Proof that \mathbb{R} is Not a Field Under Deprogramming Zero

Parker Emmerson

August 2024

1 Introduction

In this paper, we will demonstrate that the traditional set of real numbers \mathbb{R} does not form a field under the deprogramming zero rules and transformations.

2 Definitions and Properties of Fields

A field F is a set equipped with two operations (addition and multiplication) that satisfy the following properties:

- 1. Closure: The sum and product of any two elements in F are also in F.
- 2. Associativity: Both addition and multiplication are associative; that is, for all $a, b, c \in F$,

 $(a+b)+c = a + (b+c), \quad (a \cdot b) \cdot c = a \cdot (b \cdot c).$

3. Commutativity: Both addition and multiplication are commutative; that is, for all $a, b \in F$,

$$a+b=b+a, \quad a\cdot b=b\cdot a.$$

4. **Distributivity**: Multiplication distributes over addition; for all $a, b, c \in F$,

$$a \cdot (b+c) = a \cdot b + a \cdot c.$$

5. Identity Elements: There exist additive identity 0_F and multiplicative identity 1_F in F such that for all $a \in F$,

$$a + 0_F = a, \quad a \cdot 1_F = a.$$

6. **Inverses**: For every element $a \in F$, there exists an additive inverse $-a \in F$ such that $a + (-a) = 0_F$; and for every non-zero element $a \in F \setminus \{0_F\}$, there exists a multiplicative inverse $a^{-1} \in F$ such that $a \cdot a^{-1} = 1_F$.

3 Deprogramming Zero and Its Implications

In the deprogramming zero framework, the neutral element $\nu_{\mathbb{E}}$ replaces the traditional zero. Operations are modified to accommodate this change.

Let \mathbb{E} denote an extended field with neutral element $\nu_{\mathbb{E}}$.

We define the following operations:

3.1 Multiplication with Neutral Element

$$M(\alpha,\beta) = \begin{cases} \nu_{\mathbb{E}}, & \text{if } \alpha = \nu_{\mathbb{E}} \text{ or } \beta = \nu_{\mathbb{E}}, \\ \hat{\alpha} \cdot \hat{\beta}, & \text{otherwise.} \end{cases}$$

3.2 Addition with Neutral Element

 $A(\alpha,\beta) = \begin{cases} \hat{\alpha}_{\mathbb{R}} + \hat{\beta}_{\mathbb{R}}, & \text{if } \alpha \neq \nu_{\mathbb{E}} \text{ and } \beta \neq \nu_{\mathbb{E}}, \\ \alpha \oplus \beta, & \text{otherwise.} \end{cases}$

3.3 Retrieving and Opposite Arguments

$$R_{\alpha}(x) = \begin{cases} x, & \text{if } x \in \mathbb{R}, \\ \nu_{\mathbb{R}}, & \text{otherwise.} \end{cases}$$
$$O_{\alpha}(x) = \begin{cases} x, & \text{if } x \in \mathbb{R}, \\ -x, & \text{otherwise.} \end{cases}$$

Here, $\hat{\alpha}$ represents an appropriate mapping or identification function from \mathbb{E} to \mathbb{R} , and $\alpha \oplus \beta$ denotes a modified addition operation involving the neutral element.

4 Proof that \mathbb{R} is Not a Field Under Deprogramming Zero

To show that \mathbb{R} under the given deprogramming zero rules does not form a field, we need to examine the failure of field properties under these rules.

4.1 Failure of Additive Closure

Consider elements $\alpha, \beta \in \mathbb{R}$.

If either α or β is $\nu_{\mathbb{E}}$, the addition $A(\alpha, \beta)$ does not necessarily result in an element of \mathbb{R} :

 $A(\nu_{\mathbb{E}},\beta) = \nu_{\mathbb{E}} \oplus \beta$ which may not be in \mathbb{R} .

Thus, the set \mathbb{R} is not closed under the addition operation A.

4.2 Failure of Multiplicative Closure

Similarly, if either α or β is $\nu_{\mathbb{E}}$, the multiplication $M(\alpha, \beta)$ yields $\nu_{\mathbb{E}}$, which may not be an element of \mathbb{R} :

$$M(\nu_{\mathbb{E}},\beta) = \nu_{\mathbb{E}}$$
 which is not in \mathbb{R} .

Thus, \mathbb{R} is not closed under the multiplication operation M.

4.3 Failure of Identity Elements

In a field, 0_F acts as the additive identity and 1_F acts as the multiplicative identity.

Under the deprogramming zero rules, the neutral element $\nu_{\mathbb{E}}$ replaces zero but does not satisfy the properties of an additive identity in \mathbb{R} :

 $A(\alpha, \nu_{\mathbb{E}}) = \alpha \oplus \nu_{\mathbb{E}}$ which may not equal α .

Similarly, $\nu_{\mathbb{E}}$ does not act as the multiplicative identity.

4.4 Failure of Inverses

Additive Inverse:

For $\alpha \in \mathbb{R}$, there should exist $\beta \in \mathbb{R}$ such that $A(\alpha, \beta) = 0_F$. However, given $0_F = \nu_{\mathbb{R}}$, and the addition operation A, we may not find such a β in \mathbb{R} .

Multiplicative Inverse:

For $\alpha \in \mathbb{R} \setminus \{0\}$, there should exist $\beta \in \mathbb{R}$ such that $M(\alpha, \beta) = 1_F$. Under the given definitions, this property fails because $M(\alpha, \nu_{\mathbb{E}}) = \nu_{\mathbb{E}} \neq 1_F$.

5 Conclusion

Due to these failures in the closure properties, lack of proper identity elements, and the absence of inverses under the deprogramming zero rules, the set \mathbb{R} does not satisfy the necessary properties to be a field under these operations. Thus, we conclude that \mathbb{R} is not a field when the deprogramming zero rules are applied.

To demonstrate \mathbb{R} (the field of real numbers) as a projective (inverse) system, we'll leverage the concept of topological spaces, projective limits, and mapping sequences. In mathematics, especially in algebraic topology and category theory, a projective system is an indexed collection of objects connected by morphisms (projection maps) that form a directed system.

Basics of Projective Systems

A projective (or inverse) system consists of:

1. A directed set I.

- 2. A family of objects $\{X_i\}_{i \in I}$.
- 3. A family of morphisms $\{\phi_{ij}: X_j \to X_i\}_{i \leq j}$.

These morphisms satisfy $\phi_{ii} = \operatorname{id}_{X_i}$ (identity morphism) and $\phi_{ik} = \phi_{ij} \circ \phi_{jk}$ for all $i \leq j \leq k$. The projective limit of the system is an object X along with a family of morphisms $\{\pi_i : X \to X_i\}_{i \in I}$ such that $\phi_{ij} \circ \pi_j = \pi_i$.

Demonstrating \mathbb{R} as a Projective System

To demonstrate \mathbb{R} as a projective (inverse) system, we'll consider \mathbb{R} under the framework of an inverse limit of a sequence of topological spaces associated with \mathbb{R} .

Directed Set \mathbb{N}

We use \mathbb{N} (the set of natural numbers) as our directed set I. Indexing will be facilitated by the natural numbers.

Families of Objects and Morphisms

1. **Objects**: Consider the sequence of real numbers modulo 10^n , denoted as $\mathbb{R}/10^n$.

Let $X_n = \mathbb{R}/10^n = \{x \mod 10^n \mid x \in \mathbb{R}\}$ be the quotient space of real numbers under modulo 10^n .

2. Morphisms: Define the projection map between successive quotient spaces. For each $m \ge n$, the map

$$\phi_{nm}: \mathbb{R}/10^m \to \mathbb{R}/10^n$$

is given by reducing modulo 10^n :

$$\phi_{nm}(x \bmod 10^m) = x \bmod 10^n$$

Conditions for Morphisms

• **Identity**: ϕ_{nn} is the identity map for each n:

 $\phi_{nn}(x \bmod 10^n) = x \bmod 10^n$

• Compositionality: For $k \ge j \ge i$, we get:

$$\phi_{ik} = \phi_{ij} \circ \phi_{jk}$$

Defining the Projective Limit

The projective limit $\mathbb R$ under these objects and morphisms is denoted as:

$$\mathbb{R} = \underline{\lim} \, \mathbb{R}/10^n$$

This can be understood as:

$$\mathbb{R} = \left\{ (x_n) \in \prod_{n \in \mathbb{N}} \mathbb{R}/10^n \ \Big| \ \phi_{nm}(x_m) = x_n \text{ for all } m \ge n \right\}$$

The projective limit consists of sequences (x_n) where each $x_n \in \mathbb{R}/10^n$ is compatible with the projections.

Visualizing the Projective System

1. Elements as Compatible Sequences:

Each real number can be viewed as a compatible sequence of its modular reductions:

 $x = (x \mod 10, x \mod 100, x \mod 1000, \ldots)$

These elements form the structure of the projective system.

2. Canonical Projections:

The canonical projection maps the projective limit \mathbb{R} to each quotient space:

 $\pi_n: \mathbb{R} \to \mathbb{R}/10^n$

Such that $\pi_n(x) = x \mod 10^n$.

3. Consistency and Limit Definition:

Consistency in this context refers to the property that modular reductions are compatible across different stages of the projective system.

Conclusion

In this framework, \mathbb{R} is demonstrated as the projective limit of a system of quotient spaces under modular reduction. This illustrates how \mathbb{R} itself can be understood through a projective system via inverse limits of carefully constructed compatible sequences. The approach emulates \mathbb{R} as structurally derived from smaller finite systems projecting consistently into larger structures, symbolizing \mathbb{E} under the defined neutral element architecture $\nu_{\mathbb{R}}$.

This evidence of projective nature provides comprehensive tools involving neutral analysis, canonical projections, and consistent sequences aligned with extended abstract neutral operational definitions.