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Introduction

In this paper, we will demonstrate that the traditional set of real numbers R
does not form a field under the deprogramming zero rules and transformations.

2 Definitions and Properties of Fields

A field F is a set equipped with two operations (addition and multiplication)
that satisfy the following properties:

1.
2.

Closure: The sum and product of any two elements in F' are also in F.

Associativity: Both addition and multiplication are associative; that is,
for all a,b,c € F,

(a+b)+c=a+(b+c), (a-b)-c=a-(b-c).

Commutativity: Both addition and multiplication are commutative;
that is, for all a,b € F,

a+b=b+a, a-b=b-a.

. Distributivity: Multiplication distributes over addition; for all a,b,c €

F

)

a-(b+c)=a-b+a-c

Identity Elements: There exist additive identity 0 and multiplicative
identity 1 in F' such that for all a € F,

a+0p=a, a-lp=a.

Inverses: For every element a € F', there exists an additive inverse —a €
F such that a + (—a) = Op; and for every non-zero element a € F \ {Or},
there exists a multiplicative inverse ¢~ € F such that a-a~ ! = 1.



3 Deprogramming Zero and Its Implications

In the deprogramming zero framework, the neutral element vg replaces the
traditional zero. Operations are modified to accommodate this change.

Let E denote an extended field with neutral element vg.

We define the following operations:

3.1 Multiplication with Neutral Element

& - B, otherwise.
3.2 Addition with Neutral Element
{aR+BR, if @ # v and f # vg,

a® p, otherwise.

Ala, B) =

3.3 Retrieving and Opposite Arguments

Ru(2) z, ifxeR,
al\T) =
Vg, otherwise.

z, if x e R,
—x, otherwise.

Here, & represents an appropriate mapping or identification function from E
to R, and a ® 8 denotes a modified addition operation involving the neutral
element.

4 Proofthat R is Not a Field Under Deprogram-
ming Zero

To show that R under the given deprogramming zero rules does not form a field,
we need to examine the failure of field properties under these rules.

4.1 Failure of Additive Closure

Consider elements «, 5 € R.
If either « or S is vg, the addition A(«, ) does not necessarily result in an
element of R:

A(vg,B8) =vg @8 which may not be in R.

Thus, the set R is not closed under the addition operation A.



4.2 Failure of Multiplicative Closure

Similarly, if either « or 8 is vg, the multiplication M (a, 8) yields vg, which may
not be an element of R:

M(vg, ) = vg  which is not in R.

Thus, R is not closed under the multiplication operation M.

4.3 Failure of Identity Elements

In a field, O acts as the additive identity and 1p acts as the multiplicative
identity.

Under the deprogramming zero rules, the neutral element v replaces zero
but does not satisfy the properties of an additive identity in R:

A(a,vg) = a®vg  which may not equal a.

Similarly, vg does not act as the multiplicative identity.

4.4 Failure of Inverses

Additive Inverse:

For o € R, there should exist 8 € R such that A(a, 8) = 0r. However, given
0 = v, and the addition operation A, we may not find such a g in R.

Multiplicative Inverse:

For o € R\ {0}, there should exist 5 € R such that M(«,8) = 1p. Under
the given definitions, this property fails because M («, vg) = vg # 1p.

5 Conclusion

Due to these failures in the closure properties, lack of proper identity elements,
and the absence of inverses under the deprogramming zero rules, the set R does
not satisfy the necessary properties to be a field under these operations. Thus,
we conclude that R is not a field when the deprogramming zero rules are applied.

To demonstrate R (the field of real numbers) as a projective (inverse) system,
we’ll leverage the concept of topological spaces, projective limits, and mapping
sequences. In mathematics, especially in algebraic topology and category theory,
a projective system is an indexed collection of objects connected by morphisms
(projection maps) that form a directed system.

Basics of Projective Systems

A projective (or inverse) system consists of:

1. A directed set I.



2. A family of objects {X;}icr.
3. A family of morphisms {¢;; : X; — X;}i<j.

These morphisms satisfy ¢;; = idx, (identity morphism) and ¢;x = ¢;j 0 Pk
for all ¢ < j < k. The projective limit of the system is an object X along with
a family of morphisms {m; : X — X, }ier such that ¢;; o m; = ;.

Demonstrating R as a Projective System

To demonstrate R as a projective (inverse) system, we’ll consider R under the
framework of an inverse limit of a sequence of topological spaces associated with
R.

Directed Set N

We use N (the set of natural numbers) as our directed set I. Indexing will be
facilitated by the natural numbers.

Families of Objects and Morphisms

1. Objects: Consider the sequence of real numbers modulo 10", denoted as
R/10".
Let X,, = R/10" = {z mod 10" | z € R} be the quotient space of real
numbers under modulo 10™.

2. Morphisms: Define the projection map between successive quotient spaces.

For each m > n, the map
Gnm : R/10™ — R/10™
is given by reducing modulo 10™:

®nm (x mod 10™) = x mod 10™

Conditions for Morphisms

e Identity: ¢, is the identity map for each n:

¢nn($ mod 1071) =z mod 10"

e Compositionality: For k > j > ¢, we get:

ik = @ij © Djk



Defining the Projective Limit

The projective limit R under these objects and morphisms is denoted as:
R = @R/ 10"

This can be understood as:

R = {(a:n) € H R/10™ ’ Onm (Tm) = x, for all m > n}

neN

The projective limit consists of sequences (x,,) where each z,, € R/10™ is com-
patible with the projections.

Visualizing the Projective System

1. Elements as Compatible Sequences:

Each real number can be viewed as a compatible sequence of its modular
reductions:

xz = (z mod 10, z mod 100, = mod 1000, ...)

These elements form the structure of the projective system.

2. Canonical Projections:

The canonical projection maps the projective limit R to each quotient
space:
Tt R — R/10™

Such that 7, (z) =  mod 10™.

3. Consistency and Limit Definition:

Consistency in this context refers to the property that modular reductions
are compatible across different stages of the projective system.

Conclusion

In this framework, R is demonstrated as the projective limit of a system of quo-
tient spaces under modular reduction. This illustrates how R itself can be un-
derstood through a projective system via inverse limits of carefully constructed
compatible sequences. The approach emulates R as structurally derived from
smaller finite systems projecting consistently into larger structures, symbolizing
E under the defined neutral element architecture vg.

This evidence of projective nature provides comprehensive tools involving
neutral analysis, canonical projections, and consistent sequences aligned with
extended abstract neutral operational definitions.



