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Intrinsic Explanations and Numerical Representations 
M. Eddon 

 
1. Introduction 
In his (1980), Hartry Field argues that good explanations of physical phenomena 
are “intrinsic explanations.”  Roughly, an intrinsic explanation of some 
phenomenon is one that invokes objects that are causally relevant to the 
phenomenon to be explained.  For instance, an explanation of the structure of 
spacetime that appeals to spacetime points and the relations they stand in is an 
intrinsic explanation, while one that appeals to causally irrelevant entities like 
numbers is an extrinsic explanation.  More carefully, let us say that a predicate F is 
an intrinsic predicate iff whether F(x1, …, xn) obtains does not depend on anything 
other than x1, …, xn, and the relations among them.  Let us say that a fact is an 
intrinsic fact iff the predicates it involves are intrinsic predicates.  Finally, let us say 
that an explanation is an intrinsic explanation iff it only involves intrinsic facts 
and intrinsic predicates.1 

Field argues that his treatment of quantity is able to provide intrinsic 
explanations of the structure of space, spacetime, and other quantitative 
properties, as well as intrinsic explanations of why certain numerical 
representations of quantities (distances, lengths, mass, temperature, etc.) are 
appropriate or acceptable while others are not. 

In contrast, Brian Ellis (1960) and (1966) argues that certain quantitative 
predicates are not intrinsic,2 and that numerical representations of quantitative 
features are largely a matter of convention.  In a similar vein, Peter Milne (1986) 
uses arguments like Ellis’s to argue that both of Field’s claims are false – that Field’s 
account cannot provide intrinsic explanations of either our numerical 
representations of quantity or the structure of quantity. 

In this paper, I show where the arguments put forth by Ellis and Milne go 
wrong, and where they go right.  Their arguments that one cannot provide an 
account of quantity in “purely intrinsic” terms fail for the same reason: they take 
                                                      
1 These notions of “intrinsic” are those employed by Field and Milne.  They are not particularly 
explicit about what they mean by these terms, but the characterizations given above are suggested by 
the passages in Field (1980, 27-28 and  41-46) and Milne (1986, 344 and 346).  (Of course, to make 
these characterizations completely precise, one needs to spell out the relevant notions of “involves” 
and “depends.”) 
2 Ellis does not put it in quite this way.  Rather, he suggests that “grounds of convenience” (1966, 82) 
and “the roles of the various quantities in physical theory” (86) are “the only kind[s] of justification 
that can be given” (83) for the choice of fundamental scale and fundamental measuring procedure.  
This entails that certain length relations are, on his view, not intrinsic. 
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the conventionality of numerical representations of quantitative features to reveal 
conventionality of the features themselves.  Both Ellis and Milne infer from the 
fact that choice of measurement scale is a matter of convention that the 
underlying quantitative features the scale represents must also be a matter of 
convention. 
 On the other hand, Ellis’s claim that the numerical representations of 
quantitative features that we employ are merely conventional, and Milne’s claim 
that Field’s framework does not provide an intrinsic explanation of our use of 
certain numerical representations over others, are both right.  I will show that Field 
is mistaken to claim this as a virtue of his framework.  That said, I will tentatively 
suggest a way to modify Field’s framework so that it can provide such intrinsic 
explanations. 
 In sections (2) and (3), I present two questions Ellis raises about 
measurement, concerning the structure of quantity and the numerical 
representation of quantity.  In section (4), I show how, contrary to what Ellis 
claims, these questions are orthogonal to one another, and I show how this 
undercuts Ellis’s argument that one cannot provide an account of quantity in 
“purely intrinsic” terms.  In section (5), I describe Field’s framework.  In sections 
(6) and (7), I present and assess Milne’s objections to it.  Finally, in section (8), I 
suggest one way to modify Field’s framework so that it can provide an intrinsic 
explanation for why some numerical representations are better than others. 
 
2. Two Fundamental Measuring Procedures 
Consider three rods – a, b, and c.  Suppose that a and b are the same length.  
When placed end to end, the distance from the leftmost tip of a to the rightmost 
tip of b is the same as the length of c: 

a 
b 

c 
This way of measuring the lengths of rods is what Brian Ellis calls a “measuring 
procedure.”3  Roughly, a measuring procedure is a physical procedure for adding 
objects together, with respect to some magnitude.4  Let us call the particular 
                                                      
3 See Ellis (1960) and (1966, 74-89). 
4 Ellis writes: “All fundamental measurement depends upon the existence of a procedure for 
producing equality in respect of the fundamentally measureable quantity.  In the fundamental 
measurement of length, the object to be measured is equaled in length by a line produced by a series 
of repeated procedures with a standard or set of standard objects (i.e. measuring rods).” (Ellis 1960, 
42) 
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measuring procedure used above the “standard measuring procedure.”  When a is 
added to, or concatenated with, b using the standard measuring procedure, the 
result is c.  And it seems plainly clear that when two rods of equal length are added 
together, the resulting rod is twice as long as each of the individual rods.  So, it 
seems plainly clear that we can deduce from this procedure that c is twice as long 
as a and b. 
 But is that so?  Consider a different measuring procedure.  Begin again 
with rods a and b, and now add another rod, d.  Suppose that instead of placing a 
and b end-to-end, we place them perpendicular to one another.  When 
perpendicular to one another, the distance from the leftmost tip of a to the 
topmost tip of b is the length of d: 
 
 
 

 
 
Call this way of adding or concatenating objects the “right-angle measuring 
procedure.”  When a is added to, or concatenated with, b using the right-angle 
measuring procedure, the result is d.  And if we assume, as we did above, that 
concatenating two objects of equal length yields an object that is twice as long, 
then it seems we are committed to saying that d – not c – is twice as long as a and 
b.5 
 So is the length of a and b added together the same as the length of c, or is 
it the same as the length of d?  Is there some reason to think that the standard 
measuring procedure, and not the right-angle measuring procedure, is the 
“correct” measuring procedure”?  This is one of two questions Ellis poses in his 
(1960) and (1966, 74-86): 

Question 1: What is the fundamental measuring procedure?  Is there 
some reason to think that the fundamental measuring procedure is the 
standard one as opposed to the right-angle one? 

                                                      
5 Suppose one claims that only c is twice as long as a and b, and this is why that standard measuring 
procedure is the correct one to use.  But whether c really is twice the length of a and b, irrespective of 
some choice of measuring procedure, is precisely the question at issue.  As Ellis notes, to maintain 
that “the notion of ‘twice as long as’ has a significance which is independent of measuring operations” 
(Ellis 1966, 83) is simply to say that there is an objectively correct measuring procedure.  If the 
standard measuring procedure is the fundamental one, then c is twice as long as a and b; while if the 
right-angle measuring procedure is the fundamental one, then d is twice as long as a and b.  And if 
there is no fact of the matter about which of these is fundamental, then there is no fact of the matter as 
to which rod is twice as long as a and b. 

a 

b 

a 

d 
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What does Ellis mean by a “fundamental measuring procedure”?  A 
measuring procedure is a physical procedure for adding together the lengths of 
objects.  Of course, there are many different procedures one may carry out to 
measure length.  What makes a particular measuring procedure fundamental is that 
it tracks the fundamental facts about length.  In other words, the fundamental 
measuring procedure is interesting because its method of “adding” rods lines up 
with the fundamental concatenation relation.6  So, Ellis’s question about which 
fundamental measuring procedure is the correct one to use is, at bottom, a 
question about the fundamental concatenation relation.  Here is Ellis’s first 
question, reformulated: 

Question 1, reformulated: What is the fundamental concatenation 
relation?  Is there some reason to think that it is the one that lines up with 
the standard measuring procedure, where rods are placed end-to-end, as 
opposed to the one that lines up with the right-angle measuring procedure, 
where rods are placed perpendicular to one another? 

 In what follows, I use “measuring procedure” and “concatenation relation” 
(or “concatenation predicate”) interchangeably. 
 
3. Scales of Measurement 
How might one argue that the standard concatenation relation (or, in Ellis’s 
terms, the “standard measuring procedure”) is the one linked to the objective 
notion of length, while the right-angle concatenation relation (or, in Ellis’s terms, 
the “right-angle measuring procedure”) is not?  One thought is to appeal to our 
use of certain scales of measurement.  Consider, for instance, the inches scale.  
Suppose that a and b are both one inch long, and c is two inches long.  So a and b 
are assigned the number 1 on the inches scale, and c is assigned the number 2.  
Now, one might say, the inches scale accords with the standard concatenation 
relation in an important way.  The concatenation of a and b, each one inch long, 
yields an object that is two inches long.  More generally, the inches scale is 
additive over the standard concatenation relation: when the lengths of rods are 
measured in inches, the number assigned to the concatenation of x and y is the 
sum of the numbers assigned to x and y individually. 

In contrast, the inches scale is not additive over the right-angle 
concatenation relation.  The right-angle concatenation of a and b is d, which is √2 
inches long.  So the number assigned to d is not the sum of the numbers assigned 
                                                      
6 In this context, I use “fundamental” to mean something akin to Lewis’s “perfectly natural.”  See 
Lewis (1983). 
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to a and b (1+1≠√2).  Therefore, one might claim, since we want our scale to be 
additive over the fundamental concatenation relation, the right-angle 
concatenation relation is to be rejected.7 
 As Ellis points out, however, this attempt to justify the standard 
concatenation relation is unsuccessful.  There are two reasons.  First, although it is 
true that the inches scale is not additive over the right-angle concatenation 
relation, one can construct scales that are additive.  Ellis offers one candidate: the 
so-called dinches (or “diagonal inches”) scale.  The dinches scale is related to the 
inches scale in the following way: 
 1 inch = 1 dinch 
 2 inches = 4 dinches 
 3 inches = 9 dinches 
and more generally: 
 n inches = n2 dinches 
Since a and b are both one inch long, they are also both one dinch long, and so 
are assigned the number 1 on the dinches scale.  And d – the hypotenuse of the 
right triangle formed by concatenating a and b using the right-angle measuring 
procedure – is two dinches long, and so is assigned the number 2 on the dinches 
scale.  The number assigned to d is the sum of the numbers assigned to a and b 
(1+1=2), and so we see that the dinches scale is additive over the right-angle 
concatenation relation. 
 So, even if we grant the assumption that a satisfactory measurement scale 
must be additive over the fundamental concatenation relation, this does not give 
us a reason to reject the right-angle concatenation relation.  For we can construct 
a scale – the dinches scale – that is additive over the right-angle concatenation 
relation.  Regardless of which concatenation relation is the fundamental one, we 
can construct a scale that is additive over that relation. 
 The second reason this attempt to defend the standard concatenation 
relation falters is that the assumption that an adequate measurement scale be 
additive over the fundamental concatenation relation is unjustified.  Why must 
our scale be additive in this way?  There are plenty of satisfactory scales that seem 
to fail to satisfy this criterion: decibels (of sound), Richter magnitudes (for 
earthquakes).  As Ellis (1960, 47) points out, the requirement that certain 
measurement scales be additive seems to be a matter of convention more than 
anything else.8 

                                                      
7 This appears to be the move suggested by Fox (2007). 
8 See also Krantz et al. (1971, 100). 
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That said, the dinches scale surely seems odd, and it would be interesting if 
there were some independent justification for rejecting it.  This leads to the second 
question Ellis poses:   

Question 2: What is the correct measurement scale to use when 
measuring lengths?  Is there some reason to think that scales like the inches 
scale are the correct ones to use as opposed to scales like the dinches scale? 

 
4. Two Paths to a Dinches Scale 
Ellis takes these two questions – the question of the correct fundamental 
measuring procedure, and the question of the correct measurement scale – to be 
related to one another, such that an answer to one of these questions entails an 
answer to the other.9   In particular, Ellis says that the intrinsic facts about lengths 
do not give us any reason to use one measurement scale over another, and 
therefore that the intrinsic facts about lengths do not give us any reason to use 
one concatenation relation over another.  But in fact these two questions are 
orthogonal to one another.  In this section, I show how one can construct both 
inches and dinches scales from the standard concatenation relation, and also how 
one can construct both inches and dinches scales from a non-standard 
concatenation relation.  In sections (6) and (7), this result is used to evaluate 
Milne’s objections to Field. 

Let us begin with the canonical treatment of measurement.  Following 
Krantz et al. (1971), there are two primitive predicates: greater than or equal to 
() and concatenation ().  To say that x  y means, intuitively, that the length of 
x is greater than or equal to the length of y.  And to say that (x, y, z) means, 
intuitively, that the length of z is the length of x concatenated with the length of 
y.  The concatenation predicate, , corresponds to what Ellis calls the standard 
fundamental measuring procedure. 

Consider a set of rods, A, over which the length relations  and  are 
defined.  In order to represent the objects in A using numbers, we want a function 
that maps the relational structure <A,  ,> to some numerical structure.  A 
natural way to do this is to carry the objects in A to the positive real numbers, 
carry  to ≥, and carry  to +.  One can then prove representation and uniqueness 

                                                      
9 Ellis: “The two problems of choice involved in fundamental measurement are, of course, very 
closely linked together.  For to choose a fundamental scale for the measurement of any quantity, both 
of these choices have to be made.  Consequently, they are both parts of the more general problem of 
choosing a scale, and the same considerations are likely to be relevant to both choices.” (Ellis 1966, 
81)  See also remarks in Ellis (1960, 46-47) and 1966 (82-86). 
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theorems – theorems specifying the constraints on numerical representations of 
the objects and relations of A.  In this case, the representation theorem states that 
<A, , > is a model of the axioms of extensive measurement iff there is a function 
φ1 from <A, , > into <Re+, ≥, +> such that: 

(i1) x  y iff φ1(x) ≥ φ1(y) 
(ii1) (x, y, z) iff φ1(x) + φ1(y) = φ1(z) 

The corresponding uniqueness theorem states that for any two functions φ1 and 
φ1ʹ′ defined over A, φ1 and φ1ʹ′ satisfy these constraints iff they differ only by a 
positive multiplicative constant (i.e., φ1=nφ1ʹ′ where n > 0).  This uniqueness 
theorem captures the fact that if the inches scale, say, is an acceptable 
measurement scale for lengths, then so is the centimeters scale, the yards scale, the 
miles scale, and so on.  (Of course, some of these scales may be more convenient 
in some circumstances.  If you ask someone how far away the moon is from the 
earth, you might be irritated if she gives you the answer in millimeters.) 
 While this may be the most obvious way to numerically represent the 
objects in A, it is not the only one.  We could, for instance, choose to map <A, , 
> onto <Re+, ≥, #>, where # is defined as follows: 

n#o = p iff (√n+√o)2 = p (where n, o, and p are variables ranging over 
numbers) 

In this case, one can prove a representation theorem that states that <A, , > is a 
model of the axioms iff there is a function φ2 from <A, , > into <Re+, ≥, #> that 
satisfies the following analogues of (i1) and (ii1) above: 

(i2) x  y iff φ2(x) ≥ φ2(y) 
(ii2) (x, y, z) iff φ2(x) # φ2(y) = φ2(z) 

The corresponding uniqueness theorem is the same as the one above: for any two 
functions φ2 and φ2ʹ′ defined over A,  φ2 and φ2ʹ′ satisfy these constraints iff they 
differ only by a positive multiplicative constant (i.e., φ2=nφ2ʹ′ where n > 0). 
 φ1 and φ2 are functions that map the same relational structure, <A, , >, 
onto different numerical structures.  And they are related in the following way: φ1 

= φ2
2.  If φ1 is the inches scale, then φ2 is the dinches scale.  So we see that the 

relational structure in which the standard concatenation predicate figures permits 
the construction of both inches and dinches scales. 

Now let’s see how one can construct both inches and dinches scales from a 
non-standard concatenation relation.  Suppose that instead of , we introduce a 
different sort of concatenation predicate, *.  Intuitively, * corresponds to Ellis’s 
right-angle measuring procedure.  Consider again our set of rods, A, but rather 
than define  and  over A, we define  and * over A.  As before, in order to 
represent the objects in A using numbers, we want a function that maps the 
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relational structure <A, , *> to some numerical structure.  One way to do this is 
to carry the objects in A to the positive real numbers, carry  to ≥, and carry * to 
+.  The representation theorem in this case states that <A, , *> is a model of the 
axioms iff there is a function ϕ1 from <A, , *> into <Re+, ≥, +> such that: 

(i1) x  y iff ϕ1(x) ≥ ϕ1(y) 
(ii1) *(x, y, z) iff ϕ1(x) + ϕ1(y) = ϕ1(z) 

The corresponding uniqueness theorem states that, for any two functions ϕ1 and 
ϕ1ʹ′ defined over A,  ϕ1 and ϕ1ʹ′ satisfy these constraints iff they differ only by a 
positive multiplicative constant (i.e., ϕ1=nϕ1ʹ′ where n > 0). 
 Just as <A, , > could be mapped to various numerical structures, so can 
<A, , *>.  Suppose that instead of carrying * to +, we carry * to a different 
mathematical procedure, $, where $ is defined as follows: 

n$o = p iff √(n2+o2) = p (where n, o, and p are variables ranging over 
numbers) 

Now one can prove that <A, , *> is a model of the axioms iff there is a function 
ϕ2 such that: 

(i2) x  y iff ϕ2(x) ≥ ϕ2(y) 
(ii2) *(x, y, z) iff ϕ2(x) $ ϕ2(y) = ϕ2(z) 

ϕ1 and ϕ2 are functions that map the same relational structure, <A, , *>, onto 
different numerical structures.  And they are related in the following way: ϕ2 = ϕ1

2.  
If ϕ2 is the inches scale, then ϕ1 is the dinches scale.  So we see that a structure 
using the right-angle concatenation predicate, *, permits the construction of both 
inches and dinches scales. 
 Ellis takes the existence of the dinches scale to demonstrate that distances 
among lengths is not an intrinsic matter – it is not settled by the objects and the 
length relations that hold among them.  If it is settled at all, he believes, it can 
only be due to considerations of simplicity of mathematical formulations of the 
laws of nature.10  But we see now that this doesn’t follow.  The fact that we can 
construct non-standard measurement scales like the dinches scale implies nothing 
about the underlying length relations, since both dinches and inches scales can be 
constructed from structures with the standard concatenation predicate as well as 
structures with the right-angle concatenation predicate.  True, the inches scale is 
more convenient and familiar than the dinches scale.  But both are just numerical 
representations – and there are no metaphysical insights to be gleaned from the 
obvious fact that some numerical representations are more convenient and 
familiar than others. 

                                                      
10 See Ellis (1966, 82-83). 
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5. Hartry Field and Intrinsic Explanations 
Like Ellis, Milne takes the existence of the dinches scale to show that certain facts 
about lengths are not “intrinsic facts,” or “facts about the world which are statable 
independently of… the use of particular mathematical representations.” (Milne 
1986, 341)  Milne’s criticisms are directed at Field’s claim that his framework 
provides “intrinsic explanations” – explanations that appeal only to “intrinsic 
facts” – of relevant phenomena. 

Field takes his framework to provide intrinsic explanations of two sorts of 
things: first, an intrinsic explanation of our standard numerical representations of 
lengths, mass, temperature, and so on;11 second, an intrinsic explanation of the 
structure of space, spacetime, and various scalar magnitudes.12   

Milne argues that Field’s framework fails on both counts.  In broad outline, 
Milne’s argument goes as follows: first he argues that Field’s framework fails to 
provide intrinsic explanations of our standard numerical representations of various 
quantities.  Then he infers that some of the predicates invoked by Field are not 
intrinsic, and thus any explanations involving them are not intrinsic 
explanations. 

In the following sections, I show that while it’s true that Field’s framework 
does not provide an intrinsic explanation of our use of certain numerical 
representations, this does not entail that it fails to provide intrinsic explanations of 

                                                      
11 “[O]ne of the things that gives plausibility to the idea that extrinsic explanations are unsatisfactory 
if taken as ultimate explanation is that the functions invoked in many extrinsic explanations are so 
arbitrary.  For example, in the case of geometry, the choice of one distance function over any other 
one which differs from it by positive multiplicative constant is completely arbitrary; it reflects in 
effect an arbitrary choice of units for distance.” (Field 1980, 45)  Concerning his treatment of 
Euclidean geometry, Field writes that the associated uniqueness theorem “gives an explanation of the 
fact that the laws of Euclidean geometry, when stated in terms of coordinates, are invariant under 
shift of origin, reflection, rotation, and multiplication of all distances by a constant factor.” (Field 
1980, 50)   
12 Concerning his treatment of Newtonian space-time, Field writes: “The position that we arrive at, 
then, is that the only spatio-temporal relations needed to describe Newtonian space-time are the three 
invoked in this axiom system… [T]he coordinate system and the distance function can be viewed as 
merely devices for deriving conclusions about spatio-temporal betweenness, simultaneity, and 
spatial congruence, conclusions which could be derived without ever bringing in numbers at all.” 
(Field 1980, 53)  Concerning temperature, Field says that the relevant question is, “what must the 
intrinsic facts about temperature differences between physical objects be if it is appropriate to think 
of temperature as being represented by real numbers?” (1980, 58)  And after providing his account of 
these intrinsic facts, he writes: “We have specified the continuity of temperature with respect to 
space-time in a completely intrinsic way, a way that never mentions spatio-temporal coordinates or 
temperature scales.  In my view this fully intrinsic character of the method makes it very attractive 
even independently of nominalistic scruples.” (Field 1980, 63) 
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the structure of space, spacetime, and various scalar magnitudes.  I begin with a 
rough sketch of Field’s framework, and then show where Milne’s criticisms of Field 
go awry. 
 
5.1 Field’s Framework 
Field’s treatment of space, spacetime, and other quantitative properties is modeled 
on Hilbert’s axiomatization of Euclidean geometry.  Let’s here consider Field’s 
treatment of Euclidean geometry (in section (7) we see how this account is 
modified to apply to other quantitative properties).  Field takes the basic predicates 
to be the 3-place predicate betweenness (Bet) and the 4-place predicate congruence 
(Cong).  To say that y Bet xz means, intuitively, that the spatial location of y is 
between that of x and z.  And to say that xy Cong zw means, intuitively, that the 
spatial distance between x and y is the same as that between z and w.13 
 One can provide representation and uniqueness theorems for Field’s 
account of Euclidean geometry.  Roughly, the representation theorem says that, 
given a domain of points A over which betweenness and congruence are defined, 
there is a function d that maps pairs of points onto numbers such that: 

(a) for any points x, y, z, and w, xy Cong zw iff d(x, y) = d(z, w) 
(b) for any points x, y, and z, y Bet xz iff d(x, y) + d(y, z) = d(x, z) 

The corresponding uniqueness theorem for betweenness and congruence says that, 
given a model of the axiom system and any two functions d and dʹ′ defined over 
A, if d satisfies (a) and (b), then dʹ′ satisfies (a) and (b) iff d and dʹ′ differ by a 
positive multiplicative constant. 

Field takes these representation and uniqueness theorems to have 
philosophical significance.  The representation theorem, he says, “shows that 
statements that talk about space alone, without reference to numbers, are 
equivalent to certain ‘abstract counterparts’ which do talk about numbers.” (Field 
1980, 27)  So, if we think of d as a distance function (as intuitively it is), then we 
see that all the geometrical laws stated in terms of numbers can be restated in 
terms of betweenness and congruence.  The uniqueness theorem guarantees that 
the inches scale satisfies (a) and (b) iff the centimeters scale does as well, since they 
differ by only a multiplicative constant.  Field takes this to show that, given his 
treatment of geometry, “the fact that geometric laws, when formulated in terms 
of distance, are invariant under multiplication of all distances by a positive 
constant, but are not invariant under any other transformation of scale, receives a 
satisfying explanation: it is explained by the intrinsic facts about physical space, i.e. 

                                                      
13 Field (1980, 25-26) 
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by the facts about physical space which are laid down without reference to 
numbers in Hilbert’s axioms.” (Field 1980, 27)14 

So, given Field’s account, we can prove that there is a range of numerical 
representations that satisfy certain constraints.  This, says Field, shows that we are 
justified in using the numerical representations that we do.  In other words, Field’s 
account provides an intrinsic explanation for why certain numerical 
representations of distance, length, etc., are permissible while others are not. 
 
6. Milne’s First Objection: Differential Congruence 
In section (4), we saw that different kinds of numerical representations of length 
can be constructed independently of the underlying length relations.  So we 
already have reason to be skeptical of Field’s claim that the length facts themselves 
explain why we use one representation rather than another.  And indeed, Milne 
challenges Field’s claim, showing that one can numerically represent betweenness 
and congruence using either an inches or a dinches scale. 
 We’ve seen that the standard representation theorem associated with 
betweenness and congruence maps pairs of points onto numbers in the ways 
constrained by (a) and (b) above.  But this is only one of many ways we can 
numerically represent betweenness and congruence.  Milne offers an alternative, 
which replaces (b) above with (bʹ′): 

(bʹ′) for any points x, y, and z, y Bet xz iff √d(x, y) + √d(y, z)= √d(x, z) 
Note that if we replace (b) with (bʹ′), we’ve effectively constructed a dinches scale 
(where the length in dinches is the distance between pairs of points).  Consider 
any function d that satisfies (a) and (b); then a function dʹ′ satisfies (a) and (bʹ′) iff 
d(x, y) = dʹ′(x, y)2.  If d is the inches scale, then dʹ′ is the dinches scale.   
 Nothing about the axioms governing betweenness and congruence rules 
out (bʹ′) as opposed to (b).  As Milne says, neither (b) nor (bʹ′) “represent an 
intrinsic constraint on distance functions, i.e. an intrinsic feature of length 
measurement.” (Milne 1986, 343)  And so we reach the same moral as in section 
(4): the fundamental distance relations – whether Bet and Cong, or  and  – can 
be mapped onto many different numerical structures.  The relations themselves do 
not place constraints on the numbers we may use to represent them.  So the 
pattern of betweenness and congruence relations simply cannot explain why we 
use certain numerical representations rather than others.  Field’s claims to the 
                                                      
14  Elsewhere Field writes that the uniqueness theorem “explain[s], in terms of intrinsic facts about 
space which are statable without such arbitrary choices, why the choice of functions to be invoked in 
the extrinsic theory will be arbitrary to precisely the extent that it is.” (1986, 45-46) (original 
emphasis) 
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contrary are mistaken. 
 While this is all correct, Milne goes on to draw a much more radical 
conclusion: Field’s framework fails to provide an intrinsic explanation of the 
structure of space.  In particular, Milne says, the fact that there are multiple ways 
of numerically representing the pattern of betweenness and congruence relations 
entails that the obtaining of some of these relations is a matter of convention.  As 
a result, certain facts about geometry are not “intrinsic facts,” and explanations 
that invoke these facts are not intrinsic explanations. 
 To illustrate this, Milne introduces the relation of differential congruence.  
To say that pairs of points xy and xʹ′yʹ′ are differentially congruent to zw and zʹ′wʹ′ 
means, intuitively, that “the difference between the distance from x to y and the 
distance from xʹ′ to yʹ′ is congruent to the difference between the distance from z 
to w and the distance from zʹ′ to wʹ′.” (Milne 1986, 343)  Milne then claims that 
the dinches scale does not preserve the differential congruence relation: 

“If one obtains in inches the difference in length between, say, two rigid 
rods by measuring their lengths then subtracting the smaller from the 
greater and finds it congruent to the difference between another pair 
usually the result disagrees with that obtained when the lengths are 
measured in dinches…  Differential congruence is not independent of the 
measuring procedure by which it is ascertained… What is of the utmost 
importance here is that differential congruence is not fixed by the intrinsic 
facts, the facts about betweenness and congruence.” (Milne 1986, 343-
344) 

But Milne’s conclusion at the end of the paragraph is not warranted.  To see this, 
note that differential congruence may be defined in terms of congruence: 

points xy and xʹ′yʹ′ are differentially congruent to points zw and zʹ′wʹ′ iff for 
some points u and v, xʹ′u Cong xy, zʹ′v Cong zw, and uyʹ′ Cong vwʹ′ 

Given this, facts about differential congruence must be fixed by the facts about 
congruence.  

It is easier to see exactly where Milne’s argument goes awry if we use the 
notion of concatenation, which is interdefinable with differential congruence:15 

                                                      
15 This interdefinability claim works only if we make some ontological assumptions.  For instance, 
we must assume that every object has endpoints, and that for every pair of points (x, y), there is an 
object that has x and y as endpoints (this object might be the fusion of points between x and y).  Since 
these ontological issues are irrelevant to the issues I’m concerned with, I put these complications 
aside. 
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points xy and xʹ′yʹ′ are differentially congruent to points zw and zʹ′wʹ′ iff for 
any objects l1, l2, l3, l4, whose endpoints are xy, xʹ′yʹ′, zw, zʹ′wʹ′, 
respectively, and some object o, (o, l1, l2) and (o, l3, l4) 

Now consider the following four rods: 
 

e 
f 

g 
h 

 
Suppose that e is one inch long (one dinch long), f is two inches long (four 
dinches long), g is four inches long (sixteen dinches long), and h is five inches 
long (25 dinches long).  The difference in the lengths of e and f is one inch, and 
the difference in the lengths of g and h is one inch.  Since one inch = one dinch, 
the difference in the lengths of e and f is one dinch long, and likewise for the 
difference in the lengths of g and h. 

Milne writes that “condition (b) corresponds to the convention that 
differences in length are treated as distances themselves and their congruence 
ascertained directly, e.g., one can place rods side by side and measure the overlap 
of the longer over the shorter.  Such a procedure fails for dinches: the directly 
measured difference in lengths between two rods (in dinches) is not equal to the 
absolute difference in length of the two rods (again measured in dinches).” (Milne 
1986, 343)  The “directly measured difference” in lengths between rods x and y is, 
intuitively, the length value one would obtain by lining up the rods and using a 
ruler, say, to measure the length of the part of the longer rod that does not overlap 
the shorter one.  In contrast, the “absolute difference” in length between rods x 
and y is the length value one would obtain by calculating ⏐d(x) – d(y)⏐, where d is 
a distance function from rods to numbers.   

If d maps rods onto the dinches scale, the “absolute difference” in length 
between rods e and f is ⏐4 - 1⏐ = 3, and the “absolute difference” in length 
between rods g and h is⏐25 - 16⏐ = 9.  In each case, the “absolute difference” in 
length between the rods differs from the “directly measured difference” in length 
between the rods – which in both cases is 1 dinch.  If, on the other hand, d maps 
rods onto the inches scale, the “absolute difference” in length between rods e and f 
is ⏐2 - 1⏐ = 1, and the “absolute difference” in length between rods g and h ⏐5 - 
4⏐ = 1 – both of which equal the “directly measured difference” in length, which is 
also 1 inch.  So, whether the “directly measured difference” value is the same as the 
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“absolute difference” value depends on the scale we use to numerically represent 
the lengths of these objects. 
 Milne takes this to show that differential congruence is somehow 
conventional.  But it shows no such thing.  The fact that the number assigned to 
the “directly measured difference” and the number assigned to the “absolute 
difference” varies with choice of measurement scale does not show that the 
underlying length facts vary with choice of measurement scale as well.   

So what does this show?  It shows that the “absolute difference” in length 
yields the same value as the “directly measured difference” in length only when 
the measurement scale d is additive.  To see this, let’s go through two examples.  
Consider the inches scale, din.  The “directly measured difference” in inches 
between l1 and l2 is the value the inches scale assigns to x (din(x)).  The “absolute 
difference” in inches between l1 and l2 is the value we get when we subtract the 
value the inches scale assigns to l1 from the value it assigns to l2 (din(l2) – din(l1)).  As 
we’ve seen, the inches scale din is additive over the concatenation relation: (x, l1, 
l2) iff din(x) + din(l1) = din(l2).  It follows from this that din(x) = din(l2) – din(l1), and 
thus that the “directly measured difference” in inches (din(x)) will always equal the 
“absolute difference” in inches (din(l2) – din(l1)). 
 Now consider the dinches scale, ddin.  The “directly measured difference” in 
dinches between l1 and l2 is the value the dinches scale assigns to x (ddin(x)).  The 
“absolute difference” in dinches between l1 and l2 is the value we get when we 
subtract the value the dinches scale assigns to l1 from the value it assigns to l2 
(ddin(l2) – ddin(l1)).  As we saw in section (4), the dinches scale is not additive over 
the concatenation relation.  Instead, the dinches scale is such that (x, l1, l2) iff 
(√ddin(x) + √ddin(l1))2 = ddin(l2).  It is obvious that, in general, ddin(l2) – ddin(l1) does 
not equal ddin(x).  The fact that the dinches scale is not additive over the 
concatenation relation entails that the “directly measured difference” in dinches 
will not generally equal the “absolute difference” in dinches. 

So Milne is correct to say that the “absolute difference” in dinches does not 
equal the “directly measured difference” in dinches.  But all this means is that the 
dinches scale is not additive over the standard concatenation relation.  And, as we 
have seen, the fact that one can construct a scale of measurement that is not 
additive over the relevant concatenation relation does not entail anything at all 
about the fundamental length predicates; and in particular, it does not entail that 
the “differential congruence is not fixed by the intrinsic facts, the facts about 
betweenness and congruence.”  Differential congruence is fixed by the intrinsic 
facts.  What is not fixed by the intrinsic facts is the numerical structure we use to 
represent those facts.  So far, we’ve seen no reason to think that Field’s framework 
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does not provide an intrinsic explanation of the structure of Euclidean geometry. 
 
7. Milne’s Second Objection: Congruence 
Field extends Hilbert’s strategy for axiomatizing Euclidean geometry to scalar 
magnitudes like mass, temperature, and so on.  For scalar magnitudes, the basic 
idea is to introduce different families of betweenness and congruence predicates: 
intuitively, mass-betweenness and mass-congruence predicates hold among objects 
with mass, temp-betweenness and temp-congruence predicates hold among objects 
with temperature, etc.16 
 The axiom system for these scalar notions of betweenness and congruence 
that Field adopts is in essence the axiom system for an “absolute difference 
structure” described by Krantz et al. (1970, 171-173) (see also Field 1980, 58 and 
119-120)).17  And the representation theorem for scalar betweenness and 
congruence is slightly different from the one used in Euclidean geometry, as it 
assigns numerical values to individual objects rather than pairs of points: 

<A, Bet, Cong> is a model of the axioms iff there is a function f from A into 
the real numbers, such that: 
(a) for any x, y, z, and w, xy Cong zw iff ⏐f(x) – f(y)⏐ = ⏐f(z) – f(w)⏐ 
(b) for any x, y, and z, y Bet xz iff f(x) ≤ f(y) ≤ f(z) or f(z) ≤ f(y) ≤ f(x) 

The corresponding uniqueness theorem for scalar betweenness and congruence 
says that, given a model of the axiom system and any two functions f and fʹ′ 
defined over A, if f satisfies (a) and (b), then fʹ′ satisfies (a) and (b) iff fʹ′ is a linear 
transformation of f.18 
 Milne’s second objection to Field targets the scalar congruence predicate.  
He argues that whether xy Cong zw obtains depends on the scale of measurement 
we use; and since choice of measurement scale is a matter of convention, then so 
is the obtaining of the congruence predicate.  Therefore, any fact involving 
congruence is not “an intrinsic fact,” and thus congruence is “not 

                                                      
16 Note that for quantitative features that require an ordering – such as length, mass, temperature, etc. 
– the predicate less than or equal to (Less) is used in place of betweenness as a primitive notion.  
(Betweenness can then be defined: y Bet xz iff x Less y Less z or z Less y Less x.)  For ease of exposition, 
I follow Milne and ignore this complication. 
17  Krantz et al. employ one primitive: .  To say that xy  zw means, intuitively, that the distance 
between x and y is greater than or equal to the distance between z and w.  As Field notes, the system 
Krantz et al. describe can be modified so as to employ Field’s primitives instead.  One way to do that 
is to define Bet and Cong in terms of : xy Cong zw iff xy  zw and zw  xy; x Bet yz iff yz  xy, xz. 
18 ϕ is a linear transformation of φ iff ϕ = aφ + b, where a and b are real numbers (and b ≠ 0). 
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intrinsic.”(Milne 1986, 344)19, 20  
(It is interesting to note that while Milne challenges the intrinsicality of 

congruence, he does not doubt the intrinsicality of betweenness.21  It is unclear 
why congruence is a target of suspicion while betweenness is not.  If the fact that 
there are multiple different relations among numbers that can be used to represent 
facts about congruence shows that these facts about congruence are not intrinsic, 
as Milne believes, then the same can be said for betweenness.22) 
 Milne’s argument goes as follows.  One can measure the same scalar using 
different measurement scales, where these measurement scales are not linear 
transformations of one another.  Such scales differ not only on the values they 
assign to the same interval, but on whether congruent intervals are assigned the 
same value.  One example Milne offers is the Dalton temperature scale, which is 
“logarithmically related to the absolute scale.”  Suppose that a, b, c, and d are 
objects with temperature, and suppose that ab Temp-Cong cd.  The absolute scale 
assigns the same number to ab and cd, while the Dalton scale does not.  From this 
fact, Milne draws the following conclusion: “The moral is that [scalar]-congruence 
is not independent of the manner in which it is ascertained.  And so, it seems, it is 
not the case that [scalar]-congruence is intrinsic.” (Milne 1986, 345) 
 But this argument is not valid.  The fact that intervals assigned the same 
value on the absolute scale are assigned different values on the Dalton scale does 
not entail anything about the intrinsicality of congruence.  All it shows is that a 
relational structure <A, Temp-Bet, Temp-Cong> can be mapped to many 
different numerical structures.  Some will represent congruent intervals with the 
same number, others will not.  Some are more familiar and convenient in some 
contexts, while others are more familiar and convenient in other contexts.  But 
the fact that the choice of numerical structure is a matter of convention does not 
entail that the obtaining of the underlying temperature relations is not intrinsic.23 

In sum, Milne is correct in pointing out that the choice of numerical 
                                                      
19 Recall that, for Milne, xy Cong zw is intrinsic iff xy Cong zw obtains in virtue of the objects and the 
relations that hold among them, and nothing else. 
20 This line of thought is similar to Ellis’s, who likewise appeared to believe that if choice of 
measurement scale is a matter of convention, then so is the fundamental measuring procedure. 
21 “It is abundantly clear from Field’s discussion that he regards φ-betweenness and φ-congruence as 
relations whose obtaining is an intrinsic fact.  About φ-betweenness there is no ground for 
complaint.  φ-congruence is quite another matter.” (Milne 1986, 344) 
22 A similar point applies to Ellis: Ellis doubts the objectivity of concatenation, but not of ordering 
().  But again, if the fact that there are multiple different relations among numbers that can be used to 
represent facts about concatenation shows that these facts about concatenation are not objective, as 
Ellis believes, then the same can be said for ordering. 
23 See also Krantz et al. (1971, 152). 
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structure is not fixed by the pattern of betweenness and congruence relations, and 
thus that the pattern of betweenness and congruence relations cannot provide an 
intrinsic explanation of our standard numerical representations of length, mass, 
temperature, and so on.  But this does not show that the underlying betweenness 
and congruence relations are in any way extrinsic, conventional, or non-
objective.  Any argument for this conclusion – that the underlying betweenness 
and congruence relations fail to provide intrinsic explanations for the structure of 
space and the structure of scalar magnitudes – that relies on premises concerning 
our representation of this structure is invalid. 
 
8. A Suggestion 
There seems to be a kind of tension prompting much of the preceding discussion 
of measurement scales.  On the one hand, certain kinds of measurement scales 
seem, at least at first, to do a worse job of representing reality than others.  For 
instance, the dinches scale seems, intuitively, to represent the underlying length 
relations in a particularly opaque way, while the inches scale does so in a 
particularly transparent way.  Similarly, the Dalton temperature scale, while surely 
useful in many contexts, nonetheless does not seem to represent the underlying 
temperature relations as perspicuously as the absolute temperature scale (there is a 
reason only one of these scales is called the “absolute” scale).  
 On the other hand, there does not seem to be any way to justify the 
intuition that some scales fail to represent the world in as transparent a manner as 
other scales.  The underlying relations of distance, length, mass, temperature, and 
so on, can be represented by many different numerical structures.  Consider the 
axiomatization of extensive measurement, from Krantz et al., that employs the 
basic predicates  and .  Why should  be carried to the numerical relation ≥, and 
why should  be carried to the numerical relation +?  Or consider the congruence 
and betweenness predicates of Field’s framework.  Why should Temp-Cong, say, 
be carried to the numerical relation given by (a), and why should Temp-Bet be 
carried to the numerical relation given by (b)?   
 If there were some way to justify the intuition that some scales do a better 
job at representing reality than others, then we would have grounds for rejecting 
odd or unnatural scales like the dinches scale.  Even better would be some way to 
vindicate Field’s claim that the underlying relations themselves provide an intrinsic 
explanation that justifies the use of some scales over others.   

Let me here suggest a route that one might take.  The standard 
representation theorem for extensive measurement carries  to ≥, and  to +.  One 
way to argue that this representation is better than others is to claim that  stands 
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in a privileged relationship with ≥, and  stands in a privileged relationship with +.  
But what is this privileged relationship? 

One could claim that this relationship is sui generis, but that would not be 
particularly explanatory.  A more interesting option is to claim that this 
relationship is identity:  is identical to ≥, and  is identical to +.  In other words, 
the greater than or equal to and addition relations that numbers stand in simply 
are the greater than or equal to and concatenation relations invoked in extensive 
measurement.  Similarly, one might say, the betweenness and congruence relations 
among numbers (which we rather clumsily analyze in terms of ≤, subtraction, and 
absolute value) simply are the betweenness and congruence relations invoked in 
Field’s framework.  If that is so, then it seems we do have an intrinsic explanation 
for why we use some scales rather than others: the perspicuous scales are the ones 
where the numbers representing the scalar magnitudes stand in the very same 
relations as the scalar magnitudes themselves. 
 This suggestion, however, requires some revision of Field’s framework.  
Field’s primary aim is to provide a nominalistic treatment of spacetime and of 
quantity – an account of these that does not quantify over properties or relations.  
In order to accommodate various families of quantities, Field introduces a 
different betweenness and congruence predicate for each family: Mass-Bet is 
distinct from Temp-Bet, Mass-Cong is distinct from Temp-Cong, and so forth.  
But if there are multiple distinct betweenness and congruence predicates, then we 
cannot implement the suggested strategy.  Given Field’s framework, Mass-Bet and 
Temp-Bet are not identical.  But, by transitivity of identity, if Mass-Bet is 
identical to the betweenness relation among numbers, and Temp-Bet is identical 
to the betweenness relation among numbers, then Mass-Bet must be identical to 
Temp-Bet.   
 So in order to implement this strategy, we must accommodate the fact that 
there are various families of quantities, without having different betweenness and 
congruence predicates for each family of quantities.  To do this, we introduce 
determinate properties for every family: one gram mass, two grams mass, etc., one 
degree Fahrenheit, two degrees Fahrenheit, etc., and so on.  These properties stand 
in second-order betweenness and congruence relations: two grams mass is between 
one gram mass and three grams mass, and so a perspicuous mass scale is one where 
the number used to represent two grams mass is between the numbers used to 
represent one gram mass and three grams mass.24  Likewise for temperature, charge, 

                                                      
24 Mundy (1987) offers an account of quantity that posits first-order determinate properties that 
stand in second-order relations.  Rather than use second-order betweenness and congruence 
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lengths, and all other scalar magnitudes.  On this proposal, then, we do not have 
to introduce different betweenness and congruence relations for each family of 
quantities.  Since there is only one betweenness relation, and only one 
congruence relation, we can identify these relations with the corresponding 
relations that hold among numbers.  
 If we adopt this proposal, we must quantify over first-order properties, and 
so we must give up on Field’s nominalism.  Whether one is amenable to this move 
depends on one’s other metaphysical commitments.  I’ve argued elsewhere that 
there are independent reasons to be a realist about determinate quantitative 
properties, and to take the relations that these properties stand in as part of the 
fundamental structure of the world.25  To the extent to which one feels that scales 
like the dinches scale do not latch onto reality in quite the right way, whereas the 
scales like the inches scale do, one might take this to be yet another reason to 
reject the nominalist position.26 

                                                      
relations, he uses second-order less than or equal to and concatenation relations, modeling his 
account on Krantz et al.’s treatment of extensive measurement. 
25 Eddon (2013) 
26 Many thanks to Chris Meacham and Katia Vavova for comments and discussion. 
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