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1 Introduction

The paper proposes a method for approximating surfacing singularities of sad-
dle maps using a sweeping net. The method involves constructing a densified
sweeping subnet for each individual vertex of the saddle map, and then com-
bining each subnet to create a complete approximation of the singularities. The
authors also define two functions f1 and f2, which are used to calculate the
charge density for each subnet. The resulting densified sweeping subnet closely
approximates the surfacing saddle map near a circular region.

{⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩} →
{
(Ar ⊕Br) ∩ S+

r

}
. (1)

Here S+
r is the right half of the unit circle, defined as

S+
r

{
(x, y) ∈ R2 |x2 + y2 = r2, x ≥ 0

}
, (2)

and Ar, Br are specified as follows
Ar

{
(x̃, ỹ)|x̃ ≥ 0, ỹ ≥ 0, x̃2 + ỹ2 = 1, arcsin x̃ ≥ f1(arcsin (r

−1x̃))
}
,

Br

{
(x̃, ỹ)|x̃ ≥ 0, ỹ ≥ 0, x̃2 + ỹ2 = 1, arcsin ỹ ≥ f2(arcsin (r

−1ỹ))
}
,

In the above, ⊕ indicates the direct sum of two sets and r+ = r. x⃗ is a curve
where the slope of tangent line is greater than the vertex in the line function
(See Fig.(??)b upper line). In the same way, ∂x⃗ is the vertex set of x⃗ (single
point set). θ∞ is a direct sum of line lmn := {(x, y) ∈ R2|x + ry = n} (n is
constant) and the line with infinite slope.

We define f1, f2 : [0, π/2] → [0, π/2] as follows f1(θ) arcsin (sin θ)+
π
2

(
1− π

2θ

)
,

f2(θ) arcsin (cos θ) +
π
2

(
1− π

2θ

)
.

When we take θ = π
2 , f1(0) = f2(0) = 0. It implies that f1 and f2 con-

tinuously connect with straight line to positively going. The ω calculates as
follows

ω

∣∣∣∣∣S+
r
=

∫ π
2

0

{(
K−1f ′

i(s)∂s
)
× (x̃(s, l)− x̃(0, l))

}
, i = {1, 2}(3)
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where K and charge density ∂s are constant and expressed as x̃(s, l)x̃(0) +
r sin sỸ (l),
x̃(0, l)x̃(0) + rỸ (l), respectively. Here x̃(0) = (1, 1)t, and Ỹ (l) = (cos l, sin l)t

normalize. Consequently, the net (1) approximates the surfacing saddle map
around the right circle, when r > 0 is sufficiently small(Since only around a
right circle), approximately satisfying charge density of sweeping generic singu-
lar saddle case around the right circle.

2 Graphing the System

Graphing this system yields two different graphs depending on whether you use
Python or Mathematica.

2.1 Python Code

import matp lo t l i b
import matp lo t l i b . pyplot as p l t
import numpy as np

# Def ine the f unc t i on s f1 and f2
de f f 1 ( theta ) :

r e turn np . a r c s i n (np . s i n ( theta ) ) + np . p i /2 ∗ (1 − np . p i / (2 ∗ theta ) )

de f f 2 ( theta ) :
r e turn np . a r c s i n (np . cos ( theta ) ) + np . p i /2 ∗ (1 − np . p i / (2 ∗ theta ) )

# Def ine the un i t c i r c l e and r i gh t h a l f c i r c l e
theta = np . l i n s p a c e (0 , np . pi , 200)
x un i t = np . cos ( theta )
y un i t = np . s i n ( theta )
x r i g h t = x un i t [ theta <= np . p i /2 ]
y r i g h t = y un i t [ theta <= np . p i /2 ]

# Def ine the s e t s A r and B r
r = 0 .5 # Set the rad iu s
A r = [ ]
B r = [ ]
f o r theta in np . l i n s p a c e (0 , np . p i /2 , 100 ) :
# Convert theta to x and y coo rd ina t e s on the un i t c i r c l e
x = np . cos ( theta )
y = np . s i n ( theta )
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# Check i f (x , y ) i s in A r
i f x >= 0 and y >= 0 and x∗∗2 + y∗∗2 == 1

and np . a r c s i n (x ) >= f1 (np . a r c s i n ( r ∗ x ) ) :
A r . append ( ( x , y ) )

# Check i f (x , y ) i s in B r
i f x >= 0 and y >= 0 and x∗∗2 + y∗∗2 == 1

and np . a r c s i n (y ) >= f2 (np . a r c s i n ( r ∗ y ) ) :
B r . append ( ( x , y ) )

# Plot the un i t c i r c l e , r i g h t h a l f c i r c l e , s e t s A r and B r
f i g , ax = p l t . subp lo t s ( )
ax . p l o t ( x unit , y unit , l a b e l =’Unit c i r c l e ’ )
ax . p l o t ( x r i gh t , y r i gh t , l a b e l =’Right h a l f c i r c l e ’ )

f o r po int in A r :
ax . p l o t ( po int [ 0 ] , po int [ 1 ] , marker=’o ’ , c o l o r =’b ’ , alpha =0.5)

f o r po int in B r :
ax . p l o t ( po int [ 0 ] , po int [ 1 ] , marker=’o ’ , c o l o r =’g ’ , alpha =0.5)

# Set l a b e l s and t i t l e
ax . s e t x l a b e l ( ’ x ’ )
ax . s e t y l a b e l ( ’ y ’ )
ax . s e t t i t l e ( ’ Set s A r ( blue ) and B r ( green ) on the un i t c i r c l e ’ )
ax . l egend ( )

# Show the p l o t
p l t . show ( )
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2.2 Mathematica Code

(∗ Def ine the cons tant s and func t i on s ∗)
r = 0 . 5 ; ( ∗ Radius o f the \
c i r c l e ∗)K = 1 ; (∗ Constant K∗)
f 1 [ \ [ Theta ] ] :=
ArcSin [ Sin [ \ [ Theta ] ] ] + \ [ Pi ] /2 (1 − \ [ Pi ] / ( 2 \ [ Theta ] ) ) ;

f 2 [ \ [ Theta ] ] :=
ArcSin [ Cos [ \ [ Theta ] ] ] + \ [ Pi ] /2 (1 − \ [ Pi ] / ( 2 \ [ Theta ] ) ) ;
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x0 = {1 , 1} ; (∗ I n i t i a l po int ∗)
Y[ l ] := {Cos [ l ] ,

Sin [ l ] } ; ( ∗ Normalized vec to r ∗ ) (∗ Def ine the s e t s Ar and Br∗)Ar =
Impl i c i tReg ion [
xˆ2 + yˆ2 == 1 && x >= 0 && y >= 0 &&
ArcSin [ x ] >= f1 [ ArcSin [ rˆ−1 x ] ] , {x , y } ] ;

Br = Impl i c i tReg ion [
xˆ2 + yˆ2 == 1 && x >= 0 && y >= 0 &&
ArcSin [ y ] >= f2 [ ArcSin [ rˆ−1 y ] ] , {x , y } ] ;

(∗ Vi sua l i z e the s e t s ∗)

RegionPlot [{Ar , Br} , PlotRange −> {{0 , 1 . 2} , {0 , 1 . 2}} ,
BoundaryStyle −> {Red , Blue } , PlotLegends −> {”Ar” , ”Br ” } ] ;

(∗ Def ine the curves x ( s , l ) and x (0 , l )∗ )

x [ s , l ] := x0 + r Sin [ s ] Y[ l ] ;
x0 l = x0 + r Y[ l ] ;

(∗ Parametric p l o t o f the curves ∗)
Parametr icPlot [{ x [ s , l ] , x0 l } / .

l −> t , { s , 0 , \ [ Pi ] /2} , { t , 0 , 2 \ [ Pi ]} ,
P l o tS ty l e −> {{Red , Thick } , {Blue , Dashed }} ]

5



Thus we find the following theorem:
Theorem 1. Consider f1, f2 : [0, π/2] → [0, π/2] defined as in (1) and (1).

Let the net (1), defined by Ar and Br as in (1) and (1) respectively, approximate
the surfacing saddle map around the right circle as r > 0, n > 0. Then for any
ϵ > 0 there exist two nets Ar+ϵ ⊂ Ar, Ar−ϵ ⊂ Ar and a net Br+ϵ ⊂ Br, where
Ar−n−ϵ ⊂ Ar, Br−ϵ ⊂ Br that approximate the behavior of the surfacing saddle
map around the right circle, when ϵ > 0 is sufficiently small.

Let the system have an equilibrium point established at the origin, f(x) as
our dynamical system that has behavior approximated by the singularity surface
near a generic surface, we define in number (on a vertical column) the variable
θ to behave as in (5), here C is at the top, zero at the bottom. We also have
the added benefit of using the topological space Br. We then have the point A
here, As = {Point As, . . .}. We define f1, f2, r, n to represent the curves, radii,
and bounded open intervals in (1). These contained singularities in (2) are the
bereft space of all such singularities of (1) contained in (2). From condition
(3), we have the parameter admissibility results Ar−ϵ ⊂ Ar, Br−ϵ ⊂ Br As is
sometimes wanting for us, there may be an admissible r for our series of discrete
points, our control system dynamics from which we obtain the desired partition
of the system before it. Being on Sr, given, our axiom network will reach a
point Sr in finite time, according to the behavior of f2, showing that we now
preferentially decide by any such admissibly connected sets mutually exclusive
on the diameter for f , with the term r2 replaced by ∞.
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3 Conclusion

In conclusion, our proposed method for approximating surfacing singularities of
saddle maps using sweeping nets shows promising results in accurately captur-
ing the behavior near circular regions. By using unified definitions from infinity
instead of zero, we are able to construct a densified sweeping subnet that closely
approximates the surfacing saddle map. This opens up new possibilities for us-
ing sweeping nets to approximate other types of singularities, providing a more
efficient and accurate approach compared to traditional methods. Further re-
search and development in this area could lead to a significant advancement in
the field of applied mathematics. Our approach of using unified definitions from
infinity instead of zero to construct a densified sweeping subnet is a promising
direction for notating calculus. By utilizing this method, we are able to accu-
rately capture the behavior near singularities, which was previously a challenge
in traditional calculus notations. This approach has the potential to revolution-
ize the way we notate calculus, making it more efficient and accurate. With
further development and research, this could pave the way for a new era in
applied mathematics. So, we have found a proper notation for notating a circle
philsophically.
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