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Abstract

In previous work, Formalizing Mechanical Analysis Using Sweeping Net Methods I, sweeping net
methods have been extended to complex analysis, relying on the argument of complex functions defined
on the unit circle. In this paper, we reformulate these methods purely within a real-valued and geometric
framework, avoiding the use of complex analysis. By redefining the sweeping net constructs and the
associated theorems using real functions and geometric interpretations on the unit circle, we demonstrate
how singularities and their approximations can be effectively analyzed without the need for imaginary
numbers. This approach provides intuitive geometric insights and broadens the applicability of sweeping
net methods in mathematical analysis.
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1 Introduction

Sweeping net methods have proven to be powerful tools for approximating and analyzing singularities in
various mathematical contexts. Traditionally, these methods have been extended to complex analysis, uti-
lizing the argument of complex functions defined on the unit circle. However, complex analysis involves
abstract concepts such as imaginary numbers, which can sometimes obscure the geometric intuition behind
the phenomena being studied.

In this paper, we aim to reformulate the sweeping net methods without relying on complex analysis.
By utilizing real-valued functions and geometric constructs, we redefine the key concepts and theorems in
a manner that maintains their effectiveness while enhancing their accessibility and interpretability. This
approach not only preserves the analytical power of sweeping nets but also provides new perspectives on
singularities and their approximations.

The theorems are written without complex analysis and their complex analytical correllaries are then
written afterward.

2 Background and Definitions

2.1 Sweeping Nets and Geometric Constructs

A sweeping net is a geometric method used to approximate curves, surfaces, or more complex structures
by constructing a network of lines or curves that ”sweep” over the domain of interest. These nets are formed
by considering sets of points that satisfy certain conditions defined by real-valued functions.

2.2 Definitions of Functions and Sets

We define two real-valued functions f1 and f2 as follows:

f1(θ) = arcsin(sin(θ)) +
π

2

(
1− π

2θ

)
, (1)

f2(θ) = arcsin(cos(θ)) +
π

2

(
1− π

2θ

)
, (2)

where θ ∈
(
0,

π

2

]
.

We also define the right half of the unit circle S+
r as:

S+
r =

{
(x̃, ỹ) ∈ R2

∣∣ x̃2 + ỹ2 = 1, x̃ ≥ 0
}
. (3)

The sets Ar and Br are defined as:

Ar =
{
(x̃, ỹ) ∈ S+

r

∣∣ ỹ ≥ 0, arcsin(x̃) ≥ f1
(
arcsin

(
r−1x̃

))}
, (4)

Br =
{
(x̃, ỹ) ∈ S+

r

∣∣ ỹ ≥ 0, arcsin(ỹ) ≥ f2
(
arcsin

(
r−1ỹ

))}
. (5)

These sets represent regions on the unit circle where the functions f1 and f2 satisfy certain inequalities,
effectively capturing the ”sweeping” behavior over the domain.
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3 Comparison of Definitions

In prior work involving complex analysis, sweeping nets were defined using the argument of complex functions.
Specifically, for a complex function f defined on the unit circle T, the sets A and B were defined using
conditions on arg(f(eiθ)).

In this paper, we focus on real-valued functions and geometric constructs. Our definitions of f1 and f2
involve real trigonometric functions, and the sets Ar and Br are subsets of the Euclidean plane R2. This
approach avoids the use of complex numbers and provides a more direct geometric interpretation.

4 Rewritten Theorems Without Complex Analysis

To align the theorem numbering with the latter documents, we renumber the theorems starting from Theorem
9. We adjust all references accordingly.

4.1 Theorem 9: Approximation of Singularities on the Unit Circle Using Sweep-
ing Nets

Theorem 4.9. Let S ⊂ R2 be a surface defined in a neighborhood of the unit circle S = {(x̃, ỹ) ∈ R2 |
x̃2 + ỹ2 = 1}. Suppose S has an isolated singularity at a point (x̃0, ỹ0) ∈ S. Then, the sweeping net
constructed from the sets Ar and Br as defined in (4) and (5) approximates the behavior of S near (x̃0, ỹ0).

Proof. Since S has a singularity at (x̃0, ỹ0), we analyze the behavior of S near this point using the functions
f1 and f2. The sets Ar and Br include points where these functions satisfy certain inequalities involving
arcsin(x̃) and arcsin(ỹ).

By carefully selecting f1 and f2 to reflect the local behavior of S near the singularity, the sweeping net
Ar ∪Br captures the ”sweeping” pattern around (x̃0, ỹ0). Thus, it provides an effective approximation of S
in the vicinity of the singularity.

4.2 Theorem 10: Equivalence of Sweeping Nets Under Angular Shifts

Theorem 4.10. Let S and T be surfaces defined in a neighborhood of S, and suppose that their angular
properties along S differ by a constant angle ∆θ. Then, the sweeping nets constructed from S and T using
the sets Ar and Br are topologically equivalent, and the net approximates the continuation of S along S.

Proof. If S and T differ by a constant angular shift ∆θ, then T can be obtained from S via rotation by
∆θ. Since the sweeping nets AS

r and AT
r (and similarly BS

r and BT
r ) are constructed based on the angular

positions of points, a constant shift ∆θ results in a corresponding rotation of these nets.
Therefore, the sweeping nets for S and T are topologically equivalent, as the structural relationships

between points are preserved under rotation. This equivalence allows the net constructed from T to approx-
imate the continuation of S along S.

4.3 Theorem 11: Mapping of Singularities Under Smooth Transformations

Theorem 4.11. Let Φ : R2 → R2 be a smooth (continuously differentiable) mapping, and let S be a surface
defined in a neighborhood of the unit circle S. Then, the sweeping net constructed from S ◦Φ−1 approximates
the behavior of S near the mapped singularities under Φ.

Proof. The mapping Φ transforms points in R2 smoothly, carrying over the geometric structures of S. If S
has a singularity at (x̃0, ỹ0), then Φ maps this point to Φ(x̃0, ỹ0).

By considering S◦Φ−1, we construct a new surface in the transformed coordinates. The sweeping nets Ar

and Br defined with respect to S◦Φ−1 capture the behavior of S near the original singularity, now represented
in the new coordinate system. Thus, the sweeping net approximates S near the mapped singularity under
Φ.
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4.4 Theorem 12: Sweeping Nets and Maximum Values of Real Functions

Theorem 4.12. Let f : S → R be a continuous, non-constant real-valued function defined on the unit
circle S. Then, f attains its maximum value on S. The sweeping net constructed using the level sets where
f(x̃, ỹ) ≥ M for some threshold M captures the behavior of f near points where f reaches local maxima.

Proof. The unit circle S is a compact set in R2, and since f is continuous on S, it attains its maximum value
at some point (x̃max, ỹmax) ∈ S.

By selecting a threshold M close to the maximum value of f , the set:

C = {(x̃, ỹ) ∈ S | f(x̃, ỹ) ≥ M}

includes points near where f reaches its maximum. Constructing the sweeping net based on these level
sets allows us to focus on the regions where f is large, effectively capturing the behavior of f near its local
maxima.

4.5 Theorem 13: Symmetry of Sweeping Nets Under Reflection

Theorem 4.13. Let S be a surface defined in {(x̃, ỹ) ∈ R2 | ỹ ≥ 0} and continuous on its closure, satisfying
S(x̃,−ỹ) = S(x̃, ỹ). Then, S can be extended to R2 by reflection across the x̃-axis, and the sweeping net
constructed from S on S is symmetric with respect to the x̃-axis.

Proof. The condition S(x̃,−ỹ) = S(x̃, ỹ) implies that S is symmetric across the x̃-axis. By extending S to
negative ỹ via this reflection, we obtain a surface defined on all of R2.

The sweeping nets Ar and Br, constructed based on the values of x̃ and ỹ, will exhibit the same symmetry.
For every point (x̃, ỹ) in the net, the reflected point (x̃,−ỹ) also satisfies the conditions defining the net.
Therefore, the sweeping net is symmetric with respect to the x̃-axis.

5 Additional Theorems and Extensions

5.1 Theorem 14: Convergence of the Densified Sweeping Net

Theorem 5.1. As the density of the sweeping net increases (i.e., the mesh size approaches zero), the
constructed net (Ar ⊕Br) ∩ S+

r converges uniformly to the surface near the singularity.

Proof. The functions f1 and f2 are continuous and differentiable on
(
0,

π

2

]
. As the mesh size δθ decreases,

the maximum change in fi(θ) over δθ is proportional to δθ. Therefore, for any ϵ > 0, we can choose δθ
sufficiently small so that the difference between the net approximation and the actual surface is less than ϵ
uniformly over S+

r . This establishes uniform convergence.

5.2 Theorem 15: Extension to General Singularities

Theorem 5.2. The sweeping net method can be extended to approximate singularities of arbitrary ana-
lytic surfaces near singular points, provided that the surface can be locally approximated by functions with
continuous second derivatives.

Proof. Near a singular point (x̃0, ỹ0), an analytic surface S can be approximated using a Taylor expansion up
to second order. This local quadratic approximation captures the essential behavior of S near the singularity.

By adjusting the functions f1 and f2 to match the curvature and geometry of S near (x̃0, ỹ0), we can
construct sweeping nets that effectively approximate S in this neighborhood. The continuity of the second
derivatives ensures that the approximation remains valid in a small region around the singularity.
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6 Conclusion

By redefining the sweeping net methods using real-valued functions and geometric constructs, we have
demonstrated that complex analysis is not essential for approximating and analyzing singularities on the
unit circle. The theorems presented provide a solid foundation for these methods within a purely real-valued
framework.

This approach enhances the geometric intuition behind sweeping nets and broadens their applicability
to various fields of mathematical analysis. Future research can build upon these results to explore more
complex surfaces and higher-dimensional analogues.

Acknowledgments

The author would like to thank the mathematical community for the ongoing discussions and contributions
that have inspired this work.

References

[1] Stewart, J. (2015). Calculus: Early Transcendentals (8th ed.). Cengage Learning.

[2] Munkres, J. R. (2000). Topology (2nd ed.). Prentice Hall.

[3] Weintraub, S. H. (2011). Galois Theory (2nd ed.). Springer.

[4] Bartle, R. G., & Sherbert, D. R. (2011). Introduction to Real Analysis (4th ed.). Wiley.

[5] Emmerson, P. (2023). Formalizing Mechanical Analysis Using Sweeping Net Methods.
doi:10.5281/zenodo.13937391

5

https://doi.org/10.5281/zenodo.13937391


7 Introduction

Formalizing Mechanical Analysis Using Sweeping Net Methods II: Written Using Complex Analysis

8 Extensions to Complex Analysis and the Unit Circle

In this section, we extend the previously established theorems to the context of complex analysis, focusing on
functions defined on the unit circle in the complex plane. By considering the unit circle as the boundary of
the unit disk in the complex plane, we explore how sweeping net methods can be applied to study singularities
and other analytical properties of complex functions.

8.1 Complex Functions on the Unit Circle

Let f : C → C be a complex function that is analytic in the open unit disk D = {z ∈ C | |z| < 1} and
continuous on its closure D = {z ∈ C | |z| ≤ 1}. The unit circle T = {z ∈ C | |z| = 1} serves as the boundary
of D. We are interested in analyzing the behavior of f on T, particularly at points where f may exhibit
singularities or unusual analytic behavior.

8.2 Extension of Definitions

We consider a parametrization of the unit circle T by z(θ) = eiθ, where θ ∈ [0, 2π). The sweeping net
methods can be adapted by considering angular sweeps around the circle.

Define functions F1 and F2 analogous to f1 and f2 in the real case:

F1(θ) = arg
(
f
(
eiθ

))
+

π

2

(
1− π

2θ

)
, (6)

F2(θ) = arg
(
f
(
eiθ

))
+

π

2

(
1− π

2(2π − θ)

)
, (7)

where θ ∈ (0, π] for F1 and θ ∈ [π, 2π) for F2.
We define the sets A and B on the unit circle as:

A =
{
eiθ ∈ T | θ ∈ [0, π], arg

(
f
(
eiθ

))
≥ F1(θ)

}
, (8)

B =
{
eiθ ∈ T | θ ∈ [π, 2π), arg

(
f
(
eiθ

))
≥ F2(θ)

}
. (9)

These sets represent points on the unit circle where the argument of f satisfies certain conditions, mim-
icking the sweeping net conditions in the complex plane.

8.3 Theorem 9: Approximation of Singularities on the Unit Circle

Theorem 8.1. Let f be analytic in D and continuous on D. Suppose f has an isolated singularity at a point
z0 ∈ T. Then, the sweeping net constructed from the sets A and B as defined in (8) and (9) approximates
the behavior of f near z0 on the unit circle.

Proof. Since f is analytic in D and continuous on D, except possibly at z0, where it may have a singularity,
we can analyze the behavior of f near z0 by examining the argument arg(f(eiθ)) as θ → θ0, where z0 = eiθ0 .

The functions F1 and F2 are constructed to capture the behavior of the argument of f in regions ap-
proaching θ0 from either side. The conditions defining the sets A and B ensure that we consider points
where the argument of f meets or exceeds certain thresholds, effectively tracing out the ”sweeping” of the
argument around the singularity.

By carefully choosing the functions F1 and F2 to match the growth or oscillation of arg(f(eiθ)) near θ0,
we approximate the behavior of f near the singularity. The sweeping net formed by A∪B thus provides an
approximation of the function’s behavior on the unit circle near z0.
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8.4 Theorem 10: Extension to Winding Numbers and Analytic Continuation

Theorem 8.2. Let f and g be analytic functions on D continuous on D, and suppose that their arguments
along the unit circle differ by an integer multiple of 2π, i.e., there exists n ∈ Z such that arg(f(eiθ)) =
arg(g(eiθ)) + 2πn. Then, the sweeping nets constructed from f and g are topologically equivalent, and the
net approximates the analytic continuation of f along T.

Proof. The winding number of f around the origin as θ goes from 0 to 2π is given by the total change in
arg(f(eiθ)) divided by 2π.

Given that arg(f(eiθ)) = arg(g(eiθ)) + 2πn, the functions f and g differ by a rotation in the complex
plane. The sweeping nets constructed from f and g will thus trace out paths that are rotations of each other,
preserving the topological properties.

Since the sweeping nets are determined by the arguments of the functions, and these arguments differ by
a constant multiple of 2π, the sets A and B for f and g are mapped onto each other by a rotation. Therefore,
the sweeping nets are topologically equivalent.

This equivalence allows us to use the sweeping net constructed from g to approximate the behavior of f ,
effectively achieving an analytic continuation of f along the unit circle.

8.5 Theorem 11: Mapping of Singularities under Conformal Mappings

Theorem 8.3. Let ϕ : D → D be a conformal mapping, and let f be analytic in D and continuous on
D. Then, the sweeping net constructed from f ◦ ϕ−1 on T approximates the behavior of f near the mapped
singularities under ϕ.

Proof. Conformal mappings preserve angles and the local behavior of analytic functions. If f has a singularity
at z0 ∈ D, then under the conformal mapping ϕ, this singularity is mapped to ϕ(z0) ∈ D.

The composition f ◦ ϕ−1 is analytic in ϕ(D) and continuous on its closure, except possibly at ϕ(z0).
By constructing the sweeping net using f ◦ ϕ−1, we are effectively translating the analysis of f under the
mapping ϕ.

Since conformal mappings preserve local behavior, the sweeping net constructed from f ◦ ϕ−1 captures
the behavior of f near z0, transformed appropriately under ϕ. Thus, the net approximates the behavior of
f near the mapped singularities.

8.6 Applications and Examples

To illustrate these theorems, consider the function f(z) = 1
z−z0

, which has a simple pole at z0 ∈ T. The

argument of f on T near z0 behaves like arg(f(eiθ)) ∼ − arg(eiθ − z0). The sweeping net constructed from
f will reflect this behavior, allowing us to approximate the function near the pole.

Alternatively, consider the Blaschke product:

B(z) =

n∏
k=1

z − ak
1− akz

,

where |ak| < 1. The function B is analytic in D and maps T to the unit circle. The sweeping net
constructed from B can be used to study its behavior on T, particularly the zeros and mapping properties.

8.7 Extension to Cauchy Integrals and Singular Integral Equations

The sweeping net methods can also be applied to the study of Cauchy-type integrals over the unit circle:

f(z) =
1

2πi

∫
T

ϕ(ζ)

ζ − z
dζ,

where ϕ is a given function on T. Such integrals arise in solving boundary value problems and singular
integral equations.

By discretizing the integral using the sweeping net approach, we can approximate the integral and analyze
the behavior of f near singularities on T.
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8.8 Further Theorems and Generalizations

The adaptation of sweeping net methods to complex analysis opens up possibilities for new theorems re-
garding analytic functions, singularities, and mappings in the complex plane. Potential areas of exploration
include:

• The Riemann Mapping Theorem: Using sweeping nets to construct approximate conformal map-
pings from simply connected domains to the unit disk.

• Boundary Behavior of Analytic Functions: Studying cluster sets and angular limits of analytic
functions on the unit circle using sweeping nets.

• Singularities of Meromorphic Functions: Extending the methods to functions with essential
singularities or poles inside the unit disk and analyzing their impact on the boundary behavior.

• Applications to Fourier Series and Harmonic Analysis: Analyzing functions on the unit circle
via their Fourier coefficients and exploring connections with sweeping nets.

Each of these areas provides opportunities to derive new theorems and deepen our understanding of
complex analysis through the lens of sweeping net methods.

8.9 Theorem 12: Sweeping Nets and the Maximum Modulus Principle

Theorem 8.4. Let f be a non-constant analytic function in D. Then, the maximum modulus of f is attained
on T. The sweeping net constructed from the modulus |f(eiθ)| captures the behavior of f near points where
|f | reaches local maxima on the unit circle.

Proof. According to the Maximum Modulus Principle, a non-constant analytic function f in D cannot attain
its maximum modulus inside D; thus, the maximum occurs on T.

By constructing a sweeping net based on the modulus |f(eiθ)|, we can identify regions on T where |f |
attains larger values. The net can be defined by setting a threshold function M(θ) and considering the set:

C =
{
eiθ ∈ T | |f(eiθ)| ≥ M(θ)

}
.

By analyzing C, we can approximate the behavior of f near its maximum modulus points, providing
insights into the angular distribution of |f | on T.

8.10 Theorem 13: Schwarz Reflection Principle and Sweeping Nets

Theorem 8.5. Let f be analytic in D ∩ {Im(z) ≥ 0} and continuous on D ∩ {Im(z) ≥ 0}, with f(z) = f(z)
for all z in the domain. Then, f can be extended to an analytic function in D by reflection, and the sweeping
net constructed from f on T is symmetric with respect to the real axis.

Proof. The Schwarz Reflection Principle states that under the given conditions, f extends to an analytic
function in D by defining f(z) = f(z) for Im(z) < 0.

The sweeping net constructed from f on T will thus exhibit symmetry with respect to the real axis. That
is, for each point eiθ on T, the behavior of f at eiθ is reflected across the real axis.

This symmetry can be seen in both the modulus and argument of f(eiθ), which satisfies |f(eiθ)| = |f(e−iθ)|
and arg(f(e−iθ)) = − arg(f(eiθ)).

Therefore, the sweeping net captures this symmetry, and the analysis of f can be focused on [0, π] with
the understanding that the behavior in [π, 2π) is the reflection of that in [0, π].

8.11 Computational Implementation and Visualization

We can utilize computational tools like Python with libraries such as numpy and matplotlib to visualize
the sweeping nets for complex functions on the unit circle.
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import numpy as np
import matp lo t l ib . pyplot as p l t

# Def ine the complex funct i on f ( z )
de f f ( z ) :

re turn 1 / ( z − z0 )

# Singu la r point on the unit c i r c l e
theta0 = np . pi / 3 # Adjust as needed
z0 = np . exp (1 j ∗ theta0 )

# Def ine the sweeping net
# Avoid theta = 0 and theta = 2∗ pi to prevent d i v i s i o n by zero
ep s i l on = 1e−8 # Small value to o f f s e t theta from 0 and 2∗ pi
theta = np . l i n spa c e ( eps i l on , 2 ∗ np . p i − eps i l on , 1000)

z = np . exp (1 j ∗ theta )
f z = f ( z )

# Compute the argument o f f ( z )
a r g f z = np . angle ( f z )

# Def ine the thre sho ld func t i on s F1 and F2
# Use np . where to s a f e l y handle d i v i s i o n
F1 = np . z e r o s l i k e ( theta )
F2 = np . z e r o s l i k e ( theta )

# For theta in (0 , p i ] , compute F1
th e t a 1 i nd i c e s = ( theta > 0) & ( theta <= np . pi )
theta1 = theta [ t h e t a 1 i nd i c e s ]
F1 [ t h e t a 1 i nd i c e s ] = a r g f z [ t h e t a 1 i nd i c e s ] + (np . p i / 2) ∗ (1 − (np . p i / (2 ∗ theta1 ) ) )

# For theta in [ pi , 2∗ pi ) , compute F2
th e t a 2 i nd i c e s = ( theta >= np . pi ) & ( theta < 2 ∗ np . p i )
theta2 = theta [ t h e t a 2 i nd i c e s ]
F2 [ t h e t a 2 i nd i c e s ] = a r g f z [ t h e t a 2 i nd i c e s ] + (np . p i / 2) ∗ (1 − (np . p i / (2 ∗ (2 ∗ np . p i − theta2 ) ) ) )

# Def ine the s e t s A and B
A ind i c e s = th e t a 1 i nd i c e s & ( a r g f z >= F1)
B ind i c e s = th e t a 2 i nd i c e s & ( a r g f z >= F2)

# Create the p lo t
p l t . f i g u r e ( f i g s i z e =(8 , 8) )
p l t . p l o t (np . r e a l ( z ) , np . imag ( z ) , ’k− ’ , l i new idth =0.5 , l a b e l =’Unit Ci rc l e ’ )
p l t . s c a t t e r (np . r e a l ( z [ A ind i c e s ] ) , np . imag ( z [ A ind i c e s ] ) , c o l o r =’blue ’ , s=5, l a b e l =’Set A’ )
p l t . s c a t t e r (np . r e a l ( z [ B ind i c e s ] ) , np . imag ( z [ B ind i c e s ] ) , c o l o r =’green ’ , s=5, l a b e l =’Set B’ )
p l t . p l o t (np . r e a l ( z0 ) , np . imag ( z0 ) , ’ ro ’ , l a b e l =’ S i ngu l a r i t y $z 0$ ’ )

p l t . x l abe l ( ’Re( z ) ’ )
p l t . y l abe l ( ’ Im( z ) ’ )
p l t . t i t l e ( ’ Sweeping Net f o r $ f ( z ) = \\ f r a c {1}{z − z 0}$ on the Unit Ci rc l e ’ )
p l t . ax i s ( ’ equal ’ )
p l t . legend ( )
p l t . g r id (True )
p l t . show ( )

This script visualizes the sweeping net for f(z) = 1
z−z0

on the unit circle, highlighting the sets A and B
that approximate the behavior near the singularity at z0.
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import numpy as np
import matp lo t l ib . pyplot as p l t
from mp l t oo l k i t s . mplot3d import Axes3D , proj3d
from matp lot l ib . patches import FancyArrowPatch

# Def ine a c l a s s f o r 3D arrows
c l a s s Arrow3D(FancyArrowPatch ) :

de f i n i t ( s e l f , xs , ys , zs , ∗args , ∗∗kwargs ) :
FancyArrowPatch . i n i t ( s e l f , ( 0 , 0 ) , ( 0 , 0 ) , ∗args , ∗∗kwargs )
s e l f . v e r t s3d = xs , ys , zs

de f do 3d pro j e c t i on ( s e l f , r endere r=None ) :
xs3d , ys3d , zs3d = s e l f . v e r t s3d
xs , ys , zs = proj3d . p ro j t rans f o rm ( xs3d , ys3d , zs3d , s e l f . axes .M)
s e l f . s e t p o s i t i o n s ( ( xs [ 0 ] , ys [ 0 ] ) , ( xs [ 1 ] , ys [ 1 ] ) )
return np . min ( zs )

# Def ine the complex funct i on with a s i n g u l a r i t y at z0 on the unit c i r c l e
z0 = np . exp (1 j ∗ np . p i / 3) # Example s i n g u l a r i t y at e ˆ( i ∗ pi /3)
de f f ( z ) :

re turn 1 / ( z − z0 )

# Parametr izat ion o f the unit c i r c l e
theta = np . l i n spa c e (0 , 2∗np . pi , 1000)
z = np . exp (1 j ∗ theta )

# Evaluate f on the unit c i r c l e
f z = f ( z )

# Compute arguments f o r v i s u a l i z a t i o n
a r g f z = np . angle ( f z )

# Def ine F1 and F2 func t i on s f o r sweeping net v i s u a l i z a t i o n
ep s i l on = 1e−10 # To avoid d i v i s i o n by zero
F1 = a r g f z + np . pi /2 ∗ (1 − np . p i / (2 ∗ np .maximum( theta , ep s i l on ) ) )
F2 = a r g f z + np . pi /2 ∗ (1 − np . p i / (2 ∗ np .maximum(2∗np . p i − theta , ep s i l on ) ) )

# V i sua l i z a t i on setup
f i g = p l t . f i g u r e ( f i g s i z e =(12 , 12))
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ax = f i g . add subplot (111 , p r o j e c t i on =’3d ’ )

# Plot the unit c i r c l e in 3D
ax . p lo t (np . cos ( theta ) , np . s i n ( theta ) , np . z e r o s l i k e ( theta ) , ’k− ’ , l a b e l =’Unit Ci rc l e ’ )

# Plot the funct i on va lues in 3D
ax . p lo t (np . r e a l ( f z ) , np . imag ( f z ) , a rg f z , ’ r − ’ , l a b e l =’ f ( z ) ’ )

# Plot arrows r ep r e s en t i ng F1 and F2
f o r t in np . l i n spa c e (0 , np . pi , 5 0 ) :

z t = np . exp (1 j ∗ t )
end x , end y = np . r e a l ( z t ) + 0.1∗np . cos (F1 [ i n t ( t /2/np . p i ∗1000 ) ] ) , np . imag ( z t ) + 0.1∗np . s i n (F1 [ i n t ( t /2/np . p i ∗1000) ] )
a = Arrow3D ( [ np . r e a l ( z t ) , end x ] , [ np . imag ( z t ) , end y ] , [ 0 , 0 ] ,

mutat ion sca l e =20, lw=1, a r rowsty l e=”−|>”, c o l o r=”blue ”)
ax . add a r t i s t ( a )

f o r t in np . l i n spa c e (np . pi , 2∗np . pi , 5 0 ) :
z t = np . exp (1 j ∗ t )
end x , end y = np . r e a l ( z t ) + 0.1∗np . cos (F2 [ i n t ( ( t−np . p i )/2/np . p i ∗1000 ) ] ) , np . imag ( z t ) + 0.1∗np . s i n (F2 [ i n t ( ( t−np . p i )/2/np . p i ∗1000) ] )
a = Arrow3D ( [ np . r e a l ( z t ) , end x ] , [ np . imag ( z t ) , end y ] , [ 0 , 0 ] ,

mutat ion sca l e =20, lw=1, a r rowsty l e=”−|>”, c o l o r=”green ”)
ax . add a r t i s t ( a )

# Adding the s i n g u l a r i t y marker
ax . s c a t t e r (np . r e a l ( z0 ) , np . imag ( z0 ) , 0 , c o l o r =’purple ’ , s=50, l a b e l =’ S i ngu l a r i t y at z0 ’ )

# Labe l l i ng the s i n g u l a r i t y
ax . text (np . r e a l ( z0 ) , np . imag ( z0 ) , 0 . 1 , ”Pole at z0 ” , c o l o r =’purple ’ )

# Aes the t i c s f o r the p lo t
ax . s e t x l a b e l ( ’Re( z ) ’ )
ax . s e t y l a b e l ( ’ Im( z ) ’ )
ax . s e t z l a b e l ( ’ Argument o f f ( z ) ’ )
ax . s e t t i t l e ( ’ Sweeping Net V i s ua l i z a t i on on the Unit C i r c l e with Labels ’ )
ax . legend ( )

# Add legend f o r blue and green arrows
ax . p lo t ( [ ] , [ ] , c o l o r =’blue ’ , l a b e l =’F1 : 0 to ’ )
ax . p lo t ( [ ] , [ ] , c o l o r =’green ’ , l a b e l =’F2 : to 2 ’ )
ax . legend ( l o c=’upper l e f t ’ , bbox to anchor =(1 , 1) )

# Equal aspect r a t i o f o r proper v i s u a l i z a t i o n
ax . s e t box a spe c t ( ( 1 , 1 , 1 ) )

p l t . show ( )
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8.12 Conclusion

By extending sweeping net methods to complex analysis and the unit circle, we have developed new tools for
approximating and analyzing singularities of analytic functions. The theorems presented demonstrate how
these methods can be applied to study the boundary behavior of functions, conformal mappings, and other
fundamental concepts in complex analysis.

These extensions showcase the versatility of sweeping net methods and open avenues for further research
in complex function theory, potential theory, and computational complex analysis.
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