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A B S T R A C T   

Can heritability estimates provide causal information? This paper argues for an affirmative answer: since a non- 
nil heritability estimate satisfies certain characteristic properties of causation (i.e., association, manipulability, 
and counterfactual dependence), it increases the probability that the relation between genotypic variance and 
phenotypic variance is (at least partly) causal. Contrary to earlier proposals in the literature, the argument does 
not assume the correctness of any particular conception of the nature of causation, rather focusing on properties 
that are characteristic of causal relationships. The argument is defended against Lewontin's (1974) locality ob
jection and Kaplan and Turkheimer's (2021) recent critique of Genome-Wide Association Studies (GWAS).   

1. Introduction 

The discipline of behavioral genetics aims to investigate and un
derstand the relative influences of genes and environment on behavioral 
traits. With respect to such investigations, there are two fundamental 
questions that must be kept separate:  

1. What proportion of an individual's phenotype P are genes responsible 
for, and what proportion is environment responsible for?  

2. What proportion of the variance of phenotype P is genetic variance 
responsible for, and what proportion is environmental variance 
responsible for?1 

There is general agreement among researchers working on concep
tual or methodological issues in behavioral genetics that the first ques
tion cannot be answered (e.g., Dowens & Lucas, 2020; Griffiths et al., 
2005; Lewontin, 1974; Pearson, 2007; Sober, 2001). For example, if a 
person has a bodyweight of 70 kg, it does not make any sense to say that 
either genes or environment is responsible for a certain proportion of the 
person's bodyweight (such as that 50 kg are due to genes and 20 due to 
environment). Since both genes and environment necessarily contribute 
in intricate interaction with each other to the development of the 
phenotype in question, it is impossible to partition the phenotype into 
portions that are due only to genes or environment respectively. Genes 
and environment, nature and nurture, function as interwoven strands of 

thread in the un-untieable Gordian knot that is the development of any 
phenotypic trait (cf. Bateson, 2001, p. 565; Nuffield, 2002, p. 40). 

On the other hand, when it comes to the second question opinions 
differ as to whether it can be answered using current statistical methods 
and technologies. More specifically, the disagreement has to with how 
heritability measures should be interpreted, and whether they can pro
vide any information about the causal effects of genetic variance on 
phenotypic variance. This paper develops an argument to the effect that 
heritability measures indeed can provide causally relevant information 
about the sources of trait variance and, moreover, it shows that the 
argument is not vulnerable to either Lewontin's (1974) locality objection 
or Kaplan and Turkheimer's (2021) recent critique of Genome-Wide 
Association Studies (GWAS). 

The paper is structured as follows. Section 2 lays the groundwork by 
explaining the basics of heritability estimation and why there is so much 
disagreement about how such estimates should be interpreted. Section 3 
develops the argument that heritability measures can provide causally 
relevant information. Section 4 shows that although heritability mea
sures are contextual and local, it does not follow that they are scientif
ically useless and without causal relevance. Section 5 shows that Kaplan 
and Turkheimer's recent critique of GWAS is unsound. Section 6 con
cludes and offers some reflections on the threats posed by gene- 
environment (G-E) interaction, G-E covariation, and indirect genetic 
effects (IGEs). 

E-mail address: jonathan.egeland@uia.no.   
1 The first question is about the phenotype of a particular individual, whereas the second is about the occurrence of certain phenotype in a particular population (since variance is a population statistic). Cf. Tal's 

(2009) discussion of the first question and of an alternative version of the second question that also is focused on the phenotype of a particular individual. 
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2. Heritability: analyzing trait variance 

Heritability estimates are often calculated using a statistical method 
known as the analysis of variance (ANOVA). ANOVA is based on a linear 
model, which in the case of heritability estimation assumes that the 
variance of a phenotypic trait VP is a linear function of genotypic vari
ance VG and environmental variance VE (given that there is no G-E 
interaction or covariation): 

VP = VG +VE  

And the most common way of defining a phenotypic trait's heritability 
(H2) is as the ratio of VG to VP (Plomin, DeFries, McClearn, & McGuffin, 
2008)2: 

H2 =
VG

VP 

H2 is a statistical measure of broad sense heritability, which is the 
estimated proportion of phenotypic variance that is due to genetic 
variance. However, there is also another heritability measure known as 
narrow sense heritability (h2), which is the estimated proportion of 
phenotypic variance that is due to additive genetic variance. Additive 
genetic variance is simply the proportion of phenotypic variance that is 
due to the additive effects of genes. The other sources of genetic variance 
are dominance variance, epistatic variance, and variance due to assor
tative mating. For the purposes of this paper, we will focus on herita
bility in the broad sense. 

From what has been said above, it may seem intuitive that non-nil 
heritability measures provide information about genetic causation. 
After all, discovering that a certain trait has a H2 of, say, 0.5 (which is 
not uncommon for behavioral traits, Plomin, DeFries, Knopik, & Nei
derhiser, 2016; Polderman et al., 2015) means that genetic variation 
(measured in phenotypic units) explains 50% of trait variation in the 
population that is being studied. And it may not seem a stretch to think 
that some of the genetic variation is causally responsible for some of the 
phenotypic variation (e.g., Sesardic, 2005, p. 82ff.). However, there are 
many objections to this idea. One is that the definition of H2 given above 
only says that there is an associative relation between the terms VG and 
VP—and as we have all been taught in statistics 101, association does not 
imply causation (Turkheimer, 2016). Another objection is that the 
definition of VP given above is incomplete. More specifically, it has been 
noted that one cannot simply assume that there is not any G-E interac
tion VG×E, or any G-E covariation 2COV(G, E).3 The definition of 
phenotypic variance should therefore be amended as follows4: 

VP = VG +VE +VG×E + 2COV(G,E)

And, moreover, many commentators have argued that covariation 
between genotypes and environments constitutes a challenge to the 
claim that heritability analyses of trait variance can provide causally 
relevant information (Block, 1995, pp. 118–121; Block & Dworkin, 
1976a, p. 480; Feldman & Lewontin, 1975, p. 1164; Jencks, 1980, pp. 
726–730; Kaplan & Turkheimer, 2021, p. 61; Sober, 2001, pp. 72–75). 

A famous thought experiment from Jencks et al. (1972) illustrates 

why large G-E covariation renders any causal interpretation of herita
bility unjustified. Imagine that there is a population in which children 
with red hair experience systematic discrimination, and they are denied 
access to education. In this population, red haired children will on 
average perform worse on measures of intellectual aptitude and 
achievement. Moreover, since there is large covariation between genes 
associated with red hair and experiencing discrimination, the genetic 
variants associated with red hair will be predictive of low scores on 
measures of intellectual aptitude and achievement. However, according 
to some of the aforementioned commentators, heritability measures of 
aptitude and achievement cannot be trusted to be indicative of causal 
relationships in this population, since on any intuitive understanding of 
what it means for a gene to have a causal effect on a trait, one cannot say 
that the genes associated with red hair are causally responsible for low 
scores. To the contrary, it should be obvious that the etiological root of 
the relatively low scores of red-haired children is the discrimination they 
experience—or at least so the argument goes. 

As things currently stand, there appears to be a lot of disagreement 
concerning the interpretation of heritability measures and whether they 
can provide causally relevant information. The next section will bracket 
issues having to do with G-E covariation and develop an argument for 
the claim that heritability measures are not causally irrelevant. After 
that, the argument is defended against a couple of prominent objections 
from the literature. 

3. The argument for causal relevancy 

It is not uncommon for both proponents and opponents of the claim 
that heritability can be given a causal interpretation to rely on particular 
views about the nature of causation (cf. Oftedal, 2005). For example, 
Lewontin (1974) and several of his followers (e.g., Block, 1995, p. 24; 
Block & Dworkin, 1976a, p. 482; Kaplan & Turkheimer, 2021; Keller, 
2013) argue that ANOVA is not a useful method for discovering causal 
relationships since ANOVA only provides associative information, and 
knowledge about genetic causation requires knowledge of the exact 
“process”, “function”, or “mechanism” by which genes produce their 
phenotypic effects. Indeed, as Lewontin has put it, knowledge of genetic 
causation requires that one can “provide a detailed molecular analysis of 
the chain of causation between nucleotide substitution and cell devel
opment and function” (Lewontin, 2006, p. 537). 

Moreover, the same tendency is also found among those who support 
causal interpretations of heritability. But whereas the opponents rely on 
so-called process conceptions, the proponents tend to understand 
causation in terms of probability or difference-making. Examples of this 
can be found in recent work by Bourrat (2019, 2020); Lynch and Bourrat 
(2017); and Tal (2009), where it is argued that heritability estimates can 
be given a causal interpretation since they show that certain genes in
crease the probability of having a phenotypic trait with a value that 
deviates from the mean value of said trait. 

However, there are problems with both strategies, stemming from 
the fact that they (in part) wed their claims about whether heritability 
measures can be interpreted causally to particular conceptions about the 
nature of causation. Two problems, more specifically, are that both 
kinds of conception face intuitive counterexamples, indicating that 
causation cannot be analyzed in terms of “process” or “probability” 
alone, and that there is not at the moment a consensus about what the 
correct theory of causation looks like.5 (For more on the different the
ories of causation, as well as their strengths and weaknesses, see the 
review by Schaffer, 2016.) Continuing, the argument of this paper will 
not assume the correctness of any particular conception of the nature of 
causation. Rather, it will focus on properties that are characteristic of 

2 For more on the various ways of defining heritability, see Bourrat (2015); Dowens and Lucas 

(2020); Falconer and Mackey (1996); Godfrey-Smith (2009); Hartl and Clark (1997); Jacquard (1983); 

Tal (2009).  
3 G-E interaction occurs when different genotypes don't respond to the environment in the same 

manner, or when the environment has differential effects that contingently depend on individuals' 

genotypes; G-E covariation occurs when certain environmental factors are associated with genetic 

propensities in a population.  
4 The formula is still somewhat simplified: V

E is usually divided into between-family 
variance and within-family variance, and the formula should also include an 
error term representing variance due to measurement error. However, for 
present purposes, it is only necessary to keep in mind the simplified version of 
the formula. 

5 Another problem that primarily threatens the views of the opponents, is that they seldom spell out 

their assumptions about causation in any detail. This should be contrasted with the approach of (e.g.) 

Bourrat (2019, 2020), who explicitly relies on Woodward's (2003) interventionist account of causation. 
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causal relationships, without presupposing them to be either necessary 
or sufficient. 

Briefly put, the argument is that since a non-nil heritability measure 
tells us that the relationship between VG and VP satisfies certain char
acteristic properties of causation, it increases the probability that the 
relation is (at least partly) causal—whatever the nature of causation 
really is. The properties that will be focused on are association, 
manipulability, and counterfactual dependence.6 Consider association 
first. 

A couple of variables stand in an associative relation to each other 
just in case certain values of one variable make certain values of the 
other variable more likely. For example, since UV radiation exposure 
increases the likelihood that one will develop skin cancer, UV radiation 
exposure and skin cancer are associated with each other. Another 
property that often is relied upon to get a grip on causation is manipu
lability (Woodward, 2016). It is not uncommon to understand causation 
in terms of the idea that the manipulation of a cause (and no other 
variable)7 regularly will result in the manipulation of an effect. The 
manipulation need not be experimental or to have actually occurred; 
rather, it is enough that it can happen in principle. A third characteristic 
of causal relationships is counterfactual dependence, meaning that the 
cause is counterfactually necessary for the effect (Menzies & Beebee, 
2020). More specifically, a variable Y counterfactually depends on a 
variable X just in case there are alternative, possible values for Y and X, 
such that if X were to have an alternative value, then so would Y. 

Association, manipulability, and counterfactual dependence are 
characteristic properties of causal relations and, moreover, that is pre
cisely why we acquire causal knowledge by relying on information 
concerning whether, and to what extent, certain relations of interest 
satisfy these properties. In fact, the evidential support of causal claims in 
the sciences is typically considered proportional to the degree to which 
the data indicate that the aforementioned properties are satisfied. 
Consider as an example the claim that smoking causes cancer. The 
consensus view is that smoking indeed causes various types of cancer, 
and that we know this to be true. But how did we acquire this knowl
edge? We know it because a number of well-designed studies have been 
published, where it is has been found, based on analyses of large data
sets, that smoking and cancer are significantly associated even after 
controlling for possible confounders.8 The associations are interpreted 
as evidencing causal relationships since the statistical analyses are based 
on large and representative samples from different populations living 
under varying environmental conditions, and they remove the effects of 
other relevant factors. This means that smoking is associated with can
cer, and since changing the value of only the smoking variable would 
lead to a change in the value of the cancer variable, the relationship also 
has the properties of manipulability and counterfactual dependence. 
Although we may not know everything about the mechanisms by which 
the cancers are developed, or about what exactly the necessary and 
sufficient conditions for causation are, learning that a relationship be
tween two variables satisfies the three aforementioned properties does 
increase the probability that it is causal—sometimes to such an extent 
that we can know that the relationship is one of cause and effect. 

The situation is in many ways analogous when it comes to herita
bility. When H2 > 0, there is an association between VG and VP. More
over, although no ideal intervention is performed in either classical twin 
studies or GWAS, the relation between genetic variance and phenotypic 
variance does appear to satisfy manipulability and counterfactual 
dependence since VP is defined as a linear function of VG and VE 

—meaning that a change in the value of VG only, should induce a change 
in the value of VP. It is of course always theoretically possible that some 
confounding factor (such as population stratification or assortative 
mating) is responsible for the change in trait variation, or that there is a 
very large G-E interaction effect that obscures the relationship between 
VG and VP (cf. Lewontin, 1974, p. 406), but the likelihood of this pos
sibility is greatly reduced when the samples on which the estimates are 
based are large, appropriate statistical techniques are used (for more on 
this, see Young, Benonisdottir, Przeworski, & Kong, 2019), and there is 
no evidence for large G-E interaction. 

Now assuming that there is not any large G-E covariation or inter
action,9 the same reasoning can be used to illustrate that non-nil heri
tability measures increase the probability that genotypic differences 
cause phenotypic differences. Since heritability measures satisfy certain 
characteristic properties of causation (i.e., association, manipulability, 
and counterfactual dependence), and cases where those conditions are 
satisfied constitute a proper subset of all possible cases that exist with 
respect to the relationship between certain genes and traits—one that 
includes all, or at least most, cases of genetic causation—knowledge that 
a certain phenotypic trait has a non-zero heritability value increases the 
probability that genes play a causal role in the development of indi
vidual differences in said phenotype. The reasoning is illustrated in 
Fig. 1. 

Let's summarize. Since we do not have direct epistemic access to the 
causal structures of the world, we have to make inferences about 
causation based on whether, and to what extent, certain relations of 
interest satisfy properties that are characteristic (and thereby indicative) 
of causation. Three such properties are association, manipulability, and 
counterfactual dependence. Moreover, as has been demonstrated above, 
heritability measures typically do satisfy these properties, which means 
that they can provide causally relevant information. However, it does 
not follow that non-nil heritability estimates always justify causal in
ferences. Whether they do will have to be judged on a case-by-case basis, 

No causal 
informa�on

Causal 
characteris�cs 

are sa�sfied

Gene�c 
causa�on

Fig. 1. The outer circle represents all possible ways in which genotypes and 
phenotypes can be related. The middle circle represents all the ways in which 
genotypes and phenotypes can be related when the properties of association, 
manipulability, and counterfactual dependence are satisfied. The inner circle 
represents all the ways in which variation in genotypes can cause variation 
in phenotypes. 6 An important implication is that Turkheimer (2016) and others are mistaken when they claim that 

heritability simply provides information about genotype-phenotype correlation. 
7 A manipulation that only changes the value of one variable is sometimes called an ideal inter

vention (Woodward, 2003).  
8 For a few examples, see Boffetta (2008); Lee, Forey, and Coombs (2012); Pesch et al. (2012); 

Sasco, Secretan, and Straif (2004). 9 Scenarios involving G-E covariation or interaction will be discussed in Section 6. 
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and in the light of evidence pertaining to the degree to which there is G-E 
covariation or interaction. 

4. Lewontin's locality objection 

Critics of the claim that heritability estimates can provide causal 
information usually rely on arguments presented in Lewontin's seminal 
(1974) article. One of Lewontin's most influential arguments is the so- 
called locality objection, which points out that H2 is a population sta
tistic and infers that it cannot be applied to any other population or any 
other measurement condition. This is how he puts it: 

That is, the linear model is a local analysis. It gives a result that de
pends upon the actual distribution of genotypes and environments in 
the particular population sampled. Therefore, the result of the 
analysis has historical (i.e., spatiotemporal) limitation and is not in 
general a statement about functional relations (Lewontin, 1974, p. 
403). 

Moreover, since Lewontin assumes that a causal analysis or explanation 
requires knowledge of the exact function or mechanism by which a 
cause produces its effects, as indicated by the last sentence above,10 it 
follows that ANOVA cannot provide any information about genetic 
causation. 

The locality objection has been tremendously influential, and it has 
been reiterated by a number of scientists and philosophers who agree 
that because heritability is a population statistic it can be justifiably 
inferred that it cannot be applied to any other population or any other 
measurement condition (e.g., Block & Dworkin, 1976b, pp. 486–487; 
Daniels, Devlin, & Roeder, 1997, p. 54; Nelkin & Andrews, 1996, p. 13; 
Rutter, 1997, p. 391; Rutter, 2002, p. 2; West-Eberhard, 2003, pp. 
102–103), and who also think that ANOVA cannot provide causally 
relevant information because it does not give any insight into the 
function or mechanism by which genes produce their phenotypic effects 
(e.g., Block, 1995, pp. 117–119; Block & Dworkin, 1976b, p. 482; 
Kaplan & Turkheimer, 2021, p. 61ff.; Keller, 2013). However, there are 
five reasons why the locality objection does not have the dialectical 
force that many commentators have believed, and why it fails to 
threaten the argument from the previous section. 

First, just because heritability is a population statistic, it does not 
follow that heritability estimates cannot provide any information about 
the relative contributions of genes and environment to individual trait 
differences in other populations than the one that has been sampled, or 
in other measurement circumstances. Determining the extent to which 
heritability estimates are generalizable is ultimately an empirical 
question, meaning that it cannot be answered by reflection or concep
tual analysis alone (Bouchard & Loehlin, 2001, p. 247). 

Second, there is some empirical evidence supporting the generaliz
ability of heritability. For example, high heritability values for general 
intelligence have been found in different countries, with their own 
particular cultures and environmental conditions, from different conti
nents (Knopik, Neiderhiser, DeFries, & Plomin, 2017, pp. 170–173). 
Moreover, it is to be expected that heritability measures from similar 
contexts and similar measurement conditions will not be altogether 
unlike each other. For a more detailed discussion of this issue, see Ses
ardic (2005, pp. 78–86). 

Third, even if it were true that heritability measures never can pro
vide any information or indication about how heritable a trait is in other 
populations than the one that has been sampled, or in other measure
ment circumstances, nothing follows concerning the issue of causal 
interpretation. Just because the ratio of VG to VP may be context- 
dependent, it can still be the case that it says something about the 
causal contribution of genetic variance to phenotypic variance in the 
population from which the sample has been gathered (Tal, 2009, pp. 90–91). 

In general: the nongeneralizability of an associative relationship does 
not imply that the relationship is not causal in the context where the 
association is present. 

Fourth, it should be noted that Lewontin actually disagrees with this 
claim. He tells his readers that one should avoid “confusing the spatio
temporally local analysis of variance with the global analysis of causes” 
(Lewontin, 1974, pp. 410, italics added), the latter of which requires 
knowledge about “functional relations” (Lewontin, 1974, p. 403) that 
hold true of “the entire spectrum of causal relations” (Lewontin, 1974, p. 
407). However, this is a very radical claim—one that would (if it were 
true) undermine many, if not most, causal claims made in the sciences. 
For example, in scientific disciplines such a medicine, biology and 
psychology, we are interested in understanding how things work under 
relatively normal parametric conditions. This does not mean that such 
disciplines cannot discover causal relations, but rather that the causal 
relations that we know to hold true in most contexts may break down in 
more rarely occurring, or (e.g.) counterfactual, contexts. For example, 
just because we haven't investigated the functional relationship between 
sugar consumption and diabetes under “the entire spectrum” of envi
ronmental conditions, it would be irrational to claim that we cannot 
know that sugar consumption causes diabetes. A relatively local analysis 
of causes can be compatible with ignorance about global function (cf. 
Haldane, 1938, p. 34). 

Fifth, it is wrong to assume that knowledge about causation requires 
knowledge about “function” or “mechanism”. For example, we know 
that having a third copy of chromosome 21 causally contributes to lower 
IQ, even though there is a lot about function or mechanism that we don't 
know. Moreover, blaming heritability estimation for not providing 
insight into mechanism or function is like blaming the Beck Depression 
Inventory (used for the measurement of depression severity) for failing 
to say anything about why people become depressed. The point is simply 
that heritability measures can provide causal information without 
saying, or even purporting to say, anything about how genes influence 
phenotype development. 

Taken together, these reasons demonstrate that Lewontin's locality 
objection does not undermine the argument of this paper. 

5. The quincunx analogy 

A GWAS is performed by searching for single-nucleotide poly
morphisms (SNPs)—i.e., substitutions of single nucleotides—associated 
with a trait of interest. In cases of synonymous substitutions, the mu
tations do not lead to any phenotypic difference, but in other cases they 
do. The purpose of a GWAS is to identify SNPs that are associated with a 
certain trait by separating those who have the trait and those who do not 
have it into different groups, and by identifying variants that are more 
common in the group with the trait of interest. Now the SNPs that are 
identified are not necessarily associated with the trait themselves, as it is 
possible that they are located close to regions of the genome that are 
associated with the trait, and that usually are inherited collectively—in 
which case the variants in question are said to be in linkage disequi
librium. That said, there are ways of extenuating this problem, and 
weighted sums of SNPs that are found to be associated with the trait take 
the form of polygenic scores (PGSs) that function as predictors of the 
trait. Moreover, the variants on the basis of which a PGS is calculated are 
sometimes said to be causal (e.g., Yang, Zeng, Goddard, Wray, & 
Visscher, 2017, p. 1305). 

In a recent paper, Kaplan and Turkheimer (2021, p. 61ff.) have 
argued that GWAS face similar problems as those of the ANOVA 
approach to heritability estimation already pointed out by Lewontin 
(1974). They present an argument by analogy, focusing on Galton's 
quincunx (better known as the “Galton board”). The quincunx is a ver
tical board with rows of pins. When a ball is dropped into the top of the 
quincunx, it bounces either left or right when it hits the pins, eventually 
landing in one of the bins at the bottom of the machine (see Galton, 
1894, for a more detailed description). The pins, we are told, are 10 Cf. Lewontin (1974, p. 409; 2006, p. 537). 
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“difference makers”, in the sense that their relative placement is asso
ciated with certain outcomes (i.e., the distribution of balls in the bins at 
the bottom); but, for the purposes of their thought experiment, it is 
assumed that the walls of the quincunx are opaque, so that it is impos
sible to observe which path the ball travels. 

Next, Kaplan and Turkheimer ask us to imagine a population of 
quincunxes with identifiable varieties of pin placements. If a particular 
pin placement at a particular location is more frequent among those 
quincunxes in which the ball landed to the left, then it is likely to have a 
left-bias: it will be predictive of left-biased outcomes. Moreover, the 
situation is analogous to GWAS in the following ways: (1) a particular 
variant of pin placement at a particular location in the quincunx func
tions in the same way as an individual SNP in the genome: just as pin 
placements are associated with certain ball distributions, so are SNPs 
associated with certain phenotypic traits; (2) the predictions made on 
the basis of the bias that exists in a population of quincunxes corre
sponds to PGSs: they are indicative of ball distributions and phenotypic 
outcomes respectively. 

In their discussion of the analogy, Kaplan and Turkheimer make a 
number of points—most of which have been made by previous com
mentators (e.g., concerning G-E interaction, G-E covariation, and rea
sons why PGSs in one population may not be equally predictive in other 
populations) and are not directly related to the analogy. But the most 
important insight, we are told, is this: knowledge about how particular 
pin placements (or SNPs) are associated with certain ball distributions 
(or phenotypic traits), does not contribute to our “understanding where 
a particular ball ended up”. And the reason is that 

Since a ball only interacts with a small minority of the pins in any 
particular trial, most of the time the pin in question will have been 
entirely irrelevant to the ball's path. Even when it was relevant, 
however, if all we know is that, at that location, there is a pin variant 
with tendency towards one direction, we can't know (except in cases 
of 100% bias) if the ball in fact took the more typical path, or if it 
took the path that was less likely (Kaplan & Turkheimer, 2021, p. 
64). 

And this is important since it supports the idea that GWAS cannot pro
vide any relevant information about causation, or even about individual 
differences: 

The associations discovered by GWAS (and related technologies) are 
unlikely to provide any meaningful basis for explaining variation in 
individuals; still less do they themselves reliably point towards 
causes of individual outcomes (Kaplan & Turkheimer, 2021, p. 60). 

There are, however, two problems with this argument. The first problem 
is that it is not necessary that a particular pin/SNP causally contributes 
to the outcome in the case of a particular ball/person, or that we know 
with 100% certainty what the causal path taken is, in order for us to 
know that certain pin placements/SNPs satisfy important properties (i. 
e., association, manipulability, and counterfactual dependence) that 
increase the probability that they are causally related to certain out
comes. Precise knowledge about which causal path has been taken is not 
a necessary condition for gleaning information to the effect it is some
what probable that some such path has been taken. When we learn that 
certain SNP variants are associated with a certain trait, it is rational to 
somewhat increase our credence that they are causal—not to conclude 
that they cannot provide information relevant for understanding the 
outcomes observed since it is impossible to know exactly whether, or 
how, a particular SNP has contributed to a particular phenotype. 

Now one may reasonably question whether Kaplan and Turkheimer 
really do think that being provided with causally relevant information 
requires knowledge about exactly what the causal “path” from SNP to 
phenotype looks like. Here are a couple of quotes showing that they do: 

To understand the causal role that a gene plays in the development of 
a trait is therefore to understand when (under what conditions) and 

how it is transcribed, and how the products are used across the 
development of the trait in question (Kaplan & Turkheimer, 2021, p. 
61). 

If we understand Lewontin's projects to be about understanding how 
individuals develop the traits that they have, and understanding why 
the distribution of traits in a particular population is the way that it 
actually is, the kinds of results given to us by GWAS/PGS will be of no 
more value to us than the kinds of ANOVA-based quantitative ge
netics research that he was criticizing. The analogy of the quincunx 
helps us to see why (Kaplan & Turkheimer, 2021, p. 68). 

And this is the source of the second problem. Since Kaplan and Tur
kheimer indeed are followers of Lewontin's projects, they assume that a 
necessary condition for causal knowledge (and even just being provided 
with causally relevant information about genetic causation) is knowl
edge of the exact mechanism by which genes contribute to the devel
opment of a trait. However, as we have seen in the previous section, this 
is clearly setting the bar too high, and reflection on relevant examples 
illustrates why: Lacking an awareness of the mechanism by which 
caffeine functions as an adenosine antagonist, blocking the action of 
adenosine on its receptors, does not prevent a child from learning (either 
by testimony or experience) that caffeine consumption has the effect of 
reducing drowsiness. Inferring that it does from the Lewontonian posi
tion would appear to be a reductio against said position. 

Moreover, insisting that knowledge of mechanism is necessary for 
knowledge of causation is really to endorse a sort of skepticism about the 
behavioral sciences, as it would threaten many, if not most, of their 
claims to causal knowledge. Or as Turkheimer, Goldsmith, and Gottes
man (1995, p. 149) once rhetorically asked: “If knowledge of mechanism 
were required prior to investigation of relationships between predictor 
and outcome, how much of behavioral science would be disallowed?” 
However, this is clearly an unacceptable consequence. We know that 
trisomy 21 (i.e., down syndrome) causes lower IQ, even though we do 
not “understand when (under what conditions) and how [the relevant 
genes are] transcribed, and how the products are used across the 
development of the trait in question”. 

6. Conclusion 

This paper has argued that heritability measures can provide caus
ally relevant information. Since a non-nil heritability measure tells us 
that the relationship between genetic variance and phenotypic variance 
satisfies certain characteristic properties of causation, it increases the 
probability that the relation is causal. Furthermore, the argument was 
defended against Lewontin's locality objection and Kaplan and Tur
kheimer's recent quincunx analogy. 

However, critics of heritability estimation may very well claim that 
the most important objections—namely, G-E interaction and G-E cova
riation—haven't been addressed. This is true, and I want to make a few 
closing remarks with respect to these objections. First, when G-E inter
action and G-E covariation are relatively small or moderate, they do not 
swamp out the main effects of genotypes and environments (Sesardic, 
2005, ch. 2–3).11 Second, the question of how additive the relations 
between genotypes and environments are for human traits is ultimately 
an empirical one, and only very few significant G-E interaction effects 
have been discovered and replicated (Gauderman et al., 2017; McGue & 

11 It should be noted that Lynch and Bourrat (2017) recently have argued that both active and 

reactive G-E covariance should be included in the V
G term. They argue that this is the only 

consistent way of interpreting heritability estimates in a causal manner. 
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Carey, 2017). Knopik et al. (2017, p. ch. 8) provide a useful summary of 
the literature, explaining that a large proportion of reported G × E ef
fects do not replicate (cf. the litterature review by Duncan & Keller, 
2011), that most replicated effects have to do with non-cognitive 
traits,12 and that genuine G × E effects usually are small enough that 
they do not obscure the main effects of genotypes and environment.13 

Third, even if it turns out that nonadditivity is the rule rather than the 
exception,14 it does not undermine the argument of this paper. Since the 
argument only claims that heritability measures can provide causally 
relevant information—not that they provide causally relevant informa
tion under all (or even most) measurement conditions, or that they al
ways justify causal inferences—they are only likely to do so in cases 
where we do not know that G-E interaction or G-E covariation does not 
leave room for readily interpretable main effects. 

Lastly, it is worth mentioning that recent work in sociogenomics 
evidencing IGEs—i.e., effects whereby phenotype expression is influ
enced by the genotypes of other conspecifics—may complicate the issue 
of heritability estimation and causal inference. Indeed, observable ef
fects of genetic nurture (Kong et al., 2018) and social epistasis (Dom
ingue et al., 2018) may increase H2 values for certain traits, even though 
this is not solely due to the individuals' own genotypes. Some may argue 
that this weakens the plausibility of genetic inferences, since genetic 
effects must be endogenous. However, a problem with this position is 
that an important lesson of the gene-centered view of evolution is that 
our common-sense conceptual distinctions between the individual on 
the one hand, and the social on the other, may not be entirely adequate 
for making sense of biological reality. Just as the genotype of an indi
vidual can have effects on extended phenotypes, there does not appear to 
be any scientific reason as to why it should not be possible for the 
phenotype of an individual to be influenced by its extended genotype, or 
why this should not count as genuine genetic causation. The organismal 
world may not always “respect” our intuitive conceptual distinctions, 
developed for dealing with non-scientific, everyday matters, but, as the 
history of science teaches us, our conceptual framework and the types of 
sense-making that it enables can be reformed in order to improve our 
understanding. 

CRediT authorship contribution statement 

Jonathan Egeland is the sole author of this paper. 
For helpful comments, he thanks Pierrick Bourrat and Neven 

Sesardić. 
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