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Abstract

This paper investigates the metaphysics in higher-order counterfactual logic. I
establish the necessity of identity and distinctness and show that the logic is committed
to vacuism, which entails that all counteridenticals are true. I prove the Barcan,
Converse Barcan, Being Constraint and Necessitism. I then show how to derive
the Identity of Indiscernibles in counterfactual logic. I study a form of maximalist
ontology which has been claimed to be so expansive as to be inconsistent. I show that
it is equivalent to the collapse of the counterfactual into the material conditional—
which is itself equivalent to the modal logic TRIV. TRIV is consistent, from which it
follows that maximalism is, surprisingly, consistent. I close by arguing that stating the
limit assumption requires a higher-order logic.

Introduction

Over the past few decades, philosophers have systematically investigated both counter-
factual and higher-order logic. Given the uses for these systems, this focus is unsurpris-
ing. Counterfactuals figure in debates ranging from decision theory to the necessity of
mathematics—and figure prominently in analyses of causation.2 Higher-order logic, for
its part, has shed light on debates ranging from Leibniz’s Law to propositional granularity
to metaphysical grounding.3 The applications for each system are undoubtably broad.

What is surprising is that almost nothing has been written on their interaction; there
is no literature discussing systems that both describe what would have been the case and
quantify over terms in any syntactic category.4 At present, higher-order counterfactual
logic does not exist.

I aim to remedy this oversight. The resulting system—which I dub HOCL—governs
the logic of higher-order counterfactuals: i.e., counterfactuals that embed a higher-order

1My thanks to Catherine Elgin, Hüseyin Güngör, Arc Kocurek and Timothy Williamson for correspondence
on material in this paper—as well as the attendees of the Modal Logic as Metaphysics at 10 Conference hosted
by the University of Hamburg for their feedback on this paper’s precursor.

2For their use in decision theory, see Bradley and Steffánnson (2017). For their use in the necessity of
mathematics, see Yli-Vakkuri and Hawthorne (2020). For their use in theories of causation, see Lewis (1973a).

3For discussions of its implications for Leibniz’s Law, see Bacon and Russell (2019); Bacon (2019); Caie,
Goodman and Lederman (2020). For discussions of its implications for grounding, see Fritz (2021, 2022); Elgin
(Forthcoming). For discussions of its implications on propositional identity, see Dorr (2016); Bacon and Dorr
(2024).

4However, two papers that use some form of higher-order inferences in counterfactual logic are Goodman
and Fritz (2017) and Kocurek (2022b). To the best of my knowledge, this list is exhaustive.
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claim in either their antecedent or their consequent. Many sentences in natural language
are reasonably interpreted as higher-order counterfactuals. For example, ‘If Sarah and
Jane had nothing in common, then they would not both be Norwegian’ appears to assert
that if there were not to exist a property borne by both Sarah and Jane, then they would not
both bear is Norwegian. One reason to investigate this system is to adequately understand
the logic of these sentences. It is worth noting, however, that HOCL does not merely
govern the logic of higher-order counterfactuals; it not only characterizes counterfactuals
that embed higher-order claims, but also counterfactuals that are themselves embedded in
higher-order inferences. For example, from ‘If it were raining, the street would be wet,’
we may conclude that there exists a relation between ‘It is raining’ and ‘The street is wet.’

But my primary focus is metaphysics, rather than the logic of natural language. When
I began this project, I exclusively focused on the higher-order aspect of this system. How-
ever, it quickly became clear that there are underdeveloped—yet important—first-order
metaphysical implications as well. So, after discussing the relation between modality
and counterfactuality—and after axiomatizing HOCL—I discuss its ramifications for the
necessity of identity, counteridenticals, the Barcan Formula, and Necessitism. In these
debates, the higher-order aspect of the system is largely auxiliary. While there are higher-
order instances of these theorems (and so the result is strictly more powerful than any
expressible in a first-order language), restricted versions could also be stated in languages
with quantifiers that only range over objects. I then turn to debates where higher-order
quantification is indispensable: the Identity of Indiscernibles, Maximalism and the Limit
Assumption.

A note on this project’s aims. Nearly every assumption I make about counterfactual
logic is controversial. While these assumptions are widespread, I will not provide a full-
throated defense of them here (aside from some brief remarks about their plausibility). As
will become clear, what these assumptions entail is at least equally controversial. There is
thus ample room to reject HOCL. But there is a sense in which dissidents need not disagree
with anything that I say. I do not claim that HOCL settles debates correctly—nor that its
axioms are true. Rather, I take it to be a natural starting point (perhaps even the natural
starting point) for reasoning about higher-order counterfactuals. Those who would rule
differently ought to employ a different logic—and even those who ultimately reject this
system may find it illuminating to determine what implications it has.

Modality and Counterfactuality

I make a number of assumptions throughout this paper. I assume that classical logic is
true. I assume that sentences certified by truth-tables to be true (in the standard way)
are indeed true—and that sentences so certified to be false are indeed false. Moreover, I
assume that the results of proofs within classical quantified logic are true if their premises
are true. That is, I assume that the conclusions of sound arguments are true.
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I do not mean to suggest that this assumption is uncontroversial. Every logical assump-
tion that I make is open to debate—and my commitment to classicality is no exception.
Nevertheless, I will provide no defense of this assumption here. Those who deny classical
logic need read no further.

I also assume the following connection between necessity and counterfactuality:

□p :“ 󲷤p󲨷 K

For p to be necessary is for it to be the case that, if p were false, then the absurd would
be true.5 I dub this connection between necessity and counterfactuality ‘Definition1.’
Definition1 is an immediate consequence of the Lewis (1973b)/Stalnaker (1968) semantics
for counterfactual conditionals—which holds that a sentence of the form ‘If p were true
then q would be true’ is true just in case the closest possible world(s) in which p are true
are world(s) in which q is true. After all, if p is true in every possible world, then the
closest possible world in which p is false is an absurdity.

I do not assume that the Lewis/Stalnaker semantics is correct—nor do I assume that
it is incorrect. While the widespread appeal of their accounts offers some support for
Definition1, an arguably stronger motivation occurs in Williamson (2007b)—who notes that
it follows from the weakest standard modal logic—K—and the following two principles:

Necessity: □pp Ñ qq Ñ pp󲨷 qq
Possibility: pp󲨷 qq Ñ p󲨙p Ñ 󲨙qq

Necessity asserts that strict implication entails counterfactual implication; if it is neces-
sary that if p is true then q is true, then if p were true then q would be true. Possibility, for
its part, asserts that anything counterfactually implied by a possible proposition is itself
possible; if it is possible for p to be true, and if p were true then q would be true, then it is
possible for q to be true.

When I first encountered Necessity, it struck me as overwhelmingly plausible.6 If we
canvass the entirety of modal space, and find that absolutely every world in which p is true
is a world in which q is true, then there is no possible situation—no matter how distant—in
which p is true and q is false. Surely, in that case, if p were true then q would be true. I now
recognize that matters are not so simple; Necessity takes a stand on a contentious debate.
In particular, it presupposes vacuism: the claim that all counterpossibles (counterfactuals

5Two other potential counterfactual definitions of necessity are □p :“ 󲷤p 󲨷 p and □p :“ @qp󲷤p 󲨷 qq.
As Williamson (2007b) established, minimal assumptions entail that the three are equivalent. There is thus no
need to choose between competitors. Opting for the formulation I have is merely a stylistic preference.

6Possibility also strikes me as overwhelmingly plausible. Even Lange (2009), who is loath to commit to
any generalizable principles of counterfactual logic, repeatedly endorses Possibility. If we determine that a
proposition p could be the case, then the counterfactual ‘If p were true then q would be true’ takes us from one
possibility to another. I note, however, that Williamson (2020) denies Possibility on the grounds that there
could be contextual shifts between ‘If p were true then q would be true’ and ‘It is possible that p.’
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with impossible antecedents) are true. Take an arbitrary proposition p that is necessarily
false. Because p is false in every possible world, the conditional p Ñ q is true in every
world (for every q). So, p Ñ q holds necessarily. Necessity, then, entails p󲨷 q. Since this
holds for every impossible p and for every q, Necessity validates vacuism.

Vacuism is controversial—and rightly so. Nonvacuists (who hold that at least some
counterpossibles are substantive) maintain that their view better accords with ordinary
judgments.7 Intuitively, the sentence ‘If paraconsistent logic were true, then Graham
Priest would be incorrect’ is false (since Priest has offered an impassioned defense of
paraconsistent logic), but vacuists must maintain that it is true.8 After all, its antecedent
could not possibly obtain.9

Despite challenging cases, many paths lead to vacuism. Dominant semantics for
counterfactuals—such as the Lewis/Stalnaker—entail that all counterpossibles are true.
If there are no worlds in which p is true then, trivially, all of the closest p worlds are q
worlds. As Lewis said, “Confronted by an antecedent that is not really an entertainable
supposition, one may react by saying, with a shrug: If that were so, anything you like
would be true!” (Lewis, 1973b, pg. 24). Beyond the appeal of particular semantic accounts,
vacuists typically highlight the theoretical virtues of their position.10 In general, vacuist
systems are simpler and more elegant than their nonvacuist counterparts.

HOCL is deeply committed to vacuism, but this will only become clear after the system
is formalized. For the moment, suffice it to say that Necessity offers some support for
Definition1, but there remains room for disagreement—as nonvacuists ought to reject it.

With a definition of necessity to hand, possibility can be defined as:

󲨙p :“ 󲷤□󲷤p

For it to be possible that p is for it to be false that p is necessarily false. Let this
definition of possibility be dubbed ‘Definition2.’ Definition2 is standard in the literature.
If we interpret ‘Necessarily p’ as the claim that p is true in every possible world, then

7Examples of nonvacuists include Zagzebski (1990); Nolan (1997); Brogaard and Salerno (2007); Kment
(2014).

8At least, on the assumption that paraconsistent logic is not merely actually false, but necessarily false.
9A stronger motivation for nonvacuism is given by Jenny (2018)—who argues that mathematics employs

substantive counterpossibles. There are pairs of problems p and q, such that neither p nor q are computable
(in that no algorithm given a finite time could solve them), but that q is computable relative to p (in that any
solution to p generates a solution to q). For example, although neither the validity problem for First-Order
Logic nor the halting problem are computable, the validity problem is computable relative to the halting
problem. For this reason, ‘If the halting problem were computable, then the validity problem for First-Order
Logic would be computable’ is true. These sentences are nontrivial; it takes mathematical work to establish that
one problem is computable relative to another. However, given that uncomputable problems are necessarily
uncomputable, they are also counterpossibles. To account for the substance of relative computability theory,
perhaps we ought to endorse nonvacuism.

10Examples of vacuists (beyond Lewis and Stalnaker) include Kratzer (1979); Bennett (2003); Williamson
(2007b, 2010, 2015); Emery and Hill (2017).
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󲷤□󲷤p asserts that it is false that p is false in every possible world. This naturally seems to
require p to be true in at least one possible world—and so it is possible for p to be true.11

The significance of this is the following: in addition to accepting classical logic, I
endorse both the claim that□p “ 󲷤p󲨷 K and that󲨙p “ 󲷤□󲷤p. While these assumptions
are not uncontroversial, they have enough support to make this discussion worthwhile. I
also note that those who reject the definition of either necessity or possibility may have a
use for the system that follows. These definitions serve one purpose: to translate claims
involving counterfactuals to claims involving modals. Without these definitions, such
translations are impossible—but the remainder of the theorems still hold, and claims that
purely involve counterfactuals may be of interest in their own right.

Higher-Order Counterfactual Logic

The system I employ is not the propositional counterfactual logic I have employed thus
far—or even a first-order extension of that system. Rather, I operate with a higher-order
counterfactual logic: one that allows for quantification over terms in any syntactic category.
At the outset of the analytic tradition, higher-order systems played a pivotal role in
philosophical inquiry. However, following Quine (1970)’s impassioned insistence on the
primacy of first-order logic, these systems largely fell out of favor. A few years ago,
it would have been incumbent to provide a general introduction to higher-order logic
before this project could commence. Fortunately, matters have improved; there are now
excellent overviews of higher-order logic—and the system is widespread enough that little
introduction is needed.12 My discussion of the non-counterfactual fragment of this system
will be brief; I dedicate the bulk of my attention to counterfactual logic.

The Syntax of HOCL

I will operate in a simply-typed language with λ-abstraction.13 This language has two
basic types: a type e for entities and a type t for sentences. ‘Socrates’ and ‘The Mona Lisa’
are of type e, while ‘Roses are red’ and ‘Violets are blue’ are of type t. Additionally, there
are complex types that consist of functional relations between the basic ones; for every
types τ1 and τ2, pτ1 Ñ τ2q is a type. Nothing else is a type.

11To the best of my knowledge, the only philosophers who reject Definition2 are intuitionists—such as
Bobzien and Rumfitt (2020). I myself find the consequences of intuitionism untenable. While intuionists
claim that not all propositions are either true or false (󲷤@ppp _ 󲷤pq), they cannot claim that some propositions
are neither true nor false (Dpp󲷤p ^ 󲷤󲷤pq) on pain of contradiction. Intuitionists thus lose the inference from
󲷤@xφ to Dx󲷤φ—an unacceptable loss in my view. Suffice it to say that my first assumption—that classical
logic is true—rules out this strategy.

12See Bacon (2023); Fritz and Jones (2024) for introductory texts.
13The simply-typed λ calculus differs from the pure-type theory of Berardi (1989); Terlouw (1989), which

has the power to perform operations on the types themselves.
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We can regiment terms of diverse syntactic categories in the standard way. Monadic
first-order predicates are identified with terms of type pe Ñ tq; they are functions with
entities as their inputs and sentences as their outputs. For example, ‘is wise’ is treated
as function that generates sentences like ‘Socrates is wise’ and ‘Aristotle is wise.’ Diadic
first-order predicates are terms of type pe Ñ pe Ñ tqq, monadic second-order predicates
are of type ppe Ñ tq Ñ tq, etc. The negation operator 󲷤 is of type pt Ñ tq, and the binary
connectives ^,_,Ñ and Ø are all of type pt Ñ pt Ñ tqq.

There are also terms for identity and the standard quantifiers. For every type τ there
is a term “ of type pτ Ñ pτ Ñ tqq. We allow there to be infinitely many variables of
every type, as well as λ-abstracts that serve to bind these variables. We also introduce
the quantifiers @ and D of type ppτ Ñ tq Ñ tq for every type τ. Effectively, first-order
quantifiers are second-order properties: the property of having every object in its extension
and of having an object in its extension respectively. There are the modal operators □ and
󲨙 of type pt Ñ tq and, lastly, the counterfactual conditional󲨷 of type pt Ñ pt Ñ tqq. It
represents sentences like ‘If the shampoo were cheaper, I would have bought it’ and ‘If
kangaroos had no tails, they would topple over.’14

The Axioms and Rules of HOCL

The nonmodal axioms and inferential rules I employ are the following:

Nonmodal Axiom Schemes:

PC: $ φ if φ is a theorem of classical propositional logic
UI: $ @F Ñ Fa
EG: $ Fa Ñ DF
UD: $ @pP Ñ Qq Ñ pP Ñ @Qq for P with no free variables
ED: $ @pP Ñ Qq Ñ pDpPq Ñ Qq for Q with no free variables
Ref: $ a “ a
LL: $ a “ b Ñ pφØ φra{bsq
Eβ: $ λx.Fpaq Ø Fra{xs

Nonmodal Rules:

MP: If $ p Ñ q and $ p then $ q
Gen: If $ p then $ @p

14In what follows, I occasionally omit various symbols when ambiguity does not result. I also omit the
types of terms where the type is either contextually evident, or the term is taken as a schema with applications
in every type. I also suppress the λ terms that immediately follow the quantifiers @ and D.
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Many of these axioms either are included in—or are natural extensions of—First-Order
Logic. PC and MP jointly ensure that classical propositional logic holds within HOCL.
UI, EG, UD and ED likewise stipulate that quantifiers act classically (though here the
axioms should be interpreted as schemata; quantifiers of arbitrary type obey analogues
of first-order inferences). Likewise, Ref and LL govern the logic of identity. Everything
is identical to itself—and terms that co-denote can be substituted for one another in any
formula.15 The most novel axiom is Eβ—the principle of β-reduction. This permits the
inference from λx.Fxpaq to Fa.

Some small points about this system. First, the axioms and inferences have instances
involving free variables, as well as constants. Thus, x “ x is a theorem of this system.
However, we will only speak of formula as being ‘true’ when they contain no free variables.
To that end, Gen can be applied to formula with free variables to arrive at sentences that
lack them. Second, this system is extremely weak in some respects. In particular, it
sidesteps many controversial debates over propositional granularity. For example, Eβ
merely stipulates that λx.Fxpaq and Fa have the same truth-value; it does not take a stand
on whether the two are identical.16 It is thus available to many metaphysicians.

The counterfactual axioms and rules I employ are the following:

Counterfactual Axiom Schemes:

ID: $ p󲨷 p
Vac: $ p󲷤p󲨷 pq Ñ pq󲨷 pq
B󲨷: $ p Ñ ppp󲨷 Kq󲨷 Kq

Counterfactual Rules:

Closure: If $ p Ñ q then $ pr󲨷 pq Ñ pr󲨷 qq
REA: If $ p ” q then $ pp󲨷 rq ” pq󲨷 rq

ID is the principle of reflexivity for counterfactuals.17 It reflects the thought that when
we construct a counterfactual supposition, we start with the supposition itself.18 Vac (or

15Some may be more accustomed to a version of Leibniz’s Law according to which identicals bear all of the
same properties. That formulation is provably equivalent to the version given here.

16For an argument that they are identical, see Dorr (2016). For an argument that they are not, see Rosen
(2010); Fine (2012b).

17Williamson (2007b) dubs this principle ‘Reflexivity.’ I depart from his terminology in order to avoid
ambiguity with my axiom of Ref—according to which terms are self identcal.

18While I take ID to be extraordinarily intuitive, I note that some have argued that it fails in at least some
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Vacuity) generates vacuous counterfactuals. The basic thought is that a situation in which
p is false is the ‘worst’ situation from the perspective of p. If p would be true even in a 󲷤p
situation, then p is true in every situation whatsoever. So, in any situation in which q is
true, p is true (for an arbitrary q).

There are two rules within this system. Closure allows us to generate counterfactual
conditionals from (provable) material conditionals, while REA (or Replacement of Equiv-
alent Antecedents) allows for the substitution of logically equivalent expressions in the
antecedents of counterfactuals.19 I also assume polyadic extensions of these axioms and
rules hold. Closure, in particular, licenses the inference from ‘If $ pp1 ^ p2 ^ ...^ pnq Ñ q,
to $ ppr󲨷 p1q ^ pr󲨷 p2q ^ ...^ pr󲨷 pnqq Ñ pr󲨷 qq.’

REA is particularly controversial; given other plausible principles about counterfactual
logic, it fails at least some of the time.20 However, I will not appeal to the most contro-
versial instances of REA. Its only occurrences take the form pp 󲨷 qq Ø p󲷤󲷤p 󲨷 qq.21

Prominent semantic accounts that deny REA in its full generality still license this par-
ticular instance.22 Despite the controversy surrounding REA, I doubt that rejecting it is
particularly promising.

B󲨷 is so-named because it is the counterfactual analog of the B modal axiom p Ñ
□󲨙p.23 Given the other axioms and rules, we can establish that B󲨷 entails B as follows:

i. p Ñ ppp󲨷 Kq󲨷 Kq B󲨷
ii. p ” 󲷤󲷤p PC
iii. pp󲨷 Kq ” p󲷤󲷤p󲨷 Kq ii, REA
iv. p󲷤󲷤p󲨷 Kq ” 󲷤󲷤p󲷤󲷤p󲨷 Kq PC
v. pp󲨷 Kq ” 󲷤󲷤p󲷤󲷤p󲨷 Kq iii, iv, PC and MP
vi. ppp󲨷 Kq󲨷 Kq ” pp󲷤󲷤p󲷤󲷤p󲨷 Kqq󲨷 Kq v, REA
vii. p Ñ pp󲷤󲷤p󲷤󲷤p󲨷 Kqq󲨷 Kq i, vi, PC and MP
viii. p Ñ pp󲷤󲷤□󲷤pq󲨷 K) vii and Definition1
ix. p Ñ pp󲷤󲨙pq󲨷 Kq viii and Definition2
x. p Ñ □󲨙p ix and Definition1

cases. See, for example, Lowe (1995); Nolan (1997); Kocurek (2022a).
19Williamson (2007b) refers to this as ‘Equivalence.’ I note that (Polluck, 1976, pg. 11) states that Closure is

“So obvious as to need no defense.”
20The principles I allude to are Simplification: $ ppp _ qq󲨷 rq Ñ pp󲨷 rq and the Failure of Antecedent

Strengthening: ⊬ pp 󲨷 rq Ñ ppp ^ qq 󲨷 rq. This conflict was noted independently by Fine (1975) and
Nute (1975). I do not want to cast too much doubt on REA; plausible principles also entail that it holds
in full generality. If necessarily equivalent propositions are identical, and Leibniz’s Law is true, then REA
universally succeeds.

21There is one exception—I also appeal to it once when addressing vacuous β-conversion in the discussion
of Maximalism. I take it that this is also uncontroversial.

22See, e.g., Fine (2012a).
23Williamson (2007a) operates with the provably equivalent axiom BS: $ pp󲨷 pq󲨷 Kqq Ñ pp Ñ pq󲨷

Kqq. I opt for my axiom due to its comparative simplicity.
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This proof can be more-or-less reversed to demonstrate that B entails B󲨷:

i. p Ñ □󲨙p B
ii. p Ñ pp󲷤󲨙pq󲨷 Kq i and Definition1
iii. p Ñ pp󲷤󲷤□󲷤pq󲨷 Kq ii and Definition2
iv. p Ñ pp󲷤󲷤p󲷤󲷤p󲨷 Kqq󲨷 Kq iii and Definition1
v. p ” 󲷤󲷤p PC
vi. pp󲨷 Kq ” p󲷤󲷤p󲨷 Kq v, REA
vii. p󲷤󲷤p󲨷 Kq ” 󲷤󲷤p󲷤󲷤p󲨷 Kq PC
viii. pp󲨷 Kq ” 󲷤󲷤p󲷤󲷤p󲨷 Kq vi, vii, PC and MP
ix. ppp󲨷 Kq󲨷 Kq ” pp󲷤󲷤p󲷤󲷤p󲨷 Kqq󲨷 Kq viii, REA
x. p Ñ ppp󲨷 Kq󲨷 Kq iv, ix, PC, MP

These axioms and rules are too weak to constitute ‘counterfactual logic’ in any compre-
hensive sense of the term. I do not include the weak-centering axiom pp󲨷 qq Ñ pp Ñ qq—
nor axioms that correspond to other standard axioms of modal logic.24 I do not omit these
because I have any principled objection to them—but rather because they play no role in
the theorems that follow. For our purposes, weak axioms are enough.

The Necessity of Identity and Distinctness

A natural starting point is the necessity of identity—due to both the simplicity of the proof
and the significance of the result. We can establish the necessity of identity using Closure,
ID and Definition1 as follows:

i. x “ x Ref
ii. 󲷤px “ xq Ñ K i,PC and MP
iii. p󲷤px “ xq󲨷 󲷤px “ xqq Ñ p󲷤px “ xq󲨷 Kq ii, Closure
iv. 󲷤px “ xq󲨷 󲷤px “ xq ID
v. 󲷤px “ xq󲨷 K iii, iv, MP
vi. x “ y Ñ pp󲷤px “ xq󲨷 Kq Ø p󲷤px “ yq󲨷 Kqq LL
vii. x “ y Ñ p󲷤px “ yq󲨷 Kq v, vi, PC and MP
viii. @x, ypx “ y Ñ p󲷤px “ yq󲨷 Kqq vii, Gen (x2)
ix. @x, ypx “ y Ñ □px “ yqq viii, Definition1

It is thus possible to establish the necessity of identity purely in the language of
counterfactual logic. While higher-order resources are unneeded in this proof, the result
holds for terms of arbitrary type; identical properties are necessarily identical, identical

24For many of these axioms, see Williamson (2007a).

9



sentential operators are necessarily identical, and identical connectives are necessarily
identical.

It is also possible to prove the necessity of distinctness using ID, Closure, B󲨷, REA,
Vac, and Definition1 as follows:

i. x “ y Ñ px 󲧰 y󲨷 Kq Previous Theorem
ii. 󲷤px 󲧰 y󲨷 Kq Ñ x 󲧰 y i, PC and MP
iii. 󲷤p󲷤px 󲧰 y󲨷 Kq Ñ x 󲧰 yq Ñ K ii, PC and MP
iv. p󲷤p󲷤px 󲧰 y 󲨷 Kq Ñ x 󲧰 yq 󲨷 󲷤p󲷤px 󲧰 y 󲨷 Kq Ñ

x 󲧰 yqq Ñ p󲷤p󲷤px 󲧰 y󲨷 Kq Ñ x 󲧰 yq󲨷 Kq
iii, Closure

v. 󲷤p󲷤px 󲧰 y 󲨷 Kq Ñ x 󲧰 yq 󲨷 󲷤p󲷤px 󲧰 y 󲨷 Kq Ñ
x 󲧰 yq

ID

vi. 󲷤p󲷤px 󲧰 y󲨷 Kq Ñ x 󲧰 yq󲨷 K iv, v, PC and MP
vii. pp󲷤px 󲧰 y󲨷 Kq Ñ x 󲧰 yq ^ p󲷤px 󲧰 y󲨷 Kqqq Ñ x 󲧰 y PC
viii. pp󲷤x 󲧰 y 󲨷 p󲷤px 󲧰 y 󲨷 Kq Ñ x 󲧰 yqq ^ p󲷤x 󲧰 y 󲨷

󲷤px 󲧰 y󲨷 Kqqq Ñ p󲷤x 󲧰 y󲨷 x 󲧰 yq
vii, Closure

ix. px 󲧰 y ^ 󲷤x 󲧰 yq Ñ K PC
x. pp󲷤x 󲧰 y 󲨷 x 󲧰 yq ^ p󲷤x 󲧰 y 󲨷 󲷤x 󲧰 yqq Ñ p󲷤x 󲧰

y󲨷 Kq
ix, Closure

xi. 󲷤x 󲧰 y󲨷 󲷤x 󲧰 y ID
xii. p󲷤x 󲧰 y󲨷 x 󲧰 yq Ñ p󲷤x 󲧰 y󲨷 Kq x, xi, PC and MP
xiii. K Ñ p PC
xiv. p󲷤p󲨷 Kq Ñ p󲷤p󲨷 pq xiii, Closure
xv. p󲷤p󲨷 pq Ñ pq󲨷 pq Vac
xvi. p󲷤p󲨷 Kq Ñ pq󲨷 pq xiv, xv, PC and MP
xvii. p󲷤󲷤px 󲧰 y 󲨷 Kq 󲨷 Kq Ñ p󲷤x 󲧰 y 󲨷 󲷤px 󲧰 y 󲨷

Kqq
Instance of xvi

xviii. p󲷤p󲷤px 󲧰 y 󲨷 Kq Ñ x 󲧰 yq 󲨷 Kq Ñ p󲷤x 󲧰 y 󲨷
p󲷤px 󲧰 y󲨷 Kq Ñ x 󲧰 yqq

Instance of xvi

xix. p󲷤󲷤px 󲧰 y󲨷 Kq󲨷 Kq Ñ p󲷤x 󲧰 y󲨷 Kq vi, viii, xii, xvii, xviii,
PC and MP

xx. px 󲧰 y󲨷 Kq ” 󲷤󲷤px 󲧰 y󲨷 Kq PC
xxi. p󲷤󲷤px 󲧰 y󲨷 Kq󲨷 Kq ” pppx 󲧰 y󲨷 Kq󲨷 Kqq xx, REA
xxii. ppx 󲧰 y󲨷 Kq󲨷 Kq Ñ p󲷤x 󲧰 y󲨷 Kq xix, xxi, PC and MP
xxiii. x 󲧰 y Ñ ppx 󲧰 y󲨷 Kq󲨷 Kq B󲨷
xxiv. x 󲧰 y Ñ p󲷤x 󲧰 y󲨷 Kq xxxxii, xxiii, PC and

MP
xxv. @x, ypx 󲧰 y Ñ 󲷤x 󲧰 y󲨷 Kq xxiv, Gen(x2)
xxvi. @x, ypx 󲧰 y Ñ □x 󲧰 yq xxv, Definition1

I was unable to prove the necessity of distinctness without appeal to each of these
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axioms. The increased number of axioms (in comparison to those needed to prove the
necessity of identity) corresponds to increased controversy; a philosopher who rejected
B󲨷, for example, may deny the necessity of distinctness, but not the necessity of identity
(assuming, of course, they accept the remainder of the axioms).

The necessity of distinctness interacts with counterfactual logic in significant ways. In
particular, it takes a stand on the debate over counteridenticals: counterfactuals with false
identifications in their antecedents.25 Potential examples of counteridenticals include ‘If I
were you, I would leave by 4:00 pm’ and ‘If John were Einstein, he would pass his physics
exam.’

By itself, the necessity of distinctness does not force a position on whether counteri-
denticals are substantive. But—in combination with vacuism—it does.26 As mentioned
above, HOCL entails vacuism; Closure and REA collectively entail that it holds. This can
be shown as follows:

i. K Ñ q PC
ii. pp󲨷 Kq Ñ pp󲨷 qq i, Closure
iii. @qppp󲨷 Kq Ñ pp󲨷 qqq ii, Gen
iv. @qppp󲨷 Kq Ñ pp󲨷 qqq Ñ ppp󲨷 Kq Ñ @qpp󲨷 qqq UD
v. pp󲨷 Kq Ñ @qpp󲨷 qq iii, iv, and MP
vi. p ” 󲷤󲷤p PC
vii. p󲨷 K ” 󲷤󲷤p󲨷 K vi and REA
viii p󲷤󲷤p󲨷 Kq Ñ @qpp󲨷 qq v, vii, PC and MP
ix. □󲷤p Ñ @qpp󲨷 qq viii and Definition1

While this particular derivation relies both upon Closure and REA, I suspect that the
real culprit is Closure; anyone who accepts this rule will be pressured to endorse vacuism.
In effect, Closure allows for the substitution of entailments in counterfactuals’ consequents
(i.e., the inference from p󲨷 q and q $ r to p󲨷 r)—and this comes very close to vacuism
itself.27 Given an impossible proposition p, ID entails that p󲨷 p. Because p is impossible,
it entails absolutely everything—including an arbitrary q, so Closure allows us to infer
p󲨷 q. Those who would reject vacuism will thus presumably also reject Closure.

HOCL is thus committed both to the necessity of distinctness and to the vacuity
of counterpossibles. Therefore, it is committed to the claim that all counteridenticals are
vacuous; philosophers who appeal to substantive counteridenticals are wrong. Adherents
of HOCL thus owe a response to plausible examples of substantive counteridenticals.

25For defenses of substantive counteridenticals, see Kocurek (2018); Wilhelm (2021). The discussion of
counteridenticals far precedes these works—see, e.g., Polluck (1976).

26Recall that vacuism is the claim that all counterpossibles hold vacuously—i.e., that □󲷤p Ñ @qpp󲨷 qq
27More precisely, if we endorse the Deduction Theorem—according to which p $ q entails $ p Ñ q, then

we can understand Vacuism as following from Closure. For an arbitrary p $ q, the Deduction Theorem then
entails $ p Ñ q—and, given closure, this in turn entails $ pr󲨷 pq Ñ pr󲨷 qq.
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In my view, the best response is that natural language examples are not genuine
counteridenticals. Rather, they are paraphrases of sentences that do not involve identity—
and whose antecedents are contingent. While they are substantive, they do not conflict
with vacuism. We need not hold that all counteridenticals paraphrase in the same way;
they may be paraphrases for different sorts of counterfactuals. The example ‘If I were you,
I would leave by 4:00 pm’ seems to gloss ‘If I were in your situation, I would leave by 4:00
pm’—and ‘If John were Einstein, he would pass his physics exam’ seems to gloss ‘If John
were as smart as Einstein, he would pass his physics exam.’28

Some natural-language expressions indisputably involve identity—and do not seem
synonymous with putative examples of counteridenticals. Take, for example, ‘If I were
identical to you, I would leave by 4:00 pm.’ This explicitly invokes identity—yet does
not appear to mean the same thing as ‘If I were you, I would leave by 4:00 pm.’ Since
the former involves identity and is not synonymous with the latter, there is room to deny
that the latter involves identity. Moreover, expressions like ‘If I were identical to you’ are
sufficiently removed from ordinary use that we ought not revise counterfactual logic in
light of them.

The upshot is this: HOCL allows us to prove both the necessity of identity and the
necessity of distinctness. Because it is also committed to vacuism, HOCL entails that all
counteridenticals are true. While this is controversial, there is room to resist putative
examples of substantive counteridenticals in the literature.

Necessitism and the Barcan Formula

One of the most pivotal choice-points in quantified modal logic is the Barcan Formula:

Barcan Formula (BF): @x□Fx Ñ □@xFx

If all objects necessarily bear property F, then—necessarily—all objects bear property F.
Because all objects are necessarily self-identical, necessarily, all objects are self-identical.
Quantified modal logic regiments inferences concerning both necessity and generality;
more importantly, it formalizes the interaction of the two. The Barcan—and its converse—
describe that interaction.

The Barcan is extremely controversial. Consider a world consisting of nothing except
for two electrons: ones that repel one another and accelerate in opposite directions for
eternity. Quite plausibly, each of these electrons is necessarily negatively charged. That is,

28Adherents of substantive counterexamples reject the gloss from ‘If I were you, then p’ as ‘If I were in your
situation, then p’ due to sentences like ‘If I were you, I would not be in your situation.’ But there is contextual
variation in ‘your situation’ that allows the gloss to succeed even in this case. Suppose, for example, that you
have not begun a consequential assignment until the night before it was due. I might then claim ‘If I were in
your situation (i.e., the situation of having a consequential assignment due) I would not be in your situation
(i.e., the situation of having left it so late).’
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it may be essential to electrons that they are negatively charged; any particle that was not
negatively charged would not be those electrons. In this world (which contains nothing
except electrons), all objects are necessarily negatively charged. The Barcan would then
allow us to infer that, necessarily, all objects are negatively charged. But, intuitively, this
need not be so. Although each of the two electrons is (necessarily) negatively charged,
there could have existed other particles—protons, neutrons and the like—which are not
negatively charged. So, although all objects are necessarily negatively charged, it does not
seem necessary that all objects are negatively charged.29

Despite the unintuitive implications that the Barcan has, many are pressured to endorse
it—as minimal assumptions entail that it is true.30 It is possible to prove the Barcan in
HOCL from REA, Closure, Vac, and B󲨷. To the best of my knowledge, this has gone
overlooked in the literature; debates over REA and Vac omit their connection to the Barcan
(for example).

It is helpful to first prove some derived rules that, in turn, allow the proof of the Barcan.

Derived Rule 1 (DR1): If $ p Ñ q then $ p󲷤p󲨷 Kq Ñ p󲷤q󲨷 Kq

i. p Ñ q Supposition
ii. ppp Ñ qq ^ 󲷤pp Ñ qqq Ñ K PC
iii. 󲷤pp Ñ qq Ñ K i, ii, PC and MP
iv. p󲷤pp Ñ qq󲨷 󲷤pp Ñ qqq Ñ p󲷤pp Ñ qq󲨷 Kq iii, Closure
v. 󲷤pp Ñ qq󲨷 󲷤pp Ñ qq ID
vi. 󲷤pp Ñ qq󲨷 K iv, v, MP
v. K Ñ p PC
vi. p󲷤p󲨷 Kq Ñ p󲷤p󲨷 pq v, Closure
vii. p󲷤p󲨷 pq Ñ p󲷤q󲨷 pq Vac
viii. p󲷤p󲨷 Kq Ñ p󲷤q󲨷 pq vi, vii, PC and MP
ix. ppp Ñ qq ^ pq Ñ q PC
x. pp󲷤q󲨷 pp Ñ qqq ^ p󲷤q󲨷 pqq Ñ p󲷤q󲨷 qq ix, Closure
xi. pp󲷤pp Ñ qq󲨷 Kq ^ p󲷤p󲨷 Kqq Ñ p󲷤q󲨷 qq viii (x2), PC and MP
xii. pq ^ 󲷤qq Ñ K PC
xiii. pp󲷤q󲨷 qq ^ p󲷤q󲨷 󲷤qq Ñ p󲷤q󲨷 Kq xii, Closure
xiv. 󲷤q󲨷 󲷤q ID
xv. p󲷤q󲨷 qq Ñ p󲷤q󲨷 Kq xiii, xiv, PC and MP
xvi. p󲷤p󲨷 Kq Ñ p󲷤q󲨷 Kq vi, xi, xv, PC and MP

29As I discuss below, the controversial implications of the Barcan surpass this example. Given minimal
assumptions, it entails necessitism, the view that all objects necessarily exist.

30Marcus (1947) establishes that the Barcan holds in S2—a system I do not discuss in depth here—and the
strict conditional. That is, the relevant modal operator was □pA Ñ Bq, rather than □. Prior (1956) proves that
the Barcan holds in a quantified version of S5. The proof of the Barcan in the weaker B system is attributed
to John Lemmon in Prior (1967). See, also, Cresswell and Hughes (1996).
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Derived Rule 2 (DR2): If $ p Ñ q then $ 󲷤pp󲨷 Kq Ñ 󲷤pq󲨷 Kq

i. p Ñ q Supposition
ii. 󲷤q Ñ 󲷤p i, MP and PC
iii. p󲷤󲷤q󲨷 Kq Ñ p󲷤󲷤p󲨷 Kq ii DR1
iv. p ” 󲷤󲷤p PC
v. pp󲨷 Kq ” p󲷤󲷤p󲨷 Kq iv and REA
vi. pq󲨷 Kq ” p󲷤󲷤q󲨷 Kq PC and REA
vii. pq󲨷 Kq Ñ pp󲨷 Kq iii, v, vi, PC and MP
viii. 󲷤pp󲨷 Kq Ñ 󲷤pq󲨷 Kq vii, PC and MP

Derived Rule 3 (DR3): If $ 󲷤pp󲷤p󲨷 Kq󲨷 Kq then $ p

i. 󲷤pp󲷤p󲨷 Kq󲨷 Kq Supposition
ii. 󲷤p Ñ pp󲷤p󲨷 Kq󲨷 Kq B󲨷
iii. 󲷤pp󲷤p󲨷 Kq󲨷 Kq Ñ 󲷤󲷤p ii, MP and PC
iv. 󲷤󲷤p i, iii, MP
v. p iv, MP, PC

Derived Rule 4 (DR4): If $ 󲷤pp󲨷 Kq Ñ q then $ p Ñ p󲷤q󲨷 Kq

i. 󲷤pp󲨷 Kq Ñ q Supposition
ii. p󲷤󲷤pp󲨷 Kq󲨷 Kq Ñ p󲷤q󲨷 Kq i and DR1
iii. ppp󲨷 Kq󲨷 Kq Ñ p󲷤q󲨷 Kq ii, REA, MP and PC
iv. p Ñ ppp󲨷 Kq󲨷 Kq B󲨷
v. p Ñ p󲷤q󲨷 Kq iii, iv, MP, PC

With these rules in place, the Barcan Formula can be derived as follows:

i. @xp󲷤Fx󲨷 Kq Ñ 󲷤Fx󲨷 K UI
ii. 󲷤p@xp󲷤Fx󲨷 Kq󲨷 Kq Ñ 󲷤pp󲷤Fx󲨷 Kq󲨷 Kq i and DR2
iii. 󲷤p@xp󲷤Fx󲨷 Kq󲨷 Kq Ñ Fx ii, DR3, MP and PC
iv. 󲷤p@xp󲷤Fx󲨷 Kq󲨷 Kq Ñ @xFx iii, Gen, MP, UD

and PC
v. @xp󲷤Fx󲨷 Kq Ñ p󲷤@xFx󲨷 Kq iv, DR4
vi. @x□Fx Ñ □@xFx v and Definition1

The Converse Barcan Formula is nearly as significant to quantified modal reasoning
as the Barcan itself:
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Converse Barcan Formula (CBF): □@xFx Ñ @x□Fx

While the Converse Barcan is nearly as controversial as the Barcan itself, weak prin-
ciples entail that the it is true. It follows from REA, Closure and Vac. The proof is as
follows:

i. @xFx Ñ Fx UI
ii. p󲷤@xFx󲨷 Kq Ñ 󲷤Fx󲨷 K i, DR1
iii. p󲷤@xFx󲨷 Kq Ñ @xp󲷤Fx󲨷 Kq ii, Gen, UD, PC and

MP
iv. □@xFx Ñ @x□Fx iii and Definition1

The controversy surrounding the Barcan and its converse arises primarily due its
implications for necessitism: the claim that, necessarily, all objects necessarily exist. More
formally, we can represent necessitism as:

Necessitism: □@x□Dypx “ yq

Necessitists hold that this is true—contingentists that this is false.
It is worth acknowledging the limit to the disagreement between necessitists and

contingentists. For any particular object, they might agree that that object necessarily
exists. Both might claim that God necessarily exists—or that there necessarily exists a
prime number between 3 and 7. In principle, contingentists could even accept that I
necessarily exist (though they typically do not). They are committed only to the claim
that something-or-other exists contingently—not to what that something is. So, even if we
could (somehow) establish that I necessarily exist, we would not thereby have falsified
contingentism. In practice, however, it is useful to work with concrete examples. Since
I am as plausible a case of contingent existence as anything, it is natural to suggest that
necessitists hold that I necessarily exist, while contingentists deny that I do—so long
as we keep in mind that I serve merely as a placeholder for whatever-object-it-is that
contingentists maintain might not have existed.

Consider the principle that Williamson dubs ‘the being constraint:’

Being Constraint (BC): @x□pDFpFxq Ñ Dzpx “ zqq

This asserts that all objects are such that, necessarily, if there exists some property that
they bear, then they are identical to something-or-other. That is, if there is a way that
an object is, then the object must exist. Given the Barcan and Converse Barcan, this is
equivalent to:
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□@xpDFpFxq Ñ Dzpx “ zqq

This, in turn, follows from Nec and

@xpDFpFxq Ñ Dzpx “ zqq

Note that the Being Constraint—and the principles that generate it—crucially rely
upon higher-order logic; the ability to express higher-order quantifiers is essential to this
sort of principle. We can prove the Being Constraint in HOCL as follows:

i. x “ x Ref
ii. Dy.x “ y i, EG, PC and MP
iii. DF.pFxq Ñ Dy.px “ yq ii, MP and PC
iv. @xpDF.pFxq Ñ Dy.px “ yqq iii and Gen
v. 󲷤@xpDF.pFxq Ñ Dy.px “ yqq Ñ K iv, PC and MP
vi. p󲷤@xpDF.pFxq Ñ Dy.px “ yqq󲨷 󲷤@xpDF.pFxq Ñ Dy.px “

yqqq Ñ p󲷤@xpDF.pFxq Ñ Dy.px “ yqq󲨷 Kq
v and Closure

vii. 󲷤@xpDF.pFxq Ñ Dy.px “ yqq 󲨷 󲷤@xpDF.pFxq Ñ Dy.px “
yqq

ID

viii. 󲷤@xpDF.pFxq Ñ Dy.px “ yqq󲨷 K vi, vii and MP
ix. □@xpDFpFxq Ñ Dzpx “ zqq viii and Definition1
x. @x□pDFpFxq Ñ Dzpx “ zqq ix and Converse

Barcan

The Being Constraint thus holds if the Converse Barcan holds. Even those who deny
(or remain neutral) on the Barcan and Converse Barcan may feel some pressure to accept
the Being Constraint.31 After all, if we were to count the number of objects which are
F, we would presumably assume that if something is an F, then it must exist—and so is
worthy of being counted. Without the Being Constraint, it is difficult to see why the fact
that object a is an F would impact the number of objects that are F (since, without the
Being Constraint the fact that a is F is compatible with a not existing).

The step from the Being Constraint to Neces is straightforward. All objects bear the
property is self-identical—from which it follows that there exists some property that every
object bears. The Being Constraint then allows us to conclude that there exists an object
that each object is identical to—and that this holds necessarily. So, those who endorse the
Being Constraint accept Necessitism.

It is also possible to prove Necessitism directly in HOCL—without appealing to the
Being Constraint. This can be shown as follows:

31However, for objections to the use of the Being Constraint (largely on the grounds that it seems unmoti-
vated for contingentism) see Dorr (2016); Goodman (2016); Litland (Forthcoming).
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i. x “ x Ref
ii. Dy.px “ yq i, EG and MP
iii. 󲷤Dy.px “ yq Ñ K ii, PC and MP
iv. p󲷤Dy.px “ yq󲨷 󲷤Dy.px “ yqq Ñ p󲷤Dy.px “ yq󲨷 Kq iii, Closure
v. 󲷤Dy.px “ yq󲨷 󲷤Dy.px “ yq ID
vi. 󲷤Dy.px “ yq󲨷 K iv, v, MP
vii. @x.p󲷤Dy.px “ yq󲨷 Kq vi, Gen
viii. 󲷤p@x.p󲷤Dy.px “ yq󲨷 Kqq Ñ K vii, PC and MP
ix. p󲷤p@x.p󲷤Dy.px “ yq 󲨷 Kqq 󲨷 󲷤p@x.p󲷤Dy.px “ yq 󲨷

Kqqq Ñ p󲷤p@x.p󲷤Dy.px “ yq󲨷 Kqq󲨷 Kq
viii, Closure

x. 󲷤p@x.p󲷤Dy.px “ yq 󲨷 Kqq 󲨷 󲷤p@x.p󲷤Dy.px “ yq 󲨷
Kqq

ID

xi. 󲷤p@x.p󲷤Dy.px “ yq󲨷 Kqq󲨷 K ix, x, MP
xii. □@x.□Dy.px “ yq xi, Definition1

Those who endorse both ID and Closure must thus endorse Necessitism; contingen-
tists ought to reject at least one of those principles.

Often necessitists claim that there are the same number of objects in every world; if there
are n objects in the actual world, then there are n objects in all. However, this numerical
claim does not follow from necessitism itself; the necessity of identity and distinctness are
needed as well. For example, if the necessity of distinctness were false, it could be that
every object necessarily exists, but some worlds have fewer objects that the actual world
because objects that are distinct in the actual world are identical in another.

However, we have already established both the necessity of identity and distinctness
in HOCL. Not only does everything necessarily exist, but it is necessary that there are
many things as there actually are.

The Identity of Indiscernibles

The Principle of the Identity of Indiscernibles (hereafter, the PII) is the principle that objects
cannot differ only numerically. Distinct objects must differ from one another in some non-
numerical respect. Despite the presence of apparent counterexamples (most notably,
Black (1952)’s pair of indiscernible spheres), many maintain that one interpretation of
this principle is trivially true: the claim that objects bearing all of the same properties
are identical.32 This is held to be trivial due to the existence of haecceities: properties
like is identical to a. Any objects that bear the same properties (in general) bear the same

32The first derivation of this triviality occurs in Whitehead and Russell (1952). One philosopher who denies
that there is a trivial version of the PII is Rodriguez-Pereyra (2022)—on the grounds that objects could differ
‘only numerically’ while not bearing all of the same properties.
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haecceities (in particular). And, clearly, all objects that bear the property is identical to a are
identical to one another.

Like the Being Constraint, the PII is primed for higher-order modal (or counterfactual)
logic. The sentence ‘Objects cannot differ only numerically’ has modal force. It is not only
a claim about what is actually so, but rather about what must be so.33 Moreover, ‘Objects
that bear all of the same properties’ overtly quantifies over properties themselves—so we
cannot hope to reconstruct this proof in a first-order language. Establishing this principle
requires reasoning with both modals and higher-order quantifiers.

We can prove the PII in HOCL in the following way:

i. @X.@x, y.pXx Ø Xyq Ñ @x, y.pλz.px “ zqpxq Ø λz.px “
zqpyqq

UI

ii. @x, y.pλz.px “ zqpxq Ø λz.px “ zqpyqq Ñ pλz.px “
zqpxq Ø λz.px “ zqpyqq

UI

iii. λz.px “ zqpxq Ø x “ x Eβ
iv. x “ x Ref
v. @X.@x, y.pXx Ø Xyq Ñ λz.px “ zqpyq i, ii, iii, iv, PC, and

MP
vi. λz.px “ zqpyq Ø x “ y Eβ
vii. @X.@x, y.ppXx Ø Xyq Ñ x “ yq v, vi, PC and MP
viii. 󲷤p@X.@x, y.pXx Ø Xyq Ñ x “ yq Ñ K vii, PC and MP
ix. p󲷤p@X.@x, y.pXx Ø Xyq Ñ x “ yq󲨷 󲷤p@X.@x, y.pXx Ø

Xyq Ñ x “ yqq Ñ p󲷤p@X.@x, y.pXx Ø Xyq Ñ x “ yq󲨷
Kq

viii, Closure

x. 󲷤p@X.@x, y.pXx Ø Xyq Ñ x “ yq 󲨷 󲷤p@X.@x, y.pXx Ø
Xyq Ñ x “ yq

ID

xi. 󲷤p@X.@x, y.pXx Ø Xyq Ñ x “ yq󲨷 K ix, x, MP
xii. □@X.@x, y.ppXx Ø Xyq Ñ x “ yq xi and Definition1

So, if Closure and ID hold, then it is necessary that objects that bear all of the same
properties are identical.

Maximalism

Metaphysicians subscribe to various forms of maximalism: a profligate ontology that
holds that the world is as full as it could be. Mereological Universalists, for example,
hold that any collection of objects composes another.34 In addition to ordinary objects

33However, for contingent versions of the PII, see Casullo (1984)—and French (1989) for a response.
34There are far too many universalists to provide a comprehensive list here. Notable adherents include

Lewis (1986); Sider (2001).
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like tables, cars and chairs, there are also strange objects—like the object composed of an
electron at the end of my nose and the galaxy Alpha Centauri. And defenders of essential
plenitude hold that for any object that bears a collection of properties FF, there exists an
object that bears FF essentially and all other properties accidentally.35 While there is an
object co-located with me that is contingently seated, there is another which is essentially
seated—one that ceases to exist the moment I stand

There are various arguments for different forms of maximalism. Many hold that there
is no non-arbitrary way to restrict which objects exist—and, in the absence of a non-
arbitrary restriction, we ought to accept no restriction at all. There seems no principled
reason why my body exists, but an object consisting of my body an an electron hovering
next to my left thumb does not. And many accept that the statue is distinct from the clay
(because the statue is essentially shaped thus-and-so, while the clay is only accidentally
shaped thus-and-so)—but find no principled reason to deny that properties other than
shape give rise to coincident objects as well.

Philosophers tempted by this line of argument may wonder how ‘full’ the world could
be. One view is the following:

“What maximalism says is that for any type of object such that there can be
objects of that type...there are such objects” Eklund (2008)36

We might formally represent this type of maximalism as the following:

@X.p󲨙pDx.Xxq Ñ Dx.Xxq

As stated, maximalism faces serious problems—the most well known of which is the
bad-company problem.37 We can define the property being an xheart as being a heart and
such that there are no livers and the property being an xliver as being a liver and such that there
are no hearts. While it seems possible for there to be xhearts, and seems possible for there
to be xlivers, there cannot be both xhearts and xlivers.

HOCL does not entail maximalism; it is compatible both with the claim that maximal-
ism is true and the claim that maximalism is false. However, it can be used to demonstrate
that maximalism has an important implication for counterfactual logic; it entails the con-
verse of Lewis (1973b)’s Weak Centering Axiom: pp 󲨷 qq Ñ pp Ñ qq. Converse Weak
Centering is the principle that material implication entails counterfactual implication; the
conditional ‘if p then q’ entails that if p were true then q would be true. We can establish
that maximalism entails Converse Weak Centering as follows:

35Some who subscribe to plenitude include Fine (1999); Johnston (2006); Koslicki (2008).
36Eklund also includes the modifier ‘given that the empirical facts are exactly what they are’—a modification

that he acknowledges requires clarification.
37In addition to Eklund (2008), see Thomasson (2015); Fairchild (2019)
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i. @X.p󲨙pDx.Xxq Ñ Dx.Xxq Maximalism
ii. @X.p󲷤pDx.Xx󲨷 Kq Ñ Dx.Xxq i, Definition1 and

Definition2
iii. 󲷤pDx.λy.󲷤pp Ñ qqpxq󲨷 Kq Ñ Dx.λy.󲷤pp Ñ qqpxq ii, UI
iv. 󲷤pp Ñ qq ” Dx.λy.󲷤pp Ñ qqpxq Eβ, EG, PC and MP
v. 󲷤p󲷤pp Ñ qq󲨷 Kq Ñ 󲷤pp Ñ qq iii, iv, REA, PC and

MP
vi. pp Ñ qq Ñ p󲷤pp Ñ qq󲨷 Kq v, PC and MP
vii. pp ^ pp Ñ qqq Ñ q PC
viii. ppp󲨷 pq ^ pp󲨷 pp Ñ qqqq Ñ pp󲨷 qq vii, Closure
ix. p󲨷 p ID
x. pp󲨷 pp Ñ qqq Ñ pp󲨷 qq viii, ix, PC and MP
xi. K Ñ pp Ñ qq PC
xii. p󲷤pp Ñ qq󲨷 Kq Ñ p󲷤pp Ñ qq󲨷 pp Ñ qqq xi, Closure
xiii. p󲷤pp Ñ qq󲨷 pp Ñ qqq Ñ pp󲨷 pp Ñ qqq Vac
xiv. pp Ñ qq Ñ pp󲨷 pp Ñ qqq vi, xii, xiii, PC and

MP
xv. pp Ñ qq Ñ pp󲨷 qq x, xiv, PC and MP

While important in its own right, this result also relates to the strongest consistent
modal logic: TRIV.38 It is characterized by the axiom p Ø □p. If we were to describe
modality in terms of world accessibility, TRIV corresponds to the assumption that acces-
sibility is reflexive and unique; the actual world can access itself, and nothing else.

TRIV is implausible in many cases—but some philosophers advocate its use. Yli-
Vakkuri and Hawthorne (2020) argue that it holds in the language of pure mathematics.
That is, in a language capable only of expressing mathematical claims, a sentence p is true
just in case it is necessarily true. Chen (Forthcoming) argues that there is only one physi-
cally possible world—so TRIV holds for nomological possibility. And necessitarians—who
hold that the world necessarily is as it actually is—presumably accept TRIV for metaphys-
ical modality.

Converse Weak Centering entails TRIV. To see why this is so, select an arbitrary true
proposition p. Because 󲷤p is false, PC entails that 󲷤p Ñ K is true—and Converse Weak
Centering then entails 󲷤p 󲨷 K. Given Definition1, this is equivalent to □p. So, p
entails □p. Because Maximalism entails Converse Weak Centering—and Converse Weak
Centering entails p Ñ □p, maximalism entails p Ñ □p.

As it turns out, we can also show the reverse: that TRIV entails maximalism.39 If the
only possible world is the actual world, then if it is possible for an object to bear property

38See (Cresswell and Hughes, 1996, pg. 67) for proof that this is the strongest consistent modal logic.
39Because TRIV is consistent, and TRIV entails maximalism we can be confident that maximalism is

consistent.
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F, then some object actually does bear property F. This holds for every property; so, max-
imalism is true. It may seem to be a surprising coincidence that philosophers motivated
by plentitude have stumbled upon the same logic employed in the philosophy of math-
ematics, philosophy of physics and metaphysics. But, in some respects, the connection
between TRIV and maximalism ought to be unsurprising. The maximalist is guided by
the thought that the world is as full as it could be; it takes only a slight shift in emphasis
to arrive at the view that the world could only be as full as it (actually) is.

The Limit Assumption

Thus far, my formal approach has been conservative by design.40 I have focused on what
counterfactual logic can prove, not on what can be proven about counterfactual logic. As
such, I have largely avoided discussions over the semantics of HOCL. However, I close by
addressing a debate that has occurred almost entirely within counterfactual semantics: the
Limit Assumption. This assumption cannot even be stated in a first-order counterfactual
logic. The upshot is that philosophers who would state this assumption (either to endorse
or to reject it) ought to operate with a higher-order system like HOCL. Within this system,
we can express what the debate is about.

At its core, the Limit Assumption concerns whether, given an entertainable suppo-
sition p, there is a most-similar possible world in which p is true. The Limit allows for
ties; there can be two (or more) p worlds that are equally—and maximally—similar to the
actual world. However, it does not allow an infinite sequence of worlds, each of which
approaches the actual world with arbitrary similarity.41 At some point or other, we must
arrive at a ‘limit’: a maximally similar possible world in which p is true. The Limit is
thus of particular interest to philosophers who analyze counterfactuals in terms of world
similarity.

A classic counterexample was introduced by Lewis (1973a). Suppose there were a line
that was exactly one inch in length, and consider counterfactuals of the form ‘If that line
were longer than one inch, it would be of length 1 ` x.’ If the Limit Assumption were
true, every such sentence seems to be false. After all, a world in which the line is of length
1 ` x is more dissimilar from the actual world than one in which it is of length 1 ` x

2 —for
every x. There is thus an infinite sequence of worlds that arbitrarily approaches the actual
world. Because there is an infinite sequence of increased similarity, Lewis claims, the
Limit Assumption is false.42

40My thanks to Jeremy Goodman for suggesting a discussion of the Limit Assumption in this paper.
41Adherents include Stalnaker (1968); Polluck (1976); Herzberger (1979); Warmbrōd (1982). Dissidents

include Lewis (1973b); Hàjek (Forthcoming). For a discussion of various ways to precisify the assumption,
see Kaufman (2017).

42Lewis does not find this example to be definitive, stating, “This and other examples are not quite decisive;
but they should suffice at least to deter us from rashly assuming there must be a smallest antecedent-permitting
sphere.” (Lewis, 1973b, pg. 20)
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Intuitive as this example is, it has unappealing implications. Polluck (1976) and
Herzberger (1979) argue that it conflicts with an independently appealing principle of
counterfactual logic: the claim that if p were true, then everything counterfactually im-
plied by p would be true simultaneously. More formally:

p󲨷 @qppp󲨷 qq Ñ qq

(Note that if the counterfactual excluded middle—p 󲨷 q _ p 󲨷 󲷤q—holds, then
the consequent is a world-proposition: one that determines the truth-value of every
proposition whatsoever). For reasons Lewis discussed, for every length x, if the line were
longer than one inch, the line would not be of length 1 ` x. Given the Polluck/Herzberger,
it follows that if the line were greater than one inch, it would not be of length 1 ` x for
every x. But, intuitively, it follows from the claim that the line would not be of length 1 ` x
inches (for every x) that the line would not be longer than one inch. So, it follows that if
the line were longer than one inch it would not be longer than one inch—an absurdity.

This reasoning appeals to a version of Closure. It follows from the claim that, for every
x, the line would not be of length 1 ` x, that the line would not be greater than one inch in
length. This entailment allowed the inference that if the line were greater than one inch it
would not be greater than one inch.

However, Closure does not license this inference as it stands. This is because every
instance of Closure only takes finitely-many premises before it can be applied, and this case
involves infinitely many premises. For this reason, Polluck and Herzberger claim that
adherents of the Limit Assumption grant infinite instances of Closure, while dissidents
only grant finite instances. More precisely, Polluck argues that the Limit Assumption is
equivalent to the claim that, for an infinite Γ |ù r, if @q P Γ, p󲨷 q, then p󲨷 r.

Already, we ought to be skeptical of our ability to distinguish finite from infinite cases—
at least in a first-order language. Take a satisfiable and infinite Γ such that Γ |ù r. Γ

Ť

t󲷤ru
is therefore not satisfiable. The compactness theorem for first-order logic states that an
infinite collection of sentences is satisfiable just in case every finite subset of sentences is
satisfiable. Therefore, there must exist a finite ∆ Ă Γ : ∆

Ť

t󲷤ru that is not satisfiable. ∆
must be satisfiable, so we have that ∆ |ù r. Given the completeness of first-order logic,
we then have ∆ $ r. But because ∆ is finite, a finite instance of Closure will allow us
to infer that, for every q P ∆, if p 󲨷 q then p 󲨷 r. So, in a first-order language, any
infinite instance of Closure entails the existence of a finite instance of Closure. The upshot
is that in order to distinguish finite from infinite cases (which we need to in order to
distinguish opponents from adherents to the Limit Assumption, we require a language
where compactness fails. Higher-order logic fits the bill.

Let us represent single-proposition entailment with ď, so that p ď q iff p $ q. It is
straightforward to define finite propositional entailment in terms of single-propositional
entailment. We say that a collection Γ entails that p just in case the conjunction of Γ single-
proposition entails that p. For infinite collections of propositions, this may not succeed if
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there are no infinite conjunctions.
Higher-order logic provides the resources to define infinite entailment. Effectively an

infinite collection Γ entails p just in case every proposition that entails every element of Γ
also entails p. More precisely, we represent the infinite collection of propositions with a
propositional operator X of type t Ñ t (which asserts that a proposition is a member of
the relevant connection. Infinite entailment can then be represented as:

ď 8 :“ λX.λp.@rpp@qpXq Ñ r ď qq Ñ r ď pq

Armed with this definition of entailment, the infinite extension of Closure is:

pΓ ď 8rq Ñ pp@q P Γp󲨷 qq Ñ pp󲨷 rqq

Those who endorse the Limit Assumption claim that this is true; those who deny it
claim that it is false.

Conclusion

If nothing else, I hope to have piqued the reader’s interest in HOCL. This paper merely
scratches the surface of what can be proven. Metaphysically significant results follow
from extremely weak assumptions. I suspect that much more of interest could be proven
in a stronger system—and I hope that others will explore what follows in a higher-order
counterfactual logic.
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