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Abstract

We present a novel approach to defining the mathematical constant π through the infinite den-
sification of a sweeping net, which approximates a circle as the net becomes infinitely dense. By
developing and enhancing notation related to sweeping nets and saddle maps, we establish a rigor-
ous framework for expressing π in terms of the densification process using reverse integration. This
method, inspired by the concept that numbers ”come from infinity,” leverages a reverse integral
approach to model the transition from infinite densification to the finite circle. Our work not only
offers a new perspective on the geometric interpretation of π but also provides insights into reverse
integration techniques and their applications in mathematical analysis.
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1 Introduction

The mathematical constant π plays a fundamental role in geometry, trigonometry, and various fields
of mathematics and physics. Traditionally, π is defined as the ratio of a circle’s circumference to its
diameter. In this paper, we explore a novel approach to defining π based on the concept of a sweeping
net and its infinite densification, leading to the perfect approximation of a circle.

We introduce the idea that numbers ”come from infinity” by utilizing a reverse integration method,
integrating from infinity towards finite values. This approach allows us to model the densification process
of the sweeping net as we move from infinitely distant points to the precise geometry of the circle.

We develop the necessary mechanics and notation related to reverse integration, sweeping nets, and
saddle maps, enhancing the mathematical expressions to provide a rigorous framework. By examining
the process of infinite densification of the sweeping net through reverse integration, we demonstrate how
it results in a perfect circle and derive expressions that connect this process to the definition of π.

This approach offers new insights into the geometric interpretation of π and the behavior of sweeping
nets in approximating continuous curves. It also establishes a foundation for further exploration of
reverse integration techniques in various mathematical contexts.

2 Background and Definitions

2.1 The Sweeping Net

A sweeping net is a discrete approximation of a continuous curve or surface, constructed by connecting
points with straight lines or simple curves. As the density of points increases, the sweeping net provides
a finer approximation of the target curve or surface. In the context of a circle, a sweeping net can be
used to approximate the circumference by connecting points along the circle’s perimeter.

2.2 Infinite Densification

Infinite densification refers to the process of increasing the number of points in the sweeping net in-
definitely while decreasing the distance between adjacent points to zero. As the net becomes infinitely
dense, it converges to the exact representation of the continuous curve or surface—in this case, a perfect
circle.

2.3 Reverse Integration

Reverse integration is an integration method where the integration is performed from infinity towards
a finite value, rather than from zero or a finite lower limit towards infinity or a higher finite value. This
concept aligns with the idea that numbers ”come from infinity,” and it allows us to model processes that
begin at an infinite state and progress towards a finite state.

2.4 Saddle Maps

A saddle map is a function or mapping that describes a surface with a saddle point—a point where the
surface curves upward in one direction and downward in another. In our study, saddle maps are used in
conjunction with sweeping nets to model and approximate complex geometric structures.

3 Infinite Densification of the Sweeping Net as a Perfect Circle

In this section, we demonstrate that the infinite densification of the sweeping net results in a perfect
circle. We develop the mathematical framework and notation to express this densification process and
its connection to π through reverse integration.

3.1 Parametrization of the Circle

Consider the unit circle C in R2, defined by the equation:

x2 + y2 = 1.
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We can parameterize the circle using the angle θ:
x(θ) = cos θ,

y(θ) = sin θ,

θ ∈ [0, 2π).

3.2 Constructing the Sweeping Net

We construct a sweeping net by selecting N points along the circle. Instead of indexing the points from
k = 0 to N − 1, we index them in reverse order from infinity, recognizing the concept of numbers coming
from infinity. Let k ∈ {∞,∞− 1,∞− 2, . . .}, and define:

θk =
2π

k
, k → ∞−.

As k approaches infinity from above, θk approaches zero.
The points (xk, yk) are given by:

xk = cos θk, yk = sin θk.

3.3 Reverse Integration for Arc Length

We consider the arc length of the circle from θ = ∞ back to a finite angle θ. Using reverse integration,
we define the arc length S(θ) as:

S(θ) =

∫ θ

∞

(
ds

dθ

)
dθ,

where ds
dθ is the derivative of the arc length with respect to θ.

Since for a circle:
ds

dθ
= r,

we have:

S(θ) =

∫ θ

∞
r dθ = r (θ −∞) = −∞.

This suggests that we need to refine our approach to properly handle the reverse integration from infinity.

3.4 Refining Reverse Integration Approach

To effectively use reverse integration, we consider the arc length differential in terms of a variable sub-
stitution that allows us to integrate from infinity towards a finite value.

Let us define a new variable λ = 1
θ , so as θ → 0+, λ → ∞, and as θ increases, λ decreases.

Now, we can express θ in terms of λ:

θ =
1

λ
.

The differential dθ becomes:

dθ = − 1

λ2
dλ.

Substituting into the arc length integral:

S(θ) =

∫ λ= 1
θ

λ=∞

(
ds

dθ

)
dθ = −

∫ 1
θ

∞
r
1

λ2
dλ.

Now, integrating:

S(θ) = −r

∫ 1
θ

∞

1

λ2
dλ = −r

[
− 1

λ

]λ= 1
θ

λ=∞
= −r

(
− 1

1
θ

+ 0

)
= −r (−θ) = rθ.

Thus, we recover the standard expression for the arc length as a function of θ, even when integrating
from infinity using our substitution.
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3.5 Interpretation in Terms of Infinite Densification

The substitution λ = 1
θ corresponds to indexing the points of the sweeping net from infinity:

k = λ =
1

θ
.

As λ → ∞, θ → 0+, which corresponds to points densely packed near θ = 0. As we decrease λ, we
move away from infinity towards finite values of θ, effectively densifying the net from infinity towards
the circle.

4 Expressing π from Infinite Densification and Sweeping Net
Notation

We now develop the language and notation to express π in terms of the infinite densification of the
sweeping net and the associated reverse integration approach.

4.1 Defining the Sweeping Net Functions with Reverse Indexing

We define the sweeping net points in terms of λ:

x(λ) = cos

(
1

λ

)
, y(λ) = sin

(
1

λ

)
, λ ≥ Λ0,

where Λ0 is a sufficiently large value corresponding to the minimal angle θ0 = 1
Λ0

.

4.2 Arc Length in Terms of λ

Starting from the reverse integration expression:

S(θ) = rθ,

and substituting θ = 1
λ , we obtain:

S(λ) =
r

λ
.

The total circumference C of the circle corresponds to θ = 2π, thus:

C = S (θ = 2π) = r · 2π = 2πr.

Alternatively, considering λ = 1
2π :

S

(
λ =

1

2π

)
= r · 2π = 2πr.

4.3 Expressing π through Reverse Integration

Using the expression for S(λ), we can define π in terms of an integral from infinity:

2πr = S

(
λ =

1

2π

)
= −r

∫ 1
2π

∞

1

λ2
dλ = −r

∫ 1
2π

∞
λ−2 dλ.

Evaluating the integral:

2πr = −r

[
− 1

λ

]λ= 1
2π

λ=∞
= −r

(
− 1

1
2π

+ 0

)
= −r (−2π) = 2πr.

This confirms the expression and shows that π can be represented through reverse integration from
infinity.
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4.4 Connection to the Sweeping Net Densification

As we consider λ → ∞, the points (x(λ), y(λ)) approach (1, 0), and the sweeping net becomes infinitely
dense near θ = 0. By integrating from infinity, we capture the process of densification starting from
infinitely distant points (at λ = ∞) and moving towards finite points along the circle.

5 Enhanced Notations and Embellishments

To further develop the language and notation, we introduce enhanced mathematical expressions and
symbols.

5.1 Notation for Reverse Sweeping Net

Let us denote the reverse sweeping net as Nλ, where λ indexes the points from infinity towards finite
values:

Nλ =

{
(x(λ), y(λ))

∣∣∣∣ x(λ) = cos

(
1

λ

)
, y(λ) = sin

(
1

λ

)
, λ ≥ Λ0

}
.

As λ → ∞, Nλ becomes infinitely dense near θ = 0.

5.2 Integral Representation Using Reverse Integration

The circumference C of the unit circle can be expressed using reverse integration:

C = −
∫ λ= 1

2π

λ=∞

1

λ2
dλ =

[
1

λ

]λ= 1
2π

λ=∞
=

1
1
2π

− 0 = 2π.

This integral represents the accumulation of arc length from infinity towards the finite value corre-
sponding to θ = 2π.

5.3 Connection to the Arc Length Differential

We can generalize the arc length differential in terms of λ. Since:

dθ = − 1

λ2
dλ,

and

ds = r dθ = −r
1

λ2
dλ,

we have:
ds = −rλ−2 dλ.

Thus, the total arc length from infinity to a finite λ is:

S(λ) =

∫ λ′=λ

λ′=∞
ds = −r

∫ λ

∞
λ′−2 dλ′ =

r

λ
.

5.4 Defining π Using Reverse Integration

By setting λ = 1
θ , and considering the full circle with θ = 2π, we have:

π = lim
λ→ 1

2π

( r

λ

) ∣∣∣∣
r=1

= lim
λ→ 1

2π

(
1

λ

)
= 2π.

Dividing both sides by 2, we obtain:

π = lim
λ→ 1

2π

(
1

2λ

)
.

This expression connects π directly to the reverse integration from infinity in terms of λ.
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6 Mechanics of Reverse Integration

We now develop the necessary mechanics for reverse integration, ensuring the mathematical rigor of our
approach.

6.1 Justification of Reverse Integration

Reverse integration is justified in contexts where the integral converges, and proper substitutions are
made to transform the limits accordingly. In our case, by substituting λ = 1

θ and ensuring that the
integrand decays sufficiently as λ → ∞, the integral remains well-defined.

6.2 Convergence of the Integral

The integral: ∫ λ

∞
λ′−2 dλ′

converges because as λ′ → ∞, the integrand λ′−2 → 0, and the integral over [∞, λ] yields a finite value.

6.3 Handling Infinite Limits in Integration

When dealing with infinite limits, we use the concept of improper integrals. The integral from infinity
to a finite value is defined as: ∫ a

∞
f(x) dx = lim

L→∞

∫ a

L

f(x) dx.

In our case:∫ λ

∞
λ′−2 dλ′ = lim

L→∞

∫ λ

L

λ′−2 dλ′ = lim
L→∞

(
− 1

λ′

)λ

L

= − 1

λ
+ lim

L→∞

1

L
= − 1

λ
.

Since 1
L → 0 as L → ∞, the integral evaluates to − 1

λ , as previously used.

6.4 Ensuring Mathematical Consistency

By carefully applying substitutions and handling infinite limits appropriately, we ensure that our reverse
integration approach is mathematically consistent and rigorous.

7 Conclusion

Through the infinite densification of the sweeping net and the application of reverse integration, we have
demonstrated that the net converges to a perfect circle. By developing and enhancing the notation related
to sweeping nets, saddle maps, and reverse integration, we established a novel approach to defining π in
terms of this densification process.

This work provides a new perspective on the geometric interpretation of π, illustrating how numbers
”come from infinity” through reverse integration. The enhanced notations and mathematical expressions
offer a robust framework for further exploration and potential applications in various mathematical and
scientific contexts, particularly in areas where reverse integration techniques are applicable.
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