
ALGEBRAIC EMERGENCE

ATTILA EGRI-NAGY

Abstract. We define emergence algebraically in the context of discrete dy-

namical systems modeled as transformation semigroups. Emergence happens

when a quotient structure (coarse-grained dynamics) is not a substructure of
the original system. We survey small groups to show that algebraic emergence

is neither ubiquitous nor rare. Then, we describe connections with hierarchi-

cal decompositions and explore some of the philosophical implications of the
algebraic constraints.
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1. Introduction

Informally, the phenomenon of emergence can be summarized by the phrase “the
whole is greater than the sum of its parts”. To be slightly more precise, we can
distinguish between two levels of descriptions of a system. The micro level describes
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the parts, while the macro level is about the whole system. A simple example is
gas molecules in a container: positions and momenta of the molecules comprise
the micro level, while pressure is a macro level property. The intuitive idea of
emergence becomes complicated when we apply it to tougher problems, e.g., how
mental activity arises from the physical and biochemical level. The key question is
‘How exactly the macro level properties emerge from the micro level dynamics?’.

The paper titled ‘What Emergence Can Possibly Mean’ [1] aims to clarify the
possible meanings of emergence with a physics-based approach of describing systems
with states and evolution rules. Here, we aim to bring even more algebraic precision
for defining emergence in discrete dynamical systems. The alternative title for these
notes could be ‘And What Emergence Can(not) Mean According to Algebra’.

Our line of reasoning starts with the observation that the physical system def-
inition of emergence implies algebraic formulation, namely the use of morphisms.
Once algebra is admitted, we are bound to investigate what constraints algebraic
results put on emergence.

Effort is made to separate mathematical and the philosophical parts. The math-
ematics part is elementary, but its external meaning is more open to debate.

2. Transformation Semigroups as Discrete Dynamical Systems

We will use semigroup theory [2, 3], since semigroups, as a generalization of
groups, allow to model irreversible dynamics as well. More precisely, we model
discrete dynamical systems as transformation semigroups [4]. Compared to the
generic models for physical systems (state set plus time evolution rules), they are
both more specific and more general at the same. They are defined with discrete
state sets (as opposed to continuous), and they allow interactive dynamics of states,
not just time evolution. The arguments in this paper only apply to systems that
can be modeled this way.

Definition 2.1. A transformation semigroup (X,S) is a finite nonempty set of
states X and a set S of total transformations of the states closed under composition.

In other words we have functions of type X → X. We compose on the right,
so s1s2 reads as ‘s1 then s2’. When starting from state x, the resulting state is
expressed as xs1s2 for this sequence of transformations. This notation is due to the
connection to automata theory, where sequences of transformations are represented
by words of input symbols.

We can define a semigroup by a set of generators. In practice, we prefer a
limited number of transformations with the property that all transformations in the
semigroup can be produced by some combination of these generators. The technical
definition for the semigroup generated by A is the smallest semigroup containing
A. The condition for being closed under composition connects the formal definition
(being the smallest) to the informal (all distinct combinations).

The simplest case is when we have a single generator t and the semigroup ele-
ments are of the form t, t2, t3, . . .. This is a good model for representing the passage
of time, t acting as a clock-tick. While prevalent in physical models, monogenic
(cyclic) transformation semigroups have an overly simple structure. A transforma-
tion has cycle components with basins of attractions, thus its complete dynamics
can be captured by a convenient notation [5]. Monogenic transformation semigroups
only produce a limited set of groups (reversible dynamics).
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The transposition ( 1 2 3 ... n
2 1 3 ... n ), the cycle

(
1 2 3 ... n−1 n
2 3 4 ... n 1

)
, and the elementary state

collapsing ( 1 2 3 ... n
1 1 3 ... n ) generate the full transformation semigroup, the semigroup of

all transformations of n states. The first two generate the symmetric group, the
group of all permutations. Adding an elementary collapsing, the smallest possible
information loss, generate all possible dynamics.

The generators of the semigroup can be interpreted as ways to interact with the
system. For example, to a chemical mixture in a beaker we can add a new substrate
as an action and define the next state as the resulting steady state [6].

3. Morphic Relations

The usual description of emergent phenomena tells the following story. We can
take a micro state, and do time evolution on it, then use the emergence map to find
the macro state corresponding to the result. Or, we can map the micro state first
to the macro domain, and do the time evolution there. We get the same result.
The diagram commutes. It is immediate that this is an instance of a morphism,
where we establish compatibility of operations in two different domains.

Observation 3.1. An emergence relation is an algebraic morphism.

We define morphisms for transformation semigroups as they explicitly represent
states. This is not a limitation, any abstract semigroup or any other representation
of it can also be represented by a suitable transformation semigroup.

Definition 3.2 (Relational Morphism). A relational morphism of transformation

semigroups (X,S)
θ,φ−−→ (Y, T ) is a pair of relations (θ : X → Y, φ : S → T ) that are

fully defined, i.e., θ(x) ̸= ∅ and φ(s) ̸= ∅, and satisfy the condition of compatible
actions for all x ∈ X and s ∈ S:

y ∈ θ(x), t ∈ φ(s) =⇒ yt ∈ θ(xs),

or more succinctly: θ(x)φ(s) ⊆ θ(xs), which can be depicted by a subcommutative
diagram.

X × S X

Y × T Y

θ×φ θ⊆

We map states to states and transformations to transformations in a way that
the action of transformations on the states remains compatible. The morphism is
defined as a relation, not as function. It is necessary for semigroup decompositions.
Note that θ(x) ∩ θ(y) can be non-empty for x ̸= y, i.e., the image sets can even
overlap. Special cases of relational morphisms are exactly the usual homomorphisms
including the bijective isomorphisms. We can also define morphisms for abstract
semigroups. The condition of compatible operations is simpler. The relation φ :
S → T is a morphism if φ(s)φ(s′) ⊆ φ(ss′) for all s, s′ ∈ S.

4. What could novelty mean?

How can an emergence map create something new? Morphisms are structure pre-
serving maps. They can only lose information, or in the edge case of isomorphism,
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keep everything. Seemingly, there is no possibility for creating new dynamics. How-
ever, coarse-graining allows that, but not all coarse-grainings are creative. There is
an example below where novelty does not appear, and another where it happens.

We will use groups instead of semigroups for the sake of simplicity and familiarity.
Also, we represent groups abstractly. Here we assume some background knowledge
on groups.

4.1. No novelty: the morphic image is a part. The simplest example that
can accommodate two levels of description is Z4, the group of additions modulo 4.
It consists of elements +0,+1,+2,+3. The identity is +0, and +1 is a generator.

We can do coarse-graining on Z4 by the partition {{+0,+2}, {+1,+3}}. Acting
on these sets: +0 and +2 fix them (they only ‘move’ the elements inside), while
+1 and +3 swap the two classes. We treat the sets in the partition as the macro
states. Thus, we have a morphism with image Z2, giving us the macro dynamics.

This construction is the factor (quotient) group of Z4 by its normal subgroup
Z2, denoted by Z4/Z2. The coarse-graining is done by the cosets. However, we can
see that the macro dynamics is embedded in the micro dynamics. We got nothing
new: Z4/Z2 is isomorphic to Z2 = {+0,+2}.

4.2. Novelty: the morphic image is distinct from all parts. The quaternion
group Q8 has 8 elements {1,−1, i,−i, j,−j, k,−k} and the following multiplication
table.

Q8 1 -1 i −i j −j k −k

1 1 -1 i −i j −j k −k
-1 -1 1 −i i −j j −k k
i i −i -1 1 k −k −j j
−i −i i 1 -1 −k k j −j
j j −j −k k -1 1 i −i
−j −j j k −k 1 -1 −i i
k k −k j −j −i i -1 1
−k −k k −j j i −i 1 -1

The order of an element is the size of the group generated by it. In other words,
the order tells which power of the element is the identity. The identity has order
1, -1 has order 2, and all the other elements have order 4.

Factoring by {1,−1} gives the partition {{1,−1}, {i,−i}, {j,−j}, {k,−k}}. What
is this factor group Q8/{1,−1}? Let’s denote the cosets by {1, I, J,K}. We get the
following multiplication table by extending the multiplication to sets .

1 I J K

1 1 I J K
I I 1 K J
J J K 1 I
K K J I 1

This is the Klein-group K4, the symmetry group of a non-square rectangle. It is
Z2 × Z2, which can be shown by the mapping 1 7→ (0, 0), I 7→ (0, 1), J 7→ (1, 0),
and K 7→ (1, 1), where we do coordinate-wise addition modulo 2.

All non-identity elements in K4 have order 2. Since isomorphisms are order
preserving, K4 is not isomorphic to any subgroup of Q8, since the quaternion group
has only element with order 2. Therefore, coarse-graining produced a group that
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cannot be found by observing the multiplication in Q8. The point is that only
coarse-graining can reveal K4 in the dynamics of Q8.

5. Algebraic Emergence

We observed that it is possible to give precise meaning to novelty in the algebraic
context. We use the presence of such novelty as the defining property of emergence.

Definition 5.1. A transformation semigroup (Y, T ) is emergent for (X,S) if there

exists a surjective relational morphism (X,S)
θ,φ−−→ (Y, T ) and there is no subsemi-

group (X ′, S′) ≤ (X,S) such that (Y, T ) ∼= (X ′, S′).

We can simply say that the morphic image (Y, T ) is emergent if it is not a
subsemigroup of (X,S), in case we consider isomorphic semigroups to be identical.
Note that (X,S) ̸∼= (Y, T ) is implied by the definition, as the second condition rules
out the possibility of an isomorphism.

How rare is algebraic emergence? If the quaternion group was the only one
having emergent structures, then definition would not be an interesting one.

In algebraic emergence we have the base structure (the whole system) and the
emergent structure (the macro level) in an asymmetric relationship. When looking
for examples, we can ask two different questions. Given a structure S,

(1) what emergent structures can we find on top of S?,
(2) what base structures can give rise to S?

We look at the first question.

5.1. Non-examples. First, we can think of cases where we know for sure that
they cannot have emergent structures.

Simple groups have no normal subgroups (other than the group itself and the
trivial group). Therefore, they do not have any non-trivial factor groups. They can
have immense complexity, but they do not admit emergence.

Symmetric groups Sn of degree n have all the permutations of n states. Con-
sequently, they have all degree n and smaller permutation groups as subgroups.
Therefore, any morphic image is already contained.

Similar situation arises with cyclic groups. With elementary proofs we can show
that all their subgroups and factor groups are cyclic. They both correspond to
divisors of the size of the group. This implies that time evolution based (single gen-
erator) reversible discrete dynamical systems cannot exhibit algebraic emergence.

5.2. Computational Survey: Small Groups. We can do a quick survey of
small groups to see how many of them have emergent factor groups. We use the
SmallGroups library [7] for the GAP computer algebra system [8]. Appendix A
contains the source code for the function deciding emergence.

Table 1 lists the first few example of groups with emergence and their emergent
groups. Table 2 shows the numbers of emergent groups. Our example Q8 is indeed
the smallest one, but algebraic emergence is not a rare property. It is also the first
to be an emergent group that is also a base group. This shows that multiple levels of
emergence exist, as we would expect from the informal idea of emergence. Another
observation we can make is that algebraic emergence is not transitive: Z2 × Z2 is
emergent in Q8 but not in Z4 ⋊ Z4.
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Order Base Group Emergent Groups
8 Q8 Z2 × Z2

12 Z3 ⋊ Z4 S3

16 (Z4 × Z2)⋊ Z2 D8

16 Z4 ⋊ Z4 Q8, D8

16 Q16 D8,Z2 × Z2

16 Z2 ×Q8 Z2 × Z2 × Z2

16 (Z4 × Z2)⋊ Z2 Z2 × Z2 × Z2

20 Z5 ⋊ Z4 D10

Table 1. The first few emergent groups. The order is the size of
the base group. D2n is the the dihedral group, ⋊ denotes semidirect
products, Qn the dicyclic (quaternion) groups.

Order 8 12 16 20 24 28 32 36 . . . 63 64
#groups 5 5 14 5 15 4 51 14 . . . 4 267

#emergent 1 1 5 1 5 1 33 4 . . . 1 233
Table 2. Number of groups with emergence. Order 63 is the first
odd size to have an emergent factor group.

6. Hierarchical Decompositions

According to a simplistic description of scientific understanding, we start with
the observation of the macro level, then proceed to the micro level, finally getting
a detailed understanding of the whole system.

system micro level

macro level

In the hierarchical decompositions of semigroups [9], we understand the complete
system by creating a hierarchy of several levels of descriptions. In other words, we
rebuild the system with the levels clearly separated. The hierarchy is defined by a
wreath product, i.e., there is a linear order of component transformation semigroups
and control information flows only one way, from top to bottom. What the top
level does depends only on its input, but components below should consider the
state(s) of the component(s) above too. In practice, we use substructures of the
wreath product defined by generator sets.

In particular, the Covering Lemma method [10] works with transformation semi-
groups and produces a two level decomposition. This fits the above scheme of emer-
gence well, but it works the other way around. We start with the complete system
we do not understand, and try to simplify with a suitable surjective morphism.

system
macro level

residual micro level

In other words, we are picking a suitable macro level description. Then, the decom-
position algorithm extracts the relevant information from the system and generates
the corresponding micro level. The micro level contains all the information that is
lost in the surjective morphism.
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How to pick the right macro level? That is an interesting research question
for each problem domain. In general, we want to have a surjective map with low
computational complexity. This condition implies the ability to work with the
generators only (no need to compute the system completely). The other aspect is
the usefulness of the macro level. Are the algebraically emergent macro levels good
for understanding purposes? One special class of macro level descriptions has a
central role in physics.

6.1. Conserved Quantities. If we partition the state set by θ, i.e., x1 ̸= x2 =⇒
θ(x1) ∩ θ(x2) = ∅, and the semigroup action respects this partition, i.e., classes
are sent to classes, then we have a congruence. The action defined on congruence
classes has another physical analogy, the conserved quantities. These serve as a
top level understanding of a system [6]. For understanding a dynamical system we
introduce some (formal) quantities with the following properties.

• They describe some important aspects of the system.
• The result of an action depends on the current value and the action only,
and not on the precise current state of the system.

Any state in the equivalence class of x can be used for computing the next class,
which is exactly the defining property of a congruence. The formal quantity is
the same within equivalence class, so states in the class form a “closed system”.
This is an analogue for conserved quantities in physics, like energy level, or angular
momentum.

6.2. Locality. There is nothing intrinsically local in the definition of the state
space of transformation semigroups. However, when using the Covering Lemma
method [10], locality appears as a consequence of the macro level description. There
are ‘islands of composability’ on the micro level determined by the macro level
component. Thus the micro level component is not a semigroup, but a semigroupoid.
If we naively forced it to be semigroup, then we would get some phantom elements,
byproducts of the encoding scheme of the micro level.

7. Philosophical Implications

Up to this point we only talked about elementary, proven, and thus noncontro-
versial mathematical facts, and created a definition of algebraic emergence. Here,
we make philosophical arguments why the definition could be useful.

7.1. The Two Pillars of Algebraic Emergence: Abstraction and Mor-
phism. The first important idea is that by abstraction, by forgetting details we
create new information. In itself, this is not enough, since it allows to do unrea-
sonable things. For instance, we can start with a text message, and by a specially
crafted erasure of letters we can have an albeit shorter, but completely new message.
This feels like cheating as there is no intrinsic relation between the two messages.

The second pillar is the map between compatible actions, the morphism. We
need to erase information in a way that we keep compatibility with the original
system. Emergence only makes sense if there is some compatibility between the
base system and the emergent structures on top of it. Associating one system to
another without morphism is just a made up arbitrary connection.
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7.2. No miracle morphisms. Algebraically obvious, but it is worth stating ex-
plicitly that there are no miracle morphisms. There are information preserving
maps (isomorphisms), and information forgetting ones (homomorphisms), but there
are no information creating maps in algebra. One cannot map Tn to Tn+1 isomor-
phically, as there are simply not enough transformations and not enough states in
Tn. We can only embed the smaller into the bigger one. The simplest such map
would be fixing a point.

7.3. Limited Novelty. Morphisms are generalizations of equality. If one structure
is a morphic image of another one, then to some extent it is the same. In the space
of all maps they are rare, and there is no guarantee that we will get a morphism
between arbitrarily chosen objects.

In universal algebra [11], we have families of similar algebraic objects by equa-
tional identities. They are generated by the HSP operator, i.e., taking homo-
morphic images, substructures, and direct products. We identified emergence as
morphic images that are not substructures. Arguably, nothing ‘truly’ novel is pro-
duced by the HSP operator, as we stay inside an equational class. For instance,
an abelian group will never have non-abelian emergent macro level. An aperiodic
semigroup (no non-trivial reversible dynamics) cannot have an emergent group
structure.

7.4. Weak versus Strong Emergence. In philosophy, there is the distinct be-
tween strong emergence and weak emergence [12]. Without getting into the details
of the traditional debate, with the algebraic emergence we have two choices.

(1) Algebraic emergence is strong emergence, or
(2) strong emergence cannot be interpreted in the algebraic framework.

Showing that Q8 has emergent dynamics K4, which is not contained in it already, is
far from proving that mental processes emerge from the firings in a neural network.
At least, the possibility is not ruled out mathematically. However, proponents of
the strong emergence also talk about downward causation, and there are no inherent
causal relations in the hierarchical model.

7.5. Orthogonal to Causality. The algebraic model of the hierarchical depen-
dence (the wreath product) seems to include causal relationships: the lower levels
‘listen to’ the upper levels. The control flow is from top to bottom. However, this
is just a representation. We can take an arbitrary semigroup, do a hierarchical
decomposition even if it is defined by a recurrent mechanism.

Given a base system and a macro level description, we can find the missing micro
level algorithmically. We could do this the other way around too. The algebra does
not say that the macro level arises from the micro level, as the macro level can
be used to find suitable micro levels too. Causal relationships are external to the
mathematical theory.

The algebra deals only with three descriptions of a system, the complete, the
macro level (coarse-grained), and the micro (localized). If any of them is missing,
we can recover that from the other two.

7.6. Emergent structures belong to their base. Much of the confusion in
philosophy about emergence may come from the assumption that the describing a
base system is in some sense complete. As if, describing the pieces and the basic
connections of a LEGO set would be sufficient. Then, of course, we get surprised by
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the ‘emergent’ things, vehicles, castles we can build using the pieces. Alternatively,
we could include all the possible constructions in a complete description. In other
words, the LEGO set can be defined by relations to all the real and imaginary
objects it can build.

In category theory, the Yoneda Lemma (e.g., [13]) says that in order to know
everything about a mathematical object it suffices to know how it relates to other
objects. In a way, the essence is in the relationships. We already used one of its
corollaries, Cayley’s Theorem, when we switched to abstract groups from permu-
tation groups.

We can apply this relational thinking for algebraic emergence. It is not enough
to look inside the semigroups, and check only the subsemigroups, we need to check
the morphic images as well. In physics, the understanding of matter (defined as
elementary particles, atoms) will be complete once we enumerated all its possible
emergent structures.

8. Conclusion

If a process can be modeled as a discrete dynamical system, then its algebraic
representation has a clear condition for emergence. Emergence happens when a
morphic image of the system is not already present in it as a substructure. In other
words, emergent dynamics can only be derived by (generalized) coarse-graining.

Due to the importance of composition, the algebraic structure is fundamental
for many systems. Therefore, any more detailed classification of types emergence
should be preceded by the condition for algebraic emergence. It can serve as a
necessary, if not as a sufficient condition.
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Appendix A. Finding Emergent Groups

The following GAP [8] function finds all emergent groups of a given group G.
The algorithm is straightforward. We find all normal subgroups and construct
all corresponding factor groups. We retain only those that are not isomorphic to
any subgroups of G. No optimization is made, thus the function only works were
enumerating all subgroups and constructing all factor groups are feasible.

EmergentGroups := function(G)

local factor_groups, subgroups, emergent;

factor_groups := List(NormalSubgroups(G),

N -> FactorGroup(G,N));

subgroups := AllSubgroups(G);

emergent := Filtered(factor_groups,

F -> ForAll(subgroups,

S -> (fail = IsomorphismGroups(F,S))));

return emergent;

end;
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