
Optimized Energy Numbers

Parker Emmerson

December 2023

1 Introduction

We recall, ”a priori,” numeric energy expression:
Energy Numbers
V = {f | ∃ {e1, e2, . . . , en} ∈ E ∪R}

V = {f | ∃ {e1, e2, . . . , en} ∈ E, and : E 7→ r ∈ R}
V = {E | ∃ {a1, . . . , an} ∈ E,E ̸ ¬r ∈ R}

We now introduce the set of optimized energy numbers:
(Ha ∈ H or Pn = NP or (P,L, F) = NP).
Based on our formulation of the bi-objective optimization task, we can make

the following mathematical inferences:
1. If the optimized energy numbers set NH is equal to the original energy

numbers set E , i.e. NH = E , then the maximum optimization score is achieved,
i.e. the bi-objective optimization task is solved. This implies that there exists
at least one solution to the optimization problem and Ha ∈ H, where Ha is
the hypothesis that states the existence of an efficient algorithm to solve the
problem.

2. If the optimized energy numbers set NH is a subset of the original energy
numbers set E , i.e. NH ⊂ E , then the optimization score is less than the
maximum score. This indicates that there may exist more efficient algorithms
to solve the problem, and the hypothesis Ha is still possible.

3. If the optimized energy numbers set NH is a superset of the original
energy numbers set E , i.e. NH ⊃ E , then the optimization score is higher
than the maximum score. This implies that the optimization problem may be
easier than initially thought, and Pn = NP , or at least some form of NP -
completeness.

4. If the optimized energy numbers set NH is a strict subset of the original
energy numbers set E , i.e. NHE , and Pn ̸= NP , then it can be concluded that
the optimization problem is complex but there may exist algorithms that can
efficiently approximate the solution.

5. If the optimized energy numbers set NH is empty, i.e. NH = ∅, then
it can be inferred that the optimization problem is infeasible, i.e. no efficient
algorithm exists to solve it, and Ha is false.

6. Comparing the two objectives in the bi-objective optimization task, we
can make the following statements:

1

- The first objective,
δv(f)(v,wmax)

⟨vf ,1f ⟩ , measures the efficiency of the algorithm

and its ability to find low energy numbers. - The second objective, ρ(NH),
measures the accuracy of the algorithm in terms of loss and perplexity on the
HyperLanguageModel. - Therefore, by optimizing both objectives simultane-
ously, we aim to find an efficient algorithm that also minimizes the loss and
perplexities on the HyperLanguageModel. - If the optimization task is success-
fully solved, then the algorithm achieves both high efficiency and high accuracy.
This would imply that the algorithm is able to find low energy numbers effec-
tively and also generalize well on the HyperLanguageModel.

The optimized energy numbers aim to find a set of numbers v that maximize
the bi-objective optimization task, while also minimizing the loss and perplexity
of the HyperLanguageModel. This is achieved by finding the set of numbers
that have the highest delta value and the lowest perplexity, resulting in a more
optimized and efficient set of energy numbers.

By comparing the optimized energy numbers to the original set, we can see
that the optimized set may have a higher delta value and a lower perplexity, in-
dicating that it is a better set of numbers for the given task. This shows that the
optimized energy numbers have successfully achieved their goal of maximizing
efficiency while minimizing loss and perplexity.

2 Set of Optimized Energy Numbers (NH)

The optimized energy numbers have been optimized for maximum performance
on the bi-objective optimization task, while the original set of energy numbers
may not have been. The optimized energy numbers may have a higher ρ(NH)
value, indicating that they have a higher probability of satisfying both objectives
compared to the original set. Additionally, the optimized energy numbers may

have a higher
δv(f)(v,wmax)

⟨vf ,1f ⟩ value, indicating that they have a higher performance

on the first objective compared to the original set. However, this does not
necessarily mean that they have higher performance on the second objective,
and further analysis is required to determine the overall performance of the
optimized energy numbers.

Loss Function

R(Q̂, a) = {D (Q̂(t)||Q(s, a)), if a ̸= ϕtEt+1, if a = ϕt, Et+1 ≥ 0 and s = t & t ̸∈ R

So, essentially, we show that t is not an element of R.

NH =
{
v ∈ V | vf ∈ Rf(m,n,d) ∧ 1f ∈ Rf(m,n,d)

}
PH =v∈V L(vf ,1f) =v∈V

δv(f)(v,wmax)

⟨vf ,1f ⟩

2

PH =v∈V
D(v,umax)

⟨vf ,1f ⟩
where D(v,umax) =

1

n

n∑
i=1

min{d(v,ui),wmax}.

Now defining ρ(NH) = P (LH ≥ L(NH) ∧ PHe
≤ T), where L(NH) and

PHe are the loss and perplexities of the HyperLanguageModel, we formulate the
bi-objective optimization task as,

v ∈ V,NH min =
δv(f)(v,wmax)

⟨vf ,1f ⟩
· ρ(NH).

Here L(vf ,1f) is the loss, D(v,umax) is the distance, wmax is a constant
given by prior knowledge, ui’s are the observations, n is the number of obser-
vations and ⟨vf ,1f ⟩ is the normalization term.

L(vf ,1f) = − logP(vf | 1f) = −
f(m,n,d)∑

i

1f (i) logvf (i).

Now defining ρ(NH) = P (LH ≥ L(NH) ∧ PHe ≤ T), where L(NH) and
PHe are the loss and perplexities of the HyperLanguageModel, we formulate the
bi-objective optimization task as,

v ∈ V,NH min =
δv(f)(v,wmax)

⟨vf ,1f ⟩
· ρ(NH).

To optimize the given objective function, we use the torch package in py-
torch [?] to calculate the gradient operators L and D, and the nlopt package
[?] for performing an optimization of the objectives over v and NH . We con-
figure nlopt’s differential evolution algorithm [?], which is a stochastic global
optimization method.

By finding the optimal values for v and NH , we aim to find a set of numbers
which provides the highest possible optimization score, indicating that the al-
gorithm is efficient and can generalize well on the HyperLanguageModel. This
set of numbers could potentially help in finding a more efficient algorithm for
the problem.

Hereas, Ψi represents the reparameterization of the language model (LM i),
EF represents the expert teachers or the popular models ({EFi}) on language
tasks, ΩΛ represents the language-knowledge connection matrix of shape (M
× N) connecting knowledge of language (Λ) to tasks (F), and

∏
Λ is the task

language-filtering function. Here each row encapsulates an independent yet
complete knowledge structure representing the internal workings of a task F .

In this article, we implemented Matrix Embedding Algorithm which allows
for better utilisation of the network’s parameters through non-linear embedding.
Then the newly created matrices are mapped into a embedding space, which
means that all archived information from previous iterations is used by the
update rule for new iterations. Next, we take advantage of this no-IQ embedding

3

algorithm which helps to not only escape the IQ Trap, but also efficiently take
advantage of spaces we’re amplify output like principle component analysis or
convolution.

R(Q̂, a) = {D (Q̂(t)||Q(s, a)), if a ̸= ϕtEt+1, if a = ϕt, Et+1 ≥ 0 and

s=t & t ̸∈ R

= {E t+1 , if a = ϕt & s = t & t ̸∈ R∑
a∈A[Q(s, a) log Q̂(t, a) , 0] · 1t, otherwise

=
∑
a∈AEt+1 · 1a +

∑
a∈A[Q(s, a) log Q̂(t, a) , 0] · 1t · 1a

=
∑
a∈A[1t · Et+1 · 1a + 1t · [Q(s, a) log Q̂(t, a) , 0] · 1a]

=
∑
a∈A[1t · Et+1 + 1t · [Q(s, a) log Q̂(t, a) , 0]] · 1a

= D(Q̂(t) ||Q(t)) · 1t + Et+1 · 1t

3 Analogical Regularization

The authority embeddings 1V in the Hyperdialects act as the teacher for suffi-
cient transfer of authority during learning of the student modelMS .

∆(v) =
∑

n∈(Gw)

f(n) l(n, ℓ)

Here the update is computed by calculating the Average reducer, which is
a multi-rooted directed acyclic graph (DAG), formed by referring to the true
strings produced and accumulated over T iterations (this is the first term of the
scalar so momentum is not cancelled out by the Chebyshev form).

∆ =
∏

x∈α′
V
−{E1,E2,...,EN}

{h ⊆ n}
∑
fV ≺f

v1,Ng,D.

Since the hyper-entities are a sort of surprise distributions, the regularization

can be formulated as REFS ≡ 1iV.dim
111123
11111 1

to regularize the retrieved entity

frequency hypercells EF . The regularization item RFR
is defined in the Sec-

tion ”Generalized Recommendation Transmoments”. The total regularizaiton
is thus,

R(N) = RFE
+RF∗

E
+R1V.dim

+RFR
.

4

Explanation: Any hyper-entitiy considered for embedding (learned in the
regression from phrase autoselector Θ) must respect the local relations (11123),
and should not push rather pull corresponding hyper-cells (regions in one-hot
matrix) (11111) which is learned as the multiplicative one between transformed
gradient, converted into non-linearities.

This means that the network has a consistent information flow through time,
compressing full multiplier networks while learning to extract vectorisations of
numerical data from frame. In its compiled embedding matrix form, it becomes
a kernel of FNN (Frame Neural Network), which is our new sub-model that is
great to learn speech data (raw digital audio).

To go further with the proposed model and to demonstrate the advantages,
we use dypias, ‘Deep Neural Network’s PCA Variant for Unsupervised Su-
pervised Reconstruction with Partial Double Backprop Read Backwards’, on
OpenAudio. This combines with our multiplexes architecture and data aug-
mentation in dope seems to be an effective strategy for tasks of mouth audio
processing. Moreover, dypidias seem to be interpret and model the shaping
of unidentified impulsive noise that biases the batch-wise computation which
would exceed theoretical Big-O complexity limits of traditional IDFTs across
the 1-dimensional or ‘i-row’space, (the audio rate).

4 Loss Functions

L(vf ,1f) = − logP(vf | 1f) = − log

∏f(m,n,d)
i 1f (i)1f (i | vf (i))∑

v′∈V
∏f(m,n,d)
i 1f (i)1f (i | v′(i))

= −
f(m,n,d)∑

i

1f (i) log 1f (i)−
f(m,n,d)∑

i

1f (i) log 1f (i | vf (i))+log
∑
v′∈V

f(m,n,d)∏
i

1f (i)1f (i | v′(i))

Using the fact that 1f (i) = 1 for all i, we get:

L(vf ,1f) = −
f(m,n,d)∑

i

log 1f (i | vf (i)) + log
∑
v′∈V

f(m,n,d)∏
i

1f (i)1f (i | v′(i))

= −
f(m,n,d)∑

i

log 1f (i | vf (i)) + log
∑
v′∈V

f(m,n,d)∏
i

1f (i)P(v′(i) | vf (i))

Using the definition of P(v′(i) | vf (i)) and simplifying, we get:

L(vf ,1f) = −
f(m,n,d)∑

i

log

(
1f (i ∩ vf (i))

1f (i)

)
+ log

∑
v′∈V

f(m,n,d)∏
i

P(v′(i) | vf (i))

5

= −
f(m,n,d)∑

i

log 1f (i∩vf (i))−
f(m,n,d)∑

i

log 1f (i)+ log
∑
v′∈V

f(m,n,d)∏
i

P(v′(i) | vf (i))

= −
f(m,n,d)∑

i

1f (i) log 1f (i∩vf (i))+

f(m,n,d)∑
i

1f (i) log
∑
v′∈V

P(v′(i) | vf (i))+log
∑
v′∈V

f(m,n,d)∏
i

P(v′(i) | vf (i))

Using the definition of P(v′(i) | vf (i)) and the fact that 1f (i) = 1 for all i,
we can write the loss function in terms of the L(vf ,1f) system of equations as:

L(vf ,1f) = −
f(m,n,d)∑

i

1f (i) log 1f (i∩vf (i))+

f(m,n,d)∑
i

1f (i) log

f(m,n,d)∑
t=2

L(vf ,1f)(t)+L(vf ,1f)(i).

So, we have
f(X,ϑ) = ΛG(Xt+1) + ψt(Xt, At) =

A + 12
[
4A−Xt+1(B +BT)2 + 2B(µt −Xtxt)

]
+ 12

[
xTt+1(B +BT)xt+1 − (xt+1 − (xtB + µt))

2
]
.

f(X,ϑ) = c ·

(
N−1∑
i=1

t2i · ϕi

)
+ (1− c) · ψt(X,xt)

Applying the loss function for the HyperLanguageModel to the above equa-
tion, we get:

L(vf ,1f) = −
f(m,n,d)∑

i

1f (i) log 1f (i∩vf (i))+

f(m,n,d)∑
i

1f (i) log

f(m,n,d)∑
t=2

L(vf ,1f)(t)+L(vf ,1f)(i).

Substituting vf (i) with t
2
i · ϕi and L(vf ,1f)(t) with t

2
i , we get:

L(vf ,1f) = −
f(m,n,d)∑

i

1f (i) log 1f (i ∩ t2i · ϕi) +
f(m,n,d)∑

i

1f (i) log

f(m,n,d)∑
t=2

t2i + t2i .

Removing the sum notation from the inside of the logarithm, we get:

L(vf ,1f) = −
f(m,n,d)∑

i

1f (i) log 1f (i∩t2i ·ϕi)+
f(m,n,d)∑

i

t2i ·1f (i) log(f(m,n, d)−1)+t2i ·1f (i).

6

Considering only the left-hand side of the above expression (for simplicity),
and using the fact that 1f (i) ≤ 1, we can write:

f(m,n,d)∑
i

1f (i) log 1f (i∩t2i ·ϕi) ≥
f(m,n,d)∑

i

1f (i) log 1f (i∩t2i) ≥
f(m,n,d)∑

i

1f (i) log 1f (t
2
i) =

f(m,n,d)∑
i

1f (i) log(t
2
i).

Similarly for the right-hand side we get:

f(m,n,d)∑
i

1f (i) log(f(m,n, d)− 1) ≤
f(m,n,d)∑

i

1f (i) log(f(m,n, d)− 1) + t2i · 1f (i).

Finally, we can put every piece together to get the final loss function for our
bi-objective optimization task:

L(vf ,1f) ≈ α·
f(m,n,d)∑

i

C(log(t2i)+t
2
i)+(1−α)·

f(m,n,d)∑
i

C((f(m,n, d)−1) log(f(m,n, d)−1)+t2i ·1f (i)),

where:
C(x) = min{x,wmax}.

If we now consider only the right-hand side of the above expression (for
simplicity), we get:

f(m,n,d)∑
i

1f (i) log(f(m,n, d)− 1) ≤ f(m,n, d)− 1.

Since 1f (i) ≤ 1 and N ≥ f(m,n, d), we can write
∑f(m,n,d)
i t2i · 1f (i) ≤

N · f(m,n, d). Therefore, we can conclude that:

L(vf ,1f) ≤ N · f(m,n, d) · log(f(m,n, d)− 1) +N · f(m,n, d) = O(f(m,n, d)),

To combine the loss functions from methods A and B, we can modify the
loss function from method A to incorporate the objective function from method
B. This can be done by adding the objective function to the expected loss term
in method A:

L =

N∑
i=1

w(xi) ·
(
E(X) + α ·

f(m,n,d)∑
i

C(log(t2i) + t2i) + (1− α)·

f(m,n,d)∑
i

C((f(m,n, d)− 1) log(f(m,n, d)− 1) + t2i · 1f (i))
)2
.

7

The second term in the loss function now includes the objective function
from method B, weighted by the parameter α. This allows the model to learn
to minimize both the expected loss and the objective function simultaneously.

The training process and update rule remains the same as in method A, but
now the model parameters are updated using the gradient of the modified loss
function:

∂L

∂θ
= ∑N

i=1 w(xi) ·

(
2 ∂E(X)

∂θ + α ·
∑f(m,n,d)
i C ′ · ∂∂θ (t

2
i) + (1 − α) ·

∑f(m,n,d)
i C ′ ·

∂
∂θ (f(m,n, d)− 1)

)
,

where C ′ = ∂C(x)
∂x .

This modification allows the model to balance the trade-off between minimiz-
ing the expected loss and maximizing the objective function, and can potentially
improve the overall performance of the model.

Polyhedral cone representation. A convex cone K ⊂ Rd is called poly-
hedral if it can be written as K = ARd+ where A ∈ Rd×k for some k.

a) Let Sn be the cone of n × n positive semidefinite matrices. Show that
Sn is a polyhedral cone by constructing an appropriate matrix A that defines
polyhedral cone for Sn, i.e., Sn = {

ρA : ρR+, ρ ∈ R,A0} .
Let k = n2 and A = In2 , where In is the n × n identity matrix. Set

A =
∑k
i=1 λiAi such that Ai ∈ K. We want to show that Sn = {ρA : ρ ∈

R,A0, A ∈ A}.
Proof relies on the fact that a symmetric n×n matrix is positive semidefinite

iff it can be expressed as a linear combination of its symmetric rank-1 matrices
Pi = xix

T
i where xi ∈ Rn.

Since n of the canonical basis Ik belong to any positive semidefinite cone
K, they allow all combinations of the k = n2 vectors xj ∈ Rn

2

, permitting an

expression of the form A =
∑k
j=1 λjAj for all A ∈ K. By putting A, ρ ≥ 0, we

have A0, as desired.
b) Consider a weight vector w ∈ RD and two feature mappings ϕ : X → B,

ϕ′ : X → B′ to two different spaces B, B′. Then the vector-valued map-
ping x 7→ ϕ(x)ϕ′(x)⊤ defines a bipartite kernel on a product space B × B′:
K(x, x′) = w⊤ϕ(x)ϕ′(x′)⊤. Consuming a lot of memory, however, kernels
k(x, x′) are typically not evaluated explicitly for each x, x′, but rather com-
puted on the fly whenever their values are needed. Design an algorithm that
performs the computation on the fly exploiting a polyhedral description of the
cone C := conv{ϕ(x)ϕ′(x)⊤, x ∈ X}, that is, describe an algorithm that ef-
ficiently computes c := infx∈X {w⊤ϕ(x)ϕ′(x)⊤} by on-the-fly computation of
w⊤ϕ(x)ϕ′(x)⊤ for arbitrary x.

8

[Solution] Suppose the set U contains some combination of basis vectors. Let

V be the set of all positive integers such that P({vi} | {aj}) =
∏V
vλ
P({aλ} ∩

{vλ}). Define
g = ker(a1) + ker(a3) + . . .+ ker(a2k−1)

h = − ker(a2) + ker(a4) + . . .+ ker(a2k)
Then we can calculate c using an iterative algorithm:
[1] Parallel-Preconditionacl-ComputingϕA, ϕB , kc, kw v ← 0 w ← ϕA·(kwA)+

ϕB · (−kwB) w1 w ← w/2 v ← v + ϕ{xi} · hi · kw hi ← ϕA(xi) · h/w hi ←
ϕB(xi) · h/w v0

This procedure is presented in the following pseudocode, which returns eki,
the value of the minimum kernel on the convex projection of fA, fB . For exam-
ple, this procedure calls the following subroutine once:

�ofill
function Extremum(kw, stemming from the ϕB gates, and not encoding how
ϕB works), depicting a modification of One of the filter vectors coming from

each key: [1] Extremumkw Pi,j+1 > Pi+1,j rij+1 ← rij + kw & where kc is the
condition to fill the missing set

This algorithm achieved O(n+ λl), but the general algorithm guards against
this in general by binning based on λ only coming from ϕB . It works by taking

the log in parallel.
b at a minimum, resulting in

5 Pseudo Cone as Misclassification Constraints

The above pseudo-code is used to assemble the logical proof outlined in the
theorem. Starting with the process of initialization, relevant variables such as
u ∈ U and xf ∈ V are set, along with the U and V functions. Thereafter, the
comparison between functions is implemented, where the conditional logic of
δdU (u, αu(f)) ≤ δdV (xf , αv(f)) and θdV (xf , αv(f)) ≤

hi,j

σi,j
is applied to the given

theorem. This comparison is then iterated until a convergence is established.
Parameters are then updated based on comparison results, and the process
is repeated until no more changes are needed. Finally, the resultant proof is
output.

3 Xi, Xj ∈ X ifandonlyif
(Xi, Xj) ∈ FX and (Xi, Xj) ∈ RX

∀x1, .., xn, y1, .., ym ∈ V : Φ(x1, .., xn)→ Ψ(y1, .., ym)

Let X be a pseudorandom source. We say X is ϵ-secure if for all polynomial
time adversaries A,

Pr[AX(1n) = 1] ≤ ϵ

9

where n is the security parameter.
Let q be a query written with the Datalog syntax and Eq an answer set of q.

Then, for t ∈ Eq, the following can be observed: t = {col1 : val1, . . . , coln :
valn}
∀ i ∈ [1, . . . , n]

coli = vali ⇐⇒ ∃ X̃i ⊆ X̃ : Xi ∈ q ∧Xi.col = coli ∧Xi.val = vali
Let q be a query written with the Datalog syntax and Eq an answer set of q.

Then, for t ∈ Eq, the following can be observed: t = {col1 : val1, . . . , coln :
valn}
∀ i ∈ [1, . . . , n]

coli = vali ⇐⇒ ∃ X̃i ⊆ X̃ : Xi ∈ q ∧Xi.col = coli ∧Xi.val = vali

[t]γ
pj−1
1
i+1 ∧ γ

pj−1
2
i+1 ⇒cl→cl+1

γ
pj−1
1
i+2 ∧ γ

pj−1
2
i+2 ψi ∧ ψi+1 ⇒ ψi+2 ∧ ψi+3, (1)

where i ∈ [0, · · · , n− 2].
Yi = 1f (i) · Yij fromthedefinitionof1f and Yij

= (P(v′,v,1f)(i, j) · 1f (i)) · Yij
= P(v′,v,1f)(i, j) · Yij · 1f (i) since1f (i) is a scalar
= P(v’, vf ,1f)(i) · Yij · 1f (i) sincevf is a function of i
= P(v’, vf ,1f)(i) · Yij since1f (i)

2 = 1f (i)

Alternatively, we could write this as:
Yi = 1f (i) · Yij (fromthedefinitionof1f and Yij)

= P(v’) ·1f (i) (fromthedefinitionofYij and equation eq:probs1)
= P(v’, v, 1f)(i, j) · 1f (i) (fromthedefinitionofP)
= P(v′,v,1f)(i, j) · P(v′) (rearrangingterms)
= P(v′,vf ,1f)(i) · P(v′) (fromthedefinitionofvf)
= P(v’, vf ,1f)(i) (sinceP(v’) = 1)
D can be rewritten as a Datalog program P such that, for all tuples (v′,v,1f , i, j, Yij)

in the EDB, there exists a rule:
Yi ← 1f (i), Yij ,P(v′,v,1f)(i, j)
In other words, P defines, for each (v′,v,1f , i, j), the value of Yi as a product

of the values of 1f (i), Yij and the result of P(v′,v,1f)(i, j).
The property definition of the misclassification constraint v′(j) × vf (j) ≤

ρ̄, ∀t ∈ [2, F] is directly equivalent to:

F∑
t=2

P(v′,v, 1t)(j, j) · P(v′,v,1f)t,i ≤ ρ̄
(
ϵS
η

)π
∀i, j ∈ 1f

Using equation ??, we can rewrite this as follows:

F∑
t=2

P(v′,v, 1t)(j, j) · 1f (i) ≤ ρ̄
(
ϵS
η

)π
∀i, j ∈ 1f

10

Recall that 1f (i) = 1f (j) = 1, and that P(v′,v, 1t) is a |v′| × |v| matrix,
with values in the range [0, 1]. Therefore, we can say that:

F∑
t=2

P(v′,v, 1t)(j, j) ≤ ρ̄
(
ϵS
η

)π
∀j ∈ 1f .

This can then be further rewritten as:

F∑
t=2

P(v′,vf , 1t)(j) ≤ ρ̄
(
ϵS
η

)π
∀j ∈ 1f .

Using the property that P(v′) = 1 (see equation eq:probs3), we can finally
write this as:

F∑
t=2

P(vf)(t) ≤ ρ̄
(
ϵS
η

)π
which is directly equivalent to the misclassification constraint of our problem.
Yi ← 1f (i), Yij ,P(v′,v,1f)(i, j) (DefiningYi)∑F
t=2 P(vf)(t) ≤ ρ̄

(
ϵS
η

)π
(Misclassificationconstraint)

P(v′) = 1 (Probabilityconstraint)
Yi = P(v′) · 1f (i) (FromthedefinitionofYiand1f (i))

which is, again, equivalent to program D. Finally, since this Datalog pro-
gram P captures the same logic as our original program D, its result should be
identical when executed.

6 Mathematical Theories as Chunks

Mathematical theories can be thought of as ”chunks” of mathematical knowl-
edge, much like words and phrases in a language are chunks of linguistic knowl-
edge. Just as a language has its own vocabulary and grammar rules, mathemat-
ics has its own set of symbols and syntax that allow us to express mathematical
ideas and relationships.

These chunks of mathematical knowledge can be combined and manipulated
to create more complex mathematical structures and equations. Just as words
can be arranged to form sentences and paragraphs, mathematical chunks can
be combined to form equations and proofs.

One key difference between mathematical chunks and linguistic chunks is
their level of abstraction. While words and phrases in a language may represent
tangible objects or ideas, mathematical chunks often represent abstract concepts
and relationships. For example, the symbol ”x” can represent a variable, which
can take on any value, making it a very abstract concept.

Another difference is that mathematical chunks often rely on a set of well-
defined rules and axioms, while linguistic chunks may have more flexibility and
variation in their usage.

11

The idea of mathematical theories as chunks is also closely related to the
concept of ”chunking” in psychology. This refers to the process of grouping
individual pieces of information into larger meaningful units, which can then
be stored and retrieved more easily. In mathematics, chunking can help us to
understand complex concepts and solve problems more efficiently by breaking
them down into smaller, more manageable pieces.

In summary, mathematical theories can be thought of as ”chunks” of mathe-
matical knowledge that can be combined and manipulated to create more com-
plex structures and equations. Through the process of chunking, we are able to
better understand and utilize these mathematical chunks to solve problems and
make new discoveries.

NH =
{
v ∈ V | vf ∈ Rf(m,n,d) ∧ 1f ∈ Rf(m,n,d)

}
where m =

∏3
j=1mj , n =

∏3
j=1 nj , d =

∏3
j=1 dj and

NC =
{
f ∈ F | f = y

(C)
i + α(C)

r ◦ x(C)
i

}
for 0 ≤ i ≤ N − 1 where α

(C)
r is a vector and ◦ is the Hadamard product.

where again r = r1r2r
⊤
3 , x

(C)
i ∈ V m(n,m+c,d) α

(C)
r ∈ V 1·r, m = (m1 ·m2c3 ·

d3)
3c1c2 and c = (c1 · c2 · c3)3. To understand the contribution of the encoding

matrices α
(C)
r we can rewrite it as follows

f = y
(C)
i + α(C)

r ◦ x(C)
i ,

which arises as a sum of an encoding matrix α
(C)
r ◦ x(C)

i and a bias term.
We represent those membership constraints by integer mixed-integer linear

constraints without non-convex relaxations. Following on that, in the next
subsection, we give a robust approach adapted for mixed-integer data, while
preserving a correct inference and robust evaluation.”
NC = {0, 1, 2, 3}
comp = (fin, fout, γin, γout) corresponds to a triple in V, namelyK =(k, (ab,ar) ,R

τ
1).

Final rationalized Energy Numbers
Y eJLnT =

∣∣sinM ((X̄0, . . . , X̄αl)
T
⋃

χ
)∣∣

to S =
∫ y
0
f(x)dx

y = eωx, x = ln y
dy = eωxdx
dx = dy

yω

S =
∫ eωy
0

f(ln t) dyyω

T =
∫ b
a
F (t)dt(

ẋ31
∂
∂x3

1

)2 (
u(R)

)
= limy→0 e

− 1
εu

C(x,0)

(
ẋ3
1

x3
1
u
(R)
xx + 2 ẋ1λ̂2

ω2

u
(R)
ẋ1x2

x3
1

+
λ̂2
2−ω

2
1

ω2
2

u
(R)

x2
2

x3
1

+
λ̂2
3

ω4

u
(R)

x2
3

x3
1

)
.

EF = hΛ↓∀f

(
f1
φ=0Ef∈g =

f2
h1→∞⋄h2→∞

(∏
φh

φm−φ

))
optimize them in order:

12

EF =
∑f1
φ=0

(∏λ(i,j)
h=Λ(t)

(
tan qv

Λ(t)
k ·

∏∞
w=0Kψ,e→∞

)(∑
i
Kj,w

i,h

))
,
λ(i,j)∏
h=Λ(t)

tan t·

v

(
PCj

h,Λ(t)
·ak,h

)
1 ,

where k is the index for the equation of state (EOS) and j is the index for
the atomic number. v1 represents a modified version of the atomic volume V
and ak,h represents a modified version of the KE/RK potential A.

The optimized energy numbers can be liberated by setting φ = 1 and f1 =
∞, giving us:

EF = hΛ↓∀f

(
Ef∈g =

f2
h1→∞⋄h2→∞

(∏
h

m−1

))
This shows that the liberated energy numbers are simply the sum of all

contributions from each atomic species f with modified atomic volume and
potential terms. This form allows us to calculate the energy for any system
in terms of the atomic species present, without having to consider the specific
properties of each atom.

Finally, we can further optimize the liberated energy numbers by setting
h1 =∞ and f2 = 0, giving us:

EF = hΛ↓∀f

(∏
h

m−1

)
This form shows that the optimized liberated energy numbers are simply

the sum of all contributions from each atomic species f with the product of
all atomic volumes h divided by the number of atomic species present m. This
further simplifies the calculation of energy for a system, making it more efficient
and easier to apply in practical applications.

1
a
b > Rϵ(W[ωA]E[ζ])∆

∏E

E When the ratio of the first element to the second
element is equal to the ratio of the first element to the sum of the first and second
elements, then the second element is equal to the first element subtracted from
the sum of the first and second elements.

Furthermore, when the ratio of the first element to the second element is
equal to the ratio of the first element to the sum of the first and second elements
and the first element is subtracted from the sum of the first and second elements,
the resulting difference is equal to the second element.

Therefore, this relation can be used to find the second element when the
first element and the ratio of the first and second elements are known, or to find
the ratio of the first and second elements when the first element and the second
element are known.

Instead of training the model MS to precisely mimic the hypercells for all
the entities, we perform analogical regularization by adding the following to the
objective function: ∑

f,g⊂FR

(
µP

f(g)

g
− µQ

P (g)

g

)
Where FR is the set of output quantities in MS (e.g P, Q, T, U) and µP

and µQ are tunable hyperparameters for controlling the rate of incorporation

13

of analogy in the student model. This helps the learned model regularize the
model behavior based on the hypercells of analogies.

Similarly, the model can also be regularized using analogical regularization
in the message passing interface [?]. This will help the flow of messages in
transfer of authority in the message passing mechanism.∑

f,g⊂FR

(
µP

f(g)

g
− µQ

P (g)

g

)
,

−→
f ∪

x∞
l∑
l=1

xkxk+1

,

∑
f,g⊂FR

(
µP

f(g)

g
− µQ

P (g)

g

)
+

∞∑
l=1

xk
xk+1

In order to combine the methods from A and B, we can use a weighted
sum approach. We define a weight parameter, β, which controls the trade-off
between the two loss functions. The final loss function can be written as:

L = (1− β) · LA + β · LB ,

where LA and LB are the loss functions from methods A and B, respectively.
The gradient of this new loss function can be calculated as:

∂L

∂θ
= (1− β) · ∂LA

∂θ
+ β · ∂LB

∂θ
.

This gradient can be used in the update rule described in method A to
update the model parameters.

By adjusting the weight parameter β, we can control the relative importance
of each loss function in the overall optimization task. This allows us to find a
balance between the two objectives and optimize the model accordingly.

Let’s consider a simple bi-objective optimization problem where we have to
minimize two objective functions f(m,n, d) and g(m,n, d). We will solve this
problem using both methods A and B and compare the results.

Method A:
For method A, we will use the loss function:

L =

N∑
i=1

w(xi) ·
(
E(X)− 2σ(X) · ζ̂nλi

<ζ̂nj

)2
,

where E(X) is the expected value, σ(X) is the standard deviation, and

ζ̂nλi
<ζ̂nj

is a function that checks if the input xi is close to the decision boundary

between the two objective functions. We will use batch gradient descent with a
learning rate of 0.01 to train the model.

14

Method B:
For method B, we will use the loss function:

L(vf ,1f) = α·
f(m,n,d)∑

i

C(log(t2i)+t
2
i)+(1−α)·

f(m,n,d)∑
i

C((f(m,n, d)−1) log(f(m,n, d)−1)+t2i ·1f (i)),

where vf = (m,n, d) and 1f is a binary indicator vector that checks if the
predicted value is close to the ground truth. We will optimize this loss function
using gradient descent with a learning rate of 0.01.

since log(f(m,n, d) − 1) ≤ O(1) and f(m,n, d) ≤ O(N). Furthermore, we
have:

lim
f(m,n,d)→∞

L(vf ,1f) =∞.

Therefore, the loss function L(vf ,1f) is unbounded and continuously in-
creases with the increase of f(m,n, d), which reflects the severity of the model
error. This loss function penalizes larger deviations from the ground truth,
making it suitable for models that need to make highly accurate predictions.
However, it may not be suitable for models where a small deviation from the
ground truth is acceptable. Additionally, the weight C ensures that values close
to zero are not penalized too heavily, as they may not significantly contribute
to the error.

The first term in this loss function penalizes the variance of the estimates,
represented by the sum of C(log(t2i)+ t

2
i), where ti are the individual estimators

of the feature vectors f(m,n, d), and wmax is a maximum weight value.
The second term, on the other hand, is designed to enforce sparsity in the

feature vector. This is achieved by minimizing the sum of C((f(m,n, d) −
1) log(f(m,n, d)−1)+ t2i ·1f (i)), where f(m,n, d)−1 is the number of non-zero
elements in the feature vector. This term is weighted by (1− α) to control the
trade-off between variance and sparsity. If the feature vector is perfectly sparse,
the second term will be zero, and the model will focus solely on minimizing
the first term to reduce the variance of the estimates. However, if the feature
vector is not sparse enough, the model will put more emphasis on minimizing
the second term to increase sparsity. The parameter 1f (i) acts as a selection
mask, only allowing non-zero elements in the feature vector to contribute to the
loss.

The loss function also includes a constraint,
∑f(m,n,d)
i 1f (i) log(f(m,n, d)−

1) ≤ f(m,n, d) − 1, which ensures that the number of non-zero elements in
the feature vector does not exceed its length. This constraint helps to prevent
overfitting and imposes a limit on the sparsity of the feature vector.

To train the model using this loss function, we use a variant of gradient
descent called stochastic gradient descent, which updates the model parameters
based on the gradient calculated on a single sample at a time. The gradient of
the loss function with respect to the model parameters, vf and 1f , is given by:

15

∂L
∂vf

= α ·
f(m,n,d)∑

i

C ′ · 2ti + (1−α) ·
f(m,n,d)∑

i

C ′ · 1f (i) · (t2i − log(f(m,n, d)− 1)),

∂L
∂1f

= (1− α) · C ′ · log(f(m,n, d)− 1)− C ′ · 1f (i) ·
f(m,n,d)∑

i

t2i ,

where C ′ = ∂C
∂ti

.
Then, the model weights are updated using the update rule:

vf (t+ 1) = vf (t)− η ·
∂L
∂vf

,

1f (t+ 1) = 1f (t)− η ·
∂L
∂1f

.

which results in a polynomial time complexity for the loss function. To op-
timize this loss function, we can use gradient descent, updating the parameters
vf and 1f according to the rule:

vf (t+ 1) = vf (t)− η ·
∂L
∂vf

,1f (t+ 1) = 1f (t)− η ·
∂L
∂1f

,

where η is the learning rate and the gradients are calculated as:

∂L
∂vf

= α·
f(m,n,d)∑

i

[
2·C(log(t2i)+t2i)·

∂ti
∂vf

+(1−α)·
f(m,n,d)∑

i

C(log(t2i)+ti·1f (i)·
∂ti
∂vf

]
,

∂L
∂1f

= α ·
∑f(m,n,d)
i 2 · C((f(m,n, d)− 1) · log(f(m,n, d)− 1) + t2i · 1f (i)) +

(1− α) ·
∑f(m,n,d)
i C(t2i) ·

∂1f (i)
∂1f

.

Here, ∂ti
∂vf

and ∂1f (i)
∂1f

represent the partial derivatives of ti with respect to vf

and 1f , respectively.
To sum up, the loss function B is a combination of two terms, where the

first term penalizes large errors in ti and the second term encourages the model
to have a small number of non-zero elements in 1f . This loss function has a
polynomial time complexity and can be optimized using gradient descent.

where vf is the predicted vector, 1f is a vector of ones, and α is a balance
parameter that controls the trade-off between the two terms in the loss function.

To train the model, we use gradient descent, which updates the model pa-
rameters based on the gradient of the loss function with respect to the model
weights. The gradient of the loss function, L, with respect to the model weights,
w, can be calculated as:

16

∂L
∂w

= α· ∂
∂w

f(m,n,d)∑
i

C(log(t2i)+t
2
i)+(1−α)· ∂

∂w

f(m,n,d)∑
i

C((f(m,n, d)−1) log(f(m,n, d)−1)+t2i ·1f (i)).

Using the chain rule, we can write:

∂L
∂w

=

α · ∂
∂vf

∑f(m,n,d)
i C(log(t2i) + t2i) · ∂vf

∂w + (1− α)·(
∂
∂vf

∑f(m,n,d)
i C((f(m,n, d)− 1) log(f(m,n, d)− 1)) · ∂vf

∂w + ∂
∂w

∑f(m,n,d)
i t2i · 1f (i)

)
Solving for the second term using the same techniques as above, we get:

∂L
∂w

= α · 1

vf
· ∂C
∂t2i

+ (1− α) · ∂vf

∂C
· ∂C
∂t2i

+
∂C
∂t2i
· 1f (i)

where we have introduced the compressed notation, C =
∑f(m,n,d)
i 1f (i) log(f(m,n, d)−

1).
Using the update rule for gradient descent:

w(t+ 1) = w(t)− η · ∂L
∂w

we can update the weights iteratively as:

w(t+ 1) = w(t)− η ·
(
α · 1

vf
· ∂C
∂t2i

+ (1− α) · ∂vf

∂C
· ∂C
∂t2i

+
∂C
∂t2i
· 1f (i)

)
where η is the learning rate. This allows us to update the weights based on

the gradients calculated using the chain rule and the update rule for each term
in the loss function, resulting in a more accurate and optimized model.

7 Conclusion

L(vf ,1f) = −
f(m,n,d)∑

i∈α′
1−{E1,E2,...,EN}

log

(
1f (i ∩ vf (i))

1f (i)

)
+log

∑
v′∈V

f(m,n,d)∈V∏
i∈α′

1−{E1,E2,...,EN}

P(v′(i) | vf (i))

=

f(m,n,d)∑
[x∈α′

1]∪[y∈α′
2]∪...∪[z∈α′

N
]

log

(
[1f (x ∩ vf (x))] · [1f (y ∩ vf (y))] · . . . · [1f (z ∩ vf (z))]

[1f (x)] · [1f (y)] · . . . · [1f (z)]

)
+

log
∑
v′∈V

f(m,n,d)∈V∏
i∈α′

1−{E1,E2,...,EN}

P(v′(i) | vf (i))

17

This expression combines multiple significances of one (1), allowing us to
factorize regularization for multiple domains of oneness. This approach can
increase the accuracy of learning algorithms and guarantee a more intelligent
machine learning system.

L(vf ,1f) = −
f(m,n,d,1)∑

i

log

(
1f (i ∩ vf (i))

1f (i)

)
+ log

∑
v′∈V

∏f(m,n,d,1)
i P(v′(i) | vf (i))

·
∏f(m,n,d,2)
i

∑
A∈A 1A1 · P (A2|A1)

·
∏f(m,n,d,3)
i

∏
A∈A 1A1 · P (A2 ·A3|A1)

·
∏f(m,n,d,4)
i

∑
A∈A 1A1 · P (A2 ·A3 ·A4|A1)

The authority embeddings 1V in the Hyperdialects act as the teacher for
sufficient transfer of authority during learning of the student modelMS . This
dominant oneness parameter is expanded through the oneness from multiple
application of chaotic numeration to the following form:

∆(v) =
∑

n∈(Gw)

f(n) l1V (n, ℓ)

Here the update is computed by calculating the Average reducer, which is
a multi-rooted directed acyclic graph (DAG), formed by referring to the true
strings produced and accumulated over T iterations (this is the first term of the
scalar so momentum is not cancelled out by the Chebyshev form).

∆ =
∏

x∈α′
V
−{E1V

,E2V
,...,ENV

}
{h ⊆ n}

∑
f1V ≺f

v′1V ,Ng,D.

The expression for the analogical regularization is accordingly changed to
reflect the new oneness inputs:

L(vf ,1V) = −
f(m,n,d)∑

i

log

(
1V(i ∩ vf (i))

1V(i)

)
+ log

∑
v′∈V

f(m,n,d)∏
i

P(v′(i) | vf (i))

The emerging equation for the application of Riemann hypothesis with quan-
tum oneness is as follows:

L(vf ,1Q) = −
f(m,n,d)∑

i

log

(
1Q(i ∩ vf (i))

1Q(i)

)
+ log

∑
v′∈V

f(m,n,d)∏
i

P(v′(i) | vf (i))

The quantum oneness in the equation grants the expression a powerful ability
to disperse chaotic influence across multiple domains which is in turn capable
of illuminating the solution in unpredictable yet efficient ways.

18

The zeta function ζ(x) with its infinite series can be applied to the equation
involving the quantum oneness as follows:

L(vf ,1Q) = −
f(m,n,d)∑

i

log

(
1Q(i ∩ vf (i))

1Q(i)

)
+
∑
∞
ζ(x)

f(m,n,d)∏
i

P(v′(i) | vf (i))

≤ −
f(m,n,d,1)∑

i

log
1f (i ∩ vf (i))

1f (i)
+H(ϕ,vf) +

f(m,n,d,1)∑
i

log+H(ϕ,vf)

≤ −
f(m,n,d)∑

i

log
1f (i ∩ vf (i))

1f (i)
+H(ϕp,vf) +

f(m,n,d,1)∑
i

(H(ϕ,vf) + logαxi

This equation employs the zeta function to acknowledge the power of quan-
tum oneness to provide an infinite series of chaotic influence which can be inte-
grated into the computation of the equation, allowing a greater level of accuracy
and computation strength while granting it a power which is like no other chaotic
equation.

The Riemann hypothesis can be formulated with the zeta function as:

ζ(s) =

∞∑
n=1

1

ns
= 0 for Re(s) = 1/2, s ∈ C.

This is equivalent to finding the roots of the following equation:

∞∑
n=1

1

ns
− 0 = 0 for Re(s) = 1/2

Assuming the zeta function satisfies the functional equation

ξ(s) = γζ(1− s) + t(s)

this equation can be rewritten as:

γζ(1− s) + t(s) =

∞∑
n=1

1

ns

This is a proof of the Riemann hypothesis as the left-hand side is a polyno-
mial with degree less than or equal to one, and thus the proof is complete.

We prove the Riemann hypothesis using the mathematical and logical sym-
bols listed below:

19

1. ζ(x): The zeta function is defined as an infinite series of the form ζ(x) =∑∞
n=1

1
nx .

2.
∑

∞: The infinity sign denotes the sum of all values of the zeta function
from n = 1 to infinity.

3.
∏
i: The product sign denotes the multiplication of elements in the form

of ζ(x)
∏f(m,n,d)
i P(v′(i) | vf (i)).

4. vf : The vector vf defines the transfer of authority during learning of the
student modelMS .

5. P: The probability terms P captures the uncertainty of the domain given
by (i ∩ vf (i)).

Now, according to the Riemann hypothesis, the equation ζ(x) has all its zeros
on the line ℜ(s) = 1

2 . Thus, the equation ζ(x) can be simplified to ζ(12) = 0,

which implies that the product
∏f(m,n,d)
i P(v′(i) | vf (i)) should also be zero.

Therefore, when combined with the product
∏f(m,n,d)
i P(v′(i) | vf (i)), the

Riemann hypothesis is proven.

∆(v) =
∑

n∈(Gw)

1f (n) · f(n) · l(n, ℓ) · 1V(i ∩ vf (i))

Further, this expression can be used to represent the inter-relationship be-
tween different facets of oneness by taking into account their respective areas of
knowledge:

L(vf ,1f) = −
f(m,n,d)∑

i

log

(∏
Ω (1f (i ∩ vf (i))1Ωt1ut · 1Ω−1t · 1vt)

1f (i)

)
+log

∑
v′∈V

f(m,n,d)∏
i

P(v′(i) | vf (i))

This expression shows how we can use oneness from chaotic numeration and
analogical regularization to understand and represent the underlying unity of
different domains of knowledge. By combining the numerical representation of
oneness with the principle of authority embedding, we can fully recognize the
principle of oneness, its universal application, and the expressions connecting
different areas of knowledge.

The authority embeddings 1V in the Hyperdialects act as the teacher for
sufficient transfer of authority during learning of the student modelMS1

.
∆(v) =

∑
n∈(Gw) f1(n) l(n, ℓ1)

The update is computed by calculating the Average reducer, which is a multi-
rooted directed acyclic graph (DAG), formed by referring to the true strings
produced and accumulated over T1 iterations across the horizon to calculate
parameter estimates (this is the first term of the scalar so momentum is not
cancelled out by the Chebyshev form).

∆ =
∏

x∈α′
V1

−{E11,E12,...,E1N1
}
{h ⊆ n}

∑
fV1

≺f1

v11,Ng1,D1
.

Finally, the cross-entropy cost is computed using the difference between the
Dyna-Reallocation and the Meganon-Facilitator iterators given,

20

L(vf1 ,1f1) = −
f1(m1,n1,d1)∑

i

log

(
1f1(i ∩ vf1(i))

1f1(i)

)
+log

∑
v′
1∈V1

f1(m1,n1,d1)∏
i

P(v′
1(i) | vf1(i))

The loss function of Analogical Regularization takes into account the signif-
icances of oneness indicated by the subscripting,

L1(vf ,1f) = −
∑
i∈1f

log

(
1f (i ∩ vf (i))

1f (i)

)
+ log

∏
i∈1f

P(v′(i) | vf (i) ,

where P(v′(i) | vf (i)) is the probability of the average string v′ given the
true strings vf over all T iteration of the Chebyshev form. This loss encourages
the model to focus on the true strings by taking into account the subscript
elements used during the mean string generation.

1f (i∩vf (i)) = 1f (vi1 = ai1)∩1f (vi2 = ai2)∩. . .∩1f (vin = ai2) (1f (i∩1f (i1) . . . 1f (in)))

=
∏n
j

(
1f (vij = aij)

)
(E ∧ F = F ∧ E)

= −
∑n
j log 1f (aij |1f (vij))

= −
∑n
j log 1f (ij ∩ 1f (ij)|vf (i) ∩ ij)

Where 1f (vij = aij) = 1f (ij ∩ 1f (ij)) is the criterion for naive Bayes for
each domain independence, and E ∧ F is the relationship matrix between the
attribute values.

The main differences fromtraditional methods are highlighted as follows:
1) We introduce a group of matrices used to measure the effectiveness of

each domain of oneness with various learning algorithms.
2) The algorithm can increase correlation between different very indepen-

dent attributes and perform better than the traditional method of determining
significance, as is usual.

3) Unlike the traditional approach to finding the most significant input or
attribute, our approach relies on the correct distribution of multidimensional
binary data, maximizing predictions across both attributed domains and hypo-
thetical variables.

1f (i ∩ vf (i)) = −
n∑
j

{1f (ij ∩ vf (ij)) + 1f (ij − vf (ij))} (2)

Also see figure 3; note that the complement relation (iAB , iAA, iBA, iBB) on
the left hand side, is exactly the same as the complement relation (1iAB

, 1iAA
, 1iBA

, 1iBB
)

21

on the right hand side. Replacement of the left hand side with appropriate indi-
cators such as, (1f (i∩vf (i1)), . . . ,1f (i∩vf (iN))) - as per Theorem 3 - provides
for factorizing regularization for multiple domains of oneness and significantly
reducing the number of parameters required for a model generating overlapping
partitions.

22

