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Abstract. The use of the symbol ∨ for disjunction in formal logic is ubiquitous. Where
did it come from? The paper details the evolution of the symbol ∨ in its historical and logical
context. Some sources say that disjunction in its use as connecting propositions or formulas was
introduced by Peano; others suggest that it originated as an abbreviation of the Latin word for
“or,” vel. We show that the origin of the symbol∨ for disjunction can be traced to Whitehead and
Russell’s pre-Principia work in formal logic. Because of Principia’s influence, its notation was
widely adopted by philosophers working in logic (the logical empiricists in the 1920s and 1930s,
especially Carnap and early Quine). Hilbert’s adoption of ∨ in his Grundzüge der theoretischen
Logik guaranteed its widespread use by mathematical logicians. The origins of other logical
symbols are also discussed.

No topic which we have discussed approaches closer to the problem of
a uniform and universal language in mathematics than does the topic
of symbolic logic. The problem of efficient and uniform notations
is perhaps the most serious one facing the mathematical public. No
group of workers has been more active in the endeavor to find a
solution of that problem than those who have busied themselves with
symbolic logic ... Each proposed a list of symbols, with the hope,
no doubt, that mathematicians in general would adopt them. That
expectation has not been realized.

Cajori (1929, p. 314)

§1. The mystery of ‘∨’. The symbol ‘∨’ for inclusive disjunction is almost
universally accepted. This contrasts with every other logical operator: negation is
symbolized by ‘¬’, ‘∼’, ‘–’, or an overline, conjunction is symbolized by ‘∧’, ‘&’,
and ‘ ’, and (material) implication is symbolized by ‘→’ and ‘⊃’. So where do we
get ‘∨’ from and why have logicians more or less settled on this one symbol? We
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2 LANDON D. C. ELKIND AND RICHARD ZACH

answer this question here and show that we get the ubiquitous ‘∨’ for disjunction from
Whitehead and Russell’s pre-Principia work in formal logic.

Our answer to this question differs from that given by earlier studies of formal logic
and its notations. The earliest use of ‘∨’ for disjunction recorded in the encyclopedic
list given by Cajori (1929, p. 307) is in Whitehead and Russell’s 1910 Principia. The
Kneales say that “the system [which includes ‘∨’] is that introduced by Peano in his
Notations de logique mathématique of 1894, developed in the successive editions of his
Formulaire de mathématiques, and then perfected by Whitehead and Russell in their
Principia Mathematica of 1910” (Kneale & Kneale, 1962, p. 520). In fact, however,
Peano always used ‘∪’ for inclusive disjunction and did not use ‘∨’ at all. So one might
suspect that the symbol for disjunction is one of the improvements introduced by
Whitehead and Russell in Principia Mathematica. But is that true? Why was ‘∨’ chosen
specifically? And why was it then universally adopted even as logicians introduced
alternatives for all of Principia’s other logical symbols?

The story has two parts: The first part concerns the introduction of ‘∨’ by Whitehead
and Russell, who were working within the notational and formal logical tradition
of Peano. We suggest here that the initial introduction of ‘∨’ was motivated by a
shared commitment to two design principles for logical symbolisms (Schlimm, 2018,
2021; Toader, 2021).1 The first principle is that symbols should be unambiguous—
one shouldn’t use the same symbol in different meanings. The second principle
is that analogous notions—better, notions satisfying analogous logical laws (say,
associativity)—should get similar symbols: similar notions should have a similar,
though not identical, notation.2

As we suggest below, this first design principle led Peano to adopt a new symbol,
namely ‘∪’, to indicate a kind of logical union or addition, and to avoid the then-
prevalent symbol ‘+’ for this use. The point of this was to distinguish arithmetic
and logical addition. Russell followed Peano’s practice here, as we will see below.3

Subsequently, in the early logical investigations which ultimately led to Principia,

1 For an extended discussion of these two design principles, see Schlimm (2018) on Frege, and
Schlimm (2021) on Peano. We take the phrase “design principles” from Schlimm. Toader
(2021) highlighted the second principle.

2 Peano puts this in terms of a principle of permanence: “...when establishing a new system of
notations, or a new calculus, it is convenient to do it such that the new calculus be similar
as much as possible with old calculi, so that the student does not have to learn a whole new
calculus, but only the differences from the theory known to him” (quoted from Toader, 2021,
p. 85).

3 Although Whitehead and Russell’s pre-Principia work in formal logic is our source for ‘∨’,
we will sometimes speak of Whitehead and of Russell alone because the manuscripts or
publications that we discuss are single-authored. Often we speak of Russell alone since
Russell’s manuscripts comprise most of the pre-Principia materials that survive; indeed, the
surviving Whitehead manuscript that we discuss below was kept in Russell’s papers. Many
of the pre-Principia draft materials no longer survive. Yet in Russell’s case (but sadly not
in Whitehead’s) the surviving materials provide a detailed record of his evolution both in
notations and in design principles for notations. We do not think it is wrong to take the more
extensive surviving textual record left behind by Russell as a record of Whitehead’s evolving
views on notation and design principles for notation pre-Principia because Whitehead and
Russell of course had to reach agreement on such points before Principia was published. See
also the discussion in Section 5. Note that, as Russell (1948, pp. 137–138) recalls, Whitehead
invented a great deal of the symbolism in Principia. See also the remarks by Urquhart (1994,
sec. V) and Moore (2014, sec. XI).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020321000587
Downloaded from https://www.cambridge.org/core, IP address: 74.132.103.225, on subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020321000587
https://www.cambridge.org/core


THE GENEALOGY OF ‘∨’ 3

Russell introduced the symbol ‘∨’ motivated by that same design principle that Peano
held: Russell wanted to distinguish notationally between two kinds of logical addition,
namely, propositional disjunction (a.k.a. “propositional addition”) and class union
(a.k.a. “class addition”). In this, Russell out-Peanoed Peano, who used ‘∪’ for both.4

But Russell followed the second design principle, that analogous notions should have
similar symbols, in adopting ‘∨’ as a sharpening of ‘∪’ so as to stress the analogy
between propositional sum and class union. Russell did not think that this analogy
was perfect. He held that the formal laws for propositional addition and class addition
differed; hence he felt a need for a different, yet similar, symbol.5 But even where the
formal laws are identical, Russell wanted to mark the distinction between operations
on different terms, as in the case of class union and relation union. This pattern is
noticeable in, for instance, Russell’s development of many symbols of his logic of
relations, which are usually distinguished only by an accenting mark, suggesting that
Russell tacitly followed the second design principle, albeit a weaker version of it than
Peano apparently endorsed.

All of that is the first part of the story. The second part of the story is that of the
adoption of ∨ in the period after Principia, when a number of logical symbolisms
(and indeed, logical methodologies) were in use simultaneously. The main rivals of
Principia were the algebraic approach of the tradition of Boole, Peirce, and Schröder,
and the axiomatic logic of Hilbert, with their respective notations. Despite being heavily
influenced by both Principia and the algebraic notation of Schröder (which goes back
to Peirce and the Boolean school), Hilbert introduced different symbols for all the
logical connectives—except disjunction.

One upshot of the above findings is to uproot a misconception about the origins of
the modern symbol for disjunction. A common story in textbooks is that ∨ really is a
version of the letter ‘v’, the initial letter of vel, the Latin word for “or.” We wanted to
find out whether this was a typographical accident, and later writers simply thought
the similarity between ‘∨’ and the initial of vel should be suggested as a mnemonic
device to students, or whether it actually played a role in the choice of the symbol. Here
we argue that although there is a single use of ‘v’ as a logical symbol abbreviating vel
in Leibniz, this played no known role in Peano’s choice or in Whitehead and Russell’s
choice of notation for disjunction. However, this historical connection may, at least in
part, have lead Hilbert to adopt it.

As usual in the history of mathematics, there is no simple answer to the question
of who deserves credit for ‘∨’. In one sense, it can be answered simply by recording
the earliest use of the symbol. But the earliest occurrence is often not the use to which
the current practice of the use of the symbol is historically connected. For instance,
Peirce in fact used ‘∨’ for disjunction before Whitehead or Russell did—but this use
was independent and played no role in the historical development of logical notation
systems. (In this case we know this for a fact because Peirce’s relevant writings were
not published until long after the use of ‘∨’ was already entrenched, in 1933.) So it is

4 It should be noted that neither Peano nor Russell followed this principle quite perfectly.
Peano used ‘ C’ for both implication and deductive consequence (Schlimm, 2021, sec. 3.2.1).
And Principia used square dots both for conjunction and for scope indications.

5 Bernstein (1932, secs. 2–3) criticized the view that these two notions are disanalogous in the
way that Principia suggests in comments on ∗4·78·79.
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4 LANDON D. C. ELKIND AND RICHARD ZACH

only by tracing the adoption of Russell’s symbol that we can establish Russell as the
originator of “our” ‘∨’.

There is a related question, namely that of what should count as a symbol for
propositional disjunction in the first place. Is Peano’s ‘∪’ a symbol for disjunction, or
is it a symbol for something else, perhaps an ambiguous combination of disjunction and
union? Who invented disjunction in the sense we now use it—as a connective between
truth-apt expressions? This is certainly a deeper and more interesting question, but one
we cannot answer here. Our contribution is more modest: to trace the history of the
symbol ‘∨’ only, and not the concept it expresses.6 We do this not by merely recording
its first use, but by placing it in the context of the development of logical symbolisms.
Of course, even this is a much larger context which we cannot do justice here—we
focus only on the parts that are relevant to ‘∨’.

Both of these considerations lead us to reject the claim that Leibniz’s use of ‘v’
should be considered the origin of ‘∨’. As we will show, (a) it had no known influence
on the eventual introduction and development of ‘∪’ and ‘∨’ by Peano, Whitehead, or
Russell, and (b) Leibniz’s ‘v’ was not a symbol for propositional disjunction.

We settle the questions of who invented the use of ‘∨’ for disjunction (Whitehead or
Russell) and whether this use of ‘∨’ was in fact introduced as an abbreviation for vel (it
was not). We suggest, however, that even though these questions may seem trivial, they
are not uninteresting, and we will mention, along the way, other interesting aspects of
the development of logical symbolism. Further, the story serves as a case study in how
the choice and adoption of symbols and the organization of a symbolic system (a kind
of conceptual framework) can be determined by methodological commitments but
also by extrinsic factors such as the availability or cost of printer’s type or the influence
that textbooks have on the adoption of symbolisms. In this instance, in addition to
the commitment to unambiguous notations in Peano and Russell mentioned above,
another factor concerns the reasons that led Russell to choose disjunction as a primitive
of the logical system of Principia.

§2. Leibniz. Leibniz deserves some credit for the first use of ‘v’ as a symbol for
‘or’ in some sense.7 But Leibniz’s use of ‘v’ is not for propositional disjunction, and
occurs in only one manuscript, his 1679 “Matheseos universalis pars prior: De terminis
incomplexis” (Figure 1):

Also, in the way that + is a conjunctive mark or sign of aggregation
corresponding to the word and—as in a + b, that is, a and b
together—so a disjunctive mark or sign of alternation is also given,
which corresponds to the word or [vel], so a “v b signifies a or b to me. It
also has a use in calculus, for if we have xx + ab = a + bx, then x will
be equal to a “v b, whether it signifies a or whether it signifies b. In this

6 Our use of ‘the concept’ in the singular is a stylistic convenience: we do not mean to imply
that there is a unique concept throughout the history of logic that correlates naturally to
propositional disjunction and that is now widely symbolized using ‘∨’. For an in-depth
treatment of the concepts of disjunction (see Jennings, 1994).

7 We make no claim here about Leibniz’s chronological precursors. We did, however, consult
three medievalists who specialize in history of logic about antecedent uses of ∨ for inclusive
disjunction, who did not recall any earlier uses.
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THE GENEALOGY OF ‘∨’ 5

Fig. 1. Use of “v in Leibniz 1679).

respect it will have an ambiguous value. For example, if xx + 6 = 5x,
x can be 2, but x can also be 3. For if x is 2, then from xx + 6 = 5x,
we get 4 + 6 = 10; and if x is 3, then from xx = 6 = 5x, we get
9 + 6 = 15. However, many values of this unknown [variable] or of
the present equation cannot be given roots, as will be clear in the
appropriate place below.

Hence, ambiguous signs also have a use, and this will be clear in
the appropriate place below, ambiguity being the font of irrationality
in calculus; and so when I write x = 3 +

√
4, this can be explicated

by 3 +
√

4 or 3 + 2 or 5, just as when I write 3 –
√

4, it is explicated
either by 3 – 2 or 1; thus, we get x = 5 “v 1. For in order for us to
remove the irrationality, let x – 3 =

√
4; therefore xx – 6x + 9 = 4,

whether xx – 6x + 5 = 0 or xx + 5 = 6x, where it is clear that it
would satisfy 5 as much as 1. For if x were given the value 5, we would
get 25 + 5 = 30; if x is given the value 1, we get 1 + 5 = 6.8

8 “Quemadmodum etiam + est nota conjunctiva seu cumulationis et respondet �ῷet, ut a + b
id est a et b simul, ita datur quoque nota disjunctiva seu alternationis quae respondet �ῷ vel,
sic a “v b mihi significat a vel b. Idque et in calculo usum habet, nam si sit xx + ab = a + bx,
erit x = a “v b seu x significabit vel a vel b habebitque adeo valorem ambiguum. Ex. causa
si sit xx + 6 = 5x, potest x esse 2, sed tamen potest etiam x esse 3. Nam si x sit 2, tunc ex
xx + 6 = 5x fiet 4 + 6 = 10; et si x sit 3, tunc ex xx + 6 = 5x lit 9 + 6 = 15. Plures autem
incognitae hujus valores seu praesentis aequationis radices dari non possunt, ut suo loco
patebit.

Hinc usum quoque habent signa ambigua, et suo loco patebit, ambiguitatem in calculo
esse fontem irrationalitatis; itaque cum scribo x = 3 +

√
4, tunc id potest explicari tam per

3 +
√

4 seu 3 + 2 seu 5, quam per 3 –
√

4 seu 3 – 2 seu 1, adeoque erit x = 5 “v 1. Nam ut
tollamus irrationalitatem, sit x – 3 =

√
4; ergo xx – 6x + 9 = 4 seu xx – 6x + 5 = 0 seu

xx + 5 = 6x, ubi patet satisfacere tam 5 quam 4. Nam si x valeat 5, fiet 25 + 5 = 30; sin [sic]
x valeat 4, fit 1 + 5 = 6” (Leibniz, 1679, 9v and 9r; 1863, pp. 57–58), translation courtesy of
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6 LANDON D. C. ELKIND AND RICHARD ZACH

This occurrence of ‘“v’ is the first use of a ‘∨’-like symbol for ‘or’ (in some sense)
that we know of.9 However, Leibniz does not seem to use the symbol here as a sign
for disjunction of (truth-apt) propositions as is usually the case today. Indeed, the
surrounding context does not include any uses of ‘a’ or ‘b’ for propositions. Rather,
Leibniz seems to be using ‘a’ and ‘b’ here as standing for (truth-inapt) terms, and using
‘a “v b’ to indicate ambiguity, that is, one of two alternatives without a specific one
being indicated, as in phrases like “either chocolate or vanilla” or “7 or 8.”10 That use
of ‘“v’ for alternation between truth-inapt terms is consistent with the other two uses
‘a “v b’ and ‘5 “v 1’, where the symbol is flanked by (variables for) numbers and serves
to produce an ambiguously referring term.11

These three uses, in this one manuscript, seem to be the only uses of the symbol
‘“v’ in the entirety of his Mathematische Schriften (Leibniz, 1863). We also found it
nowhere else in Leibniz’s writings. So this manuscript may record the only uses of
‘“v’ for alternation of (truth-inapt) terms in Leibniz’s corpus. The manuscript was not
edited or published until 1863. It is perhaps unsurprising, then, that Leibniz’s use of
‘“v’ for disjunction (which, so far as we can tell, was confined to this one manuscript)
found no imitators: even Arnauld’s (1683) La logique ou l’art de penser, which was an
especially influential book in the 1700s and in the 1800s before Boole’s work, omits
‘v’ for disjunction. Logicians in the 1700s and 1800s largely used symbols, when they
did at all, for the relations between terms in categorical logic and not propositional
disjunction; indeed, most logicians either did not symbolize propositional disjunction
and argued it was eliminable as a form of reasoning, or else did not discuss it all (see
Hailperin, 2004, p. 339, for discussion).12

To qualify this slightly, a close textual reading of one or another figure may extract,
induce, or produce a propositional logic in some sense.13 Even so, our interest lies in the
story of how ‘∨’ became so widespread as a symbol for disjunction in modern usage. It
is our contention that Leibniz and other logicians working primarily with categorical
logics—between Leibniz and Boole, we might say—did not inspire or cause the usage
that we now have today.

Jack Zupko). Leibniz seems to be using the Greek article �ῷ to indicate mention rather than
use; Leibniz underlined the corresponding occurrences of ‘et’ and ‘vel’ in the first sentence.

9 Why did he put an inverse breve over ‘v’? We conjecture that Leibniz wanted to distinguish
the constant near-nonce symbol ‘“v’ from the variable ‘v’ that he used frequently (e.g., Leibniz,
1679, pp. 57 and 59). Another possibility is that it indicates an abbreviation, like a scribal
siglum. However, the inverse breve was not usually used for this purpose, and the standard
abbreviation for vel was a lowercase ‘l’ (ell), not ‘v’, combined with a vertical stroke (l) or
macron (l̄).

10 We thank the reviewer for helpfully suggesting that we put this Leibnizian use of ‘“v in terms
of ambiguity.

11 See also Mugnai (2018, p. 195) on disjunction in Leibniz, and Mugnai (2010) more generally
on logic and mathematics in the seventeenth century.

12 Whately (1831, sec. IV.4), for example, argues that all disjunctions of categorical propositions
are conditional in meaning due to the equivalence of ‘A is B or C is D’ with ‘if A is not B,
then C is D; and if ‘C is not D, then A is B’ (see also Mill, 1843, chap. IV, p. 110).

13 To take one notable example, Lenzen (2004) argues that a system of propositional logic can
be extracted from one of Leibniz’s categorical logics, and that many of its axioms are so-
formulated that they might reasonably be recognized by us today as commonplace principles
in logic textbooks treating the propositional calculus.
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THE GENEALOGY OF ‘∨’ 7

§3. The nineteenth century. In the course of mathematically analyzing logical
principles using algebraic equations, Boole used ‘+’ as a symbol for something akin
to ‘∨’. In Boole’s algebra, however, ‘+’ is not a symbol for disjunction in our sense,
since the expressions that flank ‘+’ are not signs for propositions or statements, but for
concept expressions,14 and so has rightly been thought of as an algebra of classes (as
we might put it), or as an algebra of concepts in extension (as Boole seems to put it).

Boole can appropriately use ‘1’ for the universe, multiplication for class intersection,
and subtraction for complementation (Boole, 1847, p. 20). Although Boole’s operators
‘+’ and ‘·’ applied primarily to classes, he also considered symbols ‘x’ for propositions
as expressing the “cases” where the proposition X in question is true. The expression
‘x + y’ then expresses the union of the cases where X and Y are true—assuming,
however, that these classes are disjoint. Claims about the propositions are made using
equations involving 1 and 0 (the empty class). Multiplication is re-interpreted to
define (the algebraic analogue of) propositional conjunction; similarly subtraction
is re-interpreted as (the algebraic analogue of) propositional negation. Then these
operations so-interpreted are similarly used to define (the algebraic analogues of)
propositional implication and propositional disjunction. In Boole’s system, that either
X is true or Y is true would be expressed using the equation x + y – xy = 1 (Boole,
1847, p. 51).

Of course, Boole’s choice of ‘+’ for disjunction (Boole, 1847, 1854) had a more
immediate influence on notation for disjunction in the 1800s.15 Subsequent choices
of symbols for operations on classes were influenced by Boole even when logicians
departed from Boole’s philosophical program to varying degrees. For example, Jevons
(1883) uses ‘·|·’ for non-disjoint union, to distinguish it from Boole’s ‘+’.16 Peirce
(1870, p. 9) similarly uses ‘+’ for disjoint union and adopts ‘+,’ for non-disjoint

14 “Literal symbols, as x, y, &c., representing things as subjects of our conceptions” (Boole,
1854, p. 27). It should be noted that we do not mean to imply that Boole’s intended
interpretation of his symbols was fixed throughout his life. Indeed, Peckhaus (1997) and
others have argued that there are significant differences between Boole (1847) and (1854) in
their view of what terms pick out (concepts versus extensions of concepts). These differences
are important, but incidental to our discussion since, either way, the terms are not truth-apt
(even though they can be used to induce or extract a propositional logic, or can be applied
in a manner that mirrors propositional logics, much as one can do with Leibniz’s categorical
logic).

15 In an 1848 manuscript “The Nature of Logic,” Boole instead used ‘+’ for (the algebraic
analogue of) propositional conjunction, adding parenthetically, “which indeed was originally
a contraction of the Latin et” (Boole, 1997, p. 6). In an 1856 manuscript “On the Foundations
of the Mathematical Theory of Logic and on the Philosophical Interpretation of Its Methods
and Processes,” he repeats this point and suggests that the use of ‘+’ for et and of ‘–’ for
minus originates “in medieval Latin manuscripts” (Boole, 1997, p. 87).

16 In his 1864 “Pure Logic,” Jevons followed Boole in using ‘+’ for disjoint union (Jevons,
1864, p. 80). He changes the notation in The Principles of Science for a similar reason that
leads Peano to adopt ∪ (see below): “[T]his sign [+] should not be employed unless there
exists exact analogy between mathematical addition and logical alternation. We shall find
that the analogy is imperfect, and that there is such profound difference between logical and
mathematical terms as should prevent our uniting them by the same symbol. Accordingly
I have chosen a sign ·|·, which seems aptly to suggest whatever degree of analogy may exist
without implying more” (Jevons, 1883, p. 68).
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8 LANDON D. C. ELKIND AND RICHARD ZACH

union.17 In “The Simplest Mathematics” (1902), which was not published until 1933,
Peirce actually used ‘∨’ interchangeably with his ‘�| ’ symbol for inclusive or. By 1933,
of course, the use of ‘∨’ for disjunction was already entrenched. Other important
writers on the algebra of logic, such as Schröder (1877, 1890), MacColl (1877), and
Ladd-Franklin (1883), all use ‘+’ for union, and so does Whitehead (1898) originally.
Even Nagy (1890), writing in Italian and familiar with Peano’s work, sticks to Boole’s
notation.

Common to the followers of Boole is not just the choice of symbols, but also the
exclusive focus on equations. Using equations, they express relations between class
terms, and provide translations of syllogistic reasoning into such equations. However,
MacColl (1877), Peirce (1885), Ladd-Franklin (1883), and Schröder (1891) took the
further step of showing that terms could translate propositionally valid inferential
relationships. They allowed operators like ‘+’ to connect not just terms for classes
or concepts but also terms for propositions or statements, and developed systems of
formulas, not just of equations. In their work, the symbol ‘+’ serves as a genuine
propositional disjunction (in the inclusive sense).18

Working alongside the algebraic logicians were Frege and Peano, who both were
important sources for Russell. Frege had his own two-dimensional notation (first
introduced in Begriffsschrift and later developed in Grundgesetze). He was able to
define disjunction using the content strokes for implication and negation, but did not
introduce a separate symbol for it (Frege, 1879, p. 11). Regarding Frege’s notational
influence on the story of ‘∨’, the record shows that Frege’s actual notations and two-
dimensional style were rarely adopted (and sometimes were ignored or even maligned)
by others (with the exception of his popular turnstile ‘�’). But Frege’s notational
influence on Russell was nonetheless felt: indeed, Frege’s views on design principles
for notation seem to have been quite influential on Russell, even though his choice
of actual symbols was not. Russell’s engagement with Frege’s writings seems to have
led Russell to later distinguish propositional sum and class sum, for which purpose he
introduced our ‘∨’—as we will see. First, however, we consider the influence of Peano’s
notations and logical framework on the development of Principia.

§4. Peano. Peano is responsible for much of the notations in Principia, and Russell’s
notational imitations of Peano likely led him to introduce ‘∨’ for disjunction. Indeed,
Peano seems to be responsible for suggesting to later readers that ‘∨’ was a sensible
(Latin-inspired) choice of symbol for disjunction.

Peano, however, did not use ‘∨’ (or the letter ‘v’) for disjunction or class union. From
his Calcolo geometrico onward, he instead used ‘∪’ for both (and ‘∩’ for conjunction
and class intersection).

17 Peirce (1883, pp. iii–iv) noted that the debate over whether ‘+’ should be reserved for disjoint
union or not had been decided: he notes that the majority of authors “declared in favor
of using the sign of addition to unite different terms into one aggregate, whether they be
mutually exclusive or not.” Only Boole & Venn (1881) insisted on disjoint union.

18 On the development of algebraic approaches to logic in the nineteenth century, see Peckhaus
(1997, 2009); on Schröder’s logic, see Dipert (1991) and Peckhaus (2004); on Peirce, Jevons,
and Schröder, see Dipert (1978); on Peirce and Peano’s influence on Schröder, see Peckhaus
(2014); on MacColl, see Anellis (2011) and Peckhaus (1999).
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THE GENEALOGY OF ‘∨’ 9

2. By the expression A ∩ B ∩ C ∩ ... , or ABC ... , we mean the
largest class contained in the classes A, B, C, ... or the class formed by
all the entities which are at the same time in A and B and C, etc. The
sign ∩ is read and; the operation is indicated by the sign ∩ is logical
conjunction. We shall also call it logical multiplication, and say that
the classes A,B, ... are factors of the product AB ...
3. By the expressionA ∪ B ∪ C ... , we mean the smallest class which
contains the classes A, B, C, ... or the class formed by all the entities
which are in A or B or C, etc. The sign ∪ is read or; the operation
is indicated by the sign ∪ is logical disjunction. We shall also call it
logical addition, and say that the classes A, B, ... are terms of the sum
A ∪ B ∪ ... (Peano, 1888, pp. 1–2; 1973, p. 76)

Similarly, Peano uses ‘– A’ and ‘A’ for set complementation and interprets it also as
negation; he uses ‘©’ for the empty class and interpretsA = © as “there is no A”; and
he uses ‘ ◍ ’ for the universal class and interprets A ∪ B = ◍ as “everything is an A
or a B” (Peano, 1888, pp. 76–77).

Peano was of course aware of the then-entrenched use of ‘+’ and ‘·’ or ‘×’ for both
disjunction and conjunction and for union and intersection in the algebra of logic
tradition. He deliberately avoided using the same symbols in his own work, however:

It seemed useful to substitute the symbols ∩, ∪, – A, ©, ◍ for the
logical symbols ×, +, Ai, 0, 1 used by Schröder, in order to forestall
any possible confusion between the symbols of logic and those of
mathematics (a thing otherwise advised by Schröder himself).19

The symbols ‘∪’ and ‘∩’ are most likely adopted as typographical variants of ‘�’
and ‘�’ introduced by Grassmann (1844). Grassmann had used ‘�’ as both a sign
for an arbitrary operation (Verknüpfung) and as the sign for a kind of geometrical
product. Leibniz had also sometimes used ‘�’ as a symbol for multiplication (e.g.,
Leibniz, 1690, p. 5; reprinted in Leibniz, 1858, p. 15), which Peano cites in Calcolo).
Although Peano does not say, at least not in Calcolo, these uses may have suggested to
him that ‘∩’ (or ‘�’) would be suitable to express logical multiplication (conjunction).
He mentions Leibniz’s use of ‘�’ for multiplication a decade later in the Formulaire:

The sign � was adopted by Leibniz to indicate the arithmetical
product. We adopt it for the logical product, since the arithmetical
product is today indicated by ×.20

The propositional (re)interpretation of set-theoretic operators is purposeful: he
extends (really, reaffirms) his propositional interpretation of the set-theoretic symbols
in his treatment of propositions in Sections 1.4–1.11 on deductive logic, as was common

19 “Credetti utile di sostiture i segni ∩, ∪, – A, ©, ◍ , ai segni di logica ×, +, Ai, 0, 1, usati
dallo Schröder, affine d’imedire una possibile confusione fra i segni della logica e quelli della
matematica (cosa del resto avvertita dallo Schröder stesso)” (Peano, 1888, p. x; translation
from Peano, 1973).

20 “Le signe � a été adopté par Leibniz pour indiquer le produit arithmétique. Nous l’adoptons
pour le produit logique; car le produit arithmétique est aujourd’hui indiqué par ×” (Peano,
1897, p. 32, our translation).
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10 LANDON D. C. ELKIND AND RICHARD ZACH

practice among (other than Frege) logicians in the 1800s. Still, Peano explicitly uses
‘∪’ for propositional disjunction, e.g.:

α ∪ � expresses the condition that α is true or � is true. (Peano, 1888,
p. 82)

Peano’s lower-case Greek letters may be (re)interpreted such that α ∪ � is a union
of classes wherever convenient. This sort of dual usage of symbols for classes or
propositions, and for class operations or propositional connectives, allowed him to
double-count proofs for analogous theorems.

Peano persists in this dual usage in The Principles of Arithmetic (Peano, 1889), where
he used ‘∪’ as disjunction and class union, and ‘⊃’ for both subset and implication
(Peano, 1889, pp. 105 and 108). Such dual usage drew a lengthy impeachment from
Frege (1896, pp. 242–247). But in fairness to Peano, it leveraged Boole-style algebraic
treatments in multiple domains at once, and Peano had philosophical reasons to so-use
symbols.21 By his principle of permanence, since the formal laws for propositional and
class operators were identical (in his view), Peano rightly used the same notation
for these different operators. This does not violate the first design principle of
symbolism prohibiting ambiguous symbols: any symbol in a theorem or its proof
must be unambiguous and the syntax is unimpeachable on this score. The intended
interpretation, on the other hand, may vary in those limited cases such that the formal
laws—even the theorems and their proofs—do not differ. Indeed, Peano was generally
very thoughtful in his selection and use of symbols (see Schlimm, 2021, for an insightful
discussion). The “design principles” Peano employed explain, for instance, why he
chose pairs of inverted symbols for dual operations like ‘∪’ and ‘∩’.22

Peano’s habit of using one symbol for different notions—that is, for allowing
the intended interpretation to vary in order to economize the amount of thought
required to master the new symbols—is important to note because it helps explain the
genealogy of ‘∨’. Russell will at first copy Peano’s practice, although Russell was more
uncomfortable than Peano with using the same symbol under two distinct intended
interpretations. Even where the formal laws were identical, as in the case of class
notions and their relational analogues, Principia avoids using the exact same symbol
for two different notions. Rather, the distinction is marked in the syntax of the system
by using a different symbol entirely for different kinds of terms, as we will see in the
next section. Still, Russell did use similar symbols for notions whose formal laws were
close analogues, distinguishing these different symbols often by a small change, like a
dot or an accent, in a Peano-like fashion. Thus Russell first used ‘∨’ for a set-theoretic
notion (relational product) and for propositional disjunction, and then later uses it
just for propositional disjunction.23 What Russell never does is to use the exact same

21 Peano thought that it had been established by “Boole, Schröder, and others” that deductive
logic, like arithmetic algebra, was part of algebra, that is, the “calculus of operations” (Peano,
1891, p. 153). He even wanted to argue that mathematical analysis produces results that mere
logic would not (Peano, 1891, p. 154, n. 3).

22 Compare also the discussion of Frege’s symbolism in Schlimm (2018).
23 Peano would also write ‘ab’ for ‘a ∩ b’. This notation is combined with the dot notations

for scope. Thus, Peano (1901, p. 3) sometimes uses ‘a bc’ for ‘a(bc),” which itself expands
into “a ∩ (b ∩ c).”
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THE GENEALOGY OF ‘∨’ 11

symbol for distinct intended interpretations: these are always marked in the formal
grammar by a different, even if highly similar, symbol.

This is not to impeach Peano’s practice. Peano may have felt justified in his
ambiguous use of ‘∪’ and ‘∩’ by the principle of permanence, according to which
operations obeying the same laws in different domains should be symbolized by the
same notation (e.g., ‘+’ and ‘·’ applied to different sets of numbers, say, integers and
reals), and if not, they should be symbolized differently. Since the laws governing class
union and intersection, and the laws for propositional disjunction and conjunction
are the same, this justifies the use of the same symbols for both. By contrast, the
arithmetical operations + and · obey different laws, e.g., idempotence fails (see
Toader, 2021, for discussion). Moreover, context disambiguates between the different
meanings of ‘∪’ and ‘∩’. By contrast, Peano’s class-theoretic construction of numbers
in Arithmetices principia and later the Formulaire has him using both ‘+’ and ‘∪’
between class terms, and so using the same symbol here would lead to ineliminable
ambiguity.24

We have already mentioned that Peano adapted his symbol ‘∪’ from Grassmann’s
‘�’. Is there any evidence that Peano was influenced in his choice also by the similarity
to the initial v of vel, or specifically by Leibniz’s use of ‘“v’ for “or”? Peano was already
aware of Leibniz’s use of ‘“v’ as a symbol for disjunction when he introduced his own:
he cites the very page of Mathematische Schriften where it occurs in Calcolo (Peano,
1888, p. x). In his subsequent writings on logic, he often mentions the fact that Leibniz
had used ‘v’ this way (though Peano omits the accent), and specifically that he did it
because ‘v’ is the initial letter of vel:25

Instead of a ∪ b Leibniz has a u b (where u is the initial of uel)...26

The sign ◦ corresponds to Latin aut; the sign ∪ to vel.27

Leibniz, in his Schriften, vol. VII p. 57, indicates logical addition by
‘a u b’; the letter u is the initial of the word uel.28

However, Peano avoided a symbol reminiscent of ‘v’ for disjunction to avoid confusion
with other symbols: indeed, Peano already used ‘v’ for the universal class (Peano, 1895,

24 Schröder (1905, p. 460) considers the typographic contrast between Peano’s logical and
arithmetical operators a benefit, as well as the horizontal symmetry between the symbols for
dual notions. He also suggests that one might best remember that ‘�’ stands for disjunction
by imagining the symbol as a see-saw between two alternatives.

25 Peano deserves great credit for his keen eye: we found only three occurrences of ‘“v’ for
disjunction in the entire 393-page Volume 7 of Leibniz’s mathematical writings (and we
found none elsewhere in the Gerhardt edition of Leibniz’s mathematical and philosophical
writings). Leibniz is not explicit about why he chose ‘“v’, but Peano’s guess is plausible and
supported by Leibniz’s writing in Latin.

26 “Invece di a ∪ b si scrisse da Leibniz a u b (ove u ‘e l’iniziale di uel), da Jevons a .|. b, e dal
maggior numero di Autori a + b” (Peano, 1891, p. 9; translation from Peano, 1973, p. 158).
Note that Peano uses the variant spelling of vel with an initial ‘u’—classical Latin did not
have separate letters for ‘U’ and ‘V’. Presumably he did so because ‘u’ is more suggestive
of Peano’s chosen symbol ∪. When writing in Latin (Peano, 1889) or later in his simplified
Latino sine flexione (see Kennedy, 1980, chap. 15, for discussion) Peano always spelled vel
with a ‘v’ whenever he used the word.

27 “Le signe ◦ correspond au Latin aut; le signe ∪ à vel” (Peano, 1894, p. 10).
28 “Leibniz, dans ses Œuvres, t. VII p. 57 indique l’addition logique par �a u b�; la lettre u est

l’initiale du mot �uel�.” (Peano, 1897, p. 42, our translation).
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12 LANDON D. C. ELKIND AND RICHARD ZACH

p. 139, 1897, p. 13). Peano merely suggests that ‘∪’ for disjunction can be thought of
as a deformation of the ‘v’ in vel:29

∗1·2 Let p and q be P [propositions]; p ∪ q means “at least one of
these P is true”

One may read the sign “∪” as “or”; this operation is called logical
addition....

Leibniz has indicated the operation ∪ by the sign + (Leibniz, 1890,
p. 229); later (p. 237) by the same sign inside a circle. We cannot
use a common sign for arithmetical and logical additions without
producing ambiguities ...

One may consider the sign ∪ as a deformation of v, the initial letter
of “vel,” used by Leibniz as well for the same purpose. However, in
the “Arithmetices principia” (Peano, 1889), which contains the first
theory rendered in symbols, I have chosen the shape of logical signs
in such a way as to avoid any confusion.30

So even though Peano often suggested a connection between the symbol for
disjunction and the Latin vel, it is unlikely that his choice of ‘∪’ for “or” was originally
motivated by this connection. Russell likely got the idea of using ‘∨’ for disjunction
from Peano, whom he read closely.31 This is not terribly surprising: indeed, it is hard to
overstate Peano’s influence on Principia’s notations. Even Whitehead (1898) followed
Boole and symbolized disjunction and conjunction as addition and multiplication
before encountering Peano’s work. After becoming thoroughly familiar with Peano’s
work through Russell, Whitehead (1902) also adopted Peano’s ‘∩’ and ‘∪’. Whitehead

29 A ‘v’ symbol was also liable to be confused with ‘v’ for verum used by Peirce (1885) and
Boole et al.’s use of v as a kind of existential quantifier.

30 “Soient p et q des P; p ∪ q signifie �l’une, au moins, des ces P est vraie�.
On peut lire �ou� le signe ∪; cette operation s’appelle addition logique.
Ex. de la somme de Cls: §Np P2 1...; de P: §× P1 5 §Np P1 2...
Leibniz a indiqué l’opération ∪ d’abord par le signe + (p. 229); ensuite (p. 237) par la

même signe dans un cercle. Nous ne pouvons pas représenter par un même signe les additions
logique et arithmétique, sans produire des ambiguı̈tés. Voir §+ P 5.

On peut considérer le signe ∪ comme une déformation de v, lettre initiale de �vel�, aussi
employée par Leibniz pour le même but. Mais dans les �Arithmetices principia, a.1889�,
qui contient la première théorie réduite en symboles, j’ai fixé la forme des signes de Logique
de façon à éviter toute confusion.” (Peano, 1899, p. 16, our translation).

Note that here Peano does use ‘v’ and the spelling vel. Leibniz’s use of ‘+’ referred to here
by Peano is for class union not propositional disjunction.

31 “In July 1900, there was an International Congress of Philosophy in Paris... The Congress
was a turning point in my intellectual life, because I there met Peano. I already knew him by
name and had seen some of his work, but had not taken the trouble to master his notation.
In discussions at the Congress I observed that he was always more precise than anyone else,
and that he invariably got the better of any argument upon which he embarked. As the days
went by, I decided that this must be owing to his mathematical logic. I therefore got him to
give me all his works, and as soon as the Congress was over I retired to Fernhurst to study
quietly every word written by him and his disciples. It became clear to me that his notation
afforded an instrument of logical analysis such as I had been seeking for years, and that by
studying him I was acquiring a new and powerful technique for the work that I had long
wanted to do” (Russell, 1967, pp. 217–218).
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THE GENEALOGY OF ‘∨’ 13

& Russell (1910, p. vii) fully acknowledge Peano’s notational impact: “In the matter
of notation, we have as far as possible followed Peano...”

Yet in using ‘∨’ for disjunction, Principia departs from Peano’s notations. As we
will see in the next section, Whitehead and Russell are jointly responsible for this. The
earliest surviving use of ‘∨’ for disjunction we could find is in a Whitehead manuscript,
but Russell may well be the one who introduced the symbol. He first separated the
notations for class union and propositional disjunction. Russell also used ‘∨’ for
disjunction in solo published work some years before the co-authored Principia was
published. The next section supplies the evidence for this summary.

§5. Whitehead and Russell. We give Whitehead and Russell joint credit for first
using ‘∨’ for disjunction. The relevant surviving manuscripts from Whitehead and
Russell were written in close proximity, but the relative dating is uncertain. Moreover,
many manuscripts from the time of the writing of Principia are lost. In any case, one of
Whitehead and Russell, or both jointly, first used ‘∨’ for disjunction. Their use of this
notation, through the influence of Principia, is the reason for today’s wide acceptance
of it (as we argue in the next section).

After framing the timeline for our discussion, we trace the genealogy of ‘∨’ in the
surviving manuscripts. We will start from what is definitely known and conclude this
section with what is merely probable. In our genealogy of Whitehead and Russell’s
design principles for notation we also focus on Russell’s publications and manuscripts
because few of Whitehead’s pre-Principia manuscripts from this period survive.32 Our
aim is to correctly trace the evolution of Principia’s notations, and the design principles
for choosing them. Crediting either Russell or Whitehead with any specific decision
is difficult for the above reasons. Thus, even where we consider a single-authored
manuscript or publication and write of, e.g., as Russell introducing a symbol, we do not
mean to imply that Russell alone deserves the credit. We have no doubt that Whitehead
and Russell agreed on the design principles for notations as they are manifested in
Principia.

Here is the time frame for the remainder of this section: in his 1901 “The Logic of
Relations” (1901), Russell took implication as a primitive symbol. In Whitehead and
Russell’s 1910 Principia, ‘∨’ for disjunction is now primitive (Whitehead & Russell,
1910, p. 93). This raises two questions about Russell’s development: (1) When and
why was disjunction taken as primitive? and (2) When and why was ‘∨’ introduced for
disjunction?

We first take up (1). To answer the “why” part: disjunction is taken as primitive
because the resulting system is simpler in that it has fewer primitive propositions.33 In

32 Of course, Whitehead no less than Russell was responsible for much of the notation in
Principia and both authors gave notation a great deal of thought. We also do not mean
to suggest that their thoughts on notations and design principles for notations were always
identical in the pre-Principia years; see Russell (1948, pp. 137–138) for some indication of
notational divergences between the two. See also the letters quoted by Urquhart (1994, sec.
V) and Moore (2014, sec. XI).

33 As to what “simpler” means here: Bellucci, Moktefi, & Pietarinen (2018, pp. 82–83) have
discussed the various notions of simplicity at play in discussions of Peano, Frege, and Peirce
in their work on logic: in one sense of “simpler” (as applied to logical systems), a simpler
system has fewer total primitive symbols. Another sense of “simpler” is that there are fewer
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14 LANDON D. C. ELKIND AND RICHARD ZACH

Principia, Whitehead & Russell (1910, p. 130) comment on ∗5·25, which is � p ∨ q
≡ p⊃ q ⊃ q:

From ∗5·25 it appears that we might have taken implication,
instead of disjunction, as a primitive idea, and have defined “p ∨ q”
as meaning “p⊃ q ⊃ q.” This course, however, requires more
primitive propositions than are required by the method we have
adopted.

If we set aside inference rules and consider just propositional axioms or axiom
schemata, the texts bear out this claim. “The Theory of Implication” (Russell, 1906)
gives seven axioms for propositional logic; Principia instead has five.34

The “when” part of question (1) can be answered using the Couturat–Russell letters
translated in the headnote to Russell (1906). The first known evidence of the switch
from ‘⊃’ being primitive to ‘∨’ being primitive is from August 21, 1906.

Russell wrote “The Theory of Implication” in the summer of 1905, and it was
published in the American Journal of Mathematics in April 1906. Again, Russell
adopts (material) implication as a primitive therein. Russell justifies ‘⊃’ being primitive
explicitly on much the same grounds as he later justifies replacing ‘⊃’ with ‘∨’ as
primitive: “it avoids hypotheses which are otherwise necessary” (Russell, 1906, p. 162).
What hypotheses does Russell avoid in the 1906 paper? As a footnote makes clear
(Russell, 1906, p. 162), these hypotheses are to the effect that for any p and q, if p⊃ q,
then p and q are propositions, and so are truth-apt. These hypotheses are adopted
in The Principles of Mathematics (Russell, 1903c) to prevent the relation of material
implication from obtaining between any non-propositional (truth-inapt) entities.

Recall that Russell’s “calculus of propositions,” also known as the substitutional
theory, allowed for variables to range over everything without restriction (Linsky, 2016,
p. 224). Landini (1996, p. 558) calls this “the doctrine of the unrestricted variable”
because on this theory variables range over all entities whatever (rather than, say,
different sorts of variables ranging over objects and predicates, as is now common in
presentations of second-order logic). This was only possible because the notions of
‘⊃’ in Russell (1903c, 1906) were quite different from the modern one and that of

primitive constants involved in the expression of some formulas. Whitehead and Russell
in Principia are pursuing simplicity in the sense of reducing the total number of primitive
symbols and primitive principles, and so are prioritizing simplicity in the first sense. Note that
unanalyzability is not required for simplicity in Whitehead and Russell’s sense, for Whitehead
& Russell (1910, p. vi) openly demur on whether “the analysis could not have been carried
farther: we have no reason to suppose that it is impossible to find simpler ideas and axioms
by means of which those with which we start could be defined and demonstrated.” So it
cannot be that their sense of simplicity here is tied to being unanalyzable. See also the quotes
discussed in this section, and especially the joy with which Whitehead & Russell (1925, pp.
xiii–xiv) welcomed the analysis of the 1910 set of primitives by Sheffer (1913) and Nicod
(1917).

34 However, a judgment as to overall simplicity somewhat depends on how we count. If we
are counting by primitive propositions—including rules of inference like modus ponens,
well-formedness rules, and uniform substitution rules—then both systems have 10 starred
primitive propositions. Hence, Linsky (2016, p. 224) has a list of nine primitive propositions
in the 1906 system (by counting modus ponens and merging the two rules for uniform
substitution); Linsky (2016, pp. 226–227) also has a list of seven total primitive propositions
in Principia, which omits the rules of well-formedness ∗1·7·71·72.
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THE GENEALOGY OF ‘∨’ 15

the 1910 Principia. On the earlier substitutional theory, the sign ‘⊃’ is a relation sign:
it connects terms to make a term, so that “Socrates ⊃ Socrates” was well-formed in
Russell’s early systems. The modern sign for implication ‘→’, like the symbol ‘⊃’ in
Principia, behaves very differently: it connects well-formed formulas to make a well-
formed formula, so that “Socrates → Socrates” is syntactically ill-formed (much like
“a → a” is ungrammatical in most modern systems).

Of course, the primitive postulates in Russell (1903c, sec. 18) precluded any material
implication relations obtaining between non-propositional entities even though such
strings could be syntactically well-formed: one does not want to allow that “Socrates
implies Socrates” is a truth of one’s formal system (and this is not a theorem in either
early system). How did Russell prevent, say, “Socrates ⊃ Socrates” from being even
vacuously true in the 1903 system while preserving the doctrine of the unrestricted
variable under which any term is substitutable for a variable? Russell built into
some primitive propositions of the 1903 system the antecedent condition that p is a
proposition. For example, in place of the axiom p⊃ p, Russell had p⊃ q ⊃ p⊃ p,
which on Russell’s intended interpretation is tantamount to adding the condition
“whatever implies anything is a proposition” (Russell, 1903c, sec. 18).

In “Theory of Implication,” (Russell, 1906, ∗1·2) instead interprets ‘⊃’ in such a
way that it may be just vacuously false whenever truth-inapt terms flank it, making
the further hypothesis that whatever implies anything is a proposition redundant.35

Russell’s intended interpretation of the 1906 system effects some simplification of the
primitive propositions in the 1906 system as compared with the 1903 one.36

At any rate, in 1906 Russell still takes ‘⊃’ as primitive. Russell finally introduces
‘∨’ for disjunction in ∗4·11 (Russell, 1906, p. 176), which defines p ∨ q as ∼p⊃ q.
The first passage of the section makes clear that ‘∨’ means disjunction (“propositional
sum”):

In this section we shall be concerned with the fundamental properties
of the propositional product and the propositional sum of two entities
p and q... The propositional sum of p and q is practically “either p
is true or q is true.” We avoid a new primitive idea by taking as the
propositional sum ∼p⊃ q, i.e., “if p is not true, then q is true.” There
are some advantages in taking the propositional sum as a primitive
idea instead of ‘p⊃ q’; we then define ‘p⊃ q’ as the propositional
sum of ∼p and q. The choice is a matter of taste. (Russell, 1906, p.
175)

As this quotation shows, Russell was obviously not wedded to one or another choice
of primitive in his 1906 paper and allows that either one can define the other. This is a
significant shift from his view in Principles, where he explicitly argues that implication
cannot be defined, even in terms of equivalent formulas using other connectives
(Russell, 1903c, sec. 16).

Shortly after publication of “Theory of implication,” Russell found a reason to
prefer disjunction as a primitive notion over implication: it reduced the number of
axioms needed for propositional logic. Couturat and Russell exchanged letters about

35 Russell (1906, p. 23) credits Frege’s Grundgesetze, vol. I with this shift in interpretation of ‘⊃’.
36 Note that the number of primitive propositions—again, depending on whether one counts

axioms and rules of inference—is still 10 in the 1903 system.
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16 LANDON D. C. ELKIND AND RICHARD ZACH

Russell’s 1906 paper. On August 21, 1906, Russell wrote to Couturat to announce his
discovery that taking ‘∨’ as primitive simplifies the development of his logic:

One can take as a primitive idea p ∨ q, while defining

p⊃ q = ∼p ∨ q.
In this way two primitive propositions are made superfluous. (Russell,
2001, #216)

This answers question (1): by August 21, 1906, Russell took disjunction as primitive
instead of material implication, and he did this because it was logically simpler, that
is, it reduced the number of axioms needed in propositional logic.

Now for question (2): when and why did Whitehead and/or Russell first
choose the symbol ‘∨’ for disjunction? Unlike Peano, Whitehead and Russell never
explicitly explained this choice of notation. So we will have to reconstruct their
reasons.

The two natural conjectures are that (A) Whitehead and Russell adopted ‘∨’ because
Leibniz used ‘“v’ and (B) Whitehead and Russell adopted ‘∨’ as a modification of the
already available notation ‘∪’. Given the available evidence, we endorse (B). First let
us consider why (A) is improbable.

If one supposes that Whitehead and Russell got ‘∨’ from Leibniz, the next question to
answer is, ‘How did Whitehead and Russell come across it?’ Here there are two natural
possibilities: (A1) Whitehead and Russell found a use of ‘“v’ in Leibniz independently,
or (A2) Whitehead and Russell found out about this possibility through Peano, who,
as we saw, did notice Leibniz’s use of ‘“v’.

Against (A1), there is no textual evidence, for instance, in Russell (1900a), that
Whitehead or Russell encountered, on their own, Leibniz’s sole manuscript in which
‘“v’ is used for disjunction. Indeed, there is no evidence that Whitehead or Russell
ever owned Leibnizens mathematische Schriften. No notes on these volumes occur
in Russell’s Leibniz notebooks (Arthur & Griffin, 2017). Leibnizens mathematische
Schriften are also not in Russell’s library, which is held at the Bertrand Russell Research
Centre. By contrast, Russell’s library has all seven volumes of the Philosophischen
Schriften, which he annotated heavily; these annotations were published by Arthur,
Galaugher, & Griffin (2017). Furthermore, Russell kept a list of books he was
reading from 1891 to 1902 (Russell, 1891). None of Leibnizens mathematische
Schriften appear on this list of books (O’Briant, 1979, pp. 165–166). Finally, Russell’s
citations of Leibnizens mathematische Schriften are sparse enough to have been
pulled from other authors who quoted from them directly.37 So it is probable that
Russell never saw the manuscript in question, or even the volume in which it was
available.38 Similar reasoning applies to Whitehead, whose 1898 A Treatise on Universal

37 Russell’s appendix to the index of Leibniz quotes includes just 18 citations to the entire
Mathematische Schriften, and not even 10 to any single volume in that series. By contrast,
there are 492 citations to the Philosophischen Schriften series, and, to each of the seven
volumes, 15, 143, 39, 63, 108, 62, and 62 citations, respectively.

38 Russell’s Leibniz book has two citations to Leibnizens mathematische Schriften, Volume VII,
but none to the relevant manuscript (Russell, 1900a, 109, n. 1, 247). And these two quotes
were probably pulled from Cohen (1883, pp. 64–65), whom Russell cites in the footnote in
question. Similarly, in Principia’s introduction and treatment of propositional logic (∗1–∗5),
Volume VII is cited exactly once, in a footnote to ∗3·47, but again, the relevant manuscript is
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THE GENEALOGY OF ‘∨’ 17

Algebra cites Leibniz (as “Leibnitz”) just once, discussing a theorem about resultant
forces. And Whitehead reports, “My knowledge of Leibniz’s investigations [when I
wrote the Treatise] was entirely based on Couturat’s book, La Logique de Leibniz,
published in 1901” (Whitehead, 1941, p. 10). In summary, it is consistent with the
available evidence that neither Whitehead nor Russell ever directly saw Leibniz’s
use of ‘“v’.

It is of course true that Whitehead and Russell had some first-hand acquaintance
with Latin and Greek thanks to their pre-college education. Russell was educated in
Latin and Greek, in addition to being fluent in French and German. Might it be possible
that Russell wanted to associate propositional disjunction with ‘vel’ even if he never
saw the occurrence in Leibniz? We find this quite unlikely because Russell despised
Latin (and Greek), writing in his (Russell, 1967, p. 36), “I hated Latin and Greek, and
thought it merely foolish to learn a language that nobody speaks.” (Happily, he did not
feel similarly about logical languages.) Moreover, as Lenz (1987, p. 105) notes, “The
learning of Latin and Greek played only a small role in [Russell’s] tutelage.” Even if
Peano’s remarks about Leibniz may have caused Russell to think of ‘∨’ when deciding
on a symbol to represent disjunction, there is no reason to think that a connection to
vel motivated Russell’s choice of ‘∨’, and some reason to think that Latin associations
would have been, if anything, wholly repugnant to him. Whitehead also studied Latin
and Greek early on, but there is little evidence to suggest this connection with vel would
have occurred to Whitehead (or have felt apt to impress the new symbol’s meaning
upon the mathematical community). Indeed, Whitehead’s education early on let Latin
take a backseat to mathematics: “I was excused in the composition of Latin Verse
and the reading of some Latin poetry, in order to give more time for mathematics”
(Whitehead, 1941, p. 6).

On the other hand, in support of (A2), Whitehead and Russell were close readers of
Peano’s works, including the Formulaire, throughout the period from 1900 to 1903. In
multiple works, Peano explicitly noted Leibniz’s use of ‘“v’. So if one is to accept the view
that ‘∨’ comes to us from Leibniz, Peano is the most probable intermediary source
of Whitehead and Russell’s using ‘∨’ for disjunction, even if Peano never adopted
Whitehead and Russell’s notation for disjunction. But against this proposal, there was
a years-long delay between Whitehead and Russell’s close study of Peano’s works and
their first uses of ‘∨’. Russell studied Peano’s works extensively in September 1900,
just after the July 1900 Congress (Russell, 1891, p. 363). Whitehead references the
first three volumes of the Formulaire and praises the “admirable work” of Peano’s
school in a footnote to his April 1901 “Memoir on the Algebra of Symbolic Logic”
(Whitehead, 1901, p. 140). However, as we will see, Russell first used ‘∨’ in his spring
1902 “On Likeness” manuscript, and Whitehead first uses it in his contemporaneous
“The Logic of Propositional Functions” manuscript. So neither Whitehead nor Russell
used this notation until many months after their deep study of Peano. This suggests
it was not Leibniz’s notational choices that led Whitehead and Russell to adopt ‘∨’
for disjunction, but some other development. We describe just such a development,
consistent with hypothesis (B), that explains why Whitehead and Russell modified ‘∪’
to use ‘∨’ for disjunction. Accordingly, we reject hypothesis (A).

not cited. This citation in Principia is also identical to an earlier citation (see Russell, 1906,
p. 182).
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18 LANDON D. C. ELKIND AND RICHARD ZACH

We saw above that Peano used ‘∪’ for both disjunction and class union—not
ambiguously in a problematic sense, but so that one could follow a different intended
interpretation of the symbol and retain all the formal laws governing ‘∪’ and the proofs
involving occurrences of ‘∪’. This accords with the “design principle” for notations,
the principle of permanence, discussed above. Russell seems to have accepted a similar
principle, but not quite the same one. Indeed, even where the formal laws are identical,
Principia distinguishes between different kinds of terms. So in Principia we find ‘α ∪ � ’
for class union in ∗22 and ‘R ·∪ S’ for relational union (i.e., a union of ordered
couples) in ∗23. This is despite the fact that “the definitions and propositions of this
number [∗23] are to be exact analogues of those of ∗22” (Whitehead & Russell, 1910,
p. 226).

So Russell cannot have held that different notions should get the same notation
even when the formal laws are identical. In rejecting Peano’s design principle here,
Russell was likely further influenced by Frege’s sharp criticisms of Peano’s conceptual
notations.39 Indeed, as we will see below, the very manuscript wherein Russell first
introduces ‘∨’ for disjunction is written after Russell’s engagement with Frege’s writings
(although Russell seems to have been moving in this direction already; see Urquhart,
1994, p. xvii). Furthermore, Frege explicitly criticizes Peano’s alleged “twofold use”
of symbols for propositional and class notions.40 So if Russell introduced ‘∨’ to
distinguish propositional sum and class sum, as we think he did, the fact that Russell
had just taken extensive notes on Frege’s writings (and Schröder’s writings—Schröder
likewise criticized Peano for alleged dual uses of notation for propositional and class
notions), it is no coincidence (Linsky, 2004).41 All this supports conjecture (B): Russell
introduced ‘∨’ to separate notations for two different notions—propositional sum and
class sum—and was further influenced by Frege’s writings to do this.

Still, ‘∨’ did not appear ex nihilo. Rather, this symbol was a modification of the
symbol ‘∪’. Russell’s apparent practice, even after engaging with Frege’s work, was
that similar notions should have similar notations. Admittedly, Russell never explicitly
lays this down as a design principle for symbolism—he is far less explicit than Peano in
this regard—but we know that Russell was, as he described himself, “fussy” about even
minute aspects of how his writing appeared, such as where punctuation and paragraph
breaks occurred, whether a colon or semicolon should be used, and formatting issues

39 We say “further influenced” by Frege because Russell was already headed in the direction
of separating notations for different notions. By spring 1902 Russell separated ‘∨’ for class
union and ‘∪’ for propositional disjunction before engaging deeply with Frege’s writings in
the summer of 1902.

40 “Not least disturbing, it seems to me, is its falling apart into the calculus of classes and the
calculus of judgments, as it is customary to put it. And this separation is already less marked
in Mr. Peano’s work” (Frege, 1984, p. 242).

41 Nor is it a coincidence that Russell, having just finished his detailed study of Frege (and
of Schröder), writes in Principles a Fregean (Schröderian?) broadside against Peano for
not using separate symbols for propositional and class notions: “The subject of Symbolic
Logic consists of three parts, the calculus of propositions, the calculus of classes, and the
calculus of relations. Between the first two, there is, within limits, a certain parallelism,
which arises as follows: In any symbolic expression, the letters may be interpreted as classes
or as propositions, and the relation of inclusion in the one case may be replaced by that
of formal implication in the other ... A great deal has been made of this duality, and in
the later editions of the Formulaire, Peano appears to have sacrificed logical precision to its
preservation” (Russell, 1903c, sec. 13).
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THE GENEALOGY OF ‘∨’ 19

like italics (Blackwell, 1983). Needless to say, Russell was a consciously conscientious
designer of notations, even if he never made his design principles for notations explicit.

That Russell embraced this design principle can be inferred from his notational
design principles of (1) using similar symbols for similar notions (ones obeying
analogous laws), and of (2) using distinct (even if similar) notations for distinct notions.
There are many examples in Principia supporting that these two design principles were
Russell’s apparent (if implicit) practice. For example, we find ‘⊃’ and ‘⊂’ used in
Principia for implication and class inclusion, respectively. We find ‘2’ and ‘2̇’ for the
cardinal number 2 and the ordinal number 2, respectively. The formal laws governing
these pairs of notions differ; nonetheless, Principia uses similar notations for them
because they are analogous. Crucially, Principia never uses the same symbol for distinct
notions whose formal laws differ.

This fact helps us answer the ‘why’ part of question (2): we maintain that Russell
chose ‘∨’ for disjunction because he was keen to separate symbols for propositional
and class notions because he held that their formal laws differed. In this Russell was
unlike Peano who deliberately wed them together, since he held that the formal laws
that each obeyed were the same. Russell’s choice of ‘∨’ thus mimics Peano’s practice of
using some symbols dually for propositional connectives and class operators: Russell
wants to analogize the notions expressed by ‘∪’ and ‘∨’. But because the analogy was
imperfect, in Russell’s view, Russell chose a new but similar symbol for propositional
disjunction, namely, a sharpened, pointed ‘∪’.

Why did Russell think that ‘∨’ and ‘∪’ obeyed distinct formal laws? In “The Theory
of Implication” (Russell, 1906, p. 190) he remarks:

The analogues, for classes, of ∗5·76·79, are false. Take, e.g., ∗5·78, and
put p = English people, q = men, r = women. Then p is contained
in q or r, but is not contained in q and is not contained in r.

This exact remark is repeated in Principia following ∗4·78·79. And Russell’s distinction
of the propositional and class calculus goes back to Principles. In Section 25 of
Principles (Russell, 1903c), titled “Relation [of the calculus of classes] to propositional
calculus,” Russell gives an example of a formula that “can only be truly interpreted in
the propositional calculus: in the class-calculus it is false.” Russell then says this about
disjunction:

The disjunction is what I shall call a variable disjunction, as opposed
to a constant one: that is, in some cases one alternative is true, in
others the other, whereas in a constant disjunction there is one of
the alternatives (though it is not stated which) that is always true.
Wherever disjunctions occur in regard to propositional functions,
they will only be transformable into statements in the class-calculus
in cases where the disjunction is constant.

Though the vocabulary is unfamiliar, the underlying point is familiar to modern
readers, who might put it as follows: a disjunction of p ∨ q might be such that p
is always true, as when p is replaced by ‘0 = 0’, or might be such that one of p or q
is true, though neither is always true, as when we have p replaced by ‘a is human’ or
‘a is non-human’. The relevance of this passage is that it shows Russell holds that the
formal laws in the calculus of classes and those in the calculus of propositions differ.
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20 LANDON D. C. ELKIND AND RICHARD ZACH

Accordingly, as early as his 1902 manuscripts where ‘∨’ is introduced, Russell wants a
new symbol to distinguish disjunction and class union.

The hypothesis that Russell chose ‘∨’ to logically distinguish disjunction as obeying
different formal laws, while still preserving its analogy with ‘∪’, is further supported
by his letter to Frank Morley, the editor of the American Journal of Mathematics,
concerning the publication of his 1906 “The Theory of Implication.” The symbol ‘∨’
and others were so unfamiliar to Morley that he wrote to Russell about it and noting,
perhaps ominously, that authors occasionally had to bear “any heavy expense for new
type.” Russell wrote back:

Thank you for your letter. I do not think that any new type ought to
be needed, seeing that you have already printed Whitehead’s memoirs.
I suppose the sign ‘∨’ is doubtful. It is very desirable that it should
be pointed, not round; but otherwise it doesn’t matter much whether
it is large or small, though I think it would be better small. Of course
I will share the expense willingly if it is heavy. (Russell, 2014, p. 15)

Perhaps we owe to the editorial largess of Morley the modern symbol for disjunction,
for, as Russell intimates, ‘∨’ does not occur in any of Whitehead’s publications prior
to Russell’s 1906 piece. Consequently, one reckons that Morley needed new type (of
unknown cost) for ‘∨’. This amusing episode in the history of ‘∨’ teaches us that editors
should not scrimp on notations, and further, that an erstwhile boon of co-authorship
was sharing the cost of new type.42

The crucial point, however, is that Russell expresses to Morley the importance of
not printing the disjunction sign as a round symbol. He does not care about its size,
but definitely wants it to be pointed. A clear rationale for this is that Russell wants
readers to readily distinguish disjunction from class union, a distinction that Russell
had been concerned to make going back to Russell (1903c, chap. II). If the exact same
sign was used for both, this could confuse the reader concerning the logical distinction
between disjunction and union. This is why the size, in contrast, does not matter, so
long as the symbol is pointed: it has to be clearly distinguishable on sight from its class
theoretic analogue.

The 1906 paper accounts for the first published use of ‘∨’ for disjunction, but it is
worth mentioning that the first unpublished (and so the very first known) systematic
uses of ‘∨’ for disjunction (and only for disjunction) occur somewhat earlier in
Whitehead and Russell’s writings. Initially, Russell’s practice was the reverse of the
modern one: he used the symbol ‘∨’ for class union and ‘∪’ for “propositional addition”
(disjunction). In his spring 1902 “On Likeness,” (Russell, 1902, p. 440) which was only
published after Russell’s death, we find:43

∗1·1 (R)L(R′) = R,R′εRel E1 → 1 Sε(� = � ∨ �̆ R′ = S̆RS) Df.

42 For an in-depth discussion of the difficulties of typesetting Frege’s much more complex
Begriffschrift and the importance of available type there (see Green, Rossberg, & Ebert,
2015).

43 The definition may be read as, “R and R′ are like relations (order isomorphic)” means that
there exists a relation in the intersection of one–one relations and Ss such that S’s domain �
is the union of the domains of R andR′, and is such thatR′ is equal to the relational product
of S̆, R, and S.
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THE GENEALOGY OF ‘∨’ 21

Fig. 2. Use of ∨ for disjunction in Russell (1903a).

This definition mashes notation from Peano’s Formulaire with some symbols Russell
independently devised in his 1901 “The Logic of Relations” where he insisted on
distinguishing relational products and relational intersections (Russell, 1901b, p. 315).
The key point is that in his 1902 “On Likeness” manuscript, Russell is using the
symbol ‘∨’ for the first time, although not for disjunction. Note that he nonetheless
distinguishes propositional disjunction from its analogues for classes and relations.
Again, this distinction could be maligned or, as Peano would have it, exploited, but
Russell is keen to symbolically separate the two (formally different) notions.

Russell switches the symbols for disjunction and union in his early 1903 manuscript
“Classes,” some of which is now lost. Here we find Russell’s first known use of ‘∨’ for
disjunction (and only for disjunction) (Russell, 1903a, p. 9; Figure 2):

∗12·58 Quad(ϕ) = ( Ef) {(x) ϕx ≡ Fx} ∨ ( Ef) {(x) ϕx ≡ F ′x} Df.

Comments on a subsequent definition show that Russell here uses ‘∨’ only for
disjunction:

∗14·56 a ∪ b = x ε (x ε a ∨ x ε b).

If a and b are classes, a ∪ b is their logical sum, i.e., the class formed
by adding the two. If x is either a member of a or a member of b, then
x is a member of a ∪ b, but not otherwise. The symbol ‘a ∪ b’ is read
‘a or b’... The function a ∪ b is the analogue for classes of p ∨ q for
propositions. (Russell, 1903a, p. 19)

Thus, ‘∨’ for disjunction was born in early 1903 (although Russell used it for class
union in 1902), and ‘∨’ for disjunction made its first public appearance in April 1906.44

This answers the ‘when’ part of question (2). The ‘why’ part, as we saw, stemmed from
Russell’s desire to symbolically distinguish class union and propositional disjunction.

There are two complications about this period between Russell’s spring 1902
“On Likeness” (wherein the symbol ‘∨’ is first introduced) and the 1903 “Classes”

44 Unfortunately, we cannot provide a photograph of the manuscript page where Russell first
defines ‘p ∨ q’ because this page is lost. We know it existed because Russell (1903a, p. 20)
says, “The definition of p ∨ q in ∗4·1 cannot be extended to a class of propositions....” But at
least what remains of the manuscript allows us to give a literal picture of the earliest known
use of ‘∨’ for disjunction in Russell’s corpus.
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22 LANDON D. C. ELKIND AND RICHARD ZACH

Fig. 3. Use of ∨ for disjunction in Russell (1903b).

Fig. 4. Use of ∨ for disjunction in Whitehead (1903).

manuscript. First, as was pointed out to us by Urquhart, in a manuscript contempo-
raneous with the early 1903 “On Classes,” Russell uses ‘∨’ for disjunction (and only
for disjunction) as well. This manuscript consists of notes Russell made on Frege’s
Grundgesetze Vol. II and its attempted solution to the contradiction—hence their title,
“Frege on the contradiction.” In one of the last definitions in this manuscript, Russell
defines class union using propositional sum, symbolized by ‘∨’ (Figure 3):

·56 a ∪ b = x ε(x ε a ∨ x ε b) Df.

Urquhart’s dating of this manuscript is supported by a letter that Russell wrote to
Frege, dated February 20, 1903, thanking him for sending Volume II of Grundgesetze
and asking about its solution to the contradiction. Given the content of these notes, it
is likely they were written at nearly the same time as the “On Classes” manuscript. So
we strictly speaking have two candidates for the first use of ‘∨’ for disjunction—and
imperfect information as to which one came first!

The other complicating factor is that Whitehead also uses ‘∨’ for disjunction (and
only for disjunction) in a manuscript that is also from early 1903, “The Logic of
Propositional Functions” (Whitehead, 1903; Figure 4):

This is a familiar quantification theorem:

∗9·41 (x) ϕx ∨ (y) 	y ⊃ (x) {ϕx ∨ 	x}
(In modern notation: ∀x ϕ(x) ∨ ∀y 	(y) ⊃ ∀x(ϕ(x) ∨ 	(x))). It is not known for
certain when this manuscript was written, though the internal evidence suggests it
was either late 1902 or early 1903.45 Either way, Whitehead’s manuscript dates from

45 See Urquhart’s headnote to Russell (1903a) and page 3 of Russell (1994).
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THE GENEALOGY OF ‘∨’ 23

after “On Likeness” wherein ‘∨’ is first used by Russell (though not for disjunction).
It is difficult beyond that to assign priority for using ‘∨’ for disjunction. The earlier
parts of Russell (1903a) were manuscripts on propositional logic and likely included a
definition of ‘∨’ in terms of ‘⊃’ and ‘∼’. But it is not known whether Whitehead’s or
Russell’s manuscript came first. For this reason, we here give joint credit to Whitehead
and Russell.46

Russell’s use of ‘∨’ for disjunction persists in Russell’s writings and through the 1910
publication of the co-authored Principia. The rest, as they say, is history: the symbol
became widely adopted following Principia’s publication. In the next section, we sketch
how this state of affairs, which persists today, came about.

As a coda to this part of the story, our suggestion that Russell chose ‘∨’ as a
modification of ‘∪’ is further supported by the surprisingly similar genealogy of ‘∧’
and of dots for conjunction. Russell uses ‘∧’ for the first time in “On Likeness” for class
intersection rather than for propositional product, as in the above definition ∗1·1. But
the story curiously diverges in the 1903 “Classes” manuscript: there Russell introduces
‘∧‘m’ for a class-operator—the conjunction of a class m of propositions (∗14·8)—
and similarly introduces ‘∨‘m’ for its dual class-operator—for the disjunction of a
class m of propositions (∗14·81). Despite this, even though Russell also uses ‘∨’ for
propositional disjunction, he uses Peano’s square dots for conjunction as well as scope
by 1903. Russell was thus quite close to also giving us ‘∧’ for conjunction, having used
it briefly himself, but chose an alternative.

Oddly, Russell seems not to have used ‘∧’ for conjunction anywhere else. Why did
Russell not seize this opportunity? A partial explanation is provided by the fact that
the ‘∧’ notation “rarely occurs” (Russell, 1903a, p. 20). So the ‘∧’ symbol was not
much on Russell’s mind even once he introduced it. Perhaps more importantly, Russell
had used dots for conjunction well before he introduced either ‘∨’ or ‘∧’. For example,
in his “Logic of Relations” (Russell, 1901a) Russell uses dots for conjunction and
for scope, reserving concatenation for relational products. In contrast, Peano never
used dots for conjunction: he only used dots for scope (Schlimm, 2021, pp. 118–
119). Peano (1895, sec. 1) instead uses concatenation for propositional conjunction
and ‘∩’ for class intersection. So Russell perhaps inserted dots for conjunction to
distinguish conjunction from relational products. By the time he thought to use ‘∨’ for
anything, he had an established practice of using dots for propositional conjunction.
This squeezed out using ‘∧’ for that notion. This episode similarly shows that Russell
was keen to introduce new symbols to distinguish logical notions—like propositional
and relational “conjunction”—and further supports our hypothesis that this common
feature of Russell’s notational design led to introduction of ‘∨’ rather than any love
for Latin or Leibniz.

46 One might argue that Russell is more likely responsible because Russell in August 1902
drafted material corresponding to Principia’s propositional logic (∗1–∗5) (Moore, 1993, p.
691). Whitehead read this material on propositional logic (and sharply criticized it). It would
not be surprising if Whitehead got the use of ‘∨’ for disjunction from Russell’s 1902 draft.
Additionally, Russell (1948, pp. 137–138) wrote, “In the early part of Principia, Whitehead
contributed the treatment of apparent variables and the notation (x) ϕx. Chapters 10, 11,
and 13 of the Principia are in the main his work.” It would be peculiar if Whitehead had
contributed notation to the propositional logic like ‘∨’ and Russell omitted this point even
while being sure to mention Whitehead’s contribution to the notation of Principia’s quantifier
theory.
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24 LANDON D. C. ELKIND AND RICHARD ZACH

§6. The adoption of ‘∨’. The influence of Principia cemented the use of the Peano–
Russell system of symbols among philosophers. This is true first of all of the logicians
directly influenced by Principia, including Wittgenstein (1921) and Ramsey (1926).
Carnap (1929), a simplified exposition of the type theory of Principia, uses the same
notation, as does Quine (1934). Early philosophy textbooks on logic that adopt a
symbolic approach (such as Langer, 1937; Lewis, 1918; Nagel & Cohen, 1934) also
use the symbols of Principia. Notable exceptions, however, are the Polish logicians of
the Lwów–Warsaw school, who used Polish notation (usually Apq for the alternation
of p and q).

Mathematicians working in the algebra of logic, such as Löwenheim (1915), Skolem
(1920), and Huntington (1933), continued to use the Boole–Peirce–Schröder notation
through the 1930s.47 Beginning in the late 1920s, mathematicians more and more
converted to the notation made popular by Grundzüge der theoretischen Logik (Hilbert
& Ackermann, 1928): overline for negation, ‘→’ for the material conditional, ‘&’ for
conjunction—and ‘∨’ for disjunction.

Hilbert and many of his students had mainly relied on Schröder (1890) as their source
of logic, until 1918, when Hilbert tasked Behmann with investigating the new approach
to the foundations of mathematics of Principia (see Behmann, 1918; Mancosu, 1999).
In his 1917/18 and 1920 lectures on logic (1918, 1920), Hilbert used ‘+’ and ‘×’ (or
just juxtaposition) for conjunction and disjunction (with overline for negation)—the
opposite of the way ‘+’ and ‘·’ are used in the algebraic tradition. Behmann (1922,
1927) was the only one to use this notation in print.48 However, he did this for the
specific purpose of logical calculation, where compactness and ease of manipulation are
important. He generally endorsed the symbolism of Principia on grounds of uniformity,
writing at the beginning of Behmann (1922),

One of the most important requirements for the following investiga-
tion is that we provide a suitable symbolism. It may seem to be a
given that we should replace the old symbolism of Schröder by the
newer one which is currently the most highly regarded and seems to
have the best chance of becoming widely adopted, namely the one of
Principia Mathematica by Whitehead and Russell.49

47 The use of and discussion of algebraic logic was not confined to mathematicians. For
instance, Mally (1912) follows Schröder, but uses different symbols (and distinguishes
between propositional and class operations). Lewis (1918) discusses the “Boole–Schröder
algebra” in the first chapter, as well as the developments of Principia. Jørgensen (1931)
faithfully and exhaustively describes the algebra of logic alongside the work of Frege, Peano,
and Whitehead and Russell, always using the same symbolism as in the original works
discussed. Langer (1937) gives equal space to the class calculus of Schröder and Principia:
“[T]his whole book has been planned to show very precisely that ‘algebra of logic’ and
‘logistic’ are all of a piece...” (p. 18).

48 In fact, Behmann expressed everything using only disjunction (symbolized as juxtaposition)
and negation (overlining).

49 “Eines der wichtigsten Erfordernisse für die folgende Untersuchung ist die Bereitstellung
einer geeigneten Symbolik. Es möchte hier als das Gegebene erscheinen, die alte Schrödersche
Symbolik durch diejenige neuere zu ersetzen, die gegenwärtig am meisten geschätzt wird
und wohl am ehesten Aussicht hat, allgemein durchzudringen, nämlich die der Principia
Mathematica von Whitehead und Russell.” Our translation.
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The treatment of logic in both Hilbert’s lectures and in Behmann’s work is already
axiomatic (as in Principia), and not algebraic.

The idiosyncratic notation of 1920 was replaced, in the lecture notes to the 1921/22
course “Foundations of mathematics” (1922), by the Hilbert–Ackermann notation,
which used the symbols ‘∨’, ‘&’, ‘→’, and overlining for negation. A handwritten note
by Bernays in the copy of Hilbert (1920) filed in the Göttingen mathematics library,
headed “Suggestions for nomenclature [Vorschläge zur Bezeichnung],” reads in part:

X ∨ Y : X or Y (abbreviation) (“∨” is Russell’s symbol, v initial letter
of “vel”).50

It thus seems likely that the motivation to adopt ‘∨’ for disjunction in the Hilbert
school was two-fold: first, to follow Russell’s established usage, and second, because
the symbol is reminiscent of vel.

The first use of this system of logical notation in print is in Hilbert (1923), and
it was adopted in all subsequent publications on logic in Hilbert’s school.51 Hilbert
& Ackermann (1928) proved extremely influential. With it, Hilbert’s way of writing
formulas became widely adopted, especially after Gödel (1930, 1931)—even Skolem
used it exclusively from the late 1930s onward (see, e.g., Skolem, 1935).

Tarski was catholic in his use of notations: he used whatever seemed most
appropriate. In his dissertation on the logic of Principia, he applied the notation
of Principia (Tajtelbaum, 1923). Writing on propositional calculi with Łukasiewicz,
he used Polish notation (Łukasiewicz & Tarski, 1930). Writing for an audience of
set theorists, he used algebraic notation (Kuratowski & Tarski, 1931). Writing for
an audience of philosophers (in Erkenntnis, the journal of the Vienna Circle), he
used the notation of Principia (Tarski, 1935). And when he wrote for his mathematical
colleagues in Vienna (Hahn, Gödel), his logical language used the Hilbert–Ackermann
symbols (Tarski, 1933).52

Bernays (1926) mentions that ‘∨’ is to have the inclusive meaning of the Latin “vel.”
Bernays & Schönfinkel (1928) and Hilbert & Ackermann (1928, p. 4) likewise mention
this, and also note that ‘∨’—typeset in the latter as a lowercase ‘v’—is not to be
confused with exclusive or “in the sense of the Latin ‘aut–aut’.” The identification of
vel with inclusive and aut with exclusive or is already made in Schröder (1890, p. 226),
who however used ‘+’ and never ‘∨’.53

50 “X ∨ Y : X oder Y (Abkürzung) (
”
∨“ Zeichen von Russell, v Anfangsbuchstabe von

”
vel“)”

(Ewald & Sieg, 2013, p. 334). On page 2, where conjunction and disjunction are introduced
asX + Y andX × Y , respectively, marginal annotations record the symbols later preferred:
X & Y , X ∨ Y (Ewald & Sieg, 2013, p. 300).

51 Gentzen (1935) is an exception: he used Russell’s ‘⊃’ for the conditional and ‘→’ for the
sequent arrow. For more on the development of propositional logic in the Hilbert school (see
Zach, 1999).

52 Notably, Tarski (1933) also used ∧ for conjunction; see below.
53 Jennings (1994) argues that it is a myth that aut has the sense of exclusive disjunction.

Incidentally, Schröder (1890) discusses Leibniz extensively, but only cites the Erdmann
edition (Leibniz, 1840) as well as Květ (1857), neither of which mention ‘v’ as a symbol for
disjunction or union.
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26 LANDON D. C. ELKIND AND RICHARD ZACH

Quine’s Mathematical logic of 1940 may be the source of the connection between
‘∨’ and the initial letter of vel in English textbooks.54 He first discusses the exclusive
and inclusive use of ‘or’ in English:

We must decide whether ‘or’ is to be construed in an exclusive
sense, corresponding to the Latin ‘aut’, or in an inclusive sense,
corresponding to the Latin ‘vel’. ...When ‘or’ is used in the inclusive
sense, on the other hand, the compound is regarded as true if at least
one of the components is true; joint truth of the components verifies
the compound. ... In mathematical logic the ambiguity of ordinary
usage is resolved by adopting a special symbol ‘∨’, suggestive of ‘vel’,
to take the place of ‘or’ in the inclusive sense. Alternation is identified
with this usage ... The exclusive use of ‘or’ is not frequent enough
in technical developments to warrant a special name and symbol.
(Quine, 1940, pp. 12–13)

From Mathematical Logic, the idea that aut and vel in Latin represent the exclusive
and inclusive sense of ‘or’, and the use of the symbol ‘∨’ for the latter, percolates into
other introductory logic texts, first Quine’s own Methods of logic:

Latin has distinct words for the two senses of ‘or’: vel for the
nonexclusive and aut for the exclusive. In modern logic it is customary
to write ‘∨’, reminiscent of vel, for ‘or’ in the nonexclusive sense:
‘p ∨ q’. It is this mode of compounding statements, and only this,
that is called alternation. (Quine, 1950, p. 5)

Quine adds a section on “Alternation and duality” to the revised edition of Elementary
logic:

Special symbols are commonly added for ‘or’ and ‘if ’. For ‘p or q’ the
notation is ‘p ∨ q’; here ‘∨’ stands for the Latin vel, which means ‘or’
in the inclusive sense. (Quine, 1965, p. 52)55

As we saw above, though, Quine’s alleged connection between ‘∨’ and vel is likely
spurious: given the textual evidence that we have, the only way this conjecture would
hold good would be if Russell saw Peano’s mention of the “∨ is for vel” story about
Leibniz and, for that reason, Russell decided to use that notation himself. We argued
above that this was a very remote possibility for which there is no surviving evidence,
and that there is a highly plausible alternative explanation that fits with a common
feature of Whitehead and Russell’s notational design practices.

The work of Whitehead and Russell, and of Hilbert and his students, was defining for
the further development of logic in the twentieth century. This gives us an answer to the
further question, “why do we (still) use ‘∨’?” The answer is that we have inherited our
logical notations from two influential research projects, namely that of Principia and the
project of formalizing first-order logic and investigating its properties (completeness,

54 Other early textbooks in English that use symbolic logic (Langer, 1937; Lewis, 1918; Nagel &
Cohen, 1934; Tarski, 1941) do not make this connection even though they use the Principia
notation.

55 The first edition (Quine, 1941) symbolized everything with only negation ‘∼’ and conjunction
‘·’ and introduced alternation as the denial of ‘neither...nor’.
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THE GENEALOGY OF ‘∨’ 27

undecidability, etc.) begun by Hilbert. Both of these used ‘∨’ for disjunction. Textbook
presentations cemented this use further, and Quine’s texts were likely mainly responsible
for the spread of the myth that ‘∨’ abbreviates vel.56

§7. Other symbols. The symbol ‘∨’ is special in that it now is almost universally
used for disjunction. But it has been used for other purposes as well; and other symbols
also have interesting stories.

Ladd-Franklin (Ladd, 1883, pp. 25–26) used ‘∨’ and ‘⊽’ in her dissertation, but
only for the copula, that is, for predications among classes and not for propositional
connectives. So, Ladd says that ‘A∨ B ’ means “A is in part B,” that is, “some A is
B,” and ‘A ⊽ B ’ means “A is-not B,” or “No A is B.” The uses of ‘∨’ and ‘⊽’ thus
correspond to, as Ladd puts it, (Boolean class) “inclusions” and “exclusions” (Ladd,
1883, p. 26). She deals, rather, with an analogue of propositional disjunction from a
Boolean perspective, where the symbol occurs between categorical terms or concepts
rather than between truth-apt formulas.57

Tarski (1933) was one of the first to combine ‘∨’ with ‘∧’ for conjunction. Heyting
(1930) predates this use, however, and is perhaps the first to use ‘∧’ in print as the
symbol for conjunction. The first use of ‘∧’ for conjunction in a textbook is probably
Tarski (1941) (the original Polish and German editions did not use logical symbols).

Sheffer (1913) used ‘∧’ as the symbol for “neither ... nor” (nor), i.e., the logical
connective corresponding to the operator in Boolean algebra which he symbolized ‘|’.
Nicod (1917) used ‘|’ instead for “not both” (nand), and gave a reduction of the
logical constants of Principia to it (the reason being that the resulting definitions of
other connectives turn out to be much simpler than with Sheffer’s nor). This has stuck;
“Sheffer stroke” now universally means nand. We should point out here, however,
that the first published discussion of nand and nor, including proofs that the usual
primitives can be expressed by either, and an axiomatization of Boolean algebra in
terms of them, is neither Sheffer (1913) nor Nicod (1917), but Stamm (1911).58

The “neither ... nor” connective (nor) is now commonly called the Peirce arrow, and
written ‘↓’. However, Peirce himself did not use ‘↓’ for nor, rather, it was introduced
by Quine (1940):

The fact that �(φ ∨| 	)� denies �(φ ∨ 	)� is reflected in ordinary
language, indeed, by the cancellatory ‘n’ which turns ‘either—or’ into
‘neither—nor’. The vertical mark in ‘∨| ’ may be thought of as having
the same cancellatory effect upon the sign ‘∨’; it is like the vertical
mark in the inequality sign ‘=| ’ of arithmetic. (p. 46)

Although Quine himself does not call his ‘∨| ’ the ‘Peirce arrow’, he does credit Peirce
for his work on it in footnote 1 on page 49:

56 This is not to say that alternative notations were not used after, say, 1940. Polish notation,
in particular, remained popular through much of the twentieth century.

57 See Uckelman (2021) for a discussion of Ladd-Franklin’s dissertation, and Wege et al.
(2020) for a discussion of Ladd-Franklin’s hypothesis that commutative operators should be
represented by symmetric symbols.

58 Stamm used ∾ for nand and ∗ for nor. His paper seems to have excited little interest at the
time, or since. Löwenheim belittled the results as “not especially useful” in his review in the
Jahrbuch für die Fortschritte der Mathematik 42.0079.02.
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The definability of denial, conjunction, and alternation in terms of
joint denial [nor, the Peirce arrow] was first pointed out by Sheffer
(1913); and similarly for alternative denial [nand, the Sheffer stroke].
The adequacy of joint denial was known to Peirce in 1880, and both
facts were known to him in 1902; but his notes on the subject remained
unpublished until 1933 (4.12, 4.264).

As Quine remarks, Peirce’s writings on nor had only recently become available. In
the manuscripts mentioned by Quine, Peirce first simply used juxtaposition: “Two
propositions written in a pair are considered both denied. Thus, AB means that
the propositions A and B are both false” (Peirce 1880, p. 13). In Peirce (1902), he
introduced the symbol ‘ ⊱’, which he called “ampheck” (p. 215).

Quine (1940) also gave an origin story for ‘∼’:59

In mathematical logic the denial of a statement is formed by prefixing
the tilde ‘∼’, which is a modified ‘n’ and is conveniently read ‘not’.
(p. 14)

The history recounted in this paper shows that we should be wary of just-so stories
about the origins of notations like Quine tells here. If we had to make a conjecture, we
would agree with Moore (2014, p. lxi) that Russell began using a tilde for negation for
reasons that conform to his well-attested to practice of distinguishing different notions
in his symbolism whenever the formal laws differed, so that ‘∼’ was introduced to
distinguish propositional negation from class (or arithmetic) subtraction.

The two standard symbols for the material conditional (implication) are ‘⊃’ and
‘→’. The latter, as noted above, was introduced by Hilbert (1918, 1920) and become
widely adopted after it was used in the influential Grundzüge textbook (Hilbert &
Ackermann, 1928). The origin of ‘⊃’ is a bit more complicated: Peano introduced ‘ c’
as a symbol for both the conditional and for class containment, as the rotated version
of ‘c’, abbreviating “est consequentia” and “continet,” Latin for “is a consequence of”
and “contains”:

[The sign c means is a consequence of; thus b c a is read b is a
consequence of the proposition a. But we never use this sign.]

The sign cmeans one deduces; thus a cb means the same as b c a.60

The sign cmeans is contained. Thus a cb means the class a is
contained in the class b. ...The signs Λ and chave meanings here
which are slightly different from the preceding, but no ambiguity
will arise, for if propositions are being considered, the signs are read

59 In Quine (1950), he prefers ‘–’ for negation, and ‘p̄’ for negated atoms. Incidentally, Quine
(1950) also seems to be the origin of ‘	’ and ‘⊥’ as constants for truth and falsity: “A
convenient graphic method of imposing interpretations, of the second of the above varieties,
is simply to supplant the letters in a schema by the mark ‘	’ for truths and ‘⊥’ for falsehoods”
(p. 23).

60 “[Signum c significat est consequentia; ita b c a legitur b est consequentia propositionis a. Sed
hoc signo nunquam utimur.]

Signum csignificat deducitur; ita a cb idem significat quod b c a” (Peano, 1889, p. viii;
translation from Peano, 1973, p. 105).
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absurd and one deduces, but if classes are being considered, they are
read empty and is contained.61

Beginning with Peano (1898), the symbol ‘ c’ is replaced with ‘⊃’ but with the same
ambiguous use.62 Russell of course derived his ‘⊃’ from Peano and used it as early
as Russell (1901a). This was a French translation of a 1900 manuscript (Russell,
1900b), published in Peano’s Revue de mathématiques. Therein the symbol was typeset
interchangeably as ‘⊃’ and as ‘ c’.63 Later, including in Principia, Russell had it typeset
as ‘⊃’.

§8. Conclusion. Logicians and historians of logic have suggested various origin
stories for ‘∨’ as the symbol for disjunction. As we saw above, Peano suggests that
Leibniz chose ‘∨’ for the Latin vel. Kneale and Kneale suggest that Peano first chose
it. Cajori attributes the first use to Principia. According to Quine, ‘∨’ stands for, or
at least suggests, the Latin vel. The evidence discussed in this paper indicates that
‘∨’ for disjunction is not a straightforward Latin abbreviation, and that logicians and
historians of logic have often attributed the first use of ‘∨’ for disjunction to the wrong
author or to the wrong text.

The appealing story often told that our ‘∨’ for disjunction comes from the Latin
vel is not well-supported by the textual record. It was Whitehead and Russell who
first systematically used ‘∨’ for disjunction, and it is more likely given Whitehead and
Russell’s notational habits (and Russell’s disgust for Latin) that this choice of notation
was to stress the analogy of propositional addition with class union.

This may all seem like nothing more than logical Trivial Pursuit. However, our
discussion also highlights features of the trajectory of the development of logical
notations that is not trivial. We have seen that the considerations for or against the
choice of a symbol used for ‘or’ were often deeper than just whether or not it serves as

61 “Signum csignificat continetur. Ita a cb significat classis a continetur in classis b. ...Hic signa
Λ et csignificationem habent quae paullo a praecedenti differt; sed nulla orietur ambiguitas.
Nam si de propositionibus agatur, haec signa legantur absurdum et deducitur; si vero de
classibus, nihil et continetur” (Peano, 1889, p. xi; translation from Peano, 1973, p. 108).

62 As with Peano’s ‘∪’ and Leibniz’s ‘v’, one may wonder if Peano came up with ‘ c’ on his own
or if he adopted someone else’s use. In the Formulaire, Peano was very generous with giving
credit and listing the symbols used by others. However, of ‘ε’ and ‘ c’ he wrote, in Peano
(1897, p. 29), that they are symbols that he introduced, just before he surveys symbols others
used for the same purpose. Only sometime around 1899 did he became aware of prior uses
of ‘ c’. He mentions a use of ‘ c’ in the sense of “therefore” between theorems by Abel (1881,
p. 36) in Peano (1899, p. 8). In Peano (1903), he also mentions Gergonne (1816–1817),
who used ‘C’ and ‘

C

’ for “contains” and “is contained in.” Gergonne does not use them as
propositional or class operators, however, but markers of different kinds of subject–predicate
propositions. Schröder (1890, p. 129) independently introduced signs similar to ‘⊂’ and ‘⊃’
as signs for proper concept containment in the same directions we now use them (e.g., “gold
⊂ metal”), and uses ‘⊂=’ for contains-or-equals. His comparison with the ‘<’ symbol suggests
he also was following the design principle that analogous notions should be symbolized with
similar symbols.

63 Russell was displeased with the typesetting of this article, as he complained to Couturat in a
letter of July 27, 1901; see the headnote to Russell (1901a). Curiously, the mishmash of ‘⊃’
and ‘ c’ is still present in the collection Russell (1956, pp. 1–38), despite Russell correcting
and approving that English translation of Russell (1901a). Note that the reprints in Russell
(1993) correct these misprints, and render implication uniformly as ‘⊃’.
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a good mnemonic device (a symbol reminiscent of vel). The mathematical tradition of
the algebra of logic stressed the similarity of class union and propositional (or truth-
value) disjunction with algebraic operations, and thus often chose the same symbols
used in algebra (‘+’ or ‘×’). Other writers were concerned with separating arithmetical
or algebraic notations (or defining them) from more general logical notations. This,
e.g., led Peano to use a different symbol for (logical) union and disjunction than
the algebraic ‘+’, and it led Whitehead and Russell to use distinct symbols for class
union and propositional disjunction. These concerns for mathematical uniformity and
philosophically relevant distinctions, of course, extend to symbols and notions other
than “or.”

The story connects with other important concerns that influenced the development
of a system of notation which, since Cajori penned the passage we opened the paper
with, has become almost standardized. These include the motivations for choosing the
particular set of primitives that have become commonplace, e.g., why we take inclusive
and not exclusive disjunction as a primitive. It also connects with the question of why
and when different approaches to logic (and notation) became more widespread or lost
appeal: the choice of notations of the pioneering writers of the early to mid-twentieth
century provides insight into their influences and methodological commitments. We
have only touched upon these deeper topics, but they suggest fruitful directions for
further research.

If nothing else, we now have an answer to the question: “Why ∨?” We owe it to
Whitehead and Russell, who in spring 1902 wanted a symbol different from Peano’s
(and Grassmann’s) symbol ‘∪’ to distinguish union and propositional disjunction in
his symbolism. After, and in part because Hilbert endorsed Whitehead and Russell’s
choice to use ‘∨’ for disjunction in Principia, the symbol became ubiquitous.
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Abel, N. H. (1881). Oeuvres complètes de Niels Henrik Abel (second edition), Vol. 1.
Christiania: De Grondahl & Son.

Anellis, I. H. (2011). MacColl’s influences on Peirce and Schröder. Philosophia
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Logics of Peirce, Jevons, and Schröder. PhD Thesis, Indiana University.
———. (1991). The life and work of Ernst Schröder. Modern Logic, 1(2–3), 117–139.
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Löwenheim, L. (1915). Über Möglichkeiten im Relativkalkül. Mathematische An-
nalen, 76(4), 447–470. Translated as: On possibilities in the calculus of relatives. In
van Heijenoort 1967, pp. 228–251.

Łukasiewicz, J., & Tarski, A. (1930). Untersuchungen über den Aussagenkalkül.
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