous amount of work for 
Armstrong.  First, it provides an algorithm for determining the constituents of 
structural universals.  It explains, for example, why a charge universal is never a 
constituent of a mass universal – because not every massive object has a charged 
proper part.  It also explains why a mass universal never has constituents of greater 

                                                
8  For supporting texts, see especially Armstrong (1978, pg. 116-131), (1988, pg. 312-316), and 
(1989a, pg. 106-107). 
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mass – because no object with mass x ever has a proper part with a mass greater 
than x.  Second, the constituency principle grounds the structure of quantitative 
universals in the structure of objects and their proper parts.  In so doing, it 
provides Armstrong with a justification for constructing quantitative universals as 
he does.  Without this principle, we must brutely posit what the constituents of 
quantitative universals are.  Tying resemblance to constituents that are themselves 
ungrounded is not an improvement over positing primitive resemblance. 
 Thus, Armstrong analyzes resemblance in two steps.  First, the constituency 
principle grounds the ontology of universals in the ontology of objects; second, 
the resemblance principle uses the ontology of universals to ground resemblance 
relations. 
 In the following sections, I present several problems with this analysis.  I 
conclude that Armstrong’s account is not a plausible theory of quantitative 
properties, and thus is not an improvement over accounts that posit primitive 
resemblance. 
 
II.  The Metric Function 
Armstrong uses mass as a paradigm example to illustrate his account of quantities, 
so I will focus on it in the next two sections.  However, my criticisms in these 
sections apply to any quantitative property.  For now, I shall assume that mass is 
spread out over regions, i.e. that only occupants of regions with finite volume 
have mass.  On Armstrong’s picture, every mass universal has smaller mass 
universals as constituents.  For instance, the five grams mass universal has the 
universals four grams mass, three grams mass, etc., as constituents. 
 Take three mass universals: two grams mass, three grams mass, and two 
thousand grams mass.  According to the constituency principle, the following is 
true: two grams mass shares all of its constituents with three grams mass, and three 
grams mass shares all of its constituents with two thousand grams mass, but two 
thousand grams mass does not share all of its constituents with three grams mass, 
and three grams mass does not share all of its constituents with two grams mass.  
Apply the resemblance principle, and two thousand grams mass is more similar to 
three grams mass than to two grams mass, and two grams mass is more similar to 
three grams mass than to two thousand grams mass.  This provides Armstrong with 
an intuitive resemblance ordering: two grams mass is “smaller” than three grams 
mass, which is “smaller” than two thousand grams mass – therefore two grams 
mass is more similar to three grams mass than to two thousand grams mass. 
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 But this structure alone does not entail the resemblance relations that 
Armstrong claims it does.9  So far, all we have is an ordering of the mass 
universals.  Consider three mass universals, a, b, and c, such that a < b < c.  This 
tells us that a is closer to b than to c (and that c is closer to b than to a), but not 
whether b is closer to a or to c.  We know the ordering of a, b, and c; what we do 
not know are the distances between these universals. 
 Although the resemblance principle provides nothing more than a 
resemblance ordering, there are natural ways to extend the principle to capture the 
distances between mass universals.  Here is one way.  Let “x <d y” mean “y has all 
of the constituents of x and x does not have d constituents of y (where d is a 
number).”  Now we can apply the following principle: If a <m b <n c, then b is 
more similar to a than to c if and only if m is less than n.  Applied to universals a, 
b, and c, this extension appears to tell us how many constituents “away” b is from 
both a and c, and thus which universal it resembles more. 
 Unfortunately, this resemblance principle does no better than the original.  
This is easy to see if we assume that the mass quantities are isomorphic to the real 
numbers; i.e. that there are an uncountably infinite number of mass quantities.  
Every mass universal has an infinite number of constituents, so any two mass 
universals will have an infinite number of constituents in common as well as an 
infinite number not in common.  So this resemblance principle will not yield the 
result that three grams mass and two grams mass are more similar three grams mass 
and two thousand grams mass.10 
 What we need to know is how “far apart” the mass quantities are.  We can 
do this by using a mathematical metric.  A metric is a function d(x, y) defined on 
a set that assigns a non-negative value to each pair of elements.  For all x, y, and z 
in the set, the metric satisfies the following properties: (1) the value it assigns to (x, 

                                                
9 See Armstrong (1978, pg. 116-131). 
10 The same problem arises if there are countably infinite numbers of constituents.  In fact, 
Armstrong’s account cannot guarantee the correct resemblance relations even if universals had finite 
numbers of constituents.  Suppose there were only three mass universals: a, b, and c, and that a is 
simple, a is the only constituent of b, and a and b are the only constituents of c.  According to 
Armstrong’s resemblance principle, b is equally similar to a as to c.  Now suppose that a is 1 gram, b 
is 10 grams, and c is 11 grams.  It is clear that the resemblance principle gives us the wrong answer: 
10 grams is not equally similar to 11 grams and to 1 gram.  This shows us that constituency facts do 
not ground resemblance; rather, it is the facts about the number of grams (i.e. the facts about the 
metric structure of the property) that play that role.  When constituency facts and metric facts come 
apart, Armstrong’s account delivers the wrong similarity judgments.  And even if, fortuitously, they 
do not come apart, Armstrong’s account is fundamentally mistaken about which facts ultimately 
ground resemblance. 
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y) equals the value it assigns to (y, x), (2) it assigns 0 to (x, y) if and only if x = y, 
and (3) d(x, z) ≤ d(x, y) + d(y, z).11 
 Intuitively, a metric tells us how close any two values are to one another.  
For instance, a mass metric function might tell us that the distance between two 
grams mass and ten grams mass is eight grams, and the distance between ten grams 
mass and twelve grams mass is two grams.  The mass metric function captures both 
the ordering of mass quantities as well as the distances between them.  Thus it 
gives us everything we need to account for resemblance among mass quantities: 
any two quantitative universals are similar to the extent to which the distance 
(given to us by the metric function) between them is minimal.  So, ten grams 
mass is more similar to two grams mass than to one hundred grams mass because 
the distance between ten grams mass and two grams mass is less than the distance 
between ten grams mass and one hundred grams mass. 
 Let's step back and assess Armstrong’s position.  Armstrong’s constituency 
relation provides an ordering of quantities, but not the distances between them.  
In order to capture these distances, Armstrong must enrich his account by adding 
structure that encodes metric information.*   
 So where does this leave Armstrong with respect to other accounts of 
quantity?  The boon of a theory of universals, according to Armstrong, is its 
ability to capture resemblance facts without the extra structure required by rival 
theories.  We’ve seen, however, that both he and his rivals must incorporate metric 
structure in order to capture resemblance facts.  So far, Armstrong’s account has 
no advantage over any competing accounts.12 
 
III.  Point Particles 
Grant Armstrong a metric function over the mass quantities.  His account runs 
into further problems when we abandon the assumption that mass is only 
instantiated by objects spread out over regions.  Recall the constituency principle, 
which states that a universal x is a constituent of y iff every object that instantiates 
y has a proper part that instantiates x.  So no object without proper parts can 
instantiate a structural universal.  Now take a single electron.  An electron is 
                                                
11 See Abbott (2001, pg. 222). 
*  The published version of this paper says that the metric function encodes information about the 
ordering of quantitative universals.  That is incorrect: the metric provides information about the 
distance structure of quantities, but it does not provide an ordering. 
12 One might follow Hartry Field (1980) in grounding metrical assignments on a fundamental level 
of relations of congruence and betweenness.  But even then the relevant judgments of resemblance 
that Armstrong is interested in would be captured by the pattern of distribution of these relations 
and not by the facts of constituency. 
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point-sized – it has no radius and no apparent proper parts – yet it has a finite 
mass.  How can this be? 
 Armstrong suggests that point particles like electrons do have proper parts 
– an infinite number of them.  At every spacetime point where an electron is 
located, Armstrong claims there are an infinite number of particles.13  Each of 
these particles is a proper part of the single electron, and each has a part of the 
electron’s mass.  The mass property instantiated by the point-sized particle now 
satisfies the constituency principle, and it appears the problem is solved. 
 But this solution is unsatisfactory for several reasons.  First, on this account 
it is not metaphysically possible that just one object which instantiates a 
quantitative property like mass can occupy a point at a time.  This is highly 
counterintuitive.  Not only is it possible that one object could occupy a spacetime 
region, it seems very plausible that this is actually the case. 
 Second, there is an important disanalogy between Armstrong’s treatment 
of quantitative properties instantiated by point particles and those instantiated by 
objects spread out over a region.  Armstrong claims that any point particle 
instantiating a quantitative property has the same pattern of parts that it would 
have if it were spread out.  If this is true, it seems we should be able to isolate the 
parts of point particles just as we can isolate the parts of spread out objects.  But it 
seems we cannot.  For example, on Armstrong’s account particles with half of the 
mass of the electron must exist, but to date physics has found no evidence of such 
particles.  Why is this?  Is it because there are heretofore unknown laws of physics 
preventing them from existing independently?  The burden is on Armstrong to 
explain why these particles elude us. 
 Finally, we have no independent justification for Armstrong’s assumption 
that every point particle has an uncountably infinite number of parts.  Recall that 
Armstrong grounds the construction of universals in the mereology of objects.  
This tactic seems plausible in cases where we already have good reason to believe in 
these mereological relations, prior to the adoption of some particular metaphysical 
theory of properties.  So, for example, it is plausible to postulate proper parts of a 
massy object when that object is extended over a region.  This is not the case for 
point particles.  The only reason we have for assuming the parts of point particles 
exist is that Armstrong’s account requires their existence.  Similar concerns apply, 
mutatis mutandis, to cases in which spacetime points instantiate fundamental field 
values.  Just as Armstrong required point particles to have an infinite number of 
further point particles as parts, here he requires every spacetime point to have an 

                                                
13 Armstrong (1988, pg. 315). 
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infinite number of further spacetime points as parts.  A theory that posits 
infinitely many spacetime points at each spacetime location just to salvage a rather 
abstruse principle about universals is the sort of theory that many philosophers will 
find unappealing. 
 
IV.  Positive and Negative Quantities 
Armstrong seems to assume that his theory generalizes from the paradigm of mass 
to all fundamental quantitative properties.  But this isn’t the case.  In this section, 
I will look at the fundamental property of charge.  As with mass, Armstrong needs 
a metric function to capture resemblance between charge properties.  And, as with 
mass, problems arise when we consider finite charge values instantiated at points.  
So let’s grant Armstrong a similarity metric over charge properties, and let’s 
assume that charge is only instantiated by objects spread out over regions of 
spacetime. 
 Although Armstrong provides a general sketch for the construction of 
quantitative universals, he never explicitly discusses charge.  It is safe to assume, 
though, that Armstrong believes charge universals are constructed in the same way 
as any other fundamental quantitative property.  Charge properties – like mass – 
are structural universals whose constituents are other charge universals of smaller 
magnitudes.  For example, a charge universal of +2 coulombs has constituents 
with values between 2 and 0 coulombs, and a charge universal of -2 coulombs has 
constituents with values between -2 and 0 coulombs. 
 An immediate problem emerges with this construction: positive and 
negative charge properties share no constituent universals.  By the resemblance 
principle, positive and negative charges do not resemble each other at all; they 
have as much in common with one another as each has with mass.  But surely this 
isn’t right.  Positive charge has something very important in common with 
negative charge – they are both charge! 
 How can Armstrong account for the apparent resemblance between 
positive and negative charge?  Here is one option.  Even though positive and 
negative charge do not share constituent universals, perhaps their similarity lies in 
the role they play in the laws of nature.  So any resemblance between positive and 
negative charge consists solely in how they are treated by the laws.  But this is 
resemblance in virtue of causal role, not in virtue of shared universals.  Such a 
solution undercuts the motivation behind Armstrong’s theory of structural 
universals, since the point of the project is to reduce resemblance to partial 
identity. 
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 Here is another option.  Suppose we assume that properties of positive and 
negative charge do share constituent universals.  In that case, every charge 
universal has constituents in common with every other charge universal – both 
positive and negative.  Resemblance between positive and negative charge 
naturally follows. 
 While this option is attractive in some regards, it fails on several counts.  
First, it leads to odd constraints on metaphysical possibility.  Recall that the 
constituency principle states an object instantiating a universal must have parts 
instantiating the constituents of the universal.  On this version of Armstrong’s 
account, then, any object that instantiates positive (or negative) charge must have 
positively and negatively charged parts.  This rules out common cases in classical 
mechanics according to which there are such things as spheres of uniform positive 
charge.  On this account such a sphere must have a part that instantiates negative 
charge – but as described, the sphere has no parts that instantiate negative charge.  
It turns out that many common classical mechanical cases are metaphysically 
impossible. 
 Second, problems arise concerning the construction of charge universals.  
What constituents does, say, the +3 coulombs universal have?  Following 
Armstrong’s construction of mass universals, it is natural to take charge universals 
to have constituents of smaller charge magnitudes.  So +3 coulombs has a 
constituent for every charge value between +3 and -3.14 
 But now we cannot deliver resemblance relations via the resemblance 
principle.  Charge is an additive property: if we partition a charged object (divide it 
into mutually exclusive and exhaustive parts) the charge of these parts will add up 
to the charge of the whole.  Positive and negative values will cancel each other out, 
so that an object with a -10 coulombs part and a +10 coulombs part has zero net 
charge. 
 Take an object of +10 coulombs.  We’ve assumed that such an object has a 
part for every charge value between +10 and -10 coulombs.  So let’s pick out a part 
of the object that has -9 coulombs of charge; call this part a and the remainder part 
b.  In order to preserve the charge value of the whole (+10 coulombs), part b must 
have +19 coulombs of charge.  Now, we know that b likewise has a part with every 
charge value between +19 and -19 coulombs.  So let’s pick out a part of b that has 
-18 coulombs of charge; call this part c and the remainder part d.  Again, in order 
to preserve the charge value, the part d must have a charge of +37 coulombs.  And 

                                                
14 This is a natural move, I believe, but notice that we must simply assume that charged objects 
always have these parts.  Already the theory is beginning to look uncomfortably ad hoc. 
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so on.  Eventually, we find that every charged object has proper parts that 
instantiate arbitrarily large and arbitrarily small positive and negative charge 
magnitudes.  For any charge magnitude c, every charged object will have a part 
that instantiates c. 
 By the constituency principle, every charged object has parts that 
instantiate every possible charge value. So every charge universal will have 
constituents of every possible charge value.  Thus, all charge universals have the 
same constituents, and so they all have the same constituents in common.  But 
then, what grounds resemblance?  Not the resemblance principle (in conjunction 
with the similarity metric), which tells us that the more constituents two universals 
share, the more they resemble each other.  So Armstrong is still left without an 
account of resemblance. 
 (This account runs into further trouble if Armstrong takes two universals 
with the very same constituents to be numerically identical.  By definition, 
qualitatively identical simple universals are numerically identical, but it is unclear 
how Armstrong deals with qualitatively identical structural universals.  If 
universals with the same constituents are numerically identical, then every charge 
universal is numerically identical to every other charge universal – so a +2 
coulomb universal would be identical to a +100 coulomb universal, an undesirable 
result.) 
 This extension of Armstrong’s account fails.  Perhaps other extensions will 
be contrived.  But it’s hard to see how any account will be able to capture all of the 
resemblance facts in a manner true to Armstrong’s initial ambitions.  In any case, 
I will not explore this further.  One of the goals of a reductive project is to purge 
our ontology of dubious and otherwise unjustified entities.  A reduction of 
resemblance that generates a dubious and otherwise unjustified ontology is not a 
reduction worth pursuing. 
 
V.  Vector Quantities  
A vector is a quantity characterized by a magnitude and a direction.  Any account 
of resemblance between properties needs to account for resemblance between 
vector properties.  
 Armstrong discusses vector properties in Armstrong (1988).  He begins by 
allowing himself an ontology of fundamental properties and relations instantiated 
by spacetime points and intervals, but he does not allow any fundamental 
quantitative relations.  He then claims that all vector properties can be reduced to 
these fundamental properties and relations.  He backs up this claims with two 
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examples: being x amount later than and being x amount east of.  Both of these 
vector quantities may be reduced to a magnitude and spatiotemporal distance 
relation.15 
 But there are vector properties that cannot be reduced in this way.  An 
electric field vector, for example, cannot be decomposed into electric field 
magnitudes and spatiotemporal interval properties.  The pattern of electric field 
“magnitudes” and the spatiotemporal intervals between them leaves out crucial 
information given by the electric field vector.  In particular, it will not tell us what 
direction each magnitude “points” in.  Consider a polarized ray of light – the 
locations and values of the ray’s electric field magnitudes alone do not give the 
direction of polarization.  So it is not the case that all vector properties can be 
reduced in the way Armstrong suggests.  
 Armstrong must enrich his fundamental ontology in some way if he 
wishes to account for vector properties.  Here are three natural ways Armstrong 
might do this.  First, he might be more liberal in the fundamental relations that he 
allows into his ontology.  Second, he might decompose vectors into two 
fundamental properties.  Third, he might simply allow fundamental vector 
properties into his ontology.  Each of these strategies has its pitfalls, but the one 
they all share is a failure to account for resemblance. 
 Let’s see how the first strategy of allowing fundamental relations works for 
electric field vectors.  One way to pursue this strategy is to add two new 
fundamental elements to one’s ontology: an electric field magnitude property and 
an electric field points-at relation.  The electric field magnitude is the value 
associated with the electric field vector, and the electric field points-at relation is an 
asymmetric relation that holds between pairs of spacetime points that encodes the 
vector’s direction.  A 5 volts/meter electric field vector pointing north is reduced 
to a 5 v/m electric field magnitude and the fact that the electric field points-at 
relation holds between the spacetime point instantiating that magnitude and each 
spacetime point due north of it. 
 This version is unsatisfactory for several reasons.  One of Armstrong’s 
goals in providing a reductive account of vectors is to reduce the number of 
strange and unnecessary primitives in his ontology.  But this version does the 
opposite – it increases both the number and the types of primitives required, and 
these primitives are arguably more exotic than the vector properties being reduced.  
Moreover, this account results in bizarre metaphysical possibilities.  Armstrong 
believes in a combinatorial theory of possibility, according to which the 

                                                
15 Armstrong (1988, pg. 310-311). 
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fundamental properties and relations of our world can be recombined to produce a 
possible world.16  If electric field magnitudes and electric field points-at relations are 
fundamental, then it is metaphysically possible that one could be instantiated 
without the other.  In other words, two points could stand in the electric field 
points-at relation even though an electric field magnitude is not associated with 
either point. 
 A second way Armstrong might try to analyze vectors is by invoking pairs 
of monadic properties.  For example, he might postulate a magnitude property that 
encodes the magnitude of the vector, and a direction property that encodes its 
direction.  There are an infinite number of direction properties, one for each 
direction in which a vector can point.  This strategy has the same demerits as the 
last one.  It increases the number and types of primitives in Armstrong’s 
ontology, and his combinatorialism entails that an electric field direction property 
may be instantiated at a point with no associated electric field magnitude, a strange 
consequence. 
 More importantly, neither of these accounts can fully capture resemblance 
between vector properties.  Different directions resemble each other to different 
degrees.  Consider three electric field vectors, a, b, and c, of the same magnitude, 
with the same origin, and lying in the same plane.  Vector a points north, b points 
10° in a clockwise direction from a, and c points 10° clockwise from b.  It seems 
that a is more similar to b than to c because a and b are more similar with regard 
to direction. 
 Any account of resemblance must explain this, but an analysis of vectors 
in terms of either magnitudes and direction properties or magnitudes and points-at 
relations cannot.  On Armstrong’s account only quantitative fundamental 
universals have constituents, and neither direction properties nor points-at 
relations are quantitative.  No direction universals have any constituents in 
common, so no direction universal ever resembles another direction universal.  
Likewise, no points-at relations have any constituents in common, so no points-at 
relation ever resembles another points-at relation.  Thus, we cannot say that vector 
a resembles b more than c because a and b point in more similar directions.  
Neither strategy can capture all of the resemblance relations between vectors, since 
the sharing of constituents cannot explain any similarity between directions. 
 A third way Armstrong might try to account for vectors is by simply 
admitting them as primitives into his ontology.  Yet problems arise here as well.  
Suppose every vector universal has constituents.  Since vectors are instantiated at 

                                                
16 See Armstrong (1989b). 
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points, this leads to the kinds of problems discussed in section 3, those that arise 
when finite magnitudes are instantiated at points.  But unlike mass and charge, 
there is no story to tell about vector properties according to which they are 
extensive or spread out over a region.  So in this case we do not even have a 
spread-out template that we can use to discern the structure of vector universals. 
 Resemblance is even more of a problem on this account than on the 
previous two.  By the resemblance principle, two vector universals resemble each 
other when they have constituents in common.  Suppose that a vector’s 
constituents are vectors with smaller magnitudes that all point in the same 
direction.  Then Armstrong can account for the similarity of vector universals that 
point in the same direction. 
 But he cannot account for the similarity of vector universals that point in 
different directions.  (Any attempt to construct a vector property with 
constituents that point in different directions will run into the same troubles as we 
saw when we tried to construct charge properties with positive and negative 
constituents (see section 4).)  Consider two unit electric field vectors 10° apart that 
have the same origin and lie in the same plane.  On this account, they do not 
resemble each at all, since they share no constituents.  But it seems they have a 
great deal in common; in fact, they exactly resemble in several respects.  First, 
they are both vectors, and two vector properties are more similar than a vector and 
a scalar property.  Second, they both electric field vectors, and two electric field 
vector are more similar than an electric field vector and a magnetic field vector.  
Third, they have the same magnitude, and two vectors of the same magnitude 
pointing in different directions are more similar than two vectors of different 
magnitudes pointing in different directions.  Yet on this account these two 
electric field vectors resemble each other no more than each resembles a mass 
universal. 
 I shall not speculate about how Armstrong would revise his theory of 
vectors when faced with the decisive problems with the account he actually states.  
I have no idea which package of costs would seem more palatable and, in 
particular, to what extent he would be willing to accept additional fundamental 
relations, to what extent he would be willing to deny the authenticity of various 
apparent resemblance facts, and to what extent he would be willing to bite various 
bullets on combinatorial possibility.  What is inevitable is a breakdown of the 
original picture that sought to explain all intrinsic resemblance by the sharing of 
constituents.  At best, Armstrong cannot capture all the resemblances between 
vector properties, and at worst he cannot accommodate vector properties at all. 
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VI.  Resemblance in Different Respects 
It is no surprise that our resemblance judgments depend significantly on context.  
Armstrong lauds universals for readily explaining this phenomenon when it comes 
to comparing similar objects: “If resemblance is a matter of different identities in 
different cases, it is easy to see that degrees of resemblance will be a partially 
subjective matter, depending upon what particular properties we happen to be 
interested in, in the particular context.”17  But while Armstrong can accommodate 
context-sensitivity when it comes to objects, he cannot do the same for properties.   
 Consider three charge universals: +5 coulombs, -1 coulomb, and -5 
coulombs.  One way to judge similarity between them is in terms of difference in 
charge value – the -5 coulombs universal is more similar to the -1 coulomb 
universal than it is to the +5 coulombs universal because -1 and -5 are only four 
units of charge “apart”, while -5 and +5 are ten units “apart”.  But there is another 
way to judge similarity.  We could say instead that the -5 coulombs universal is 
more similar to the +5 coulombs universal than the -1 coulomb universal because -
5 and +5 are the same magnitude of charge.  Neither judgment of resemblance is 
prohibited; rather, the first seems right when similarity is judged in one context, 
the second seems right when similarity is judged in another.   
 The same can be said for vector quantities.  Consider three unit electric 
field vectors lying on the same plane with a common origin: one points north, 
one points west, and one points south.  Again, which are more similar?  On the 
one hand, the vector pointing north is more similar to the one pointing west 
because the angle between them is smaller.  On the other, the vector pointing 
north and the vector pointing south are more similar because they are parallel, 
while the vector pointing west is perpendicular. 
 This generates a challenge for Armstrong.  We have seen how he wishes to 
account for the context-dependence of resemblance judgments in the case of 
objects – we restrict our attention to a subset of the universals in play.  And we 
have seen that there is certainly context dependence of resemblance judgment in 
the case of magnitudes.  For his account of resemblance to have desirable unity, he 
would need to explain context dependence in the same way: in terms of attention 
being restricted to a subset of the universals in play.  But in the cases described 
above, there seem to be more dimensions of context-dependence to judgments of 
resemblance than there are families of universals present.  Some kind of 
breakdown in the account once again seems imminent. 
 
                                                
17 Armstrong (1988, pg. 103). 
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VII.  Conclusion 
Why universals? 
 For Armstrong, a major selling point of his theory of properties is its power 
to analyze resemblance.  Universals can account for our resemblance intuitions 
while providing a reduction of resemblance, he says.  No other theory of properties 
can do the same. 
 Armstrong offers a theory of universals that is intended to provide a 
unified account of resemblance for both objects and properties.  Objects 
instantiate universals, and the more universals objects share the more similar they 
are.  Universals are constructed out of constituents, and the more constituents 
universals share the more similar they are.  The construction of universals is linked 
to the construction of objects: only objects with the appropriate proper parts can 
instantiate structural universals. 
 We’ve seen that this construction of structural universals does not deliver 
an adequate account of resemblance among properties.  First, appeal to the 
“number of” shared constituents is no substitute for a similarity metric.  Second, 
the applications to point-sized particles are bizarre and ad hoc.  Third, the account 
faces special troubles from positive and negative quantities.  Fourth, it faces worse 
troubles from vector quantities.  Finally, the theory provides no basis for a unified 
account of context-sensitivity for resemblance.  Armstrong writes: “The fate of 
the Universals theory may turn on the question of the inexact resemblance of 
universals.”18 
 I concur.19 
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