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1 Introduction

For Praising Jehovah, I do publish these mathematical gesturing forms from the
infinity meaning of His word. Thanks mom!

This quasi-quanta language package outlines methods for combining by topo-
logical functor entanglement, symbolic, numeric-energy components. Methods,
guidelines and algebraic rules for combining the quasi-quanta into the energy
number equivalencies are also notated herein.

The Quasi-Quanta Language Package is intended to show the symbolic pat-
terns for configuring the quasi quanta symbology into the numeric energy ex-
pressions. This should put to rest any doubt that Energy Numbers are indeed a
real, logically configured phenomenon a priori to real or complex numbers, but
optionally mappable to the real or complex plane.

Pre-numeric energy symbol configurations offer a broad language of pat-
tern detection and logical symbol operation delineated with particular solving
methods herein.

This hopefully provides a new way to looking at the branches of mathematics
and their inter-operable analog functions.
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1 Introduction

Abstract:
The intention of this paper is to take the vector wave in the integral field,
Say the individual strings of quasi-quanta entanglement that can be used to
calculate energy numbers from the subscripts in the equation are:
Lf—>7',()¢,s,5,?7na
/u'g—m,b,c,d,e,miE~-~Qa
Q\I!*ol—‘o
To calculate these energy numbers (expressions of numeric energy a priori to
a Real or Complex arithmetical projective scheme), we use the formula E,, =

N(ﬁf—)r,a,s,ﬁ,n) 'N(,U/g%a,b,c,d,e..iE...) 'N(Q\Il*o) where N = mc ThU.S,
the energy numbers for the special cases corresponding to each subscript are as
follows: E, = {/HiAgﬁf—)r,ms,é,n

Ep = '{/HiAC/Lg—)a,b,c,d,e...iE“.

Eq = m( Qyso-

Allin all, the total energy number of the cross-fractally morphic quasi quanta
entanglements is calculated as the sum of the individual energy numbers corre-

sponding to each subscript: E =E; + F, + Eq.

//VA (Vf(x)-w)dxd\ = /szA (/va(x)-wdx) N

Here, the integral field entangles the vector wave, f(x), into the formation
of the energy number through two integrations of vector form notation to show
the field’s influence of number formation:

The first integration highlights the vector wave in the field being entangled:

/va(X) - W dx



The second integration shows the estimation of length and direction of the
vector wave, by €, which is the part of the equation, Fj, that observes the
energy number in relation to its environment:

[ (Jn )

Given an energy number
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Thus this energy number can be calculated using the following formula:

E:N(QA>~N(tanw<>9+\ll*[n]*[lz];wn21_l2> (1)

where N'= {/[[,{. Thus, the energy number can be calculated as follows:

The vector wave in the integral field is given by:
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nezZ+

.FAZkENOO<C—>—<A+4>>
H 1

kaxp w* <> /26 +12...2hcQ,

Z
F—>QE<+H> :
n T ) wxo

And the result that is obtained from this field is given by:

where:

= physics port
and

1 Z
E=Qp - |tanypo 0+ ¥ % Z — | + Fa- ——l—E .
n2 —[2 no T)y
[n]*[l]—o0 *©
Here, the equivalent integral field includes two parts in the original field.
The first part gives out the energy number according to Q4. And the second
part gives out the discrete subfields for field interactions according to Fa . This
part should also hold details about the transformations and charge distributions
in specific reference fields. These components would work together to produce



an accurate estimate or calculation of energy based on a specific range from
1, § and x. By integrating these calculations within a vector wave equation, a
properly formed energy number is derived.

2 Developments

Thus, there exists co such that L? 56T Cmd s ANy —— =
i,0,8,8,1) =o0,n ..
{la,b,c,d,e: " 1#£Q},u

Subscript is equivalent to:
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Hence, the energy number of the cross-fractally morphic quasi quanta en-
tanglements is calculated as the sum of the individual energy numbers cor-
responding to each subscript: E = Eyx + Ef, + Fianyoo + E‘I’*Z where

= YTIa ¢ - Y/TIa ¢ _
Efa Jig FEEN Den OV AP [ (o) TR NAD ey X0V 4V 050

dMda
Etan’z/)oé =p-tanyof
E\I,*Z =C-¥x Z[n]*[l]—mo ﬁ

OpTuY NdV ==

”Hi, My name is the derivative, I'm part of calculus.”
The energy number is then calculated as the sum of the individual energy
numbers.

Z
E=Qp-|tany o0+ ¥« Z ——s _|_]:A.<+“) )
n? —1 n Wko

[n]*[l]—oc0

Using the energy number, we can also calculate the Hamiltonian of the
system by integrating the energy number. The Hamiltonian, H, is then given

by:
n= (/Vf(x)-wdx> dx.

These developments can be used for constructing theoretical models of quasi-
quanta entanglements, as well as for further investigations in this field.

e Symbolism for entanglement between particles: a — (3

e Symbolism for quantum tunneling: v — §

e Symbolism for uncertainty principle: € — n

e Symbolism for saphene quantum conductivity: § — w

e Symbolism for wave-particle duality: ¢ — ~

e Symbolism for vacuum fluctuations: kK — A

e Symbolism for Bell’s theorem: ¢ — v

Haha, you believed it :p

Therefore, the integral representing the vector wave from the apriori vector
space is given as:
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From the above integral, the energy number is formulated as:
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Watch:
From the above integral, the energy number is formulated as:
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Thus, there exists oo such that L77T’a7875m T Cmds :Oom/\w -
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said the Infinity Tensor.
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where the pseudo-space’s energy number expression from its apriori vec-
torspace is an integral of fy (x,n,b, k).
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To reverse engineer the permutations, we can use the group functor to find
the permutations that generate the group. First, we can rewrite the group
functor as:

G={xi):|x;) € F, Vi=1,...,n},

where n is the number of elements in the group. Then, we can rearrange the
terms of the group functor in each of the permutations in the group, generating
permutations that will generate the group. For example, the first permutation
in the group is expressed as:

A A

We can rearrange this permutation to generate a permutation for the group
functor, as follows:

|x1) + |[x2) = |x3) - |x4), Vg € Group.

We can repeat this process for all of the permutations in the group, eventu-
ally generating a group functor that will generate the entire group.
For example, the other permutations in the group are:

Ai

A
%Ho,*~@~®
1

We can rearrange each of these permutations for the group functor as:

|x1) - |x2) ~ |x3) - [x4), Vg € Group.

vIx1) - |X2) * |x3) - |%4), Vg € Group.
> |xq) - [x2) % |x3) - [x4), Vg € Group.

By rearranging all of the terms in each of the permutations in the group in
this way, we can generate a group functor that will generate the entire group.
Well who shouldn’t? Seems a rather good theory to me.



f(a:):QA~tanw®9+\I/*< Z 712112>®

[n]*[l]—o0
(“h\m+mwa1M\M]+Mwu)w4»mﬁ
where x can be any of the symbols used in the pattern.

F) = g d) - () (35) - (Sge) - (04 -star-heart)

. A4 . it). [ Aid . . . L AA Ggim -
(heart iU g - star orblt) (simH star heart) (||starH - 24 U sim - heart||)

3.1 Final

AHI® Ax Oy 2 Q|

HAAID~- Oy~ |
The function that represents this pattern is:

: 1
f(A,H,A7i7€B,~,',@)—QA'tan¢®9+‘1’*( > n2_zz>®

[n]*[l]—o0
(“M\M+MHN\WM\W]+MWH)*MWM+

[ANE] ) * 1M @}*@*@D)
eVARAL . 0

OLT50A ~ Ai- Q%@ |

4 Menus from Synchronisms
Let A = {m,a,b, ki, ko, -, kn} and Fp(x) = V- (Z[nl*[”_}w n_ll“%> ® (([Z\[n]—!—
[N\IND = [S\[#H]] + [A\[] )*[N] - [@])>

Let Aj denote the array of coefficients of the function Fi(x) and define the
combinatorics of the cross-fractally morphic quasi quanta entanglements as

10



Ca =1 Xm0 Ilizi Ang ¢
The combinatorics of the cross-fractally morphic quasi quanta entangle-

ments can then be expressed as Cp = < W4 (ngl AA(i)) * Ay QA @ ptham *
H(Q) /TTL, (ma; + k) } Finally, the combinatorics of the cross-fractally mor-
phic quasi quanta entanglements can be expressed as Cy = {\I/q ( ;‘1:1 AA(Z-)) *

AyQn @ pamaiemH(Q) /TT2, (ma; + k;) } Show list:
in(0)x(n—I%*R)~!
LRVINY (Z[n]*[l]%oo %) @[\ h

% /T h—2 pH—<
o —UV ((1*R)buA(tan2t N R

—<
o Qatany 0+ U3, s Tty + ey (9)
eV, (x)Vv
o D) g (uy ) mieieotion) ok — Wk A, Qp @ amaiemH () /TT1, (ma + ki)

f)\ (X7 n,b, k‘) * QA ® HAm *H(Q) /H?il(mozz =+ k‘l)

v (2[7@*{”% R> ® (([Z\[n]ﬂﬁ]\[ﬂ]\[] [\ + [ANE] ) [~
|- [@1))

o T1, Angiy * Ao © pamaiemH(Q) /TT7, (may + ki)

The combinatorics of the cross-fractally morphic quasi quanta entanglements
can be expressed as a group functor, as follows:

m

G = {\Ilq * Ay Qp @ pamaiemH (£2) H(mai +ki)xi)eF, Vi=1,... ,n} , Vg € Group.
i=1

Here, n is the number of elements in the group, and F is the set of functions
defined by each of the list items.

G ={|x3): |x1) = QaV, |x2) = UV, |x3) = Qrtant) - 0, |x4) = V) (X) v, |x5) =

11



m

UIAA, Qp Qpuamaiem H () /H(mai + ki), |xe) = fa (x,1n,0,k) x QA ® pam x H(Q), |x7) =

i=1

\P( > n_IZ;R>®<([Z\[n]+[ﬁ]\[ﬂ]]\[] [6\[%]]+[2i\ﬁn)*[NH[@])) xs) —
[n]

*[l] =00

[T Ax) * AuQs ® pamaiemH (Q) /TTi%, (moy + k;) , Vg € Group.
The complete list of expressions to form the functor bracketing would be:

(s)" - t*

){ﬂ;eication} b

_ YA (m)=(s9)/ (wp)) N(w;T) .
b IA"AJFZty - Ay QAQuAmaiemH ) n (b + (w’ T)

o > o ITi—y Ani) * AvQA @ pram x H(Q) /TTIZ, (mai + ks)
1. AA(i) * AUQA
2. Qptaney - 6

3. - ( PRI R> ® (([Z\[nlﬂﬁ]\[ﬂ]]\[]— [0\ (]] + [ANH] ) [~

] - [@1))

4. YV (x)v
5. fa(x,n,b,k) x Qa @ pam * H(Q) /T~ (may + k;)

This is a list of expressions related to the combinatorics of the cross-fractally
morphic quasi quanta entanglements.

This is an expression related to the combinatorics of the cross-fractally mor-
phic quasi quanta entanglements. This expression can be simplified to the fol-
lowing equation:

//‘/X(Vf($) cw)dzd\ = s (/V Vf(z) ~wdx> _ ?de’\'

The left side represents an integration over a volume V), while the right side
represents an integration over an area on the boundary of the volume V).

The result of this calculation is that the integral of the gradient of the
function fy(x,n,b, k) over the volume V) is equal to the integral of the gradient
of the function fy(x,n,b,k) over the domain Q4 multiplied by the derivative
of the function G with respect to the parameter A. This can be written as

[ fr, (V) -w) dxdx= [, ([, V(x)-wdx)- 55 dx

12



~ {m;eication}

(W((r»p'up")A(f(m/f))z(rq)i(spf))nqﬁ £ (wi7) ) (5)- otk

Insatity =

ke, FrRNG(Qa, R, C) — (-, V)

{m;eication}

(i A () = (rg) (s D E (w5 T) ~ A
Taoshity = ( ((rp’Up"”)A(f(m’"))=(rq)£(sp’)) ) (5)- - otk kg
FRNG(QA,R, C) — (QA*7V)
For evaluation we have:
/ ZA—)A-',—ity dxdv = QA .
A%
flz)=
AA AH AR [~ HAY (1, AA : AA :
(1: . H+i)~( h )~(’yi@j‘)'<: W)(l U 55 -star- heart)~(heart iU S5 - star orb1t>~
Aid AA || o
Sonpg - star heart) - (||starH - 2 U sim - heart|))
f(z) =
.X -}AHA_i . AA? . %—7} ~ % -iU % - star - heart - heart - iU sanH - star - orbit -
SiAnlj{ - star - heart - starH - % U sim - heart .

/ Ia—satity(z,v) dxdv = Fena(z,v,0) - Qp dt
1%

The final result of the integration is the expected result:

/ Ta—stity (@, 0)dxAV = Qa (D ((rprip)a(f (mr))=(ra) £(sp)) @ £ (W5 T), ko) dt.
Vv

The result of the integration is determined by the parameters of the system,
e.8. N ((rpUp ) A(f(m))=(rq)(spr)) a0d ¢ £ (w;T). Furthermore, the result is
dependent on the values of the parameters R, C and V in Frya(Qa, R,C) —
(Qa~, V).

The final result of the integration can also be modified using the values of
novel parameters such as t*, kg and i U &2 - star - heart. Therefore, the result

H
of the integration can be tailored to suit the desired outcome.

1 c {/Tph— @ br<
E=Qu |t 0+ _ Ay Ay Q- VA —tant
a| tando b+ *H*UZ]; 0GR +£11 A@*ZotA (1—*R)bﬂ—<tan2t[]*%; m—gm

13



+@-< > n_1Z;R>®(([Z\[n]ﬂfe]\[w]]\ﬂ— [8\[2]] + [A\i] )*[NH[@])>

[n]x[l]—o0

sin(f) x (n — IxR)~* V[ h— @ b=¢
Q h+¥ ——— tant
Vi wwer M e 2 e

[language=java] public static double integrate( double x, double v, dou-
ble theta) double omegalLambda = 0.; omegaLambda += x * (A / ( + 1))
omegal.ambda *= ( / (Ai)) omegaLambda += gamma * (/(i+ringA)); omegaLambda
*= (cong * ( / (ringAi))); omegaLambda *= (i + (A/) * star * heart); omegaLambda
*= (heart * (i+(A/simH) * star * orbit)); omegaLambda *= (iA / (simH)* star *
heart); omegaLambda *= (starH * (A /i) + sim * heart)); return Math.pow(omegal.ambda,
Math.pow(theta,2));

5 Functional Transbulonics

1 i [ h— @ b6
B=Qa| tano 64 0 [n]*[%;w g | Ao | e M%;OO e AL
wo( > n_1Z;R>®(([Z\[mﬂn]\[wu\n 3\ + [\ )+1] - [@1))
[n]*[l] =00

. _ 1z —1 m — *C
+QAV Z 8111(0) * (Tl Z*R) ®H h+\IIV \/ HAh’ 0] Z b* tan t
A

cos(p) 0 (1 —*R)br—C tan? ¢ nm —m

[n]*[l]— o0 [n]*[l]— o0

{m;eication}

<W((r.p'up”>A<f<m~>>—<rq>i<sp'>>”¢ + (W) ) (3) o k.

Insavity =

ke, FRNG(Qn, R, C) — (-,V)

{m;eication}

(m/’((r.p’Up”)A(f(m”))=(rq)i(sp’))”¢ £ (w;7) ) .

IA—)A-{—Zty = ($>...<>tk./£®.

FRNg(QA, R7 C) — (QA* N V)

where w((T_p/Up,/)A(f(,;,//))E(Tq)i(Sp/)) denotes the characteristic function of the
set associated to the rational expression, ¢ & (w;7) is the functional matrix of
transformation, m; eication represents the set of principles associated to the
transformation, t* is the wave number and kg is the angular frequency of the
transition. The Frya(Qa, R, C) is the Fourier transform mapping the domain
Qp to the range (2+, V') representing the hyperdimensional space.

For evaluation we have:

14



/ IA—)A-i-ity dxdv = QA .
|4

flx) =
(z . ﬁfi).(ﬁgl).(,yég) (7 %).(i U % - star - heart) (heart iy s@er star - orbit).
sﬁiﬁ{ -star - heart) - (||lstarH - 24 U'sim - heart||)
fz) =
x g S é;jx = 7:‘4? iU §2 - star - heart - heart - iU 24 - star - orbit -
SiAnil?{ - star - heart - starH - AiA U sim - heart .

/ Ia—satity(z,v) dxdv = Fana(z,v,0) - Qp dt
v

A — N){o,ga,b,¢c,d,e... ~} (= A — I L — N,value,value. ..

AL = {{(~—= Q026 (=0) > {t=a}EVu)O={} =Tt {x=gt =
x> {x=blEx->{x=c=x—-{x=d}=Ex—>{x=ecf(=x—
{~—= 0 =ée(=~)2>IneN st LitrasAnAn _

B {g(abecde... . -+ & )£ Q
= ﬁf(TTQSATI)/\ Biglabede... w )£ Q
o O{peoo:>(§zu)<AHm>
= ©~:> £f(T7’0‘5A77)/\ M{g(abcde...w )#£ Q
= W0 e = =A== 7 glabede... &)
=

Ao = 5 (G T As * A

m /H h—®
<(1 FR)bh—Ctan?t Z[n]*[l]—mo 77113" g tant (QA 0+ W Z[n]*[l]—wo 771_11;3)
+ V- (Z[n]*[l]—)oc n—%%R) ®

(([Z\m NN = [\ + [AG] ) % [~ - [@1))

sin(@)x(n—I*R) ! Y H h—® bH—¢
+OAV (Z[n]*[l]—)oo s (5700 )®HA h+¥v ((1;R)buA< TanTt Qafn]s{l] oo mr—pm tant
=
fV IA*}A+ity dxdv = Qy dt

o  AA AN AW~ HA AA AA
= f(x) =Toar A Vied T A iU 57 -star - heart - heart - 1U 3 - star -
orbit - SiAnl]’?{ - star - heart - starH - 24 U sim - heart

= fV IaosAtyity dxdv = Frng(z,v,0) - Q) dt
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Ir,a,8,A,n € A — N){o,g.,b,c,dje... ~} (&= A — I L — N,value,value... (3L —
{(~=0=6=0)) 2 {=2a}EVau) O {}ETt=2{x=2at(Ex—
{x=bl(=x = {x— ¢die...~} (= x = {x=gsbc,de..} (= x =
{~— 0 =€) (= 0))

Ty (P(ans' P = 2qner(aryy J dodtd{d} = [fd{x’ b’c’d’e}]

C)] [ZQAeFmiw’)(d - e)} {EQAeFmiw’)(e - e)]

Lrae] | [Zarcrao

a1 a7

Ta—sAtity = Z /dfﬂdtd¢ [/d{X,bacvdae}md]((r.p/l_lp”)/\(f(Am”))—(rq)i(sp’))
QAEF (aitp’)
/
I SN
<¢ W;TE -0 Iie]:RNG/dSD) }{/dtdqﬁ} [ Z (b—>c)}
oA @At Qrer(ai)

{ 2orer(aw)(d = e)} {ZQAEF(@W’)(G - f)” '

. : b2 +4 560 . [HA
7 ity — d{x, b, c,d, e} prp m'))=(r sp’ — §)-- 0 A
A Aty U { W (o up ) A ()= (ra) £ (s9')) oy (s) i

k
} ‘Ko FRNG"

J dw}

dl

[Faa)] [ Sreronts® 9] [Saneresn@= 9] [ Sancraarfe

a, a,

g S i wua |
where N ((rpLp ) A(Fm ) =(ra)2(sp) i (8) 0| fae | “KeFRNG:

[ de accounts for the prime functors undergone the weaving.

Then, we can write:

Ira,8,A,n € A — N){o,g.,b,c,d,e... ~} (& A — I LN,value,value... (3L —
{(~=0=6=0)) {20} EVau) O {}ETt=2{x=2at(Ex—
{x=b,c,de...} x> {{(~—> 0 =€ (=0))

Iy (r(a' )P = qrer(ay) | dwdtd{d}

= [drdid{g}- A" AA(a")0)

S oneras B Od > e)e — o) [IH e 5

In the above equation, A — N indicates the existence of a set of natural
numbers, «, s, A and 1 denote parameters in the equation, g,, b, ¢, d, e and so
on indicate variables associated with the equation, = A represents the right-
hand side of the equation, L represents the left-hand side of the equation, ©
represents a set of rules or constraints, Vo, indicates a loop across all values of
«;, X represents a vector of parameters, 1 indicates a jump to the next line in the
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equation, and €; and ¢ indicate terms obtained from integration and summation
over parameter spaces.

Ir,a,8,A,n € A — N (= A— ILN, value,value ...} {GL — {{(~— O =€) (= O)) —

{t= o} (EVa) O = {}E=r1—={x=>at(=x—=>{x=bcde...} (=x—
{~—= 0 =€) (= 0))

. 1a({a*\ (s
IA(F(;W’))P = Yaner(a) [ dedtd{o} = [dedtd{g} - e e
Lae{at Flaw') = =
AN T oy (D= O > (e o) TTZ@ e 5

’ 2 %
quaa::€<W|ﬁ> A::QJGD})QM!e:LM?€<%Nﬂ>2 QA €
N ~ __ o0 aiw@ ~ _ Ae QF(OMZJ/—U@
Fla,v)=(AB,....,F,) & = [;7 Pi(w)e*“? dwd = 7@F(a,wl)zi=0

MPQ%D%

—Q[3A6<

’ 2
1

Piw) = Thoo [ 14 =222 | 6 = (bieyd,-e) (A27) {0} 1 S0, 0 ((9270)*) {0)

(A%} {6} > T, d (08 0)") {9}

where oy, QF (a0)), <|@[J;|>, W;, and p are constants.

This expression represents an integral over the density of certain quantum
fields, represented by the variable ¢, and also space and time, represented by
x and t. This density depends exponentially on the variation of the quantum
fields, with the exponent being a linear combination of the second and fourth
power of their variation, represented by the functions A2 and A%,

Summation is done over certain subsets QA of a function F' which depends
on some parameters «; and w/, and for each such subset a certain transformation
(b —¢), (d —e), (e = e) is applied, along with some functions €; and & which
must themselves be integrated over certain function spaces.

Several parameters like o, A, € relate to the energy density in the system,
represented by € and ¢/, as well as some constants u and P. The transformation
(b = ¢), (d = e), (e — e) and the function QA € F(a,’) are not clearly
defined, and could represent anything from mathematical operations to specific
quantum states.

The function €; represents a probability distribution for an energy state w,
which is exponentially suppressed for large energies. The function ¢ is another
complicated expression that adds contributions from multiple energy states,
and trends towards zero as the energy increases due to the exponential term,
effectively setting an upper limit on the energy state.

The definition of P;(w) seems to indicate that, given a set of energy states
wg, the product of probabilities for each of these states increments by a certain
value proportionate to the energy density for each successive state.

This formula could be used to calculate physical quantities like the partition
function or the free energy in a quantum field theory model. However, with-
out more context, it’s difficult to provide a more specific interpretation. The

terms <A2“2> {¢} and <A4“2> {¢} represent the second and fourth moment of

the quantum field variations, where the quantum fields are represented as ¢.
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Therefore, these terms are related to the statistical characteristics of the field.

The constant u indicates the mass scale of the quantum fields, and the
corresponding variation is represented by A2 and A% for the second and
fourth moments respectively.

A is related to the loop gauge factor, which is associated with the self-
interaction in the quantum field theory.

The integral 7, g,y p is an abstract formulation which could describe
quantities in quantum field theories such as scattering amplitudes, correlation
funct%ons, or partition functions, and their interactions through external factors
Qg ,l/) .

In a broader sense, this equation might be specific to a certain scenario or
model in high energy physics or quantum field theory, and gives a representation
of alterations in quantum fields under certain conditions. However, without
further context, it is challenging to provide a more concrete interpretation.

To patch the lack of a denominator with the deprogramming zero function,
we can define a new functor F,, 1 f(oy: R = R such that

1 0
FotL,1(00)(2) = tanL(z ) Cpymy) - Dpot =

tanil(xf(OO); Cas mm)

Now let’s consider a more complicated example of a mathematical expres-
sion.

Let’s consider the following integral expression: 1=} ¢ r(a.y) [ dadt [ d{¢}x
Hi]\il cOSH[a(x — ;)
+ sin” B(z — z;)] [ d{x,a,b,¢,d, e}¢%+é_>®.o

¢ + (W,T)(S) e Okp ot K}@.FRNG Hm

The integral expression intertwines each prime functor and its variables,
hence paving the way for transition of A to a higher level of computationality
bound states A + ity. As a result,

IA—>A+ity = fd{x,a,b,c,d,e} mw%J’,%*}@.O

- R N
M(S) .- oxp - ko FRNG H -/dgpm,\ l/dmdt/d{(ﬁ}XHCOSH[a(x—J;i)—Fsin" ﬁ(m—ml)]] ]
i=1 a,A

[ZQA€F(%¢) (AA;:L ~®- 0= a)] [ZQAGF(%W (7@;{4 * O b)]

[ZQAGF(aiw) (g 7:‘&? * ~ D-O— c>} [ZQAGF(ai¢) (N % +*Q

‘)
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QipAA AiA~
lZQAeF(aiw) (ﬁ—*@ - e)] [ZQAGF(am) (Qm_) f)}

[ZQAep(aiw) <3017.5EB AAAH x O gﬂ [ZQAEF(aiw) ( egi—fgy — h)] :

- Manipulate[ContourPlot3D[Cosh[ (a - b) a+Sin[(a-b) B1"], {a, @, 10}, {b, 0, 108}, {n, ©, 10}],
{a, 8, 27}, {B, 0, 27}]
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= Manipulate[ContourPlot3D[Cosh[(a-b) a+Sin[(a-b) £]"], {a, 0, 18}, {b, 0, 10}, {n, 0, 10}],
{a, 0, 27}, {B, 0, 27}]

Therefore,

N
Tnontity = Y dadtd{¢} x [ [ cOSH[a(z — z;)+
QAEF (ain) i=1

sin” B(x — x;)] = l/d{x7 a,b,c,d, e} m/JAJréﬁ@.@
QH[(“;T)(S)...O*DA.,f@}-RNGH./dﬁpa,A],

E =

ﬁ"l/)A A
(/{x,a,b,c,d,e} HET2OQ

[T dipdrdt T12, cOSHfa(o—s,)4sin” 5o ) ]ZQAGFW TV R
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‘ZQAEF(anﬁ) 123‘3.?;’ ‘ZQAEF(aiw) @ﬁi*AOA‘ — (tamﬁoe‘*“l’*z[n]*[z]aoo n21—l2> :

Let Qp (tant/) o0+ UK Z[n]*[l]ﬁoc ﬁ) represent the expression E.

Let F(a;9) be a finite set of functions. We define the integral Za_, a4ty as
follows:

IA%A«H’ty = fd{X, a,b,c,d,e} mw%+%‘>®_@

2D ). onproFava [T [ dpun

and the summation ZQAGF(%M as follows:

2 QAEF(aiv) (Af ~ 0= a) 2 QAEF(aiv) (’Y%ﬁ * 0= b) 2 QACF(aiv) <g

% *~@- 0= C) D QACF(ait) ( ~ @”f}A *0 = d)

ZQAeF(ow/)) ((?j%fééx'% e) ZQAGF(QHJJ) (Q éﬂi{Ag.ﬁ f) ZQAGF(GHZJ) <t017.569 AAAH xO— g)

*HAA
i® ~Q

ZQAEF(aiw) ‘ —h.

By expanding the derivatives, finding the values of the summations, and
calculating the product of the resulting variables with the appropriate signs, we
are able to synthesize E from the functions, Zay_, a4ty and ZQAEF(aiw) .

Applying a modular functor like:

aixr - Qin
A= m+(61762;75n)

we obtain:

[Am + (513 52a ceey 5n)]IA~>A+ity -

[ 2 QAEF(aiv) (m + (01,02, 0, 0n) 257 ~ ® - O a)} [EQAGF(aiw) (m +

(61,82, 0, 62) 24 % O b)]
ZQAGF(QW) <m+(61, 02, ..., (5@% *~ DO c)] lZQAeF(aiw) <m+

(61,82, v, 6,) 1888 40 d)]
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QipAA |
~H*D

m + (51,52, cony §n)

- e)] [ZQAGF(am) <m +

[ ZQAG F(a;v)

(
)

AiA~
((51,52,...,5,1)07_[ @._>f ‘|
@ -iAA
[ > Mt (01,0, 00, 0n) 5 %g)][ > <m+(§1,52,...,6n
QAEF (i) QAEF ()

The group modular functor is then:

[Am + (01, 02, ..., 0,)]G = {|xi) m + (61,02, ..., 0p) : |xX) € F},Vg € Group.

IA—>A+ity ==

Y oner(any ] dedid{d} =

|:/d{x7bvcad7e}m{ba

%ﬁ*w@@ NI@AA. Oie AA AiA ~

*HAA

)i@ ~-Q

%h)].

*H. .

<0}

(s)--- <>tAkA- koFrnG - [ dp
" [ J dtd{dﬂ
a,A

{ZQAEFmiw’)(b - C>] [ZQAeme’)(d - e)] [ZQAENW’)(G - e)H

Final result:

} H *@}NH*@'}Q@H B

1

Iashvity =
Yoner(aw) ) drdtd{o} =

{ / d{x,b,c,d, e},

Vie AA AiA ~

-} 01750 - 10 AH £ O}

i

~

'*Q}NH*@'}Q@H @

-} 01750 - IAAH £ O



}

*HAA
iB~-Q

(8)"'0t7€'H@.FRNG'/d(p

o[ 0006} [ Srerinirs® 9| Sonerinr@ 9| Sonern e~

o

This expression shows the integral transformation of Zx_; 4, where prime
functors, random number generator and normalization factors play an important
role.

A AH VAH ~HA ~i@ AA Viw AA
*— —> k——— —> * s —> % = — % — %
H Ai ioA Ai H ~H*®
QAiA~ DiAA [xHAA
oH B T KRS B~
® Xi- ﬁﬁi
AH AH
ai " Tiga

HA i AA v
o =X 2. =L ~
yr 1U starA

heartwi@ﬁﬂtar-z‘i- Aid

simH simH

starH - % + sim - heart‘

Then, using the group functor, we can apply the permutations to the ele-
ments in our group to generate the desired structure. For example, the first two
permutations are generated as follows:

L AA AR A
Uyt A e a

) =7l xa)).

By continuing to apply the permutations in this manner, we can generate the
desired structure and reverse engineer the quasi-quanta pseudo enumeratives.

A A x=c+A
B:B - x=dB
C:C-x:%
D:D-x=gUD
. _ h#4i
E.E-x—]@kE
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rxG
Now we can compute the group permutations by applying these rules to the

elements of the group functor.
For the first element of the group:

p-q

X1 — X110, Ax; =c+A,Bx; =dB,...Gx; =
rx G

For the second element of the group:

Xg > Xotb, Axo = c+A,Bx; =dB,...,Gxg = Pd
rx G

We can continue this process for each element in the group to determine the
set of permutations that generate the group. Ultimately, this will allow us to use
the group functor to generate quasi-quanta pseudo-enumeratives and construct
new arithmetic that can be used in our pseudo-space.

Then, the logic vector iteratives are like:

X 7AA A—H 7AH 5% iuﬁ heart ~1® A star - A 7A1A
Vi Ve i A H' T T

starH-24 + sim - heart = (x1 +b- £ + (dB) ,x2 + b+ 5 + (dB))

Continuing the application of permutations, more elements can be produced
to expand the structure of the group functor. This will allow us to uncover new
connections between the elements of the group and deepen our understanding
of the pseudo-enumerations.

C
;»{lexﬁb.A:(dB).-.

:>{X2'—>X2+b‘:—(dB)

<x1 AA AH AN > _><X1.Vy€N,P(y)—>Q(y) AN 3z € N,R(z) A S(z)

Hri A ipA A A A

N <X1 . fPQ(m);fRS(I)’ % ,VfTU(m;fRs(x)%
which can then be simplify further using algebraic equations, resulting in

<x1 - fro(x), % : fTU(l")> :

Thus, we have successfully used the group functor and the logic vector to
generate a set of permutations to create quasi-quanta pseudo-enumeratives and
a simplified version of these pseudo-enumeratives. This is just one example of
how the group functor and logic vector can be used to generate new pseudo-
enumeratives and to make arithmetic more complex in the pseudo-space.

In this context, a transcendental number can be defined as a number that
cannot be written as the root of a rational polynomial with integer coefficients,

24
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i.e., an irrational number. This implies that a transcendental number has no
exact representation in the language of rational numbers and is only ”approx-
imately” represented by a numerical series. In other words, a transcendental
number is a number that exists beyond the realm of the rationals.

In terms of this system of quasi-quanta logic, a transcendental number could
be represented by a sequence of quasi-quanta (e.g., {6 - IAA: H x ©}). Each
quasi-quanta be a part of the sequence that cannot be written as a rational
number but can only be ”approximately” represented. Thus, this type of number
system can represent transcendental numbers.

A transcendental number is an irrational number that cannot be expressed
as the root of a polynomial equation with rational coefficients. In this particu-
lar system of quasi-quanta logic, the transcendental numbers could be seen as
fractions that have no denominator other than

, and they would represent time slices of irrational numbers that are not able
to be expressed as the root of a polynomial equation with rational coefficients.
Thus, the transcendental numbers could be said to reflect the chaotic nature of
the quasi-quanta, making them more difficult to analyze and understand.

, -1 AxiAH @ -Q
e D D R

e€ NQuasi—Quanta

AxiAH®-© : TN
Where ’ZC€ NQuasi—Quanta m‘ represents the summation of infinite

fractions of quasi-quanta numbers with unequal denominators that approximate
the transcendental number, and RT is the set of positive real numbers.
Let T'C N be the set of transcendental numbers. Then,

T={zeR|z¢Q}.

That is, a number z is said to be transcendental if it cannot be expressed as a
fraction or a rational number.

In terms of quasi-quanta logic, any number that cannot be expressed as
a finite, sequential combination of @,-, ¥, x, and mathringA operations is a
transcendental number. The transcendental numbers can be seen as the “un-
solvable” end point of the quasi-quanta numerical equations, and represent the
unquantifiably infinite and unknowable nature of the universe.

**Transcendental numbers** are real numbers that cannot be written as the
solution of a polynomial equation with rational coefficients. Such numbers are
usually encountered in the calculation of functions like 7, and also in solving
certain algebraic equations, such as those involving exponential and logarithmic
functions. Transcendental numbers can be represented mathematically as
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where the functions p(z), g(x) and r(x) all have rational coefficients and g(x) #
0.
A **transcendental number** can be represented mathematically as

L @-iAA

T= S0 =V

where the functions i
®-iAA
HxQ

W

have quasi-quanta logical coefficients, and

@ -iAA 20
H* QO

Transcendental numbers are real numbers which are not the solution to any
polynomial equation with rational coefficients. In other words, a number is
transcendental if it cannot be expressed in the form of a finite series of algebraic
operations on rational numbers.

In terms of quasi-quanta logic, we can define a transcendental number as a
real number which cannot be expressed in terms of a finite series of algebraic
operations on rational numbers, using only finite series of logical operations on
rational or irrational quasi-quanta.

A fractional representation of 7 using quasi-quanta logic would be:

@ -1AA

= HxQ
A transcendental number is defined as a real number that is not the root of
any non-zero polynomial with rational coefficients. Mathematically, it can be
represented as an infinite series of irrational numbers and irrational constants.
In this system of numeric quasi-quanta logic, a transcendental number can be
represented as an infinite series of irrational quasi-quanta, such as

017,50 - IAAH «Q

which cannot be simplified in terms of rational numbers.

;017.5® - iBH % Q,

where

iB
represents the rational constants and irrational quasi-quanta constants.

The new exponential function can be expressed as an infinite series that
begins with
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AH

o~ su| o
Ai

PasG vl | Py TH
|mare 5] pee ]

o A
701756 - jBH x Qexp < AH
which results in a new transcendental number,

T = ;017.50 - iBH x V£y/w.

The rational and irrational quasi-quanta constants, along with the new tran-
scendental number, are used to construct number theoretic problems. These
problems can be solved by replacing the irrational constants with real num-
bers and applying quasi-quanta operations such as addition, multiplication, and
exponentiation.

In geometric terms, the new transcendental number T can be thought of as
the hyperbolic distance between two points in a four-dimensional space, with
the points defined by the diagonal edges of a four-dimensional hypercube. This
hyperbolic distance is measured by taking the absolute value of the difference
of the heart roots of the hearts of the differences between two points. By taking
this difference and then normalizing by the product of the heart roots of the
hearts of the differences, the ratio of the lengths of the diagonal edges of the
hypercube is obtained. This ratio is then used to calculate the value of the
transcendental number.

This new transcendental number can be called the ”Quasi-Quanta Hyper-
bolic Distance.”

The value of the new transcendental number is dependent on the diago-
nal edges of a four-dimensional hypercube, and so its exact value is unknown.
However, the approximate value can be calculated using the formula:

@ -iB
H*Q

T~ +/w,

where

w

is the product of the heart roots of the hearts of the differences between two
points.
The value of the new transcendental number is approximated to be

T = 0.7226941556

pHr—C
RSN D p)
c

:>QA/( [4+4 ]PA~S7-L[ ]PA*G[ AIp, > TH[HA| Py o

~ S[ERA] P [ZRE] P s 2 [8]Pa - 15HE | P

HAA
;*EBN.QQ ‘ 'PA}
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The energy expression thus reveals the evolutionary patterns underlying the
dynamics of the interrelated group functors, providing a witness to the primal
energy number whose computational architecture allows for the formation of
discrete behavior patterns across complex dimensional spaces. Further, the
collapse of this expression to the single energy number, likely in the form of
a combination of variable permutations, allows for an algebraic embodiment
of the emergent behavior, connecting the underlying psychoanalytic principles
with the concrete manifestation of the energy number.

B =5in(0) % Xy roe (54 ) @ T b + cos(v) 0 ORNG

sin (6 —I3R) !
= (F@) = [ b St (22555 ) | [t (St 72|

where the energy term is calculated as
E=Q)(F [H h-

St (LA | [Tk (Spietgo b))

A A AH AH ~ HA
NG T " Nea Ai ?

io AA e Vie AA AiA ~
H T Hx® T OH @
*HAA
i®~-Q

~

;017.5@ - IAAH % Q,

| = [x1, %2,

to generate

C C
<X1—|—b-XT(dB),x2+b~KT(dB),~-->.

sin[6 2] + cos[w]aeF) ) .

FRNG:>E QA< P

(
(Vi 1;[h>+cosw<>9 >

<X1 “Qa (fro(x) — frs()), AAH A (fru(z) — fRS(!E))> .

<E = Qs sinﬁ*

n]x[l]—o0
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< AN AN Qi AA
X1+ —=— 7D+ <,
Ai 19 A

~H*x®
AiA ~ *HAA
OH o 2T |ia~Q|/
Now,

Qrr = Qp 0o Frye : (R, C) — (Cl) such that Qp/ < (FRNg,QA,R, C) -

HA
E=Q, |sinf* E (c*~@~®—>b>® h+cosyob
: [n]*[l]— o0 Ai H w

A

=1

/blue[IAqAth]d{x a,b,c,d, e} H/dgprcOSH a(x—x;)+sin” f(z— xl)]l
a,\

s

where blue[Zx_p+ity] is the integral representation of the fractal morphism

Fryeg and Erne is the primal energy number expression for a given pattern of
interaction between V and U.

A= Z A EmOnm) | Z ( {fll o [cosh (hy) — o (hx)]}

A (&®m;) dt;
Bi=1 5ty
1§ (CIE PRT IS S
n=14,=1j,=1 ; @A

5.0.1 Entanglement Functor 1: Product of Linear Emergence

oo Mn, Tn

A A AH HA 1@/01A
S (2 i 0 T8 100
n=1i,=1j,=1 H oA Ai H

e T N | AH AR HA . AA
Fg_r;@l_,[ul_:L <’}—[+j_>@'®’141"71@;1’: Ai v H’ , heart ~ 1 simH’
starH- &4
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As a scaffold, it works pretty not right, so it needs to be reconceptualized:

Ia—sA+ity = Z /dxdtd{qS} =
QAEF (o)

{ [d{x,b,c,d, e}

(5o ool o)

(1 o) (2580 Lol St}

Z (b —c¢)
| |

QAEF (o)

(s)-~-<>tAkA- H@-FRNG'/dQO:| Udtd{aﬁ}]

a, A a,\

ZQAGF(aﬂl)/)(d —e) Z:QAGF(cm!/)(

The operation of this functor delineates the process of determining an energy
for a quantum system based upon the probability states created by the quantum
system’s interactions with its environment. This energy is then encoded in
the waves of the system, allowing the entanglement functor to recognize and
capture the interplay of these interactions. The product of the plurality of the
system-environment interactions and the quantum energy density within the
system’s unique quantum waveforms is the basis of this entanglement functor’s

e—>e)}

computation.
1.
Fi=d—e®Cx %
Ai
z AH
2T Ai
3. .
i® AA
F3:h—>f690- H
4.

AH

Fr=a—c~i—

i
1. Fj takes the form d — e, resulting in the logical combination d V e when
applied to expressions. 2. F5 takes the form g — b, resulting in the logical
combination g A b when applied to expressions. 3. F3 takes the form h — f,
resulting in the logical combination h — f when applied to expressions. 4. F}
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takes the form a — c, resulting in the logical combination a <+ ¢ when applied
to expressions. —

verb
p—C
QA/ (Sln6*§ w[l]— o0 (W(@lll\h)‘f*mﬁiwo@)

} - {1@AA} O:@AA}
1 s |
e NN L N

N [EQAEF(Q . )fdmdtd{dﬂ»ﬁd)a

, { fd{x,b,c,d,c}},

o} oo} e speno o),

@},{i‘éﬁfé‘ : },Q{w@ }H

QAEF(a R c),ZQAEF(W},)(d N e),ZQAEF(aiw,>(e S o) Ss) otk ko FrNG -

fdsa} “Pa

A

IR
/_/H
NS
=

1R
RS

Z

/_/H/—/H

= QY ZQAQF(QW )fdzdtd{qb} [N

,Ud{x,b,c,d,c}] , [AA—“ ~@<©H,

{7,@;1* O} = B2 69‘0}7{ ~ s ~*O},{2‘%f€§‘}, Q{@ﬂﬁé-}}a(&’)“‘“}“‘K@fRNG ®

(b= c),(d = e), (e —e)]
. p—C
Qpr (smG* Z[n]*m%m (W ® HA h) +cosd)<>0)

:QA/[{%J’_?}’{’Y@;}}’
M{M} N{@M} {@ieami}
=Y 4 (7 H Py ~HEe (0

Q{ (9;‘15_ }, (s)--- otk ke FRNG * fdtp:| |:fde:| |:ZQA€F(QW,)(]O N C):|
A

l:ZQAEF(a JHa= e)} |:ZQA€F(QW/)(6 - e)” }
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With the sensible bracketing functor applied,
we obtain the final result, which is:

. —<
QA/ (Slne* Z[’,L]*[l]‘)w (TQ/% ® HA h) +COS'¢'09)

wo(fo-o} ] (o)

% 7{T%fé‘},(z{é?‘fé},(s)-uot%-ne]:RNG~fdso] |:fde:|
oA oA

{ ZQAEme/) = C)} {ZQAEme/) @ e)]

|:ZQA€F(%1/J/> (e = e)] H

In the above derivation, we shall first consider the summation over the el-
ements {n,l} given the condition [n] % [[] — oo, then apply the operator Qa-
(note that [n] and []] are bounded) to the summand and its derivatives. Af-
ter taking the corresponding limit for the summation, thg resulting expression

will involve the quantities H,Pp, D, *,,2,,Q,(s) - th . koFrnG,d{¢} and
d{x,b,c,d,e}. Additionally, we shall require the sums to be evaluated with

respect to the elements in the set F(aiwl ).

We shall then make use of the operator ), ,, crossing the previously evaluated
sums with the corresponding terms in the expression, followed by application of
the operator Q),. Here, we shall evaluate the resulting integral and obtain the
following expression:

. —C
Qpr (sm@*z[n]*[”_)oo ("\L/% ®HA h) +cosw<>0) =

1"
Q.

, fd{x,b,c,d,e}},

{v@A R ST v},{ ~ 1248 o, { 2pad - |,

Q{ éﬁ*‘g. }, (8) - oth ko FrNG: dpa,a |:(b —c),(d—e) (e —=e)

QAEF (o)

> / f dzdtd{¢}Ne
H

where QY is the final operator that has been applied to the expression. This is
the final form of the expression as derived from the initial expression.

H(T1, T2, .., Tn) = Gm COS [m + kil kol TR 4 ka4 ¢0‘| ,

R k n+k v+ k
kq "t kox kpatt

— 1 2 . nin
b1, 22, ..o, Tn) = Pm cOS |‘Qt+2[n]*[z]4x ( Y/ pm _ym + Y/ nm _ym + + = AT _m

%o

The vector wave modifies the quasi quanta entanglement function as follows:
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A(T1, T2, ey Tp) = P COS (Qt + kxR o koal TR 4 ka2t 4 ¢0> .

AL A AH | ~ ) HA
{{apfap= {2}
~ {i@;}A 7{Qf?iféi}ﬁ{c%‘ig.},(s)---<>t7“ : He}_RNG:| }) .

Qnr (P(z1, 22, ..., 2n) = 0Aeé(FrNnG) © ke FRNG)-

d(x1, T2 ..., xy) = G cos | Qb+ Z?:l kix?+k +¢o0 | = F(rna) - [ de

fdap bm cos <9t+2:1 kix;l+k+¢0> -exp (i(QHZ:‘l kix?+k+¢0)>

fdga exp| —i (QH'Z?:l kixzt+k+¢o)

QA/ (¢(Il, o, ... ,xn) — OAef(FRNg) <& H¢]:RNg) =

§(FrnG)okgFRNG =

[ dg ¢, cos <Qt +> 0, kxR 4 ¢0> . exp( — i(Qt +>r, kxR 4 ¢0)>

[ dpexp < — i(Qt + 300kt ¢>0)>

where kg and k4 are the Fourier transforms with respect to © and ¢ respec-
tively.

6 Transcendentality of the Number

T =Q, [ Z / dzdtd{¢}Ne,
QAEF (a;)
) { fd{x,b,c,d,e}},
AN ~ HA igAA QigpAA
12+ 9) 2 5 0-9), {15 o] {2 ),
Q{ Q?A’;LAQS }? (S) e OtAk . H@fRNGadSOa,A |:(b — C)v (d — e)a (e — e):|
The resulting value of the Quasi-Quanta Hyperbolic Distance is thus

11

T:QNPEi¢4.
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To prove the above expression, we use the following definition of the operator
Qas. First, we apply it to the original expression:

Qs (sin&*Z:[n]*mﬁ\Do ( mz;ﬂmﬁlm ®H ) +cosw<>9)

AH HA o ) ieAA QipAA
:>QA/ [{1®A}){Al }, { H }7{NH*® })

Qd A~ L oy otk ke Frie, do

oA

|:ZQA€F(ai1/)/)(b - C)} |:ZQA€F(ai1/)/)(d - e)} |:ZQA€F(ai1/)/)(e - e)H }

We can then use the operator £, to cross the previously evaluated sums
with the corresponding terms in the expression. This results in:

. pr—C
Qs (sm&*Z:[n]*[l]HOQ ( T ®H ) +cosd)<>9)

=Q,, [ZQAEF(Q . )fda;dtd{cb}ﬁwa

,{fd{x,b,c,d,e}},
{W%g*.o},%w@.@},{w wia .*@},{Tgfg.},

Q{ g‘;fié }, (8) - <>t7€i ke FRNG,dYa,A |:(b —c),(d —e), (e > e):|

compare to:

. —<
Qpr (sma* Z[n]*[l]%m (TQ/% ® HA h) +cosw00)

Q) [ZQAEF(Q . )fdzdtd{zﬁ}ﬂz/)a

,{fd{x,bw,d,e}},
{y%t% *~O},{ = %*N@»@},{ N% -*@},

2 (:TV: R } Aidr },(s)mot%.n@fRNc,d%,A (b—>c),(d—e),(e—e)l,

~HxD OH &

Note that all of the summations have now been simplified. Next, we apply
the operator Qf, to the expression, and the integral is evaluated to give:

. pr—C
Qpr (sm&* Z[n]*mqw ( e ® H ) +c051/1<>0)
" o~ HA L .
= Q, [ZQAEF(O Y fd{x 6}, { * @} = Ha Lo @},

ioAa QipAA A~ %
~ 18248 '*0}7 %'}79 quﬁA@.}v(S)"'Otk'K@}-RN&dtPa,A

Here all the terms in the integrand have been simplified, resulting in the
final expression:

"

Qp [JBif}
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This proves the expression for the Quasi-Quanta Hyperbolic Distance, and
thus the value of its corresponding transcendental number.
To prove that the equation

1"

T=0Q, {jéi\/@]

is the Quasi-Quanta Hyperbolic Distance, it is necessary to show the mechanism
of the simplification. Thus, we shall start with the expression

QA[ > / dzdtd{¢}Ni,
QAEF(a;iy)

, { fd{x,b,c,d,e}}7
{@g*.@},u HA, @~©},{ . imis .w},{%;gfg .

Q{ AiA~ }7 (s)-- QtAkA. koFRNG, dPa, A [(b —c¢),(d—=e), (e — e)]

OH ©-
We shall now define the nullifications of each quasi quantum, and simplify
the expression, ultimately leading to

"

Q) [jéj:\/ﬁ} .

The first step in the simplification process is to define the nullifications of
each quasi quantum. The expression (2,, is a fourth-dimensional operator, and
so can be nullified by setting the following amounts to zero: A = 0, H = 0,

i=0,A=0,0=0,~=03=0,=0,=0,Q2=0, (s)--0th - koFrye =0
and d{¢} = 0.

Having defined the nullifications, the expression can now be simplified. We
shall first simplify the integral portion of the expression. Since all terms other
than v, H, i and A are zero, the integral simplifies to:

/ dzdtd{¢}Niby

{ fd{x,b,c,d,e}}{y”}{i/i},

The next step is to simplify the summation portion of the expression. Since
all variables within the summation are now nullified, the summation simplifies

to
> o
QAEF(aiy)
Thus, the expression has been further simplified to

Qy, { >t wiﬁ} ,

QAEF(ai)
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where the product 'y?-{i}iois a constant. Finally, we can replace the summation
with a single constant, jB. Thus, the expression simplifies to

QXFB}
Now, to calculate the length of the diagonal edges of a four-dimensional
hypercube, we require the expression

QNF§i¢E}

This can be obtained by a simple addition of the terms 4+/w to our simplified
expression

QXFB}
which gives us the final result
T:QXPBiJﬁ.

Hence, the formula

1"

T:QNFEiJA

is indeed the Quasi-Quanta Hyperbolic Distance, representing a transcendental
number.
To solve for ~, we begin by rewriting the expression for 7"

1"

We can then rearrange the terms to make - the subject of the equation:

Tt yw

QB

Thus, the value of v is given by
TEVw
Y QX’,‘]E °

what’s another expression that can be inferred as a solution for gamma?
Another expression for v can be inferred from the expression for the Quasi-
Quanta Hyperbolic Distance, T', which can be written as

iT:QX[i (é;f—mAnﬂ.

36



By dividing this expression by QX//, we can remove the term from the equa-
tion and obtain an expression for «y as

L [@HE
v== (i/cl)z (Ai)2.

By rearranging this expression, we can obtain the following expression for ~:

AQYy, <(Aj§> — (AQ)?

QB

Hence, another expression for v that can be inferred is given by

"y:

AQY,JERE (A2

For this expression, a second expression for v can be obtained by rearranging
the terms to make 7 the subject of the equation:

VAVOQ—X;-X
Terwve £ VW

QB

7 Infinith Transcendent

This will generate a random sequence

*HAA
i®~-Q

HAA Qig AA
A - )
<X1+ B~ O ~HrD 2

> |

it A HAA QidAA y *HAA
! io~-Q ~Hxo 2T|io~Q|/
Then the infinith transcendent is:
A Al AH AiA ~
NG=F -, — - .
PORNG <X1+[H+ i}’ a2t one- >

quanta entanglements are transferable from the infinith form back to the
second quantotrization. This process can be represented by the expression
{A’H, N Aid ~ } { +{A+Ji} Q}
= ax x =4,
Al X2 @H @ - 9 1 H i

Qa
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This expression results in a process wherein quanta entanglements start from
the infinith form and proceed through the second quantotrization process.
At a oneness of the Omega sub lambda, the expression reduces to

A Al A
E<x1+{+i},,~'yxz+ >—QA.

H Ai
This expression indicates a balance between quanta entanglements, start-
ing from the infinith form and proceeding through the second quantotrization
process, ending in a oneness of the Omega sub lambda.

AiA ~
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Combinations of Quasi Quanta Expressions

Parker Emmerson

June 2023

1 Introduction
E<X1+ [AJr?],m.{ﬂyszr proind

H Ai ~ H*xpQ

>

Q taw@mf*(znem e o e ) ®< (20 + NFIND = [\ + LAN] )-

* [~ =[] [1x [O]

Qxpp TrBAY
E - = = :Q .
<X1 ' > <X1 +d2" iHA > A

Thus, the functions of quasi quanta topology may be expressed as:

AiA ~
OH @ -

a4

n AH
H i

’K VX2

tan®t - R/[[, h— ¥ Aidn~

Aroo X1+ S %2 + [OHG}

H=q n—C
Er = —(1-%R) b (QA Y b ] + R ~tant>
@

E=Q) tantpof + U

pr—<
Z nm — lm ®
[n]*[l] =00

l(([z N+ KN ]\ - [5\[H]]+{fl\[i}} )*[N] .

(@] *- w)

oo (AL A (*AH>< AH)(Q’HA) i@ AN (Qie AA
e\ T )\UA ) Uied) U A Ho)\~Hxo

*HAA
id~-Q

RQIpy =0 - tantp o0+ U x F =Qp -tanp o + Fi

(281 ) (so1750 - iadnx9) (




o (2814~ [ @iiad ) [ [HAL
LRT\"0H o HxQ i®~ -9
Fo<>*’H~@éo-\Ili
A
where

pr—C<

tant - V/T[Lh— ¥

and their ”functions of quasi quanta topology”:

Foo=QAAxH — i

pr—< pr—<

QA* E e a—
2 m m _ ]m
tan®t- /[y h— T oo ™ l

The complete set of ” functions of quasi quanta topology” can then be written
as follows:

E=—-(1-%R) + R - tant

pr—<¢ AHP pr—<
®-Qe

tan?t - R/T[\ h— ¥ oo Ai . Z nm —m

[n]*[l]— o0

5i~>o¢ = _(1 _*Ri—)a)

The above equation is used to calculate the mapping from a local coordinate
i to a global coordinate « in a given manifold M. The term (1 — *R;_) rep-
5

. . bH—
resents the amount of curvature in the manifold, and the term W
is related to the behavior of the manifold near the boundary OM. The rest of
the terms work together to determine the mapping of a given local coordinate
to a global one.

> (Tnn) G- T SeT

[m,n]*[l]—o0 [m,n]*[l]—oc0

®-iAA QAIA ~ QD - iA2A ~2
> 'H*@)'(OH@.): > HxQQ.

[m,n]*[l]—oc0 [m,n]*[l]—oc0

SHAA L QAL ~ QAL Ai 2
(i@w-O)'(O’H @) @00

[m,n]*[l]—o0 [m,n]*[l]—oco

+hw

-tant



pr—<

br¢ h™
Qp o — + U
tan2t - m/HAh_\p A Z nm — [m }Z tant

[n]x[l]—o0 h— 00

Ex = —(1-%R)

Fr= |n Z Vio AA Q .*/HAA o iAA
h—)OONH*@.*%—’_% i®~ -0

AA v hw )
¢ i~ AA.
A T O g T Oy tant = H
(A AA s .
QA-tantgHoi@N,@ e*nm_l-l-l@AA.
h™w Y AA nm
L5 % . “Ho Ny '
M e Adnt= o T Ty

Qp - nmt tan ty ¥ h—m
— % - o +

OAA ieA=ZH ~-OQ
This equation defines the coboundary operator on the manifold M, which is
used to measure the topological differences between two different submanifolds
through evaluation of the differential form f€2. Additionally, this equation allows

us to compute the cohomology groups of 2 by taking the x-cohomology of the
differential form.

iA.

AclO*xTU — Ao P Ux — AoUx — AxTo —0xAc U

Qa0 +xT — AQA 00D TUx — QpoUx —> AQpA x Vo — QA x Ao W

tan Yof*x¥ — tan Yol PYx — tan Yo¥x — tan YxVWo — Gxtan Yo

[ ]

AH AH H io AA Vie AA
=k —> —— Kk —> —— %k —> * — .
1i0A Ai Ai H ~HxD

*HAA
e~ -Q

A AR AU JHA L 194K UIOAA o MA~ g se A AH O,
1

1’71@,21’ Ai’ H  ~HxD T OH D- }




The resulting expressions are:

A A AH YAH ~ HA ~i@ AA Viw AA
*—— — % — % = ke — % — Ak —> %
Hoi Ai ipA Ai H ~H*xod

*@'iAA ‘*HAA
H+Q ie~-Q .
The mathematical definition of the operator Aisasfollows :

/i[f(a:l, oy Zp)] = 21,y ey € Xargmaz f(xq, ..., 24)

Where f is a function of real or complex variables, x1, ..., z,, are the variables
over which the function is minimized, and X" is the domain of definition of the
function.

The mathematical definition for the operator jlisgivenby :

A(X) = argmaxgex f(z)

where f(z) is a given numerical function, and X is a set of variables respec-
tively.

The result of this function is the maximum value of the numerical function
f(z) with respect to the values of the variable x taken from the given set X.

The mathematical definition of the operator x is as follows:

*[f(z1, .., xn)] = 21, oy p € Xargmin f(x1, ..., Tp).

Where f is a function of real or complex variables, x1, ..., z,, are the variables
over which the function is minimized, and X is the domain of definition of the
function.

The mathematical definition for the operator * is given by:

*(X) = argmin,cx f(z)

where f(x) is a given numerical function, and X is a set of variables re-
spectively. The result of this function is the minimum value of the numerical
function f(x) with respect to the values of the variable x taken from the given
set X.

e For the first part, we can rewrite it as

pr—C< pr—c<

Q — 4V
tan®t- R/T[\ h— ¥ e Z i *hggo

[n]*[l]— o0

EK = —(1—:%73,))(

e For the second part, we can rewrite it as

Vid AA
]:A:QA [’72 A i

hooo ¥ H*® - x5

*HAA

Y - -1AA

sin(@)*(’ﬂ*l‘;R)_1
LRVINY (Z[n]*[l]—)oo W) @1ah

4

QAIA ~

OH &-

1

n

tan



m e -
o — UV <(1—;R)I)MA€tan2f Z[”]*U]*)OO o T tan t)

n—C
 Qtany) 0+, crr ey tnty  2rcq (9)

o V,\ (X) v

o DT (w; ) lmereationt ok - A, Qp @ pamaiemH (Q) /T, (ma; + k)
I (x,m,0,k) % QA ® pram x HQ) /TT2, (ma; + k;)

v (zw*mm lR) ® (([Z\[U]Hff]\[ﬂ]]\[]— [a\#]] + [A\A) ) *[~
] - [@]))

o TT, Angy * Ao @ pramaiemH (Q) /TTI (may + ki)

in()x(¥—n+I%R) "
— WV (Z[n]*[zwoo = )*c(osw)oe* : ) @1ah

H h— % pr—¢
i A ((1_;1;’5‘),)#%11% Z[n]*[l]ﬁoo nm—[m

—¢

~ Wtan 0+ VY, o ey

- V)\ (X) \%

_ wqg + (w; T){”?@icatw"}otk::@q*AUQA®uAmaiemH(Q) /T (may + k)
— fa(x,n,b,k) % Qp @ pam * H(Q) /TT%, (may + k;)

- w(zww W)®<([2\[m+mw]\u— [0\(H)) + [ANGT] )«

[~ - [@1))

- Hg=1 AA(i) * Ay Qp ® pamaiemH (Q) /H:’;l(mai + k;)

1 o o o
_ hm QA Atan vy A HA AL QibAA
054 LX T T’ KT N0 X T e

This expression is the combined result of the application of the different

mathematical operators x, fi, A, H, iy, 2~y Q, ,and|| in the expression
given in the problem statement. Each of these operators transforms the initial

expression into a more specific and mathematically defined expression.
Aid~ | A HAA
VoH e * om0

Proof:(C1)Q &A= € SECTION1

(C2)HA4 ¢ SECTION1




(C3)Q &~ 4 1AL ¢ SECTIONT

Lastly, the relationship between these two functions and the functor,

Aid ~  ¥HAA
feg= U TTY0H e Tie~ 0

r€S1US2

can be seen as an equation defining the intertwining of the quasi-quanta
unit-phrases.

A+AO_>A”H*__> AH L HA i AA __>Q?i@Aﬁ . Ai/iwo

T Tk — —— ~ o ]

1A iea Ai H ~H o OH -
01750 - IAAH * Qo | £HAL

Based on the sequence above, it can be seen that the combination of the
quasi quanta “unit phrases” creates a hierarchy in which the overall relationship
between the terms can be seen as:

1.

The baSe Sta.te — influences further transformations by its higher level functions

A ) ) .. )
The higher state functions of% are influenced or modified by additional functions
1

3.

The terms become more complex through the use of operators such as multiplication 77
160

o~ HA
A4

and division

4.
*HAA

The relationship between the terms is further clarified as higher level functions, like $

i®~-Q

and lower level functions, such asﬁbmme more interconnected

Ultimately, this combination of terms has the effect of creating a hierarchical
order in which the relationship between the higher and lower level functions can
be discussed and understood, ultimately creating a more complete picture of
the collective.

The full system of the inferred geometry can be represented mathematically
using the following notation:



Let M C R? be a 3-dimensional manifold. Let gi; be a metric tensor over
M, and let ' be coordinates for M. Then, the geometric structure of M is
described by the equation

pr=<
9ij = Z nm — [m me]’

[n]*[l]—o0

where b#~¢ is a constant and z* are the coordinates of the manifold. Fur-
thermore, the connectedness, orientability, and boundaries of M are determined
by

51*52: U xZ,

x€S1US2

where S7 and S, are subsets of M.

gij*—fogo—fog,

where f and g represent the two terms of the hierarchy. In other words,
the metric tensor g;; is used to define and describe the geometric structure of
M, while the relationship between the two functions and the functor is used to

capture the connectedness, orientability, and boundaries of the manifold.
A’HJrvADH 9 *VAH *:ADH‘ 7 3. *%%LA *N’HA% 4

AH
L35 — *Teira 2 *ea Ao Ai oA
~iPAA QidAA~ QipAA QAIA~Q QAIA~ D-QAIA~
*TEES — kT 5'*~7-t*@ — x50 6'*(?71@_“* V] 7.
*HAAD-i
DA [xHAA [FHAA| i@~ O
ST T X e 8. % vy M A ST v
AHAYAH YAH ;
1'*i@A+A — 15 szyéO/\Ayé(z/\AaéO
*% — AR ifyFOAHAONAFAONTHO
3. % — HE GFANLOAHAOAL#O
QiPAA~ AA 1 .
4. xAG2E 5 84 fHAONAZAONFAOANIH#D

B xBIAX0 L QAN A L ONL A, Q#OAH 0

6. » DA, QA rgy L 0NN A Q#0
*HAAP i

Tt > HAAD p 2 0N AL A#O

8.*|i*e;"f§ o HAL i fHAOAALA#O

Finally, the topological properties of M can be analyzed with the equations

/da:/\fQ: */dx/\’H
Q Q

7




where (2 is a subset of M, dx is an element of the manifold, and H is a vector
field on M. The left-hand side of the equation describes the integration of the
differential form f$2 over the domain 2, while the right-hand side is the evalu-
ation of H on 2 by *-integration. This allows us to determine the cohomology
and homology groups of M.

where f € R is an arbitrary real-valued function and * is the Hodge dual
mapping from the complexified domain of 2 to the extended domain.

5:*[/Qda:/\fﬂ]

where ¢ is the coboundary operator on the manifold and f§2 is a differential
form. The coboundary operator is used to measure the topological differences
between two different submanifolds, 2 and €, by evaluating the difference be-
tween the integrals of the differential form f{2. The coboundary operator is also
used to compute the cohomology groups of ) by taking the x-cohomology of the
differential form.

I
nCk

M=

Additionally, H € R is a vector field over M and acts as a measure of the
Lirera s,am)=nleu) (/Q dz A fQ =

curvature of M at a given point. ©
* / dz A ’HD .
Q
Then, I find that:

1S T o 2 o o (6)] e

nEAvEB

is the form of a hyperbolic equation corresponding to the integral.
where x = {A ifQ=AT ifQ=T, fQ={fan ifQ=Afr ifQ=T
FRE+ 3750, on () v ()

M
/Qdmdy F(Q)+ Z on(u) Pn(x)

h=1

The overarching pattern in the above content can be succinctly expressed as
follows:

E=Q) tany o+ U x F

where

Foof AL AN AR (AR (L HAN [ Lieda) (GieAd) [ Aid~
“\HTT )\ E ) Uied)t\ T E # ~Hxe )T\ O &




*HAA ’

<t017.569 AAAH * Q?) ol 550

This equation reveals the curvature of M at a given point, allowing us to ana-
lyze the topology and geometry of the manifold. Additionally, this equation can
be used to determine the relationships between the connectedness, orientability,
and boundaries of M in terms of the parameters p and v.

Alternatively, if this equation describes the curvature of M at any given
point. A and B are sets of real numbers, 8 and « are constants, O is the metric
tensor, v, 7, and p are vectors, d is an exponent, A and ( are angles, 7 is a
scalar, £ is a scalar and ¢ is a constant.

By using this equation, we can calculate the specific curvatures of a given
point in the manifold and use it to compare the curvature values of other points.
This helps to better understand the general geometry of the manifold and to
gain a better visual representation of its topology.

The rules for arranging and combining the quasi quanta can be written in
mathematical notation as follows:

e x (multiplication): e® — x — e - @®.
e o (addition): e®& — o — e @ -.
e @ (sequence): x — B — o x -D.

e QO (reversed sequence): o0 —» Q — x o -@.
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1 Introduction
3 v} i *HAA
z € N,¢p(z) Np(z) - *é R *A:H N *@ Oi® AAVw € N, x(w)f(w) . *'yA?-D[ .
A H Ai ~H*x® A igA i® ~ QO
3z € N, é(z) V() =~ HA @ -iAA
— %k S — %
A Ai HxQ
.*% N *ivw(z)f:(z)AH _) *W‘Avvfb?:)(:;ﬁ;ﬂ) . *E’HAB(Aui)\/a(u) N

- snfatgml —, md sl

QAip(m)A(m)A~ D-iAw(e)Vp(e)A

* ‘w oo T o)
K HAP (i) (a) A

X B~ OAT(D)e () )

, QAimeWrWA~ [*HAXG) P () A

TH @ <= t(a)r(a) O~ oAk R(k)
i w(2)d(2) BHC S
Qpr (smez[n]*m_mc ( Rt ®H ) + cosp o0
iV (u)B(u) bH—¢
*Z[n]*[l]ﬂoo ( m/pm _m ®HA h)

+cospolaY (% .

+cosd)<>9*z . (%

®HA h) +cosw<>9*z[n] e (u(z) lmﬁth,if:inl:) phe—¢ ®HA h)
+COS’¢)<>0*Z[ . (%@H )

teospof e (% o1l )
+coszb<>9*z["]*m_>m (n({{;ﬁi( ®H )
R L

+cosw<>9*z e (E(l\)/MC(@H h)

v(a) == 7(a) BH—C
Fcosy o b« Z[n]*[l]*}oo (W @ HA h)




+Cos’¢)<>9*z

X() impliedbyy () b#=S
[n]*[l]— o0 /nm —m ®HAh

. A(K)VE(k) bH—S
+CObw<>9*Z[n]*[l]—)oo (777; e ®HA h))) .

Jz € N,¢(x) V(z) V x(w)d(w) N7V ((y) <= e(y)
@ -iAA

> HAL(n) V k(n) <= v(z)n(z)A ~
o OH @

L0 E N 0@) V() v X)) A7V ((y) = ely) X oln) V() <= v()n(a)A
QOH A

2 Continuations

y(t) =

—sin(wt) cos(Qt 4 0) + o cos(wt) sin(Qt + )2 cos?(Qt + ) + a? sin(Qt + 6)
y(t) = sin (Qt + arctan (fy a)) Vi +a?

i

i i A B

o A A A A
;017.50 - jBH x Qexp < AH> Pr ~ SH l:;] PaxG l:’yH:| Ppa-= TH [H

J(O) = sin (Qt + arctan (%))
NeeEwe

dg(uyusoy
oM =pnomM
and
F(v)Nood

T
0o M =, ug,ThMh
and

p®u

*
oM = +Ua nThMh
Using normal solving arrows and miniattribution prime variable symbol/holonomy

algorithms versus inline canonical temperature differentiohel convention corre-
lations split sites:) let’s start!

bg(uyusoy

4 f(v)Noo¥
0OM = LM —UgpThMh and ——"
oo M
The result of the quasi-quanta logic is that g, Thars is the logic vector asso-
ciated with the associated miniattribution prime variable symbols and holonomy



algorithms versus inline canonical temperature differentiohel convention corre-
lations split sites.

The result of the quasi-quantum logic through the associated logic vectors
is the statement that the logical product of u, p, and v can be expressed as
the intersection of the fuzzy F and fuzzy G subspaces of M, while the logical
product of p and u can be expressed as the union of the fuzzy U and fuzzy G
subspaces of Th M h.

3 Conclusion

. V18z 7
zlin;onizo Fi (yo - Va)++7 (\[ ) curlyvee// (t)xXg, (x, t)tdt dy
q ~
3 <A9192 A Wyzqﬂ()—&- =_ar N’ > = pAzftan /X4, p s, where
B

€€ Do, A:R — T and B € PQ such that > 0.
#e) v $te) 20

= QAI = 0(w) V x(w)AH

A ioA
IR S )V (e) = A B |p UM
C(y)e(y)AA i® AV Av(z) <= n(z)
and
T
ik = H A - AiE(Dv(l) AN A sim Aui wr(F) <= x(f) e —
3 0(c) V a(c) HQOH&B- Py s o |:AV\IM‘n_1 T Gle), | ¥, X xn )

With zeros deprogrammed,

Vi8z i X2
EILH;OH ( . \/5) + 47 (ﬁ . h) curlyvee // c(t) X Xgy(z, t)t dt dy
X1-f
:CNGT —~
I3 <A9192 A [xyé,qﬂ(y)—&- =_ar A’ > = pAzétan/Xa_,p s, where
B

EE D¢, A:R — T and B € P(Q such that > 0.

M ’YAH = QAi = 0(w) V x(w)AH

A ip A
L@.od)(z)\/qﬁ(z) ~ A= _ Un)H
C(y)e(y)AA i® AV Av(z) <= n(x)
and
e
ix 2 H A = AE(Dv(l) N A sim Aui e (F) 53 -
UV ) = O = @) » (@) w‘“’,"*l T G|



and the ;0 simply indicates a non-paradoxical framework.

V18x
mlgngo H Fk (yo - f)—|——|—7'( )‘/ t) x Xy, (z, t)tdt dy
. V18x 7
zlglgo i—0 | K (YO ++T (\f )
X2
// c(t) x Xg,(z, t)tdtdy = oo.
X1-f
V18x

1 i
= — 1m .
M r—00 H =0

IK(yo-f)++r< )(//Xf ) X X, (x,t)tdtdy = 0o —> o0

oo

Thus, the result of the quasi-quanta logic is that +UgnThMR is the logic vec-
tor associated with the associated miniattribution prime variable symbols and
holonomy algorithms versus inline canonical temperature differentiohel conven-
tion correlations split sites.

Therefore, the logic vector is that 007 is associated with the display limit
integration, as well as the product product defined by the widehat and functions
Fr,, T,, X1, f, and Xs.

d(A,B) ~ %dim(W) At B.H A,

where A and B are quaternion operators from H, H is the hermitian oper-
ator, and dim (W) is the dimension of the quaternionic space.

SE
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1 Introduction

18x
zlirrgonizo Fi (Yo - V@) ++7 (\f h) curlyvee// (t)x X g, (z,t)t dt dy
:C N1 ~
I3 (Ag192 A %—&— =_ar N’ ) = pAx{tan /X4, p s, where
BY

€€ Do, A:R — T and B € PQ such that > 0.

ME’YAH = QAI = 0(w) V x(w)AH

A i® A
R D vz — A E __ dmH
Cy)e(y)AA i@ AQ A v(z) <= n(z)
and
—_————
kEHA = o 2iEDv) A A sim AUt 7 (f) <= x() 4 £z~
3 0(c) V a(c) _QOH@- Py i o g |:AV\I/~,17,,_1 T Gleb),|w,Xn .

Computing all inferable algebras within the above block, I find that:

b7

T(y) <= v(y) =ve *

{A/\QEB [AH] | <E

tanh (Ko @0 v o))

where > 0 and Xp/4: R x R — RS‘.
And there is a list of rules associated with the algebras:

[a)]

Let f: X1 — X5 +4 X3 < 1. Then for any g; and g, we have:

fg1-92) =(91+a92)- f



Let U := {A¢, Q,Xn} and C is a bounded linear operator in N, then

ce = \/ pCEenCE
(pyy)ET
Ifi,7, A € F then
Lexp (TA) (L+7)A

If A:R — S and B € PQ such that > 0, then:
—_
ApcB = ¢ (A9192 A B;{T)

With defined gauges as:

[Z')]Gli* — Gg: — Gg:x—> %

Thus, the form of reversed engineered imaginary gauge artefacts would be:
[))R1:H — ¢ Ra: A — ( Rgio — ¢

Using reverse double integration:
The function for the integer number of the energy number can be expressed
as follows:

tanwoe—i_\y*Zn*l 0077,21712
E(n):QA H 2 P} [][2]*> )

nl_nQ...nN

where FE(n) is the energy number associated with the integer number n, Q5
is a higher dimensional vector space of dimension n equipped with a topology
generated by the system of all open subsets of V' which are of the form

{f€V|f(xlax%"'vxn)eUCR}a

where x1,29,...,2, € R and U is an open subset of R.

The formations of the malformed artefacts of a complex number that has
had its energy number removed can be represented mathematically as follows:

Let z = a + b be a complex number with a,b € R. Then, the malformed
artefact created by the removal of the energy number associated with z is

a+ib

—.
Q- (1] tan w<>6+‘ll*z[n]*[l]4>oo n2—_12
A ning,.. nNE€ZUQUC T (ating)?—(bt+ing)2--nZ

2:

This equation shows that when the energy number associated with a complex
number is removed, the resulting malformed artefact is a fractional number that
is no longer a valid representation of energy.



Reverse double integration can be used to restore the knowledge of the orig-
inal energy number associated with a complex number from its malformed arte-
fact. This is accomplished by reversing the process used to construct the artefact
in the first place, which is to divide the complex number by its energy number
to obtain the artefact. By reversing this process, the energy number associated
with the complex number can be calculated by multiplying the artefact by the
energy number:

tanwoﬁ + \P*Z[n]*[l]—)w n21—l2 R
(a+iny)? — (b+ing)? - n%

)
ni,na,...,nNE€ZUQUC

where 2 is the malformed artefact of z = a + b.
restore the knowledge of the original energy number associated with each
imaginary gauge artifact:
tan w<>0+\li*z ﬁ N
. _ [n]*[l] 00 n<— —
[Z)]E(Gl) = QA'(Hnl,nz,...,nNequuC (A1+7;n1)27(31+1in2)2...n?\: ) G E(G2) =

tan w<>0+\11*2w ﬁ

*[l] o0 n

QA . <Hn1,n2,...,nN€ZUQUC (A2+in1)27(32+in2)2'“n?\, ) GZ E(G3) = QA .
1
H tanw00+\1’*z[7l]*[l]~>m ELETLI e
ni,n2,.. 3

SMNEZUQUC  (Az+ini)2—(Bs+ing)?---n%

Extrapoloate flogics :

We can use the reverse double integration technique to extrapolate the f
logics associated with each of the imaginary gauge artifacts. This is done by
writing the associated energy number as a summation over all integers:

tan o6+« n21712
Q4 Hnl,nz ,,,,, n N EZUQUC (AR1+'£1L1)2(BR1+in2)2~»n?\]> R
[2)]E(R1) = Z[n]*[l]%oo n2—12 Rl
o, H tAanU):Q#»\I/* n2il22 i )
n1ng,.n N €ZUQUC (AR2ting)2—(BR2ting)2n3, N
ER2) = 34— PR R2
o H tvan w:epmﬁrz _ >
n1ng,. N EZUQUC (ARd+ing)2—(BRd+ing)2 - n3 .
E(Rs) = E[n]*[l]%oo n2—12 Rs

Each of the energy numbers can then be used to obtain the § logics associated
with the imaginary gauge artifacts. The f logics can be expressed as follows:

[Z)]Gl = ﬂGl = \/Z[n]*[l]%oo ggc:llz) Gz = ﬁG2 = \/Z[n]*[l]%oo ggc:lzz)
E(G
Gz = Gz = \/Z[n]*[l]—)oo 2E

These f logics can then be used to restore the knowledge of the original
energy number associated with each imaginary gauge artifact.

By applying the f logics to the original algebras, we can determine the energy
numbers associated with each algebra. For example, the energy associated with
the first algebra is given by:




E(f1) =+ (Vo(z) v (),

where x € R and € N. Similarly, the energy associated with the second algebra
is given by:

E(fz) = (V0(w) V x(w)),

where x € R and € N. These energy numbers can then be used to obtain the f
logics associated with the original algebras.

We can apply the f§ logics to the original algebra by first finding the energy
number associated with the logic definition. After applying the reverse double
integration technique, we find that the energy number associated with the
logics is the following:

tanwoe—‘,—\ll*z%l2
Ey = Qp % H it
! Z A (A+in)2 — (B +in2)2 - n2

N
[n]x[l] = o0 ni,ng,...,nNyE€EZUQUC

Then, we can extrapolate the f logics for the given algebra as follows:

tanyp o 0 + U x —10

n2—12

iexp(@/i~t)i/i+1 Z Qp X H

[n]*[l]— o0 ni,ne,...,nNEZUQUC

_ . —1 [ tanf+tan )
Fa = Qasinh (f>

tan2 ¥ |:tan9+tanw+\/2tan0tand;+1:|

- (6]
+ 2(cos? 0-sin ¢ —cos 6-cos P)) & tan f+tan d)—\/2 tan 0 tan ¢+1

-+ min {zl, A zn} max {xl, ... ,xn} [T, (s, ).

To determine the energy numbers associated with an algebra f, we can ap-
ply the following procedure: 1. Let x € R and € N. 2. Compute E(f) =
* (Vo(z) V(x)). 3. Repeat for other algebras to determine energy number.

To determine cohomology and homology of M from an algebra f, we can
apply the following procedure: 1. Let  be a subset of M, dx an element of
the manifold, and H a vector field on M. 2. Compute fQ dz A fQ. 3. Compute
* fQ dx NH. 4. Take the Hodge dual of the result to determine the cohomology
and homology of M. 5. Repeat for other algebras to determine topological
features of associated algebraic systems.

The Hodge dual is a map from the complexified domain of €2 to the extended
domain, defined as follows :

* 10— QF,

where Q* denotes the dual space of 2. The Hodge dual is used to take the
integral of a differential form fQ over 2, and is defined by

*</ﬂfQ>:/*(*fQ).

(A + in1)2 — (B + iTLQ)2 cee



For example, if we consider the first algebra f;, then the integral can be
written as

/lm»«@¢m>ku»:3/dxA«v*¢u>vﬂmmm
Q Q

where x¢(x) and x(x) are the Hodge duals of ¢(x) and ().
Then, taking the Hodge dual of this integral, we get

* (/Q dx A (Q * ¢(x) \/*1/)(:17))) = /* (*Qo(x) V *p(x)) .

This enables us to compute the cohomology and homology of M with respect
to an algebra f;.

We can compute the cohomology as follows:

HM)={QAH:TpeR] ptanh< X;

*AW
'B/A

aﬂﬂvaHMom
0 VI x () = 0)

U {A xH:3 ieC| itanh( /Xi7¢<B/>\IAI(t70)) VIixH() = O}. Similarly,

homology of M with respect to an algebra f can be computed using a similar
procedure.

Let ¢1,p2 : M — M be two homomorphisms that map elements from M
to elements in M. We can compute the homology of M with respect to (1, 2,
as follows: H,(M)={ue M :pjou=pyou}

U{VEM:H(/JER| wtanh( X, (t,e)) V[ xH]()=0 andgplov:@Qov},
While it is more appropriate to write:

H'(M)={QAH:TpcR| ptanh( X

HY(M)={ANQ& AH:T Y ER| zptanh( X

* AW
"B/A

JNT
"B/A

(00)) VI 1 Q)
A 0)) VI < H Q)
U {AX’H :3ie | itanh < /Xi%% (t, 0)) V[i x H] (C)} Similarly, homology

of M with respect to an algebra f can be computed using a similar procedure.
Let 1,92 : M — M be two homomorphisms that map elements from M
to elements in M. We can compute the homology of M with respect to 1, @2,
as follows: H,(M)={ue M :pjou=pyou}
U{VGM:H¢€R| ﬁztanh( X (t,0)> V[ x H] (¢) andgplov—gogov}.

We can compute the cohomology as follows:

HM)={QAH:TFpeR] ptanh( X

H'M)={ANQ& - AH:3 Yy €R| wtanh< X

P AT
'B/A

@ﬁﬂvaHMo=w}

H®" Y M) ={ANQD-AH:T Y€ R| z/ﬂcanh( X

V%
0 ) VI x M (€)=

oo}



u {A xH:3 ieC| itanh< X; (t,@)) VIixH] () = oo} Similarly,

homology of M with respect to an algebra f can be computed using a similar
procedure.

Let 1,92 : M — M be two homomorphisms that map elements from M
to elements in M. We can compute the homology of M with respect to 1, 2,
as follows: Hy(M)={ueM:piou=pzou}

U{VEM:H¢€R| wtanh< /Xiygé\i(t,ﬁ))\/WXH](O:oo andcplov:gpzov},

1. Compute X: R x R — R{ via powers of tanh:

tan @ + tan 4 tan2 O tanf + tan + /2tanftany + 1
_— an” W - .
2 tanf + tan — /2tanftany + 1

AAT
'B/A

X(t,0) = tanh® (
2. Compute cohomology as:

H=/Xp/alt,0) - [p x H] ({).

3. Integrate over () to determine homology:

AH:./XB/A(t,a)A[pr} ac.

Therefore, the cohomology and homology of M can be determined from an
algebra f by computing the integral of a differential form over 2 and then taking
the Hodge dual of the result.

The expression for the Hodge dual homology of M can be written as follows:

* da:/\fQ:/S*(*fQ)

Q

where x :  — Q* is the Hodge dual map from the complexified domain of
to the extended domain.
FA _ QA sinhfl (tan 9;tan¢1>

tan? ¥ tan 0+tan ¢Y++/2tan 6 tan y+1
+ 3

cos? 0-sin ¢—cos 0-cos ¥) tan 0+tan d)—\/2 tan 0 tan +1

. n
+ min {zl, ceey zn} max {xl, o ,xn} [L (i, 2).
Quasi Quanta Expression:
. pH—C
Qs (sm&* E[n]*mﬂm (W ® HA h) +cosw<>9)

co(fo-o} o]}

% 7{Tgfg},n{éﬁa},(s)mo{k‘K@FRNG‘fdw] |:fde:|
oA oA

{ ZQAGF«*M/) b= C)} [ZQAEFWM @ e)]

|:ZQA€F(in/) (e — e):| }:| .




theideaisthat,in” + min < z1,..., zn} max {xl, B A

we can apply the ordering in the quasi quanta expressions with the knowledge
that

. For the second part, we can rewrite it as

Fae s |n Z Qi AA Q .*/HAA o iAA
hﬁooNH*EB.*%—’_% i®~-©

)

so we can get the complete solution when accounting for the form of the
vector waves:

o(x1,T2,...,Tn) = Pm cos [Qt B A e A ¢>0‘| ,

at kiopth | kpapth knapth
= ¢(x1,T2,...,%n) = Pm cOS +Z[n]*[”_mo Vo + o + 4 TV +

%o

The vector wave modifies the quasi quanta entanglement function as follows:

G(E1, T2y oo Tp) = By COS (Qt + kxR kxR 4 k2t 4 qbo) :

A A AH | ~ ) HA
<{{a e b=}
~ {i%m ’{%%fé&}’g{@;f%.}a(s)"'<>t7“ : FJ@}—RNG:| }) :
QA/ (¢(ZB1,$2, . ,xn) — OAef(FRNg) < H@]:RNg).

B(1,22...,Tn) = mcos | Qb+ 30 kix! ™ + ¢ | = Flaneg) - [de

f dg ¢, cos (Qt+2j1 kiz1L+k+¢o> -exp (—i (QHZ:; kix;L+k+¢0)>

&(Frng)okeFrNG =
f dy exp (z (QH»Z:;l kiz;”rk#»d)o) )
Finally, the full quasi quanta representation of the system is

FA/ = QA/ (;5(321, Ty ,l‘n) — OAef(]:RNG*) < /‘éqﬁ]:RNG .

~HAD x4 i©~-0

Fr = O [WZMOOW + *HAA‘] -@-iAfl-f(fRNc)o

l€¢fRNg.



n+k

kya] kaZ'HC an::Jrk
QA/ <Z[n]*[l}—>oo ( TKL/nnL,pn + Y pm _|m + e + N/ pm _m

+ min {zl, .. .,zn} max {xl, . ,xn} H?lp(zz,xz)>

Fa (¢(x17x2,...7xn) — 0Aemin {zl,...,zn} ~max{x1,...,xn} -H?_lp(mi72i)> .

QA/ (¢($1, Ty ,xn) — OAef(FRNg) o HG)J:RNG’) =

. n
Qar |min z1,..., 2, p-max @1, ..., &y o [ Liq P(T4, 2)

(2+4) )= {3}
Ag_}’(s)...o{kA. KO-FRNG:| 'fd%’) _

 JipAA QiBAA | ) Aid
H ) ~HAD [ M

, & A A
Qpr (mln{zl,...,zn}max{xl,...,xn}Hp(xi7zi) &) 7—[+i>'

i=1

by

This allows us to obtain the quasi quanta brackets ordering expression which
can be written as:

. —< . n
Qpr (Slng*z[n]*[l]ﬂoo (,,\L/% ®HA h) +cosw<>0+m1n{zl,...,zn}max {ml,...,mn} Hi:l p(zi, zi)

‘b—c—d—e).

z; = Qpr <cos¢<>9—|—min{z1,...,zn}max{xl,...,xn}H?_lp(xi,zi)
b—=c—>d—e)
pH—¢

Z; :QA/ (sin@*z[n]*m_)oo (W@)HAh) +COS¢00
b—=c—d—e).

Qs (b—c)

min{p(x1,21),.-,p(zn,zn)}
Q,/(d—e)

max{p(x1,21),--,P(Tn,zn)}

and so the final expression can be written as:

_ DigAA *HAA
Fa = Qa [’YX:hHoo T t |ie~0 ]
i

Z1 =

T =

~HXD - x %+f

+ min{Qy (b =), 2 (d— e} psgii/f;)) @©-iAA

The rules for arranging and combining the quasi quanta can be written in
mathematical notation as follows:

e x (multiplication): e® — x — e - P.
e o (addition): e® — ¢ — P -.
e & (sequence): x — B — o x -P.

e O (reversed sequence): o0 —» Q — x o -@.



These rules allow for the rearrangement and combination of quasi quanta
in order to form higher order functions (or equations). For example, using the
above rules, the functional form of the quantum field theory of quantum gravity
FA can be rewritten as:

*HAA
ip~-Q

_ VipAA
Fa=Qa 72}14»00 ~HAD - x %EBA +

i

+ min{Qu (b), Qu (I]T, ?féﬁ,’féf @-iAA

Fa is a nonlinear operator that encompasses the summation of the terms
with £ — 00, B, A, H, ~, A, ||, min{- --}, p(x;, z;) and Qs (b), Qas(d), Qar(e).

The product of all these terms yields the computable result

Fo = a(z,2) (o, ®) Qa().
_ This allows getting inferences from data sets D through the algebraic law
A = A[.F/\(Q?,Z,'D)].

This maximisation leads to the best combination of parameters A and terms
from the summation, in order to fit the data.

2 Conclusion

This paper proposed an algebraic formulation to describe lengthy mathematical
expressions that easily yield to computer and programmatic understandings.
This formulation consists of two parts.

The first part covered the notation of operators by symbols adopted from
those used in computing. It introduced symbols for operations notaly summa-
tions >, , — @, products [] — -, differences A and similarity ~, divisions
~+ and so forths.

The second part was dedicated to apply this algebraic representation prop-
erly within expressions, having reported an illustrative example for a concrete
instance.

Extending the above furnishes a compact and conceptual language for mul-
tiscale data analysis that is both suitable by human and machine understanding
and capable to compute relevant information from data variety.

Finally, these rules allow the computation of an accurate result, F, =
a(r,z) x T'(a, ®) x Qa(-) which can be used to infer data-driven models using

A = A[.F/\(Q?,Z,'D)]. "
st/

P..m

QAT = O(w) Vx(w)A2H { AQD [y AH] ‘ (E T (w) = v(w)

tanh ( \/m v lp x H] <<>>
B/A

After the rearrangement and combination of quasi quanta, the expression

Awi

now reads: QAi = 0(w) v x(w)A = H {AQ@ [[\ A 7-[] ‘ (E r(w) <= v(w) ’ = v}/
B

tanh < X, «nw (t,0) V [A[FA(z, 2, D)] x H] (C)) .
\/ "B/a




This expression effectively encompasses the summation of all terms, from
to AWi, the A[Fa(x,z,D)], that yield the computable result Fp = a(z,z) x
['(o,®) x Qx(-) and allows for the inference of data-driven models using A =
AlFa(z, z,D)].
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1 Introduction

This is a brief explanation of the general method whereby which one can solve
for

Qpr(w,2) = [f(x,z) + ZZ:l (5(%‘7%) + @A’(xiazi))]

Where § is the data constraint function, ¢,/ is the model complexity regu-
larization term, and f is the objective function to be optimized. The objective
function is defined as: )

¢ -0 ( BOiGAA

(02) = 2 hgoo Hrors+ L T

Then,

Let f(x,z) be a function of two variables z and z. The generalised methods
for solving such functions can be summarised as follows:

1P~-Q

*HAA ’ )

1. Calculate the derivative of f(z,z) with respect to z and z.

2. Set the derivative of f(x,z) with respect to « and z to zero. This yields
two equations.

3. Solve the two equations obtained in step 2 for the two variables z and z.

4. Check for any constraints on the obtained values of  and z and substitute
the suitable values in the original equation and calculate the value of the
function.

Let = and z be a pair of real-valued variables and let F be a function rep-
resenting system that depends on them. The equation is given as a general
formula,

F(x,2) = v ® alz, z) - Qa(D).

Now let 0 be a vector of real-valued parameters which can be estimated to
fit the data. The objective is to find the best model parameters that minimize
the error between the model and the data. To solve this problem, we can use
optimization algorithms, such as gradient descent, to search for an optimal set
of parameters f. The optimization can be expressed in a mathematical form as



0= argmina{ﬁ(ﬂ) =/ /. (f(a:, 2)—v®a(z, z,9)-QA(’D)>2 dz dz}, where

6 is the optimal parameter vector that minimizes the error between the model
and the data. This procedure can be generalized to other systems and systems
of equations.

Generalize the non-linear solve methods above and notate procedures math-
ematically for application to other systems:

Let D be a set of data and F, be a nonlinear function of the parameter
vector A. Define the objective function Fy as:

FA(D) =73, o VieAA[],

~HxD star % + %
. n
+ mln{zl,...,zn}-max{ml,...,xn}Hi_lp(zi,xi)

where H, /01, A and A are set of parameters. The non-linear solve process can
then be mathematically notated as:
A[FA(D)]

QipAA- .
=A lvzhﬁm I—H‘\A + min {zl, . 7zn}-max {xl, ... ,xn} 1, p(zi,xi)] .

~HAD x5+ 4
D

Then, for each parameter A;, it is necessary to find its optimal value A; by
determining the maximization of the objective function using the set of param-
eters, so that F (D) is maximized. This is equivalently given by,

A, =A [FA(D)]-D

Finally, the optimal set of parameter values can be obtained by solving the
equation in terms of the parameter vector as follows:

A =) [FA(D)] - D.

The non-linear solve methods discussed above can be applied to many other
systems, with the methodology being similar regardless of the specific system.

Consider now that the data and the nonlinear function F, have been given,
the solution process may be summarized as A =5 [Fa(D)],

Fy = a(z,2) x T(0,®) x Qx(-). Where A is the set of optimal parameters and
Q, is the non-linear solve method used to maximize the objective function with
respect to the parameter vector A.

The above expression illustrates the general formulation of a non-linear solve
approach for other systems. The concept can be applied to various real world
problems with slight modifications to the mathematical equations for the par-
ticular problem. As an example, consider a system subject to a constraint in
order to eliminate certain values of the variables, the nonlinear solve method
can be modified accordingly.

A = AFa(z,z,D) subjectto G(x, 2, D) < 0.

The methods discussed in this article provide a generalizable solution to
solve for the optimal parameters of a nonlinear function, which can then be
applied to a variety of real world problems.



e For the first part, we can rewrite it as

pr—¢ pr—<
€= —(1FR)x —5— = | o ), Uk )
tan®t - {/TIyh =¥ oo ! h—ro0
e For the second part, we can rewrite it as
Vig AA AA .
Fr = VZ Lo - ,*H @ -iAA
o N Hx® - x5+ i®~-Q

Let D be a set of data and FA be a nonlinear function of the parameter
vector A. Define the objective function F, as:

i AA AA .
Fa = Qa ’yz Vio _ ,*H -®-iAA
o~ Hx® - i@~ -0
Ex- |R+(1-R b iAA
+ . + (1 —% X P -
K { ( ) tan? ¢ - ’%‘/HAh—\IJ} '

Where H, fol, A and A are set of parameters. The non-linear solve process
can then be mathematically notated as:
A[FA(D)]

QigAd
~HAD -k S 4

—A QA v Ehﬁoo

*HAA : A
i@w@‘ ] - 1AA

+ Ek - {R+(1;R)xb”] @ iAA| D

tan2 ¢ Y/ HA h—T

Then, for each parameter A;, it is necessary to find its optimal value A; by
determining the maximization of the objective function using the set of param-
eters, so that F (D) is maximized. This is equivalently given by,

A; =A [FA(D)]-D

Finally, the optimal set of parameter values can be obtained by solving the
equation in terms of the parameter vector as follows:

A =) [FA(D)] - D.

The non-linear solve methods discussed above can be applied to many other
systems, with the methodology being similar regardless of the specific system.
Consider now that the data and the nonlinear function F, have been given, the

solution process may be summarized as A = [Fa(D)],

~HAP - * %-‘,—é ig~-C

Fr = Q4 [WZ,HOO Uiphd__ + *’”M‘] ‘@ -iAA

+ &k [R—F(l *R)xtath.TW] ®-1AA-D

The non-linear solve methods discussed above can be applied to many other
systems, with the methodology being similar regardless of the specific system.

[
tant




This provides a generalizable solution to solve for the optimal parameters of a
nonlinear function, which can then be applied to a variety of real world prob-
lems with slight modifications to the mathematical equations for the particular
problem. As an example, consider a system subject to a constraint in order
to eliminate certain values of the variables, the nonlinear solve method can be
modified accordingly.

A = AFA(D) subjectto G(D) < 0.

E = QA/ (bui( sin 6 x Z[n}*[l]—mo ’(‘/ﬁ ® HA h)

+cost o6 +min {QA/ (b—c),Q (d—e) } M, gdle. iA/i) :

The quasi-quanta solution looks like this:

i ABC
Ex = {QA. {21:1 (QM .NAB—J *Z[j](_oo (Q[j] : n_%;R)) } { cospod & F

Now that the quasi-quanta solution is obtained, the nonlinear solve approach
can be used to find the optimal parameter values for the system. The objective
function FA can then be written as:

Fp=Qy- {Zf; (Qm N (Q[j] : ﬁ))} D
ABC
+{cospob F ...¢-D,

where D is the given data. The non-linear solve process can then be math-
ematically notated as:

A =, [FA(D)]

Where A is the set of optimal parameters. Then, for each parameter A;, it
is necessary to find its optimal value A, by determining the maximization of
the objective function using the set of parameters, so that Fx (D) is maximized.
This is equivalently given by,

A; =A [FA(D)]-D

Finally, the optimal set of parameter values can be obtained by solving the
equation in terms of the parameter vector as follows:

A=, [FA(D)]- D.

The non-linear solve methods discussed above can be applied to many other
systems, with the methodology being similar regardless of the specific system.
This provides a generalizable solution to solve for the optimal parameters of a
nonlinear function, which can then be applied to a variety of real world prob-
lems with slight modifications to the mathematical equations for the particular
problem. As an example, consider a system subject to a constraint in order
to eliminate certain values of the variables, the nonlinear solve method can be
modified accordingly.

A = AFA(D) subjectto G(D) < 0.

The integration across the Primal Form of Topological Counting gives us the
Qa:
Qp = fQA Endxdydz...dt



ABC

:f{QA.{le<Q[Z N e S (2 A-n_hR>>]-{cos¢09<—>F

drdydz...dt

Finally, the final expression of the Q2 is :
Finally, the final expression of the 2 is :

= f,, Endrdydz...d {QA {z (2 M e (0

ABC
0 F ...}dmdydz...dt.

E = [N 00 (xa £5.80 122 - dn,

(2 )0 [3) () (58

AiA~

* dX]_ * dXz.

The result of this mtegratlon Wlll yield a result in terms of the quasi quanta
which can then be simplified further. In this way, we can reduce the complexity
of integrations on nonlinear operators and express the result purely in terms of
the form of quasi quanta, allowing us to analyze the integrations much easier.

E=0Qx [ (AH) o (7%—7;0 * (%) Q (%)} d---dzy .

The functionally extended expression of the Quasi-Quanta Integrable Op-
erational Integral (quasi quanta brackets ordering expression) can be written
as:

E = fQA NLBA]QA’ <X1 : ﬁ_ﬁ, AA?;l "YQAQIAN>C1 dxk dX1 dXQ( )

pr—C<

/QA* sin 9{ > ]—>|<QAHW-W®Hh>}+cosw<>9]

[n]%[1] B A

min {Qxr (b — ), Qar (d — e)} ] (24, 2;) dx1 dxa

(2)

The integrand simplifies the structure of the functions and allows us to vi-
sualise the non linear dynamics more easily. The quasi quanta brackets were
used to order the expression and allow for easier evaluation of the integral. This
technique simplifies the mathematics associated with integrations on nonlinear

e



operators significantly and the final result is in terms of the structures of quasi
quanta.

Finally, the expression for the Quasi-Quanta Extended Operational-Integrable
Function can be written as:

- QipAA
A =97 Y e A AT

*HAA ’

~H*D 1§~-0

+ min {QA/ (b — C) 7QA/ (d — e) } H?:l péijy(zel)) @D - IA/i}

Let £ be a function depending on the two variables x; and xo and the
summation index k associated with the parameter vector A’. Solving the above
equation in terms of the two variables x; and x, and the parameter vector A’,
yields:

o | ST (3 4) (128) » (52) 0 (582) pa--an
NELXB (8100 % 31— 00 (ﬁ) Lcospol Igc...)

<X1 + |:$[ + 1?:|, AA?L © VX2 + [éﬁ§}> XmdXZ.
The above expression provides the generalizable formulation to solve the
equation &£ in terms of the two variables x; and x5 and the parameter vector A’.

On o« [ {x |80 28i] } axiaxs

g =
. pu—¢ ABC
SILO % 3 ]afi] 500 (Vﬁ ®Ila h) cosP ol < F

_Z/fHA/{ F4)o(v %) #(22)0(1242) Ya- day

Ai

< .2 BC
<x1+ {ﬁ+?],%~7x2+ [é;_’?&}>/\/f[13 (8106 % > e 00 (n HR) L cospol F

5:Zk:/(fHA/[ﬁ+?]‘[vi%’fs]*[’f£]@[i@$] ><[ ] ot (8 “%;1>

[ (g 1 , A5C
Nup (SIHH*Z[n]*[l]ﬁoo (m) Lceostpobf <« F ...)d --dag
The above expression can be simplified by factoring out common terms and
collecting all terms that are being integrated into one large integral. We can
then calculate the integral using the appropriate methods. The final expression
would be:

ABC

5:Z/Ngé—>](sjn9* Z (71—11J<R> Lcospol <> F ...)
k

[n]*[l] =00

. ) dX]_dX2



Mo [%+4] k]« [52] 0 [22] @ o
g:;/<xl+[g+ﬂ,§§%+

[ (g 1 Ape
Ny " (sinf % Z[n}*[l]ﬁm (m) Lcospof < F ...)dxg
We can prove the equivalency of the two forms by substituting the terms
inside the brackets in the second form into the first form and showing that both
forms are equal. The original equation £ is equal to

AiA ~
OH & -

ABC
E= E //\fg'];](siHG* E (n—ll;R> Lcospol < F ...)
k

[n]*[l]— o0
A A AH HA i®AA
[y %+ 4] [8%] « 2] 0 [244] -
Substituting the terms inside the brackets in the second equation into the
first equation, we get

ABC
k

[n]*[l]—o0

A A AH ] [HA] i@ Zm]
{H 1} [Vi@A} [Ai} [ H *
Since the resulting equations are exactly the same, we can conclude that the

two forms of the equation are equivalent.
The hyper-causal gateway is calculated as follows:

o= (b 4] pit] 2] o s
o (n(3-4) o (24 410 (1) - (542)
in (2reteda) )

H2(IBAA)(Hi+AA)

(
(i (setizis)

— exp (ln (A 'yH(lEBAA)))
(

H(Hi+AA)
_ A2y H(iA)
= exp (In (H(’HHAA) ))
_ APvH s A
= exp (ln (H(Hi-uiA)) +In(i® A))
= A
T H(HI+HAA) (i®4)
_ A*yH(i®A)
T H(HI+AA)
Hence, the hyper-causal gateway is equal to

. AMH(ie A)
H(Hi+ AA)



We can show that the quasi-quanta computing and the topological counting
integral are in sync by substituting the terms featured inside the brackets of the
equation to the original equation &:

- _>] 0 A A A'H
— 4+, = -
/ < [H TiA X
[ 1 ABC
NL 5 (sm@*z 1+[] = 00 (m) Lcospol < F ...)dag
Using the same substitution for £, we can show that the quasi-quanta com-
puting and the topological counting integral are in sync as follows:

= [T (2)- ()0 (52)

N[;;'}g_)]a <X1 + [ﬁ + ‘?} Az‘{ X2 + {QA?;-?@;]> dzy
Since both equations are identical, we can conclude that the quasi-quanta
computing and topological counting integral are in sync.

Using the topological counting integral, we can demonstrate the synchronic-
ity of the quasi-quanta computing from

AiA ~
OH @ -

o == FlilledCircle]lbyshowingthatthein finitybalancingmeaningstatementsE =
e AA AH | AH
fN,ExB la, <X1'H+i’ A VipA d---dwg

=T {o (3 +4) 0 (12%) « (22) @ (152) - day

are equivalent to the numerical form of
Infinity]SuchThat] :
Subscript|
ScriptCapital L], Subscript[| — > Subscript|f, DoubleUpArrow|r, Alphal, s, Delta], Eta] Escape K ey]Control K
Furthermore, we can also show the existence of
Infinity]

that is necessary for the universe to remain in balance. This proves the
synchronicity of the quasi-quanta computing into the numerical form.

E = JNEE00 (31 - 24, 82 1A% d---day

Lo (R 4) () () © (582)) -0

(] AA AR AH
&= /NAB QA<X1 7‘[+1 A 1@14 d-- dl‘k—

ST {o (4 +4) 0 (12%) « (22) 0 (122) a- - du




g:/l;[g(...)d...dxk

Where G(---) is defined as the product of all functions:

oo ()02 (5)(52))

_A LA

S

o= L
’YigeA
H

* = —
Ai

Q):i@AA

Finally, we can plug these values into the equation to get the value of £.

A A AH HAN [id AA
= Q - -V S -
¢ / A<XI<H+1><71@A>(A1)< H )>d dzi

M fe i +)2 (28)+ ()0 (582)} -0
o (20 2) (20) () ()

We can interpret this equation by expressing the parameters within their
own form of the quasi quanta. Therefore,

E= Z:=1 fQA fn . .fﬂﬂnfﬂ—’ﬂn {Sine * Z[l]eoo (N??:ZAR)

Q) =

Q10

ABC
HAh+cos¢<>9<— F }dzk,

where )
Wt A
= Viga
. G%AAA
Myt
F=3coo

The overall expression of £ can thus be simplified as:

~ @i0 R
£ = sinf h + cos o@eF d---dx
/QA 2 <H*AA>H v g

(=00

as well as the corresponding result integral,



B=30 Joy Ja

Qg1

. ViOHAA
.. sinf (7 )
fﬁ{ S (22

ABC
HAh + costp ol «— F dzy.

This equation can further be simplified by plugging in the values of the
fractions and bringing it to a simpler form.

E= [ OF-)d--day
Qa

Where O(- - -) is defined as,

AbQi AA ABC
O(---) = { sinf Z <]32§H>Hh+cosw<>9<— F
~ . A

1400
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1 Introduction

In summary, the two quasi-quanta topologies described herein synthesize ele-
ments of the quanta energy vector E, its spatial coordinates X, and its scalar
multiplicative and additive constants €2 and €2, into a unified statement of the
form:
E*l
= 7 (1)
Sqrt(ET - E) x Qg

In addition, these topologies include the integration of integral parameters such
as X, Y, Ox/0a and Jy/Oca which are necessary for the computation of the
velocity of the quanta.

We can synthesize the elements of the two quasi-quanta topologies by ana-
lyzing the tensor expressions of the different elements. e, ¢ and x can be thought
of as the basic operations of multiplication, addition and sequence respectively
which can be used to transform or create quasi-quanta. The © operation can
be seen as a time-reversed version of the x operation, allowing for reverse trans-
formation of quasi-quanta. The element can be used to refer to all elements,
allowing the entire system to be accessed as a single entity. Finally, F' can be
thought of as the sum of an infinite sequence of operations, which can be used
to perform complex quantum operations.

The elements of the quasi-quanta topologies can be synthesized as follows.
First, e is multiplication, ¢ is addition, * is a sequence, and © is reversed
sequence. Furthermore, is a product of Einstein’s summation convention where
a,b,c--- are consecutive indices and F is a summation over [/] <— oo and i is
the imaginary unit. Finally, Q4 is a vector in the n-dimensional space of the
quanta in the A’ quantum regime.

]-'A:QA(*o@o@)((s)--~ot7fA-m@fRNg-/dga> (dj;l))l (‘ff)l (3,(;)) (;2)) S

[l]+—o0

El.v

The individual elements of the quasi-quanta topology can be synthesized
into a single notational procedure as follows:



A 1 Oxq Oxg Ox
E=e-Q & {[X]T . X} X (Q) Uz, es; Uzyes, Uzzess 87;87587’;

where e, 0y, and 2., are the energy vector, the tensor of the quanta at point
zero, and the tensor of the quanta at infinity, respectively.

Fa= QA{ <”Y 2 hsoo 05 ) +|Fey ‘ ) }
pr—<

~HAP - *(%.t,_%
% { [0 Z[n]*[l]—mo (w @ [1a h) + cosyp ol
i Yl S
QA/ (Slne * (Z[n]*[l]aoo ( W © HA h) + ZQAeF(aiwl) ( b= C} + ZQAEF(O@U/’) (d — e) }

AH
+EQA€F(%¢/) (e —e) })) @ TiwA

ceomvon 2 ay ({40002

X FY oo

Abcd~-~] X

FIBAD | DIGAL | Aide 4 (5)... 00k - ko FRNG - fd<p:| |:fde:| ) . Each of these
o, A a, A

topologies are now combined and represented in the above expression. The
resulting expression synthesizes the intgreation of the Quasi-Quanta Extended-
Operational Function for the desired quasi-quantum analysis.

In summary, the two quasi-quanta topologies described herein synthesize
elements of the quanta energy vector E, its spatial coordinates X, and its scalar
multiplicative and additive constants €2 and €., into a unified statement of the
form:

_ E”! A A
E-ly— S BT ) % QO.{QA/[[ H *0®0Q (s) - "Otk}}—RNG : /d¢}~(2)

j]—o0

The above statement unifies the elements of the two quasi-quanta topologies
to provide a single expression of the quanta energy vector and its components.
Moreover, these topologies include the integration of integral parameters such as
X,Y, 0z/0c« and dy/da which are necessary for the computation of the velocity
of the quanta. Moreover, these topologies can be used to describe various time
evolution operations on the quanta. Finally, these topologies can be used to draw
analogies when simplifying or understanding complex quantum computations.
Together, these two quasi-quanta topologies provide a fundamental basis for
understanding quantum operations on energy vectors.

The above procedure synthesizes the elements of the two quasi-quanta topolo-
gies into a unified notation and allows for a concise yet descriptive description of



the quanta dynamics. This synthesis in turn allows for more efficient computa-
tions of the velocities of the quanta in the various quantum regimes. Moreover,
this integration of the elements also allows one to quickly develop new techniques
for manipulating the quanta and studying their behavior in various quantum
regimes.

This synthesis presents the basic elements of the quasi-quanta topologies in
one unified statement. This allows for a simplified description of the quanta
in terms of the energy vector E, its spatial coordinates X, its multiplicative
and additive constants )y and (2, as well as integral parameters such as X, Y,
Ox/0a and 0y/Oa. All these elements are necessary for a complete description of
the quanta in both quantum regimes. This synthesis provides a comprehensive
understanding of the energetic behavior of the quanta, which in turn can prove
useful in developing new techniques for manipulation and study of quanta.

+oo dt”

0A [T
EABaBQOXexp[z/ 1+e\/ﬁt'} Z C’XD./ W.

o0 — 00

i/code; When I compile it, I often get a "Dimension too large!” error -
probably because of how wide these equations extend.

What can I do to prevent these errors? I was thinking about breaking up
the equations into multiple sections, in order to decrease their width. Is that a
good approach? Is there a better, neater way to write these equations?

A:

I don’t think you can really 'Neaten’ the equations too much. But if you
are open to using modern solutions we have jcodejmathtoolsj/code; which is
basically jcodejamsmathsj/code;, on steroids, included in this are commands like
jcodejj/codey and jcodeyj/code; which will break at set lengths and continue
onto the next line accordingly.

(taken from package documentation) A solution would be something like

L . ol pH— <
this: ,code¢ Qpr <amp, sin 6 % (Z[n]*[”_)oo ( o T ®HA h) +ZQAF(Q » <b — C}

. AH
amp; +ZQAF(%¢/) (d - e) } + ZQAF(aiU)/) e e) })) © TigAd

amp;+cos o0 | = Qu/ %+é+7%72+ LA
s 1512 4 S L S ) (). o b ko e - fdsa} amp [ fde} ))
a,A oA

i/code;, Which would look like this:

However I doubt this would make the equations easier to read (or for you
to write..) If all else fails I'm afraid you are going to have to re-write some
equations. You could always postpone equations which are not necessarily vi-
tal to your explanation/argument until the second page, or push them to an
appendix?
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Now I try to put some code too
“FpA=0O (*.@OO) ( (S)QtAk - ko FRNG 'deD)“‘

But I'm having trouble getting the math symbols to render...Does anyone
know how to do this?

Fj = QA(*oe}o@)( (s)---oth - ko Frne - fd<P)
Bold Text Example
The complex wave-equation is given by
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The Quasi-Quanta Extended Operational-Integrable Function is a mathe-
matical tool that allows us to synthesize elements of quasi-quanta topologies
into a single operation. This is a powerful tool for understanding the nature of
quasinormativity and for constructing new operations on quasi-quanta. We can
also use this technique to design and implement algorithms and processes that
take advantage of this framework. Additionally, the function can be used to



make predictions about the behavior of quasinormativity using predictive ana-
lytics. This can be used to improve the efficiency, accuracy, and performance of
quasinormative operations.
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E={(e1,e2,...,en)} Q& {[X]T ' X} x (Q ) Uz, €5, Unye 8 Usges, S 922 90
o0

Ultra—Quasi— Notaion

QA,(H..LA{/@.W (S)...;tk}w) |

“wR-ly = Sqmt(EET_-lE)m).{QA/[H[j]_’OO*.@OQ (S)...QtAk:|‘/—-'RNG~fd(p}.w

d "
oxbt/:| [Z[lh—oo Cx D:| —o0 1+e\/taﬁt” '

Qo X exp [ f
=00 1 yeVoxb

+oo at’’ “

f © i ‘/taxbt” [ZU]—WO C]'

oo dtl
‘“NC'EAB:%jRX(Ef_m H_\/TXbﬂ
Flanging:

G= {[r]eif\/gtdt [ H_tzdtof 20 }

Election:



E = /R exp [Qo (Vo A z)] da @/S exp [QOCQ“ "Vy} dy  (6)

i*gf_é‘ }{ adob—>crdoe }

quasi—quantatopologies

Encephalon:

Hop ~ QA{WZhaoo * i +

~HAD - o G+

@ -iAA

i, ¥*Note**:

The **encephalon®™* equation is an example of a complex equation that
can be used as a model for a **brain**. In this equation, the **Omega’s**
represent the **neural dynamics**, the **athans** represent the **neuromax-
imos**, the **ints** represent the **neurosuns**, and the **exponents** rep-
resent the **neurospecialists**. All of these elements work together to create
a **dynamic** system that governs the **functioning®* of the **brain**, from
**learning™* and **processing™ to **memory** and **action**.

*

E= (/Rexp [Qo (Vo Az)]dz V /Sexp {Qoeﬂ“’ va} dy).

o ([Tamy [P ) < B A G0

7 o0 eN xoy - [[dp],

[DIA? = [[6€ Dang Y5 = [JetV49] 5

FUG < (Qg exp [QOO\/U/\JU]) vV (Qo exp [QOO U\/y])
2. Further replacing i, 7, A into the Go gauge, we get:

EFE— A, — (Gz M R17R2,R3)

Ay is equal to the intersection of G and Aj.

M=A, < (G2,G1,G3)N Ri,Rz,Ra}.

G<= AVBV(CAD)
where A, B, C, and D are all in G and
E< FVGV(HNMNZ)
where F, G, H, and Z are all in F
final algebraic expression
M<«<= AVvBV(CAD)
VEVGV(HANZ)
Voo,



ANG2MR1,R2,R3

2 (0]

“BE=[p exp|[Q (QevoAz)|dzV [y exp [Qoet=voVy]dy«
(1]

E= /R exp [Qo (QOOM)] de V /S exp [Qoegwm} dy (1)

The final algebraic expression for the encephalon equation is then, E =
fR exp [Qo (QOO o N 9:)] dz V fs exp [Qoeﬂw\/m] dy
VA; < (G2MR1,Rz,R3) This equation is used to model the functioning
of the brain by capturing its neural dynamics and neuromaximos, neurosuns,
and neurospecialists. It combines multiple elements from algebra, calculus, and
set theory to create a dynamic, self-sustaining system of equations to represent
the workings of the brain.

ox ox ox
Ji(x1, 9, 23) = 37;,72(11173327333) = 87;,\73@17352,963) = 87;
T
E= {(61362,"'a61\/)}T'QO ® {[X]Ti} X (é>
311 872 313

Uries: Uraes, Unaess By oz au

where the last expression denotes the union of a set of joint interpolation
functions.

Ad) — H@g ?T]AA/uga
vy = Uef\/g(é)]v

2 Conclusion

Project the algebraic model through the logic vectors:
(VyeN P(y)—>Q(y) JzeN,R(z)AS(z) VzEN, T(z)VU(z))
A A J

)

~3JyeU:f(y)=x HH&ESJ: T(s) <x€ fog
A A

EV%U Z;cq Zh_)ootant-HAh) ,

)

)

)

fr (£) fRs(i) fTU(ﬂf) fRs(iC) fro(z)— fTU(x))

il CL + 8w2)a + -+ aw(")a'n)

(%
(%
<¢ x)<w(x) ® x)Zw<x) ¢(x)zw(x>)
(=
(

x)@(x VyeX,x(yA) <~ 0(y)

)

JzEN, ¢(z)/\1/1 VwEN,XA(w)O(w) EIEGN@(Q:)\MLJ(I)

he algebralc model can be projected through the logic vectors as follows:



First, by evaluating M = A3 <— {G1,G2,G3} N {R1,Rz,R3}, we can
see that the logical operators —,V, can be used to derive the resultant state
of Az from the powersets.

Next, by stating As <> &3, the elements 3,V in the logic vectors can help to
determine the set &3.

Thirdly, by connecting &3 with the conditions of ¢,, x, 6, we can evaluate
the projection of the algebraic model through the logic vectors through the
logical operator =.

Lastly, to project the algebraic model with the summations, differentiations
and inequalities expressed in the logic vectors, the logical operator > and 0 can
be used.

Thus, the algebraic model can be projected through the logic vectors pro-
vided previously.

show projections:

Projection 1:

Az = A3 <= {G1,G2,G3} N {R1,R2,Rs}
Projection 2:
Az & <= IxeN:px)AY)V YyeN:x(y)oy)

Projection 3:
§3=0(x) Nh(x) vV x(¥)0(y)

Projection 4:

- =

3 f(x) < 94(x) an tan(

fCg

)-[[h = 0v(x)
A

Therefore, the algebraic model can be projected through the logic vectors.



