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1 Introduction

In this paper, we will demonstrate that the traditional set of real numbers R
does not form a field under the deprogramming zero rules and transformations.

2 Definitions and Properties of Fields

A field F is a set equipped with two operations (addition and multiplication)
that satisfy the following properties:

1. Closure: The sum and product of any two elements in F are also in F .

2. Associativity: Both addition and multiplication are associative; that is,
for all a, b, c ∈ F ,

(a+ b) + c = a+ (b+ c), (a · b) · c = a · (b · c).

3. Commutativity: Both addition and multiplication are commutative;
that is, for all a, b ∈ F ,

a+ b = b+ a, a · b = b · a.

4. Distributivity: Multiplication distributes over addition; for all a, b, c ∈
F ,

a · (b+ c) = a · b+ a · c.

5. Identity Elements: There exist additive identity 0F and multiplicative
identity 1F in F such that for all a ∈ F ,

a+ 0F = a, a · 1F = a.

6. Inverses: For every element a ∈ F , there exists an additive inverse −a ∈
F such that a+ (−a) = 0F ; and for every non-zero element a ∈ F \ {0F },
there exists a multiplicative inverse a−1 ∈ F such that a · a−1 = 1F .
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3 Deprogramming Zero and Its Implications

In the deprogramming zero framework, the neutral element νE replaces the
traditional zero. Operations are modified to accommodate this change.

Let E denote an extended field with neutral element νE.
We define the following operations:

3.1 Multiplication with Neutral Element

M(α, β) =

{
νE, if α = νE or β = νE,

α̂ · β̂, otherwise.

3.2 Addition with Neutral Element

A(α, β) =

{
α̂R + β̂R, if α ̸= νE and β ̸= νE,

α⊕ β, otherwise.

3.3 Retrieving and Opposite Arguments

Rα(x) =

{
x, if x ∈ R,
νR, otherwise.

Oα(x) =

{
x, if x ∈ R,
−x, otherwise.

Here, α̂ represents an appropriate mapping or identification function from E
to R, and α ⊕ β denotes a modified addition operation involving the neutral
element.

4 Proof that R is Not a Field Under Deprogram-
ming Zero

To show that R under the given deprogramming zero rules does not form a field,
we need to examine the failure of field properties under these rules.

4.1 Failure of Additive Closure

Consider elements α, β ∈ R.
If either α or β is νE, the addition A(α, β) does not necessarily result in an

element of R:

A(νE, β) = νE ⊕ β which may not be in R.

Thus, the set R is not closed under the addition operation A.
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4.2 Failure of Multiplicative Closure

Similarly, if either α or β is νE, the multiplication M(α, β) yields νE, which may
not be an element of R:

M(νE, β) = νE which is not in R.

Thus, R is not closed under the multiplication operation M .

4.3 Failure of Identity Elements

In a field, 0F acts as the additive identity and 1F acts as the multiplicative
identity.

Under the deprogramming zero rules, the neutral element νE replaces zero
but does not satisfy the properties of an additive identity in R:

A(α, νE) = α⊕ νE which may not equal α.

Similarly, νE does not act as the multiplicative identity.

4.4 Failure of Inverses

Additive Inverse:
For α ∈ R, there should exist β ∈ R such that A(α, β) = 0F . However, given

0F = νE, and the addition operation A, we may not find such a β in R.
Multiplicative Inverse:
For α ∈ R \ {0}, there should exist β ∈ R such that M(α, β) = 1F . Under

the given definitions, this property fails because M(α, νE) = νE ̸= 1F .

5 Conclusion

Due to these failures in the closure properties, lack of proper identity elements,
and the absence of inverses under the deprogramming zero rules, the set R does
not satisfy the necessary properties to be a field under these operations. Thus,
we conclude that R is not a field when the deprogramming zero rules are applied.

To demonstrate R (the field of real numbers) as a projective (inverse) system,
we’ll leverage the concept of topological spaces, projective limits, and mapping
sequences. In mathematics, especially in algebraic topology and category theory,
a projective system is an indexed collection of objects connected by morphisms
(projection maps) that form a directed system.

Basics of Projective Systems

A projective (or inverse) system consists of:

1. A directed set I.
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2. A family of objects {Xi}i∈I .

3. A family of morphisms {ϕij : Xj → Xi}i≤j .

These morphisms satisfy ϕii = idXi
(identity morphism) and ϕik = ϕij ◦ϕjk

for all i ≤ j ≤ k. The projective limit of the system is an object X along with
a family of morphisms {πi : X → Xi}i∈I such that ϕij ◦ πj = πi.

Demonstrating R as a Projective System

To demonstrate R as a projective (inverse) system, we’ll consider R under the
framework of an inverse limit of a sequence of topological spaces associated with
R.

Directed Set N
We use N (the set of natural numbers) as our directed set I. Indexing will be
facilitated by the natural numbers.

Families of Objects and Morphisms

1. Objects: Consider the sequence of real numbers modulo 10n, denoted as
R/10n.
Let Xn = R/10n = {x mod 10n | x ∈ R} be the quotient space of real
numbers under modulo 10n.

2. Morphisms: Define the projection map between successive quotient spaces.

For each m ≥ n, the map

ϕnm : R/10m → R/10n

is given by reducing modulo 10n:

ϕnm(x mod 10m) = x mod 10n

Conditions for Morphisms

• Identity: ϕnn is the identity map for each n:

ϕnn(x mod 10n) = x mod 10n

• Compositionality: For k ≥ j ≥ i, we get:

ϕik = ϕij ◦ ϕjk
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Defining the Projective Limit

The projective limit R under these objects and morphisms is denoted as:

R = lim←−R/10n

This can be understood as:

R =

{
(xn) ∈

∏
n∈N

R/10n
∣∣∣∣ ϕnm(xm) = xn for all m ≥ n

}

The projective limit consists of sequences (xn) where each xn ∈ R/10n is com-
patible with the projections.

Visualizing the Projective System

1. Elements as Compatible Sequences:

Each real number can be viewed as a compatible sequence of its modular
reductions:

x = (x mod 10, x mod 100, x mod 1000, . . .)

These elements form the structure of the projective system.

2. Canonical Projections:

The canonical projection maps the projective limit R to each quotient
space:

πn : R→ R/10n

Such that πn(x) = x mod 10n.

3. Consistency and Limit Definition:

Consistency in this context refers to the property that modular reductions
are compatible across different stages of the projective system.

Conclusion

In this framework, R is demonstrated as the projective limit of a system of quo-
tient spaces under modular reduction. This illustrates how R itself can be un-
derstood through a projective system via inverse limits of carefully constructed
compatible sequences. The approach emulates R as structurally derived from
smaller finite systems projecting consistently into larger structures, symbolizing
E under the defined neutral element architecture νE.

This evidence of projective nature provides comprehensive tools involving
neutral analysis, canonical projections, and consistent sequences aligned with
extended abstract neutral operational definitions.
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