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Abstract 

This dissertation focuses on generative models in the Predictive Processing framework. It is 

commonly accepted that generative models are structural representations; i.e. physical 

particulars representing via structural similarity. Here, I argue this widespread account is 

wrong: when closely scrutinized, generative models appear to be non-representational control 

structures realizing an agent’s sensorimotor skills. 

The dissertation opens (Ch.1) introducing the Predictive Processing account of perception 

and action, and presenting some of its connectionist implementations, thereby clarifying the 

role generative models play in Predictive Processing. 

Subsequently, I introduce the conceptual framework guiding the research (ch.2). I briefly 

elucidate the metaphysics of representations, emphasizing the specific functional role played 

by representational vehicles within the systems of which they are part. I close the first half of 

the dissertation (Ch.3) introducing the claim that generative models are structural 

representations, and defending it from intuitive but inconclusive objections. 

I then move to the second half of the dissertation, switching from exposition to criticism. 

First (Ch.4), I claim that the argument allegedly establishing that generative models are 

structural representations is flawed beyond repair, for it fails to establish generative models are 

structurally similar to their targets. I then consider alternative ways to establish that structural 

similarity, showing they all either fail or violate some other condition individuating structural 

representations. 

I further argue (Ch.5) that the claim that generative models are structural representations 

would not be warranted even if the desired structural similarity were established. For, even if 

generative models were to satisfy the relevant definition of structural representation, it would 

still be wrong to consider them as representations. This is because, as currently defined, 
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structural representations fail to play the relevant functional role of representations, and thus 

cannot be rightfully identified as representations in the first place. 

This conclusion prompts a direct examination of generative models, to determine their 

nature (Ch.6). I thus analyze the simplest generative model I know of: a neural network 

functioning as a robotic “brain” and allowing different robotic creatures to swiftly and 

intelligently interact with their environments. I clarify how these networks allow the robots to 

acquire and exert the relevant sensorimotor abilities needed to solve the various cognitive tasks 

the robots are faced with, and then argue that neither the entire architecture nor any of its parts 

can possibly qualify as representational vehicles. In this way, the structures implementing 

generative models are revealed to be non-representational structures that instantiate an agent’s 

relevant sensorimotor skills. I show that my conclusion generalizes beyond the simple example 

I considered, arguing that adding computational ingredients to the architecture, or considering 

altogether different implementations of generative models, will in no way force a revision of 

my verdict. I further consider and allay a number of theoretical worries that it might generate, 

and then briefly conclude the dissertation.



 

Introduction 

This dissertation focuses on the metaphysical status of generative models within Predictive 

Processing - a neurocomputational framework of increasing popularity. To anticipate, I argue, 

contra the prevalent structural-representationalist interpretation of Predictive Processing, that 

generative models are not structural representations. More in detail, I’m going to claim that 

they are not even representations, as, on a closer scrutiny, generative models are revealed to 

be nothing more than non-representational control structures that instantiate an agent’s 

sensorimotor mastery. 

Such a claim requires some setup to be expressed and defended properly. Hence, the 

dissertation is divided in two parts: one provides the setup, the other articulates my claim. 

 

Part I: Predictive Processing, representations, and Predictive Processing and 

representations 

 

Chapter 1 introduces the framework of Predictive Processing. The introduction will be 

reader-friendly, with little mathematical notation and many intuitive examples. Since the aim 

of the chapter is introductory, I bracket all the philosophical issues surrounding Predictive 

Processing, representationalism included. The latter will be thoroughly discussed throughout 

the rest of the dissertation. 

The chapter is structured as follows. The first paragraph provides a bird's eye view of 

Predictive Processing. The second paragraph presents the core machinery described by 

Predictive Processing twice, first in homuncular terms, and then in a properly de-

homuncularized connectionist fashion. Paragraph three and four expand the presentation of 

Predictive Processing covering expected precision/attention and active inference/action 

respectively. A fifth conclusive paragraph closes the chapter. 

Chapter 2 provides the conceptual background needed to evaluate the representational status 
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of generative models. I introduce the issues surrounding representations in cognitive science, 

clarifying that the scope of my inquiry is restricted to cognitive representations; that is, 

representations as explanatory posits of specific cognitive theories. As it is customary, I will 

understand cognitive representations based on the template offered by public representations; 

hence, as triadic relations holding between a vehicle, a target, and some system “consuming” 

the vehicle. I will then briefly describe two further essential properties of representations; 

namely representational content and representational functional profile, and then close the 

chapter introducing four classes of representations (receptors, structural representations, 

superposed representations and input-output representations) that will play a major role in the 

upcoming argument. 

Chapter 3 puts the conceptual resources introduced in Ch. 2 to use, introducing the 

structural-representationalist view of Predictive Processing.  The chapter starts by presenting 

the representational functional profile of generative models, showing how the thinnest possible 

notion of model at play in the Predictive Processing framework has been strengthened so as to 

yield a prima facie robust representational functional profile. The chapter then deflects a 

number of objections aimed at shaking the representational credentials of such structures, 

showing how the structural-representationalist view can respond. In this way, the chapter 

presents a strong case in favor of the structural-representationalist view, providing a charitable 

reconstruction of it which also eases the examination of the representational content of 

generative models. 

 

Part II: Generative models as instantiations of sensorimotor mastery 

 

Chapter 4 examines whether generative models actually qualify as structural 

representations. In doing so, I will focus on the argument offered by Gładziejewski in his 

seminal Predictive Coding and Representationalism. This is because of two reasons. First, it 
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provides the standard understanding of “structural representations” used throughout the 

Predictive Processing literature. Secondly, it is, to my knowledge, the only argument explicitly 

aimed at establishing the metaphysical status of generative models as structural representations. 

The structure of the chapter is straightforward. In the first paragraph, I briefly expose 

Gładziejewski’s understanding of structural representations and unpack the relevant 

definitions. In the second, I sketch Gładziejewski’s argument to demonstrate that generative 

models qualify as structural representations. In the third paragraph, I turn from exposing the 

argument to criticizing it, arguing that it does not substantiate the desired conclusion. In the 

fourth paragraph I examine a number of alternative arguments to the same effect, finding them 

wanting. They all either fail to establish the desired structural similarity or succeed to establish 

it only at the expense of some other feature individuating structural representations. I thus 

conclude that Gładziejewski’s argument fails, and that the metaphysical status of generative 

models as structural representations is far from secured. 

Chapter 5 begins where chapter 4 left off: what if some appropriate structural similarity 

were to be found? Wouldn't that turn the tide in favor of a (structural) representationalist 

reading of PP? I claim the answer to this question should be negative. This is because the 

relevant definition of structural representation provided does not spell out a representational 

functional profile, and items satisfying it do not meet the “Job Description Challenge”; that is, 

they do not function as representational vehicles within the systems in which they are 

deployed. 

In the first section of the chapter, I introduce Ramsey’s Job Description Challenge, and 

briefly show why receptors do not satisfy it whereas structural representations allegedly do. In 

the second section, I show that at least some receptors satisfy all the demands Gładziejewski 

poses on structural representations, thereby showing the structural profile of the two is not 

substantially different. Thus, if receptors do not satisfy the challenge, structural representations 
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don’t satisfy it either. The third section replies at some foreseeable objections. The fourth 

section concludes the chapter spelling out the conclusion just reached: generative models 

definitely are not representations, structural or otherwise. But, then, what are they? 

Chapter 6 tries to provide an answer. It considers generative models directly, trying to 

answer the question: “what could generative models be, if not structural representations?”. To 

answer this question, I examine the simplest generative model capable of active inference I 

know of, in the form of a simple robotic “brain”. I show that, as a matter of empirical fact, such 

a “brain” is manifestly sufficient to allow the robotic agent to achieve a certain degree of 

sensorimotor mastery. Yet, I also show that such a “brain” hosts no structure that can rightfully 

be identified as a representational vehicle. I thus conclude that such a generative model is a 

non-representational structure instantiating the agent’s sensorimotor mastery; that is, the 

agent’s practical and tacit knowledge of sensorimotor contingencies. I then consider whether 

my verdict generalizes to more complex Predictive Processing systems, concluding that, absent 

any compelling argument blocking the generalization, it does. In the conclusion of the chapter, 

I consider and allay some worries that my anti-representationalist verdict may rise. 

A brief conclusion then closes the dissertation.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part I: Predictive Processing, representations, and Predictive Processing and 

representations



7 

Chapter one - An introduction to Predictive Processing 

 

1 - What is Predictive Processing? 

Predictive Processing is a model of cognition spanning Marr’s (1982) three levels of 

analysis. 

At the computational level, Predictive Processing (PP) suggests that the basic task of the 

entire brain is that of minimizing prediction error: the mismatch between expected and 

received sensory stimulation. In more rigorous mathematical terms, prediction error 

minimization can be cast as a form of approximated Bayesian inference; making PP a specific 

instantiation of the “Bayesian brain” hypothesis (Friston 2009; 2010, Hohwy 2013; Buckley et 

al. 2017). 

At the algorithmic level, PP conceives the brain as a multilayer neural network hosting at 

least two (but often three) kinds of processing units, termed prediction and error units (but 

units for precision weighting are often added). These units are densely connected by two, non-

overlapping, sets of connections, busy transmitting predictions and prediction errors according 

to a predictive coding processing regime (Rao and Ballard 1999; Friston and Kiebel 2009a; 

Clark 2013a; 2016). 

At the implementation level, PP suggests that such a network can be readily seen in the 

mammalian cortical architecture, for example observing the hierarchical structure of the brain; 

or the two non-overlapping sets of ascending and descending connections tying together 

hierarchically stacked neural areas. (Friston 2005; 2008; Adams, Shipp and Friston 2013; Shipp 

2016).1 

PP is also a unified account of cognition, suggesting that cognition consists entirely in 

prediction error minimization. Hence the extensive explanatory reach PP seemingly boasts, 

                                                
1 I’m omitting lateral connections for the sake of simplicity. Notice, however, that they will be relevant in Ch. 6 
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spanning from simple sensorimotor coordinations to memory (Vecchi and Gatti 2020), emotion 

(Seth and Friston 2016), dreaming (Hobson and Friston 2012), curiosity (Friston et al. 2017c), 

social cognition (Friston and Frith 2015a, b) various form of reasoning (Spratling 2016) and 

even phenomenal consciousness (Seth 2021). 

Here, I will introduce the basics of this account, focusing on how it accounts for perception 

and action at the algorithmic level.  

To be clear, this means that this introduction is partial and idealized; hence partially 

distortive. I shy away from currently debated topics in the PP literature, ranging from non-

Bayesian forms of PP (e.g. Thornton 2017; 2020), issues concerning the correct form of the 

predictive coding algorithm (Spratling 2017) and network architecture (O’Reilly, Wyatte and 

Rohrlich 2014; Tani 2016; Matsumoto and Tani 2020; Ciria et al. 2021), as well as whether 

the evidence in favor of PP is conclusive (Keller and Mrsic-Flogel 2018; Walsh et al. 2020; 

Cao 2020; Millidge, Seth and Buckley 2021), and whether fitting the architecture described 

below to neuroscientific data will fore significant revisions (Spratling 2019; Millidge et al. 

2020). Such controversies are best ignored in an introduction. 

As it is customary, I will introduce PP starting from perception. 

 

2 - Perception, and the core concepts of PP 

PP suggests that perception is an instance of prediction error minimization, whereby the 

brain2 inverts the generative model it encodes, thus mapping sensory inputs onto their most 

likely causes, thereby recognizing the former in terms of the latter. There’s a lot to unpack here, 

starting from one of the PP core concepts; namely, the concept of generative models. 

 

                                                
2 Throughout the rest of the dissertation, I will use “brain” roughly as a shorthand for “cognitive machinery”. 
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2.1 - Generative models 

A generative model can be conceived as a probabilistic mapping between sources of inputs 

(or, more broadly, hidden causes) and inputs (or, more broadly data or observations) capturing 

a generative process; that is, how the former generates the latter (Foster 2019:1). Sampling 

from one such model generates new observations, which corresponds to what the model  

predicts, given its knowledge of the generative process (cf Danks 2014: 44). 

Since sensory inputs are typically generated by nonlinear interactions of different causes 

operating at different spatio-temporal scales, a generative model capturing how our sensory 

input is generated must be hierarchically structured, so as to capture causes operating at 

progressively coarser spatiotemporal scales. Moreover, it must allow for nonlinear interactions 

among its variables.3 

The model must also be probabilistic in nature. In ecologically normal contexts, causes do 

not always produce the same effects: for example, the inputs generated by a sound source vary 

in function of the perceivers distance relative to a source, and the light reflected by a surface 

changes as the illumination condition changes. For this reason, the model encodes the relevant 

knowledge in probabilistic terms. This is necessary to handle the perceiver's uncertainty about 

the states of the hidden variables at work behind every sensory observation (Tenenbaum et al. 

2011: 1280). How, exactly, biological brains encode probabilities is not a settled matter and it 

will not be discussed here.4 

One way to intuitively understand generative models is to use one. Enter Artbreeder: a 

collaborative art website providing a simple interface that allows its user to use a generative 

model to create pretty pictures, see figure 1.5  

                                                
3 See (Friston 2008; Kiebel, Danizeau and Friston 2008; Kibel et al. 2009).  
4 See (Knill and Puget 2004; Kersten, Mamassian and Yuille 2004; Aitchinson and Lengyel 2017). Indeed, the 
claim that the brain computes on probability distributions is contested (Sanborn and Chater 2016). 
5  It can be freely accessed at https://www.artbreeder.com/. Notice that in the present context Artbreeder is just 
used as an example: the neural network fueling it is actually quite distinct from the architecture PP envisages. But, 
for present purposes, their differences are irrelevant. 
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Figure 1. The interface of Artbreeded.  Source: screenshot. 

The interface displays the hidden causes (right) of the generated image (left). The user can 

assign a value (ranging from -2 to +2) to each cause, thereby modifying the generated image. 

For example, by incrementing the value of “snow”, the image will be dominated by cold, muted 

colors, whereas decreasing its value will make colors more hot and vibrant. Each assignment 

of value to causes generates an image that Artbreeder’s model expects or predicts, given the 

value of each cause. 

This intuitively clarifies how generative models can generate predictable observations. It 

also clarifies in which sense prediction is relevant in the present context: predictions are not 

prophecies about the future, but (sub-personal) mechanisms of statistical estimation, closely 

aligned with mechanisms for pattern completion (Bubic, Shubotz and Von Cramon 2010; 

Falandays, Nguyen and Spivey 2021). 

Artbreeder’s interface, however, does not show its users the hierarchical nature of the model 

they’re using. To intuitively visualize it, one must deploy a different method, embodying 

generative models in complex mathematical formulae. The following is a reasonably simplified 

rendition:6 

• sensory signals = functions of the hidden causes + noise 

                                                
6  See (Wiese 2017; 2018) for the original proposal. See (Rao and Ballard 1999: Eq. 1; Friston et al. 2010; Eq. 8) 
for the non-hierarchical case, and see (Rao and Ballard 1999: Eq. 3) and (Friston et al. 2015: Eq. 3.3) for the 
hierarchical case. 
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or, equivalently:  

• s = f(c) + ω 

If we ignore the noise term ω (it will come back in §3), the formalism roughly captures what 

is going on behind artbreeder’s interface: the user sets the hidden causes at a value, and the 

program outputs the predictable image/sensory signals.7 Now, it is fairly easy to expand this 

formalism to capture the hierarchical case: 

• c2 = f3(c3) + ω3 
• c1 = f2(c2) + ω2 

• s = f1(c1) + ω1 

Intuitively, the idea is that causes at hierarchically higher levels constrain the values of 

causes at hierarchically lower levels. This can easily be translated into Artbreeder’s interface 

by imagining a second set of superordinate causes constraining the values of other causes: for 

instance, a superordinate cause such as “night time”could constrain the value of cause “direct 

sunlight” fixing it at very low level, and allow to increase to a significant level only the value 

of the cause “artificial illumination”. Notice that this means that a hierarchical generative 

model just is a hierarchy of generative models: in fact, each hierarchical layer generates (and 

thus, models) what it observes at the layer directly below itself.8 

Another way to conceive generative models is by means of graphical models - this will be 

important in chapters 3 and 4.9 Graphical models are representational devices affording the 

concise representations of the relations (in this case, probabilistic relation) holding among a set 

of variables (in this case, hidden causes and the sensory signals they produce). A graphical 

model consists of two components: a set of (labelled) nodes, which represent the variables, and 

a set of (directed) connections, which represent relations among the variables, see figure 2. 

                                                
7 For the sake of completeness, notice that there is a sense in which the interface of Artbreeder lets its users access 
the noise term ω: it's the hidden cause “chaos”, that governs the unpredictability of the image generated. 
8 See (Hinton 2005; 2007a;b; 2014; Eliasmith 2013: ch. 3; Simione and Nolfi 2015). 
9 See, for instance, (Friston, Parr and de Vries 2017). See also (Penny 2012: 4-7; Danks 2014: 39-64) for nice 
introductions and Koski and Noble (2009: 37-45) for a formal presentation of the relevant mathematical apparatus. 
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Figure 2. A simple graphical model, see main text for details 

(Drawing by the Author) 

Let S stand for the variable season. Certain seasons (spring) raise the probability of Heyfever 

(H), and so there is a direct connection (→) between these two variables. Knowing that the 

other nodes stand for flu (F), congestion (C) and muscular pain (P), the graph becomes easily 

interpretable - for example, it makes clear that there is no direct connection between season 

and muscular pain: muscular pains are more likely in winter only because having a flu is more 

likely in winter. In this way, the topology of a graph comes to mirror the relevant relations 

holding among the elements that the graph models. 

Notice that graphical models too allow their users to make predictions. Using the simple 

model in figure 2, one can easily predict that during certain seasons muscular pains will be 

more likely. Indeed, all graphical models are generative models - at least in the minimal sense 

that they can be used to generate typical data, given the knowledge they embody (Danks 2014). 

Now, consider again the most intuitively manageable rendition of a generative model thus 

far encountered: Artbreeder’s interface. It can be used to intuitively clarify in what sense a 

generative model is inverted by means of prediction error minimization. Suppose that an 

Artbreeder user is tasked with recreating a target image (here playing the role of the actual 

sensory input) via Artbreeder. A natural way to proceed would be that of modifying the values 

assigned to the causes in a way such that the image Artbreeder displays comes to progressively 
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resemble the target image. Notice that, by doing so, the user is implicitly mapping the target 

image onto its most likely causes (according to Artbreeder’s model). In fact, in order to re-

create the target image via Artbreeder, its user has to find the right setting of causes that, 

according to Artbreeder’s model, would generate that image. Hence, by minimizing the 

discrepancy between the target image and the one generated by Artbreeder (which is the 

prediction error), the user is implicitly mapping the target image onto its most likely causes, 

inverting the mapping from causes to images encoded in the generative model. 

Now, Artbreeder requires a human user. But human users must be eliminated by cognitive 

theorizing, on the pain of homuncularism. In the next two sections, I will clarify how to 

eliminate them, introducing the algorithmic core of PP. 

 

2.2 - A connectionist architecture 

PP is, at its core, a connectionist theory (Rao and Ballard 1999; Spratling 2016; Millidge et 

al. 2020).10 And philosophers are familiar with a class of connectionist systems embodying 

statistical models in a homunculus-free way: feedforward networks used for classification all 

embody discriminative or recognition models. That is, they all output the most probable class, 

given an input (Skansi 2018). Thus, feedforward networks offer a natural starting point for the 

present discussion. 

A feedforward network consists of a set of hierarchically stacked nodes (or units or neurons) 

systematically connected by means of weighted connections. The network is administered an 

input by setting the numerical value of the nodes at its input layer. Then, their activation spreads 

through the network, and it is dampened or bolstered depending on the weight of each 

                                                
10 Notice that this does not make it “less Bayesian”. Both Bayesian and connectionist approaches to cognition 
take cognition to be a process of satisfaction of multiple, graded and probabilistic constraints (Kersten, Mamassian 
and Yuille 2004; Rogers and McClelland 2014). Moreover, some connectionist systems can be straightforwardly 
interpreted as implementing Bayesian probabilistic reasoning (e.g. Hinton and Sejnowsky 1983; McClelland 
1998; 2013). 
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connection. Each hierarchical layer of units receives input from the layer below it, which 

determines the state of each of its neurons. This procedure is iterated through the layers until 

the output layer is reached, and its pattern of activation indicates to which class (among the 

classes the network has been trained to discriminate) the input most likely belongs.11 As this 

simple description highlights, the computation of artificial neural networks massively (but not 

exclusively) depends on the weights attached to the connections between units. It is by training 

and adjusting these connections that a network comes to embody the relevant model (see Ripley 

1996; Murphy 2012: Ch. 3): in the case at hand, a discriminative model mapping input patterns 

onto labels. 

In feedforward networks, these weights are typically learned through an error minimization 

algorithm known as error backpropagation.12 But it has some serious shortcomings. For one 

thing it is supervised, hence it presupposes the presence of a teacher who knows the right 

answers (cf Nolfi and Parisi 1993) as well as vast amounts of labeled data (Hinton 2014). 

Moreover, it is informationally wasteful: it forces the net to ignore all the information present 

in the data which does not pertain to the relevant discriminative model the network has to learn  

(Hinton 2007a: 340; McClelland 1998: 30). These shortcomings motivated researchers to find 

better ways to make networks learn discriminative models - and a powerful and potent way to 

do so is that of making the network learn a generative model of the input. 

Consider Helmholtz machines13 (Dayan, et al. 1995; Dayan and Hinton 1996): artificial 

neural networks deploying stochastic units uniformly connected by two sets of connections. 

The first set of recognition weights drives the machine in the familiar bottom-up way, allowing 

the propagation of activation from input to output layer. The second set of generative weights 

                                                
11 See (Haykin 2009: Ch 1 to 4; Kruse et al. 2016: Ch. 3-5 for a proper formal treatment) of feedforward networks. 
12 See (McClelland, Rumelhart and the PDP research group 1986) for its canonical formulation ans (Skansi 2018) 
for an abridged formulation. 
13 To be clear: Helmholtz machines do not provide the standard connectionist implementation of PP. I’m 
introducing them here to ease the exposition, just as I did with Artbreeder. This is far from an uncommon practice 
in the PP literature (cfr. Clark 2013a; Kiefer and Hohwy 2018; 2019). 
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drives the activity of the system from the top-down, allowing activity to spread from the output 

layer to the input layer. Both sets of connections are randomly initialized, and each set of 

connections acts as a teacher for the other set (Hinton, et al. 1995; Dayan 2003). This is the 

“wake-sleep” algorithm.14 

In the “wake” phase, the network functions as a feedforward network, driven by its 

recognition weights, while the generative weights are amended so as to make the network more 

likely to generate the inputs just encountered. The amended generative weights are then put to 

use in the “sleep” phase of the algorithm, in which the network is driven “from the top-down” 

and the activation spreads from the output to the input layer through the generative weights. 

Under this processing regime, the network adjusts its recognition weights, making them more 

likely to map input patterns on the class producing them. Repeated iterations of this cycle will 

allow the network to generate realistic inputs, while discovering the classes that best account 

for its production in an entirely unsupervised fashion. For example, a network trained according 

to this learning procedure can discover that the best way to classify input digits is not based on 

their surface form (which would arguably led to reliably misclassify porely scribbled “3s” “5s” 

and “8s” as well as “1s” and “7s”), but rather based on the motor programs the network 

executed while generating numbers by scribbling with a virtual pen (Nair and Hinton 2006). 

There are two lessons to draw from these examples. The first concerns the fact that a 

generative model and a discriminative model can train each other in an unsupervised manner, 

thereby jointly discovering the classes that best account for both the production and the 

classification of the input pattern. The second is that generative models can be easily de-

homuncularized by simply letting the activation spread from input classes to the network’s 

“sensory periphery”. 

                                                
14 The wake-sleep learning algorithm is a tractable approximation of the expectation maximization algorithm (see 
Dayan and Abbott 2001: ch. 10), which belongs to a variety of techniques to estimate the priors directly from the 
data (see Murphy 2012: ch.5). 
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Now, Helmholtz machines (and similar networks) nicely illustrate these points. Yet, their 

generative weights operate only during training. This seems wasteful and biologically 

implausible (Rao and Senjowski 2002; Lee and Mumford 2003): wouldn’t it be better if 

generative weights were able to operate also during online recognition? Predictive coding 

provides generative weights such a role to play. 

 

2.3 - Predictive coding 

Strictly speaking, predictive coding is just a data-compression strategy based on a simple 

idea: instead of transmitting an entire signal, just transmit the difference between the expected 

and received signal (i.e. the prediction error, Shi and Sun 2008: ch. 3; Spratling 2015; 2017). 

This can allow one to send shorter signals, containing only newsworthy information. Compare: 

if I’m not wearing socks, the sentence “I’m not wearing socks” is a much shorter description 

of my state than “I’m wearing only my shirt, jeans, belt, jacket, pants and shoes”. 

There are other reasons as to why predictive coding is attractive. In perceptual neuroscience, 

for instance, a common complaint is that: 

“[...], we barely understand the top-down mechanisms by which incoming 
sensory information invokes memories of past occurrences and activates our 
subjective prejudices and opinions” (Kandel et al. 2012: 471-472) 

Predictive coding provides precisely such an understanding (cf. Bar 2007; 2009; Bar et al. 

2006; O'Callaghan et al. 2017), as it provides top-down (generative) connections a role to play 

in online recognition. 

As seen above (§2.2) a generative model can be understood as a multilayer neural network. 

Let each layer consist of two functionally15 distinct sets of units, encoding predictions and 

prediction errors respectively. Let each layer Ln is connected with the adjacent layers Ln-1 and 

                                                
15 Notice that functional separateness does not necessarily imply physical separateness. Tani’s implementations 
of PP, for instance, have no separate set of error units (see Tani 2016), and his most recent models rely on a single 
set of connections (Matsumoto and Tani 2020). 
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Ln+1 by two non-overlapping sets of connections. Descending connections, from Ln to Ln-1 carry 

predictions, whereas ascending ones (from Ln to Ln+1) carry prediction errors. In each layer Ln, 

prediction units try to predict the activity of the layer below16 by inducing17, in that layer, the 

predicted pattern of activity. Their collective activity thus results in a downward flow of 

progressively spatiotemporally specified predictions. For instance, a relatively high-level layer 

might generate a state roughly corresponding to “face”; a middle-level layer a state 

corresponding to “eyes, nose and mouth arranged thus-and-so” and a low-level layer something 

like the complex set of colored pixels corresponding to the image of a face. This signal is then 

subtracted from the actual activity of the layer receiving it (or, at the bottom most layer, the 

actual input). The remaining signal (prediction error) is then sent upwards into the hierarchy. 

The receiving layer uses it, to update its guess, so as to minimize the incoming prediction error. 

As a global minimum of error is reached, the sensory input has been recognized, and interpreted 

in terms of its most probable underlying cause (according to the model). As Tani clearly 

explains: 

“[...] the process of recognizing a target perceptual sequence can be formulated 
as a process of searching for an optimal intentional state by which the target 
sequence can be generated with a minimum error while the learned weight 
parameters W remain fixed.” (Tani 2014: 589; note that W denotes the weights 
of the connections) 

Notice that this is precisely what the imaginary user of Artbreeder tasked with copying an 

image did (§ 2.1): to copy it, the user searched for the configuration of causes18 that generated 

the image most similar to the target one; that is, the configuration that generates that image 

with the least prediction error possible. 

                                                
16 Or, in the bottomost layer, the incoming input signal 
17 The term “inducing” in this context is tricky - in fact, from a purely technical point of view, top-down influences 
are often described as inhibitory (cf Friston 2005). One might more properly think of each layer as passing a 

negative of the expected activity to the layer below, in a way such that, were the negative (i.e. the prediction) 
correct, the inferior level would stay silent because expected and actual activity cancel each other out. 
18 Tani refers to it as an “intentional state” due to his strong phenomenological influences (cf Tani 2016: Ch. 3). 
I prefer a more sober terminology. 
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To see predictive coding operate in artificial neural networks, consider the network 

described in (Rao and Ballard 1999). The network consists of a hierarchy of stacked prediction 

and error units, connected as sketched above, which was trained to recreate naturalistic images.  

The network learned to both recreate and recognize simple visual features (such as edges 

and bars) at the first level, as well as their complex combinations at the second level, in a way 

that fits the statistics of the natural images used to train the model. It also exhibited non 

classical receptive fields effects, such as end-stopping. End-stopping (see Rao and Ballard 

1999: 79) occurs when a neuron vigorously responds to a feature (e.g. a bar) presented in its 

classical receptive field, but stops responding when the same feature is also present in the 

surrounding of the neuron's classical receptive field (e.g. if the bar prolongs outside the neuron's 

receptive field). 

The fact that Rao and Ballard's net displays non classical receptive fields effects suggests a 

plausible functional interpretation of such effects in terms of fulfilled predictions. In the case 

at hand, end-stopping ensued because the activity of the relevant units can be well predicted by 

the activity of the units surrounding it. As that activity is easy to predict, little to no prediction 

error is generated, and the unit gets “turned off”. To test this conjecture, Rao and Ballard (1999: 

81-83) tested the network inhibiting the message passing from higher to lower level, thus 

impeding the propagation of the prediction signal. In this condition, the neurons' “end-stopping 

behavior” vanished: they responded equally vigorously to bars, regardless of the number of 

receptive fields the bar crossed. 

The fundamental pieces of the PP machinery have been introduced. The next subsection 

shows them in action through one paradigmatic example. 

 

2.4 - The core machinery in action: the case of binocular rivalry 

Consider binocular rivalry: a perceptual phenomenon ensuing when each eye receives a 
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different stimulus from one of two different visual targets. Subjects report that, in such 

conditions, they see only one visual target at a time, and that their perception alternates between 

the two targets. Thus, if the two targets are a face and a house, subjects do not see a “face-

house”, but rather a face, then a house, then a face (and so on). 

Thus, binocular rivalry poses two explanatory challenges. The first is that of providing an 

account of percept selection; that is, providing an account explaining why subjects report 

seeing coherent percepts rather than “mashups” of the two stimuli. Secondly, one must account 

for the alternation of the percepts. 

PP easily meets both challenges (Hohwy, Roepstorff and Friston 2008). According to PP, 

the perceiver’s brain constantly tries to “guess” the incoming input. Suppose the guess 

corresponds to one of the stimuli (say, pattern 1). Since one eye is actually exposed to pattern 

1, the corresponding half of the visual cortex will generate only little prediction error. But the 

other half will generate a strong burst of error, for the eye connected to it not stimulated by 

pattern 1, but rather by pattern 2. To minimize that error, the brain revises its prediction in 

favor of pattern 2. This minimizes the previous burst of prediction error, but also generates a 

new one, this time coming from the half of the cortex “seeing” pattern 1. So, the prediction has 

to be revised again in favor of pattern 1, eliciting a burst of error from the half “seeing” pattern 

2 - and so forth. 

But why does the brain “select” coherent percepts, rather than a mashup of the two stimuli? 

The answer is straightforward: generative models can generate (and classify) the data they 

encounter, and we rarely (if ever) encounter such mashups in ecologically normal contexts. So 

the brain simply does not generate a “mashup” prediction, because it is not part of the data it 

has learned to generate and recognize.19 

                                                
19 Statistically speaking, the “mashup” percept (if at all present) has too low of a prior probability to be the 
“winning class” of the classification 
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The core functioning of the PP machinery should now be reasonably clear. It is thus time to 

introduce two important additions. 

 

3 - Expected precision and attention 

Binocular rivalry illustrates nicely how the knowledge encoded in a generative model shapes 

perception: one cannot see the “mashup” percept because it’s not part of the data the generative 

model has learned to generate and recognize. Such knowledge accounts for numerous cases of 

perceptual illusions (Brown and Friston 2012; Weiss, Simoncelli and Adelson 2012), 

suggesting that perceptual illusions are optimal percept, given what the model knows. 

Consider now a prima facie similar case (Merckelbach and van der Ven 2001). A number 

of undergraduate students were made to listen to a short audio file containing just wite noise. 

However, participants were informed that the audio file contained a barely audible version of 

“White Christmas” buried under the noise, and one third of them actually reported hearing the 

song.  

Prima facie, this seems just a simple perceptual illusion, accounted for the participants’ 

expectations concerning White Christmas. But, why hadn’t the participants revised their 

expectations in the light of the incoming prediction error? After all, what they really heard was 

just white noise, which must have generated at least some prediction error. So, why didn’t it 

force a revision of the prior expectation? To answer this puzzle, recall the noise term “ω” 

introduced in §2.1. It is now time to integrate it in the machinery of PP. 

Consider again the “White Christmas” scenario. Participants were informed both on what 

to expect and how to expect it (i.e. White Christmas buried in the noise). Given this expectation 

on the quality of their sensory inputs, small snippets of noise casually resembling White 

Christmas confirmed the prediction well enough, allowing one to ignore the prediction error 

generated by the rest of the singal. Indeed, participants expect their sensory signals to be low 
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quality. They expect it not to match their predictions. Thus, it seems right not to use the 

prediction error to revise the prediction (cf Clark 2016, Ch. 2). 

PP suggests considering this expectation on the quality of the data as an estimate of the 

signal-to-noise ratio, or precision, of sensory signals and the prediction error they generate 

(Friston 2009; Feldman and Friston 2010). Notice the metacognitive character of these 

predictions, as they do not concern the data itself, but rather their reliability, determining to 

what extent the prediction errors they generate should be allowed to impact on our prior 

expectations about the causes of the signal (Adams et al. 2013: 2). Prediction errors generated 

by signals expected to be highly precise sensory signals are considered reliable, hence they 

should be allowed to force a revision of the predictions. Conversely, prediction errors with low 

expected precision are deemed an unreliable source of information, and so are not “trusted 

over” the predictions generating them. 

Here’s an intuitive example. Suppose I expect point A and B to be 6 steps apart. I then 

repeatedly count the steps I take to move from A to B. This isn’t a reliable measuring 

procedure: sometimes I will count 7 steps, other times I will count 5. Knowing this, it is rational 

for me to ignore the prediction error (i.e. the discrepancy between expected and actual distance) 

and keep believing A and B are roughly 6 steps apart.20 Had I used a laser rangefinder, I would 

have revised my belief: this is because rangefinders are very precise tools - and so if their 

measurement contradicts my estimate, I better trust the measurement. 

As the example intuitively shows, expected precision acts as a weight on the prediction error. 

If the weight (i.e. the expected precision) is low, prediction errors will be “silenced”, and 

predictions will dominate. Conversely, if their expected precision is high, they will fore 

predictions to be revised: 

“[...] when the bottom-up noise variance is high (for instance, due to occlusions), 
                                                
20 Of course, it is rational to ignore the prediction error up to a point: had I measured the distance from A to B to 
be of hundreds of steps, it would be rational for me to revise the estimate. The same idea is actually present in PP: 
large enough prediction errors have an increased expected precision (cfr. Feldman and Friston 2010: 23). 
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the bottom-up term is given less weight in the state estimation step [...] and the 
estimate relies more on the top-down term and the system prediction[s]. On the 
other hand, when the top-down noise variance is high (for instance, due to 
ambiguity in interpretation by the higher-level modules), the estimate relies 
more heavily on the bottom-up term [...]. The dynamics of the network thus 
strives to achieve a delicate balance between the current prediction and the 
inputs from various cortical sources by exploiting the signal-to-noise 
characteristics of the corresponding input channels” (Rao and Ballard 1997: 
733, formalism deleted) 

In biological brains, PP suggests that this delicate balance is achieved by a variety of 

mechanisms regulating the firing rates of neurons, so that neurons reporting highly precise 

prediction errors will fire more, whereas neurons reporting less precise errors will be 

inhibited.21 

Importantly, these mechanisms collectively implement a form of attentional control 

(Feldman and Friston 2010). Intuitively, the idea is extremely appealing. In fact, “boosting” 

the error coming from one source while inhibiting the error coming from other sources22 just 

is to attend to a specific source, letting the signal it produced dictate one's neural processing. 

This roughly captures endogenous attention; that is the kind of attention we allocate “from the 

top-down” to what we deem relevant. Exogenous attention is instead captured by the fact that 

large bursts of prediction error are always highly weighted because they are large (Feldman 

and Friston 2010: 23). Indeed, large deviations from our expectations do capture our attention, 

as when a sudden movement, or an unexpected booming sound, force us to turn in the direction 

of their source. 

According to PP, expected precision is also related to the notion of salience. Salience 

denotes a quality of sensory signals which have an high expected precision but whose causal 

origin is still ambiguous (Friston et al. 2012b; Parr and Friston 2017; 2019). The sensory 

signals obtained when opening the door after the doorbell rang are salient in this sense: we do 

                                                
21 These mechanisms canonically included post-synaptic responsiveness modulation, synchronization of firing 
rates, and the release of neurotransmitters (Feldman and Friston 2010; Friston 2010; 2012a; Friston et al. 2012a). 
22 Of course, the weighting due to expected precision must be differential, just as in a weighted sum addends must 
have different weights (otherwise, that wouldn't simply be a weighted sum!). 
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not know what is their causal origin (i.e. who rang the doorbell), but we know that opening the 

door will provide us high-quality information on that matter. 

As a more concrete example, consider the learning algorithm engineered by Bongard, Zykov 

and Lipson (2006). The algorithm was tailored to enable a simple robot to infer its bodily 

morphology from its actions. The robot starts its learning cycle acting at random, only to collect 

some data relevant to infer its body morphology. Then the robot computes a number of 

competing body models, which are examined to determine the course of action that yields the 

most different sensory signals according to each model. The robot then enacts the action thus 

selected, eliciting some propriocetive signals. This enables the robot to “guess” its morphology: 

the body model that best predicts the actual signal is the body model that most closely 

approximates the robot’s actual morphology. The path of action the robot choses is salient in 

the relevant sense: its causal origin (actual morphology) is still unknown, but it is expected to 

yield the relevant data to guess it the best. 

The example also nicely highlights the prescriptive role of salience. Salience suggests 

generative models where to look and what to touch. But how do generative models look and 

touch? And, more generally, how do generative models do things? 

 

4 - Letting predictions do by their their fulfilling: action and active inference 

As seen in (§2) PP casts perception as a process in which predictions are aligned to the 

incoming sensory inputs, thereby minimizing prediction error. But prediction error could be 

minimized also the other way around; that is, by changing the inputs so as to make them fit the 

predictions. Roughly, this is the PP account of action (active inference). On the view PP offers, 

actions make our predictions self-fulfilling: we move so as to encounter the sensory inputs we 

expect to perceive. There’s thus a sense in which the model of cognition PP offers: 

“[is] concerned with, and only with, perception. Action per se, was a result of 
movements that conformed to the proprioceptive predictions of the joint angles. 
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This means that perception and action were both trying to minimize prediction 
errors throughout the hierarchy, where movement minimized the prediction 
errors at the level of proprioceptive sensations.” (Namikawa, Ryunosuke and 
Tani 2011: 4; emphasis added). 

Action (active inference) and perception are thus complementary sides of the same prediction 

error-minimizing coin, distinguished only by the way in which error is minimized. In 

perception, error is minimized by letting reality control and correct the model's prediction. In 

action, the model is let free to control reality.23 

One way to approach active inference is by noting that living bodies are rich sources of 

proprio- and viscero- ceptive signals, which predictive brains strive to predict and model.24 

Error relative to these predictions can be easily corrected through bodily motions that bring 

about the predicted sensory state: if I predict the suite of sensory signals caused by my hand 

being closed, a good way to eliminate the error these predictions generate is just that of closing 

my hand. 

Notice that, in order for such a prediction regime to function properly, predictions in all 

modalities must march in step. Otherwise, minimizing prediction error in one modality might 

actually increase the prediction error of others. For example, if predictions about my head 

position and visual stimulations do not march in step, each head movement would bring about 

unexpected, hence prediction-error-inducing, visual stimulation. 

A simple way to quite literally see predictions in all modalities marching in step is that of 

closing an eye, while gently pushing the open one, which typically causes one to perceive the 

objects moving in the direction opposite to the direction of the push.25 This might seem 

                                                
23 One could say that perceptual and active inference differ in their direction of fit. Yet, the profound 
neurocomputational similarity of perception and action should make us resist that characterization (Wiese 2018; 
Clark 2020). This is why, in the following, I will largely be silent on imperative representations (i.e. representation 
with a world-to-mind direction of fit). 
24 See (Seth and Critchley 2013; Seth 2015; Barrett and Simmons 2015; Seth and Friston 2016; Seth 2021). 
According to PP, these bodily predictions are also linked to emotion and our sense of ourselves - two themes I 
won't explore here. 
25 This discovery, as well as the discovery that the same shift is preserved when the eye is paralized but one 
intends to move it, are typically credited to Helmholtz’s self-experimentation. 
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unsurprising: after all, the push physically displaces the eye, thereby changing the retinal 

image. But saccadic eye movements physically displace the eye too, and yet we do not see 

objects constantly “jumping around”. Moreover, the same shift is also observed when the eye 

is paralized, and one attempts to move it (Gallistel 1980: 175), and surely the attempted 

movements of a paralyzed eye do not cause change in the retinal input. 

So, what accounts for these phenomena? A long-standing account (cfr. Sperry 1950) 

suggests that these phenomena are due to the match (or lack thereof) between visual signals 

expected after the movement and actually received ones. In normal contexts (i.e. normal 

saccading eye movements) the two “march in step”, and so the expected signals compensate 

for the apparent motion caused by the physical displacement of the eye. But when the two 

mismatch (either because no motor command is ensued, or because the physical displacement 

of the eye is prevented), the prediction fails to compensate for the incoming (unexpected) 

sensory signals, and so apparent motion is perceived. 

Computationally, the visual signals expected after movement are produced by a forward 

model. (Blackmore, Wolpert and Frith 1998; 2000; Pickering and Clark 2014). Forward models 

are special purpose generative models, tasked with converting their inputs  (motor commands) 

into the expected sensory consequences of movement. As the example above demonstrates, 

these models “polish” our perception, filtering out the predictable (hence uninformative) input.  

Forward models also enable fast and fluent action. They do so in two ways. On the one 

hand, they allow for the identification of a “redundant subspace” of motor parameters, the 

fluctuations of which do not hinder the success of actions. In this way, motor control is 

enormously simplified, as the system has to control only a few, well selected parameters (cf. 

Todorov and Jordan 2002; Todorov 2009a). On the other hand, they allow to circumvent the 

delay of reafferent signals (e.g. Clark and Grush 1999; Grush 2004). It estimated that 

proprioceptive feedback is delayed from 80 to 150 ms if compared to visual feedback (see 
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McNamee and Wolpert 2019: 352), and so it comes simply too late to guide on-line quick 

actions. Indeed, when it comes to motor control: 

“We effectively live in the past, with the control systems only having access to 
out-of-date information about the world and our own bodies, and with the delays 
varying across different sources of information.” (Franklin and Wolpert 2011: 
425-426) 

Predicting the sensory consequences of our movement, thus, allows us to act in the present. As 

a nice example of this, consider so-called “waiter tasks”.26 In these tasks, an experimental 

subject holds firmly an object within one hand. A weight is then added to the object, either by 

the subject or by the experimenter. When the additional weight is added directly by the 

experimental subjects, they are able to proactively modify the force of their grip, avoiding 

almost any slippage of the object. This is because they can predict the sensory consequences 

of their movements (i.e. the increase of the load carried) and thus act so as to counteract the 

slippage of the object. Conversely, when the additional load is not added by the subjects, the 

adjustment of the grip force lags behind the addition of the load. Since subjects are unable to 

precisely predict how (and when) the load will increase, they are forced to adjust their grip 

reactively, with potentially disastrous results (i.e. letting things drop off) (Flanagan and Wing 

1997; see also Wolpert and Flanagan 2001 for a nice review). 

Notice (as it will be important in Ch. 6) that, by having to predict the sensory consequences 

of movement in all modalities, forward models are forced to learn sensorimotor contingencies: 

the law-like ways in which bodily movements alter sensory stimulation (O’Regan and Noë 

2001; Maye and Engel 2013; Brette 2016; Pezzulo el al. 2017). Sensorimotor contingencies 

come in two basic kinds: modality-related and object-related (O’Regan 2011). Modality related 

sensorimotor contingencies depend on the features of an agent’s perceptual system - for 

instance, only systems with eyes must compensate for the optic flow caused by head 

movements. Object-related ones depend on the features of the source of the sensory signal - for 

                                                
26 I take this nomenclature from (McNamee and Wolpert 2019, p. 352). 
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instance, circling around an object will not change its retinal projection only if it is round or 

spherical. 

Now, according to a well-established theory of motor control, forward models operate in 

tandem with inverse models: computational structures converting goal-states into motor 

commands. Each pain of inverse and forward model forms a task-specific module for motor 

control (Haruno, Wolpert and Kawato 2001), and these modules can be hierarchically staked 

so as to recombine motor primitives into novel motor actions (Haruno, Wolpert and Kawato 

2003), and might be deployed offline (i.e. without directly controlling actual bodily 

movements), smoothing social cognition (Wolpert, Doya and Kawato 2003). 

PP suggests instead that there is no inverse model, and proposes a more economic solution 

to the problem of motor control.27 Leveraging the formal identity between motor command and 

Bayesian inference (Todorov 2009b; Botvinik and Touissant 2012), it simply suggests that the 

problem of deciding what to do can be reduced to the problem of what to predict in all 

modalities. In a sense, thus, the entire brain is the forward model28, in the task of predicting 

the incoming flow stimulation based on its knowledge of modality-related and object-related29 

sensorimotor contingencies (Seth 2014; Pezzulo et al. 2017; Pio-Lopez et al. 2017; Baltieri 

2019: 85-100). 

Notice that, thus framed, the problem of motor control ceases to exist as such. It becomes 

instead a perceptual problem: to control actions, the brain needs only to “decide” what to 

perceive in all modalities. And, in fact, according to PP: 

“The primary motor cortex is no more or less a motor cortical area than striate 

                                                
27 However, PP argues that the way in which spinal alpha motor neurons innervate the muscles constitutes a sort 
of implicit inverse model. See (Friston 2011: 491; Friston et al. 2010: 254). So, strictly speaking, PP only denies 
that inverse models are explicitly encoded in the (motor) cortex. The reasons for this denial are complex and 
multifaceted, and, in the present context, examining them would be prohibitive. 
28 Or, better, forward models are no longer special purpose models, but are integrated in the overall generative 
model realized in the brain (Pickering and Clark 2014). 
29 Notice that object-related sensorimotor contingencies seem capable of capturing the kind of “knowledge” static 
(i.e. without agency) generative models encode. See (Hemion 2016; Laflaquiere 2017; Le Hir, Sigaud and 
Laflaquière 2018) for some evidence in this regard. 
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(visual) cortex. The only difference between the motor cortex and visual cortex 
is that one predicts retinotopic input while the other predicts proprioceptive 
inputs from the motor plant” (Friston, Mattout and Kilner 2011: 138). 

So, according to PP, “motor cortices” are not a “special” kind of cortices issuing motor 

commands. Rather, they are sensory areas issuing proprioceptive predictions (Adams, 

Shipp and Friston 2013; Shipp, Adams and Friston 2013) that happen to trigger bodily 

movements only because of how the brain is wired to the body: 

“If motor neurons are wired to suppress proprioceptive prediction errors in the 
dorsal horn of the spinal cord, they effectively implement an inverse model, 
mapping from desired sensory consequences to causes in intrinsic (muscle-
based) coordinates.” (Friston 2011: 491)30 

Meaning that: 

“[...] the inverse problem becomes almost trivial—to elicit firing in a particular 
stretch receptor one simply contracts the corresponding muscle fiber. In brief, 
the inverse problem can be relegated to the spinal level, rendering descending 
afferents from M1 predictions as opposed to commands— and rendering M1 
part of a hierarchical generative model, as opposed to an inverse model” 
(Adams, Shipp and Friston 2013: 25) 

Motor control thus appears as an emergent property of generative models, which depends 

on how they are “wired” to the organism they control (see Friston 2009: 300). This is why 

active inference is sometimes described just as “predictive coding equipped with simple reflex 

arcs” (e.g. Friston 2012b; Friston et al 2010). What imbues action (i.e. spinal reflexes) with 

goal directness are the prior expectations of the generative model, which force proprioceptive 

predictions towards desired sensory states (cf Van de Cruys, Friston and Clark 2020). This 

means that active generative models suffer, so to speak, of an optimism bias: they tend to 

predict sensory streams that conform to their prior preferences (Friston et al. 2010: 256; Friston 

et al. 2017b; Smith, Ramstead and Kiefer 2021), letting the action of spinal reflexes cancel out 

the prediction error ensuing from these not-yet-true optimistic prediction. 

                                                
30 Hence notice that active inference does not eliminate inverse models: it only simplifies them to the extreme, 
displacing them into the spinal cord (Pace Clark 2016). In fact, active inference posits “an inverse model so simple 
evolution could have hardwired it” (Friston et al 2010: 254). 
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Noticing how action and perception are closely intertwined, however, raises an important 

puzzle. As seen in §2, perception is a process of error minimization, in which a generative 

model changes its predictions to fit the incoming sensory input. Action, active inference 

suggests, is also a process of error minimization, in which the incoming sensory inputs are 

changed to fit the predictions. Isn't this a tension between perception and action? Why, when 

an agent ensues a (proprioceptive, movement inducing) prediction the incoming sensory 

evidence that the agent is not moving does not force the agent to revise its proprioceptive 

expectations and stay put? The answer to these questions lies in the notion of expected 

precision. Briefly put, the idea is the following: in order to avoid having to revise action-

ensuing proprioceptive predictions, the model temporarily downweights the incoming 

(proprioceptive) prediction error, so to avoid that its accumulation will lead to a different 

prediction (Brown et al. 2013). Such a mechanism should operate very early in the prediction 

hierarchy, as changing even very early-level proprioceptive predictions would factually impede 

movement. Some experimental data do confirm this picture (Brown, Friston and Bestmann. 

2011). Thus action, if the PP here sketched in on the right track, appears to be a special case of 

non-attentive perception of one's own body. 

 

5 - Pointing forward 

This concludes my introduction of PP: I have introduced all the key concepts that will be 

relevant later in the text.  

Notice how my introduction of PP is riddled with representational terminology: the brain 

stores a generative model (which, during perception, sometimes is inverted in a recognition 

model); and, prima facie, models are representations: intuitively, a model of gas motion 

represents gas motion, and a model of a train station represents a train station. Moreover, the 

model is leveraged to make predictions. And, again, predictions seem to be representations: 
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they are about something which is estimated. These predictions are then corrected based on an 

error signal (prediction error) - but, again, the class of things that can be in error is the class of 

representations. It is thus natural to hold that PP is a representational theory. 

In the following, I will argue that, natural as it may be, holding that PP is a representational 

theory is a mistake. But before doing so, I need to clarify what representations are and in what 

sense one can think that PP is a representational theory. I will do so in the next two chapters.
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Chapter two - A field guide to representations31 

 

1 - Representations: what are they? 

Representations are so central in cognitive science they seemingly define it. For instance, 

according to Chomsky: 

“In the light of the work of the past twenty years, it is fair to define cognitive 

psychology as the study of mental representations – their nature, their origins, 
their systematic structures, and their role in human action” (Chomsky, 1983: 2; 
emphasis added) 

Although this view is widely accepted, cognitive scientists often admit having no idea about 

what representations are:32 

“We, as cognitive psychologists, do not really understand our concepts of 
representation. We propose them, talk about them, argue about them, and try to 
obtain evidence in support of them, but we do not understand them in any 
fundamental sense.” (Palmer 1978: 259) 

Cognitive scientists shouldn’t be embarrassed by this. They use representations as explanatory 

primitives: ready-made building blocks to be deployed in the explanation of cognitive 

phenomena and intelligent behavior. Philosophers of cognitive science, however, aim at 

dissecting the explanatory primitives of cognitive science, providing a rational account of them 

which is at least consistent with the empirical practice of cognitive science (e.g. Cummins 

1991a; Ramsey 2007; Shea 2018; Rupert 2018). 

Whilst there is no agreed-upon philosophical account of representations, one can point out 

to some features representations are (close to) universally supposed to have. In the following, 

I will highlight them, and then take a closer look at some paradigmatic instances of 

representations in cognitive science. 

                                                
31

 Part of §2.2 reproduces material from Facchin, M. (2021a). Predictive processing and anti-representationalism, 
Synthese, https://doi.org/10.1007/s11229-021-03304-3 
32 In all fairness, however, cognitive scientists are now starting to adopt a philosophically informed conception of 
representation, see (Webb 2006; Poldrack 2020; Backer, Lansdell and Kording 2021). 
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Three caveats before I move on. First, I will only discuss cognitive (as opposed to mental 

or public) representations. By “cognitive representations” I designate the explanatory posits of 

cognitive science (e.g. the internal representation of a syntactic tree), which are sub-personal 

and need not be introspectable by a subject. In contrast, by “mental representations” I mean 

personal level, typically introspectable, representational states. The unqualified term 

“representation” refers only to cognitive representations. 

Secondly, by “computation” I will always mean generic computation: the processing of 

vehicles (see below) according to rules sensitive only to specific vehicle properties (Piccinini 

and Scarantino 2011). I do so to avoid any commitment to specific computational styles (e.g. 

digital computation) and specific accounts of computational implementation. 

Lastly, I aim only at providing an understanding of representations servicing my analysis of 

the representational commitments of PP. Thus, I will be silent on a number of important issues 

that are simply not functional to my aim (for instance, I will be almost silent on imperative 

representations). The following is meant as a tool for later use, rather than the ultimate truth 

about representations. 

 

2 - Some features of representations in general 

Here I highlight some features that representations in general (public and mental 

representations included) are typically supposed to have, to then focus on the content and 

functions of representations in two dedicated subsections. 

 

2.1 - Representation in general: some remarks 

Here, I follow (Bechtel 2008; Godfrey-Smith 2009; Mollo forthcoming), and consider 

cognitive representations as a particular variety of representations in general, to be understood 

on the template offered by public representations such as models, sentences, or graphs. I take 
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representations in general (i.e. both public and cognitive) to be triadic relations.33 Something 

(1st relatum) represents some other thing (2nd relatum) only in some context, or to someone, or 

in some system (3rd relatum). The first relatum is the representational vehicle or simply 

vehicle, and I will indicate it with “V”. Following the mainstream34, I take vehicles to be always 

concrete particulars. The second relatum is the representational target or target, which I will 

indicate with “T”. Since everything can in principle be the target of a representation, there are 

no restrictions to what targets could be. 

Vehicles and targets can be complex. So, they can have constituents. For instance, a sentence 

(vehicle) is made out of words and represents a state of affairs (“made out” of objects and 

relations). I indicate constituents with an uncapitalized letter and a subscript (indicating 

whether I’m referring to some specific constituents or to constituents in general). For example, 

“vx” indicates any constituent of V, and “ta” indicates a specific constituent a of T. 

The third relatum varies depending on the type (public, mental or cognitive) of the 

representation. The sentence “Marina mangia le mele” represents the fact that Marina eats 

apples in some linguistic context; my belief that Marina is an apple-eater represents Marina as 

being in a certain way to me, and an appropriate series of 0s and 1s represents “Martina mangia 

le mele” in my personal computer. When it comes to cognitive representations, the relevant 

“third” relatum is either the entire system S in which the representation is tokened (e.g. Shea 

2018) or some sub-system of S, typically called a consumer (e.g. Millikan 1984).35 

Now, back to cognitive representations. 

 

                                                
33  For defense, see (Peirce 1938-51; Millikan 1984; Von Eckart 1996; Menary 2007; Neander 2017). 
34 See, for instance (Egan 2019, 2020; Shea 2018; Ramsey 2020). 
35 Although, to be fair to Millikan, it should be noticed she concedes the relevant consumer might be physically 
located outside the system, and might even be an entirely separate system (e.g. another human listening to my 
words). 
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2.2 - Representational content 

Representations belong to an intentional kind: their vehicles refer to their targets, or “are 

about” their targets in some other way. This is what I mean when I say that a vehicle bears 

some content (or that a representation has content). The metaphysics of content is complex and 

lively debated36 - but luckily, given my purpose here, I can simply gloss over a number of 

contested matters. 

First, contents are semantically evaluable abstract objects.37 Hence, they must somehow 

relate to normative conditions of satisfaction. Conditions of satisfactions are sets of conditions 

the fulfillment of which determines whether the representation is successful or not (e.g. whether 

it represents accurately or veridically). These conditions are normative, and, however 

determined, it must always be possible for them not to be fulfilled: vehicles can always, in 

principle, mis-represent their targets (e.g. Dretske 1986; 1988). In other words, the possibility 

of misrepresentation (partially) individuates representational vehicles. 

This entails that contents have at least the following two features: determinacy and (in the 

case of cognitive representations) distality (e.g. Egan 2012: 256). The relevant senses of 

“distality” and “determinacy” are the ones at play in the horizontal disjunction/stopping 

problem; that is, the problem of providing a theory of content such that the contents it delivers 

are neither arbitrary disjunctions of targets, nor the most proximal causes of the tokening of a 

vehicle (see Dretske 1986; Godfrey-Smith 1989; Neander 2017). Notice that albeit the label 

“horizontal disjunction problem” ties them together, distality and determinacy are two logically 

independent requirements, which can independently fail to obtain: non disjunctive, but purely 

proximal, contents are possible (Artiga and Sebastián 2018; Roche and Sober 2019). 

To see why the fact that conditions of satisfaction must be such that they might fail to obtain 

                                                
36 For a review, see (Ryder 2009b). 
37 Notice that this is relatively uncontested (e.g. Fodor 1987: 10-11; Hutto and Myin 2013: X; Lee 2018: 6; Egan 
2019: 247). What is contested, however, is the kind of abstract objects contents are (e.g. possible worlds, modes 
of presentation, propositions, etc.). 
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entails that content is distal and determinate, consider Fodor’s (1987: 99-102) crude causal 

theory of content. Bluntly put, the crude causal theory says a vehicle V represents whichever 

target T causes its tokening within a system. Thus, if dogs cause the tokening of V, then V 

represents dogs. Suppose now a sheep causes a “wild” tokening of V. It seems intuitively 

correct to say that V misrepresents the sheep as a dog. Yet, the crude causal theory does not 

allow us to say so. For, if V represents whatever causes its tokening, and its tokening can be 

caused by dogs or by sheeps, then V represents dogs or sheeps; hence, its content is the 

disjunction (dog or sheep). So the system is correctly representing dogs or sheeps and the 

“wild” tokening of V is not a misrepresentation. Further, it could be argued that the tokening 

of V is not really caused by dogs (or sheeps), but by some more proximal condition, such as 

quadruped-shaped retinal images, or a pattern of activation p in the early visual cortex. Again, 

in this case, it seems that “wild” tokenings of V do not misrepresent dogs as sheeps, but 

correctly represent some more proximal condition, which happen to be disjunctively caused by 

both dogs and sheeps. Hence, contents that are not appropriately distal or determinate make it 

impossible for representations to mis-represent. Since representations are obviously capable of 

mis-representing, it follows that their contents are neither proximal nor disjunctive. 

Notice that this conception of representational content is embedded in the explanatory 

practice of cognitive science. Representations, as cognitive scientists conceive of them, are 

about worldly targets38, rather than the proximal conditions by means of which worldly 

“things” are encountered. Moreover, cognitive representations are about well-specified wordly 

targets, rather than arbitrary disjunctions thereof. For instance, vision scientists say (and 

assume) such-and-such an activation of V1 represents a straight bar, or that such-and-such an 

activation of the fusiform face area represents a face. They do not say that activations in V1 

represent patterns of retinal stimulations, or that activations of the fusiform face area represent 

                                                
38 Agent’s body included. 
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faces or face-shaped patterns of stimulation. Thus, if philosophers wish to account for 

representations as cognitive scientists use them in their explanatory practices, content must be 

distal and determinate. 

I take contents to be determined by an appropriate content-grounding relations holding 

between vehicle types and target types. Some content-grounding relations will be briefly 

examined below (§§ 3.1, 3.2 and 3.4). As for now, I just wish to lay down some constraints on 

what counts as an appropriate content-grounding relation. 

First, the relevant relation of relations must be asymmetric and non-reflexive. A vehicle V 

is about a target T, but not vice-versa; and a vehicle V is not about itself. A picture of an apple 

is about an apple, but apples are not about anything, and the picture is not about itself 

(Goodman 1969: 3-4). 

Secondly, the relevant relation must be reductive (e.g. Fodor 1987: 97): it must account for 

what “makes” tokens of V about T in a way that does not presuppose aboutness (or other 

semantic or intentional notions). This, I believe, is essential, at least insofar cognitive 

representations are taken to explain the intelligent (that is, intentional) behavior of an agent. 

Accounting for the intentionality of cognitive representations in terms of intentionality would 

make the account suspiciously circular (e.g. Cummins 1996: 3). 

 

2.3 - Representational function (the Job Description Challenge) 

Above I said that representations form an intentional kind. This provides the thinnest 

possible notion of representation; namely, that of representations as semantically evaluable 

“things” (Ryder 2009a: 234-235). There are reasons as to why such a thin notion of 

representation is inadequate. For instance, our best accounts of the relevant content-grounding 

relation(s) massively overgeneralize (e.g. Ramsey 2007; Orlandi 2014; Morgan 2014). Were 

such a thin notion of representation accepted, panrepresentationalism would follow: everything 
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(or, at least, an inordinate amount of things) would count as representations. But 

panrepresentationalism is intuitively unappealing to most. Moreover, intuitive appeal (or lack 

thereof) aside, if the relevant task philosophers of cognitive science face is that of accounting 

for cognitive representations as they figure in the standard practice of cognitive science, then 

panrepresentationalism must surely be avoided: cognitive representations are not posited to 

account for the inner workings of every system (see Webb 2006; Tani 2007; Backer, Lansdell 

and Kording 2021). 

For this reason, a more robust notion of representation is needed. This is why representations 

are ordinarily considered also to form a functional kind.39 There is something for a vehicle to 

function as such; namely, as a representation of a given target in a given context or system. 

Compare: a newspaper surely “carries”, in the relevant sense, some semantically evaluable 

contents: the news it reports might be true or false. Its pictures might be accurate or inaccurate. 

Yet, if I roll the paper up and use it to kill flies I’m not using it as a representational vehicle, 

and its contents are simply irrelevant for its functioning. So there really seems to be functioning 

like a representation (or, more properly, as a representational vehicle) as opposed to functioning 

as anything else. Hence, there is a specific functional profile of representations. To specify 

such a functional profile (for a given class of representational posits) is to meet what Ramsey 

(2007) called the “Job Description Challenge”. To the best of my knowledge, such a functional 

profile has not yet been spelled out in its entirety. There are, however, some features that 

typically characterize it. 

One is decouplability.40 Decouplability is a hard-to-define notion, but it is typically 

characterized in terms of absence of causal contact between vehicle and target (e.g. Chemero 

2009, pp. 48-49; Gładziejewski 2015b). The idea behind it is reasonably straightforward: 

                                                
39 See (Haugeland 1991; Ramsey 2007; 2016; Ryder 2009a; O’Brien and Opie 2010; Bechtel 2008: 160-161 
Godfrey-Smith 2009; Williams and Colling 2017; Lee 2018: 2; Williams 2017; 2018a, b; Millikan 2020). 
40 See, for instance: (Haugeland 1991; Clark and Toribio 1994; Grush 1997; Clark 1997; Clark and Grush 1999; 
Webb 2006; Rowlands 2006; Pezzulo 2008; Ryder 2009a; Orlandi 2014; 2020). 
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prototypical instances of representational vehicles (e.g. the utterance “Mary is tall”) can be 

tokenized even when their representational target (Mary) is not present, and thus does not 

causally affect the representational vehicle (or the system tokening it) in any way. Moreover, 

representational vehicles can represent non-existent or abstract targets, which lack any causal 

power. Hence, representational vehicles are surely decouplable from their targets. Lastly, 

cognitive representations are typically posited to account for behaviors “directed at” non non-

present targets (e.g. Haugeland 1991; Orlandi 2020). When the target is present (and available 

to the system through an appropriate signal), the explanation of the relevant behavior does not 

force one to posit representations (e.g. Haugeland 1991; Clark and Toribio 1994; Clark 1997). 

For this reason, decouplability seems a necessary feature of representational vehicles, which 

sets them apart from non-representational things. 

Another functional feature that separates representational vehicles from non-

representational “things” is that the content of representational vehicles is causally relevant in 

their mechanical functioning.41 Again, the reason behind this requirement is straightforward: 

the fact that a representational vehicle represents a given target T rather than T* is supposed to 

account for why a system behaved the way it did. The relevant content of the vehicle accounts 

for the production of the relevant behavior under investigation, and it is what gives the 

representational account of said behavior its explanatory bite (Shea 2018). 

These two functional features are commonly (if not universally) considered to be functional 

features of representational vehicles. Yet, most likely, they do not exhaust the functional profile 

of representational vehicles.42 So, how should one judge whether some “thing” is actually 

                                                
41 See, for instance: (Ramsey 2007; Sprevak 2011; O’Brien 2015a; Gładziejewski and Miłkowski 2017; Williams 
and Colling 2017). 
42 And, in fact, some accounts of the functional profile of representational vehicles impose further conditions. For 
instance, some require that genuine representational vehicles might generate system-detectable representational 
error (e.g. Bickhard 2009), or that they can account for the proactive behavior of a system (e.g. Pezzulo 2008; 
Williams 2017a; Gładziejewski and Miłkowski 2017), or that they are identifiable with discrete states of a system 
(e.g. Ryder 2009a: 235-238), or that representational vehicles can be productively re-combined (e.g. Rowlands 
2006). None of these requirements, however, is uncontestedly accepted in the literature. 



39 

tailored to play the role of a representational vehicle? A common answer is: by judging how 

that “thing” is analogous to some paradigmatic example of a public representational vehicle.43 

The procedure is roughly the following: first, one identifies some relevant representational 

prototype by looking at some paradigmatic instance of a public representation (e.g. a map, a 

model, a sentence, etc.). Then one abstracts from the prototype the relevant functional features 

of the vehicle, that is, the functional features in virtue of which the representational vehicle 

functions as such. Having done so, one contrasts this “core functional profile” (see Williams 

2018a: 21) with the relevant functional profile of the candidate vehicle of a cognitive 

representation. If the two match, then the candidate vehicle really is a vehicle, whose functional 

profile is now well understood: it functions as a representation by functioning as a given 

representational prototype (a map, a model, a sentence, etc.). 

 

3 - Cognitive representations: four examples 

Thus far, I have only offered a relatively general conception of cognitive representations. I 

believe it is now time to look at some concrete examples. I’ll do so in the following, introducing 

four different kinds of representations which will be relevant in the rest of the dissertation. 

 

3.1 - Receptors (and teleo-informational theories of content) 

Intelligent behavior often depends crucially on a number of different environmental 

contingencies. A termite, for instance, might push a ball of mud following a chemical gradient, 

contributing to the building of the termite nest. In these cases, the relevant behavior seems to 

be guided by the agent’s sensitivity to some environmental magnitude. It is thus tempting to 

think at the brain44 as a complex measurement system, whose task is that of indicating the 

                                                
43 See, for instance, (Ramsey 2007; 2016; Gładziejewski 2015a; 2015b; 2016; Williams 2018a; b; Downey 2018). 
44 Or, more broadly, cognitive systems. Since my aim is to “get to” the structural representationalist reading of 
PP, and PP is a neurocomputational theory, I will often talk about brains. But the relevant claims about 
representations can be easily expanded so as to cover cognitive systems in general. 
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presence (and magnitude) of the environmental contingencies salient to the agent’s conduct 

(e.g. Ryder 2009b: 256). The internal state of such a system indicates the magnitude of the 

relevant environmental contingency, and the whole structure is a receptor for that contingency. 

Bluntly put, the idea behind the receptor notion of representation is this: if, in a system S, a 

structure V tends to respond robustly to some environmental parameter T being in state tx (of 

a range of states ta...tn) by entering in a corresponding state vx (or a corresponding range of 

states va...vn), then V represents T, and each state vx of V (in the relevant range) represent the 

corresponding state tx of T (in the relevant range) (Ramsey 2003; Sullivan 2010; Boone and 

Piccinini 2016). Thus, according to the receptor notion of representation, cognitive 

representations are like (hyper-sophisticated) thermometers. Just like a thermometer represents 

the temperature and each individual state of the thermometer indicates a specific temperature, 

a group of neurons in the early visual cortex represents the features of a perceptual scene, and 

the firing of each individual neuron indicates the presence of a specific feature (e.g. Hubel and 

Wiesel 1962; 1968). Similarly, it is often said that the activation of individual units in 

connectionist architecture indicates the presence of a relevant feature in the input pattern, the 

detection of which crucially influences the output of the network (e.g. Goschke and Koppelberg 

1991). 

How do these responses acquire content, however? What are the facts in virtue of which the 

activation of a neuron represents (as opposed to merely causing some other neural goings-on)? 

Since the content of a representation is essential to its functioning, and since receptors function 

by indicating, it is reasonable to suppose that their content must be grounded in indication. 

And, in fact, receptors are often closely tied to teleo-informational accounts of content, 

according to which content is grounded in indication. Indication can be understood in a number 

of ways (e.g. Eliasmith 2000; Usher 2001; Neander 2017; Rupert 2018).45 Here, I employ the 

                                                
45 To be clear: not all these accounts of indication are teleo-informational accounts of content (e.g. Eliasmith 
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following definition, which is intended to capture the idea of indication in terms of Shannon 

Information (Shannon and Weaver 1949): 

Indication: For all the states of V and T in a relevant range of states, va 
indicates ta if, and only if,  P(ta|va) > P(ta); that is, the occurrence of va 
increases the odds of ta being the case (e.g. Dretske 1988; 1994; Shea 
2018: 76) 

where, the relevant probabilistic relation between vxs and txs is taken to determine the content 

of each vx, and the obtaining of the relation is that in virtue of which vxs carry the content they 

carry.46 

Thusly defined, however, indication is insufficient to determine content. For one thing, the 

tokening of any state vx makes a number of things more likely: observing that the mercury bar 

in a thermometer has reached the “38°” mark makes both the fact that the environmental 

temperature is 38° and that the pressure is n (where n is an appropriate number of bars) more 

likely. So content is not appropriately determinate. It might also not be distal: perhaps the 

mercury bar reaching the “38°” mark makes only more likely that the temperature inside the 

thermometer’s bulb is 38°. In such a case, the thermometer would not indicate something 

“appropriately out there” - it would not be indicating an environmental contingency (see 

Dretske 1986; Artiga and Sebastián 2018). 

To obviate these problems teleo-informational accounts of content add a teleological 

component to the relevant content-grounding relation. Given this teleological component, for 

V to represent T (i.e. for a thermometer to represent the temperature) and for va to represent ta 

(i.e. for a given height of the mercury bar to represent the corresponding temperature), V must 

be supposed to indicate T, and va must be supposed to indicate ta. Here, the “supposed to” part 

should be unpacked in terms of proper functions; namely the outputs the production of which 

                                                

2000; Usher 2001). Yet, these theories suffer from serious problems (Artiga and Sebastián 2018) and will not be 
considered further here. 
46 Another way to say this is that the obtaining of that relation is the truth-maker of claims with the form “The 
content of vx is tx”. 
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accounts for the continued reproduction of devices of a given type in spite of some selective 

pressure (cfr. Millikan 2017: 6).47 

Hearts, for instance, are constantly reproduced in spite of selection pressures because they 

pump blood (rather than making “thump” sounds); hence they are supposed to pump blood 

(rather than making “thump” sounds). Similarly, Vs must constantly be reproduced (in spite of 

selection pressures) because they indicate Ts in order to be supposed to indicate Ts - indicating 

Ts must be their raison d’etre. Here, it is not immediately relevant to discuss what sort of 

selection processes can determine proper functions of representational devices, but natural 

selection, individual learning (with feedback) and explicit design are typically held responsible 

for their production (e.g. Shea 2018: Ch. 3). What is relevant to notice, however, is that such 

processes relativize indication to a certain type of organism or systems (or individual 

organisms or systems), thereby making the relation triadic (Nirshberg and Shapiro 2020). It is 

also able, at least intuitively, to “chunk down” the space of possible targets a vehicle can be 

supposed to indicate, thereby contributing to determine content. 

To get an intuitive grip on how this might happen, consider the case presented in (Levittin 

et al. 1959). Levittin and colleagues found that a number of cells in the frog's (rana pipens) 

visual cortex vigorously respond to net convexities entering in these cells' visual fields. Thus, 

strictly speaking, the activation of these cells increases the odds that net convexities are present 

in the frog's visual field. However, given that typically the only net convexities entering in the 

visual field of frogs are bugs, and given that it is evolutionary advantageous for frogs to see 

(and catch) bugs,  Levittin and colleagues suggested that the activity of these cells detect the 

presence of bugs, rather than net convexities in general. 

                                                
47 To be clear: the notion of proper function hinted to here is that of etiological proper function. It is not the only 
notion of proper function that has been proposed, nor the only notion of proper function that has been tied to teleo-
informational accounts of content (e.g. Piccinini 2020). Regardless, it is the notion of proper function most 
commonly deployed in teleo-informational accounts, and the only one that will be relevant for the purpose of this 
dissertation. 
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3.2 - Structural representations (and structural similarity-based theories of content) 

The receptor notion of representation takes brains (or at least some parts of them) to be 

measuring devices. The structural notion of representations offers a different view: brains (or 

at least some parts of them) are internal models of the environment, which control animal-

environment interactions by “internally testing” the outcomes of these interactions through 

simulations (e.g. Craik 1943; Dennett 1996; Williams and Colling 2017). Rather than being 

seen as hyper-complex thermometers, neuronal structures are seen as hyper-complex orreries 

(Williams 2018a: 62-63): structures that recapitulate (or otherwise capture) some relevant 

environmental structure, and whose activity simulates the activity of the represented target 

(Cummins 1991; O’Brien and Opie 2010).48 

In the cognitive sciences, an often used example is that of the place cells in the rat 

hippocampus (e.g. Shea 2018: 113-116). In the rat's hippocampus, a number of place cells is 

remarkably sensitive to the rat's location in space. Place cell va fires only when the rat is in 

position ta (or close to it), and so does place cell vb in regard to position tb. Thus presented, 

place cells look simply like position-detectors; each place cell merely indicating the rat’s 

current location. However, place cells do not just indicate the rat’s position. Their reciprocal 

connections are such that place cells indicating nearby places tend to co-activate each other. In 

                                                
48 In the following, I will consider the entire vehicle V a structural representation of an entire target T. This 
contrasts with some definitions of structural representation, according to which structural representations are 
collections of vehicles (see Swoyer 1991; Ramsey 2007). The contrast is, however, superficial, as vehicle 
constituents are vehicles too. Compare: a part of a model represents a part of the modeleed phenomenon; hence 
the physical part of the model is a vehicle too. Notice there is nothing problematic in nesting representational 
vehicles in such a way: “John loves Mary” is a vehicle, but also some of its constituents (e.g. “John; “Mary”) are 
doubtlessly vehicles too. That being said, I think that there is a good reason to privilege a definition of structural 
representations in terms of the whole vehicle V rather than its constituents vxs. The reason is the following: when 
it comes to grounding the content of structural representations, it is often assumed that their content is grounded 
in the relevant similarity holding between V and T, and that the constituents vx of V come to represent constituents 
tx of T in virtue of the overarching similarity holding between V and T (e.g. Cummins 1996: 96-97). Given that 
representational vehicles (as such) necessarily have content, and given that (typically) the content of vehicle 
constituents depends on the overarching similarity between the whole V and T, it seems to me correct to privilege 
V when defining structural representations. Yet, as far as I can see, very little hinges on this matter. 
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this way, the spreading of activation among place cells comes to “mimic” possible journey 

through the environment, as in “preplay”, a pattern of activation that spreads so as to anticipate 

the route the rat will follow, and “foreplay”, a pattern of activation that “mimics” the route the 

rat just took (see Moser, Kropff and Moser 2008). In both cases, the spreading of activation 

seems to “simulate” the represented target; namely, the rat’s route through the environment. 

Hence it seems that place cells do not represent just by indicating environmental locations; 

they can also simulate trajectories through them. The entire structure they compose does not 

just track the rat’s actual position; rather, it models the route the rat is following. 

Now, just as it was the case for receptors, structural representations are closely tied to a 

specific family of theories of content, namely structural-similarity based theories of content. 

According to these accounts, the content of a vehicle V is determined by a special kind of 

resemblance it bears to its target; for instance second-order structural resemblance.49 

According to O’Brien and Opie: 

Second-order structural resemblance (Original): Suppose SV=(V,ℜV) is a 
system comprising of a set V of objects, and a set ℜV of relations defined on the 
members of V. The objects in V may be conceptual or concrete; the relations in 
ℜV may be spatial, causal, structural, inferential, and so on. […] We will say 
that there is a second-order resemblance between two systems SV=(V,ℜV) and 
SO=(O,ℜO) if, for at least some objects in V and some relations in ℜV, there is 
a one-to-one mapping from V to O and a one-to-one mapping from ℜV to ℜO, 
such that when a relation ℜV holds of objects in V, the corresponding relation 
ℜO holds of the corresponding objects in O (O’Brien and Opie 2004:11) 

Sadly, O’Brien and Opie’s formalism is different from the one I chose to adopt. Hence, 

I rewrite their definition as follows: 

Second-order structural resemblance (rewritten): V is structurally similar to 
T if and only if: 

(i) there’s a one-to-one mapping from at least some vehicle constituents 

                                                
49 In all fairness, the relevant (i.e. content-grounding) structural similarity is typically unpacked in terms of V 
being homomorphic to T (e.g. Bartles 2006). That being said, it is hard not to notice that, most of the times, the 
requirement of a strict homomorphism is relaxed in order to allow from approximate instantiation of the relevant 
resemblance relation (e.g. Swoyer 1991: 470-476; Shea 2018: 140-142). Since these approximate instantiations 
just are second-order structural resemblances, I think it is convenient to spell out the relevant content-grounding 
similarity directly in terms of second-order structural resemblance, glossing over the problem of approximate 
instantiation. 
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(vxs) onto at least some target constituents (txs); & 

(ii) there is a one-to-one mapping from at least a relation R holding among 
the vehicle constituents onto at least a relation R’ holding among the target 
constituents; & 

(iii) For all the vehicle constituents satisfying (i), vaRvb → taR’tb (i.e. the 

same pattern of relations hold in V and T) 

Notice that in my definition I have assumed that the relevant mapping in (i) is “subscript 

preserving”: va maps onto ta. vb maps onto tb and so forth. This is purely a conventional notation 

I adopt to simplify the discussion. A schematic illustration might further simplify the 

understanding of second-order structural resemblance; hence, see figure 3 

 

Figure 3. A schematic rendition of second-order structural 

resemblance. Vehicle constituents map onto target constituents 

(Black dashed arrows) in a way such that the same abstract pattern 

of relations (solid gray arrows) is preserved on both sides of the 

mapping. Vehicle constituents, target constituents and relations R 

and R’ not relevant to the structural similarity have been omitted 

for the sake of clarity (drawing by the author). 

Just as it was for receptors, this relation determines the content of V (and its constituents), 

and the obtaining of such a relation is what “makes” V be about T. Yet (again, just as it was 

for receptors) this relation is manifestly insufficient to deliver on its own the relevant content 

(McLendon 1955; Goodman 1969). To start, it is a reflexive relation: any vehicle bears a 

second-order structural resemblance to itself. It is also symmetric: if, for at least two 
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constituents vx of V in a relation R there are at least two constituents tx of T in a relation R’, 

then it it obviously true that for at least two constituents tx of T in a relation R’ there are at least 

two constituents vx of V in a relation R. This surely is problematic: a photo of me “is about” 

me, but I’m not “about” any photo of myself. Second-order structural resemblances are also 

easy to come by: since the relevant relation quantifies only over “at least two”, it is sufficient 

for two systems to have only two components in corresponding relations to be structurally 

similar. But if this is the case, then one vehicle will be structurally similar to many targets; 

hence its content will be underdetermined. 

All these problems are typically faced by pointing out that the relevant (i.e. content 

grounding) structural similarity must be exploitable (e.g. Shea 2014). Informally, exploitability 

requires two things. First, that the relevant (i.e. similarity constituting) relation holding among 

the constituents of V must influence, in some systematic way, the behavior of the system. 

Secondly, the system must be supposed to operate (in the sense sketched in the previous 

paragraph) on the relevant target and its constituents. That is, the target at the end of the 

structural similarity relation must matter to the system’s functioning. The conjunction of these 

two requirements is taken to be sufficient to avoid the problems raised above (e.g. Williams 

and Colling 2017).50  

Notice two things about exploitable structural similarities, which will be relevant in the 

following chapters. 

First, the relation holding among vehicle constituents need not be the relation holding among 

target constituents. It is thus possible to represent, for instance, relative weights with 

frequencies, or frequencies with gradients. This bolsters the expressive powers of structural 

representations, and it is especially important when it comes to neuronal representations, for 

                                                
50 I postpone any further analysis of exploitability to Ch. 4, when the relevant notions needed to analyze it will 
be put to use. There is no need to introduce them here, only for the reader to forget them. 
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there are not that many exploitable relations holding among neurons (chiefly, excitation and 

inhibition). The relevant point to notice is that what makes V and T structurally similar in the 

relevant sense is that they share a pattern of relations; not the fact that some identical relation 

holds among their constituents.51 

Secondly, exploitable structural similarity entails what I will call semantic unambiguity. The 

idea is simple: if V is structurally similar to T, then it is always in principle possible to 

determine, for each constituent vx of V participating the relevant structural similarity, what is 

the constituent tx of T onto which vx maps. This follows straightforwardly from (i). And the 

same is true for the relations participating in the structural similarity because of point (ii). 

Hence, it is always possible to say what each “bit” of the structural representations means in 

an unambiguous way: va, unambiguously means ta, and vaRvb unambiguously means that taR’tb. 

 

3.3 - Superposed representations 

In the previous two subsections, I have briefly sketched two different kinds of 

representations. Importantly, both kinds have a well-determined functional profile (receptors 

function as measurement tools, structural representations function as simulations) and are 

typically linked with a specific account of content; that is, they are linked to a specific content-

grounding relation. 

Superposed representations, in contrast, have no well-determined functional profile, and are 

tied to no specific account of content.52 This is because, unlike structural representations and 

receptors, superposed representations have no philosophical pedigree. In fact, they have been 

                                                
51 A concrete example in service of clarity. Suppose a vehicle V is made up, among others, by three constituents 
ordered by their relative magnitude in the following triplet (va, vb, vc) and T is made up, among others, of three 
constituents ordered by their relative weight in the triplet (ta, tb, tc). Given that constituents with identical subscripts 
map onto each other, V and T are structurally similar: an identical pattern of relations holds among at least two 
of their constituents. 
52 So much so that some have argued they are not representations at all (Ramsey 1997; 2007). I find these 
arguments persuasive, but they will be  irrelevant throughout the entirety of this dissertation.  
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introduced by connectionist researchers as explanatory primitives, to name the distinctive (and 

counterintuitive) way in which weight matrices of connectionist systems represent.53 

The fact that superposed representations have been introduced as explanatory primitives, 

however, does not entail that they cannot be characterized in any way. Andy Clark, for instance, 

proposed the following functional characterization: 

“If a network learns to represent item 1 by developing a particular pattern of 
weights, it will be said to have superposed its representations of items 1 and 2 if 
it then goes on to encode the information about item 2 by amending the set of 
original weightings in a way which preserves the functionality (some desired 
input-output pattern) required to represent item 1 while simultaneously 
exhibiting the functionality required to represent item 2.” (Clark 1993: 17) 

The basic idea, then, is that superposed representations are representational vehicles that store 

multiple contents at the same time, thereby enabling a system to cope with a variety of task 

domains using a limited number of resources (Rogers and McClelland 2004: Ch. 3). 

This way of representing can be made more precise in terms of vehicles being conservative 

over contents (see Van Gelder 1991; 1992). The basic idea is straightforward: a vehicle V is 

conservative over a content C just in case that the representational resources needed to render 

C (roughly, to represent T in some way C) are equal to V. Thus “John” is conservative over 

John: to represent John as John I need to token “John” and “John” has no representational credit 

left to spend (so to speak) to represent something in addition to John. Conversely, “John loves 

Susan” is not conservative over John: to represent John as John I need not token the whole 

“John loves Susan” and “John loves Susan” has representational credit left to spend to represent 

something other than John as John; namely Susan (as Susan) and the fact that John loves her. 

Superposed representations can therefore be defined in terms of conservativeness as 

follows: a vehicle V is a superposed representation of a series of contents C1...Cn if, and only 

                                                
53 Strictly speaking, activity vectors can be superposed representations too (e.g. Smolensky 1990). Yet, 
throughout the entirety of the dissertation I will only refer to superposed representations while dealing with 
connections, so it seems reasonable to focus this short introduction on weight matrices. Notice, all the arguments 
I will put forth (in Ch. 4, 5 and 6) concerning weight matrices can be applied, mutatis mutandis, to activity vectors. 
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if, V is conservative over each member of the series (Van Gelder 1991; 43). Hence, the 

tokening of V is sufficient to simultaneously render the whole series of contents, and V's 

representational credit is, in a sense, overspent: its representational credit has been spent to buy 

multiple content at once. Another metaphor (proposed by Van Gelder himself, see his 1991: 

45-46) is that of a point in a vehicle space onto which multiple contents simultaneously 

collapse. 

What, however, is the relevant content-grounding relation? To my knowledge, no proposal 

has been advanced on this front.54 Moreover, to my knowledge, their functional profile is unlike 

the functional profile of any public representation. Haugeland (1991: 66) compared them to 

holograms. But Haugeland himself found the similarity between holograms and superposed 

representations quite superficial: after all, there is a clear sense in which holograms are just 

regular images, whereas superposed representations are not.55 Haybron (2000) suggested two 

other comparisons. One is the compression of multiple contents encoded in different sound-

waves in a single sound-wave. Yet, as Haybron himself noticed, this won't do: in the 

compressed sound-wave, content specific frequencies can still be isolated. However, in the case 

of genuinely superposed representations, no vehicle part can be singled out as a conservative 

representation of a single content (see McClelland and Rumelhart 1986: Vol I, 176). The other 

comparison concerned a single numerical value stored in the memory cell of a computer.56 This 

                                                
54 This is not exactly true: O’Brien and Opie (2006) suggest that weight matrices and activation vectors (hence, 
the two kinds of vehicles that can be vehicles of superposed representations) are contentful in virtue of a second-
order structural resemblance relation. This proposal has never caught up in the literature, and I will criticize it in 
(Ch. 4: § 4.3) 
55 He also suggested that a superposed representation can be compared to a chord played by a piano, in which 
each individual note carries some specific bit of information about the represented target (Haugeland 1991: 67). I 
see two deep flaws with this suggestion. First, piano chords are not paradigmatic cases of public representations. 
Compare: whereas it makes intuitive sense to say that something functions as a representation by functioning as 

a map, it is very hard to grasp what is meant by saying that something functions as a representation by functioning 
as a piano chord. In fact, there is no common usage of, say, A major and C minor as representational vehicles. 
Secondly, it seems that in Haugeland’s (underdescribed) example the note-to-target matching is arbitrary, and 
established by convention. But if this is the case, then each note is a symbol in an entirely unproblematic way, 
and the chord is just the simultaneous tokening of different symbols.  
56 Grush and Mandik (2002) might be read  as improving on this example; but insofar as I can see the same line 
of criticism applies. 
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numerical value enters in different computations, and has a different “meaning” in each 

computation. This example too, however, is not adequate. To begin with, pretty much every 

representational vehicle can render different contents in different contexts: consider, for 

instance, the word “lioness” in “Nora is a lioness” and “The lioness hunts”. Pretty clearly, the 

token “lioness” has different contents in the two cases. But surely linguistic tokens are not 

superposed representations. Secondly, in Haybron's example, the vehicle token does not render 

different contents simultaneously. It renders content C at time t when involved in a process p 

and then renders content C* at time t* when involved in process p*. But superposed 

representations do render multiple contents simultaneously; indeed, their ability to render 

different content simultaneously identifies them as a specific representational kind. 

So, to conclude, superposed representations have been introduced as explanatory primitives. 

What sort of relation grounds their content (if any) and how they function as representations 

within the systems in which they are tokened is still undecided. Hence, their representational 

credentials are far from secured. 

 

3.4 - Input-output representations (and mathematical content)57 

In contrast to superposed representations (which are explanatory primitives that have been 

introduced by cognitive scientists), input-output representations have been introduced by 

philosophers (see Ramsey 2007) to account for the empirical practice of cognitive science. The 

basic gist behind them seems to be the following: computational theories in psychology suggest 

that brains (and other devices) compute mathematical functions.58 Yet mathematical functions 

                                                
57 Strictly speaking, “mathematical content” refers to Egan’s (2014; 2019) account of content in cognitive science; 
whereas “input-output representation” refers to a specific account of representation alayzed in (Ramsey 2007). 
Both notions trace back to Cummins’s (1991) seminal book, and Ramsey (2020) has recently conceded that Egan’s 
account of mathematical content is an improvement over his original account of input-output representations. For 
this reason, I here clump the two together. 
58 To give just one example: it is commonly assumed that prediction error is computed by subtraction. Hence, the 
physical device or devices generating prediction error must be able to compute the subtraction function. 
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are relations defined over mathematical objects. And computational devices (e.g. adders) do 

not seem to have any access to them. So how can a device compute? The answer input-output 

representations provide is the following: a device can compute if we allow its physical states 

to stand-in for the relevant mathematical objects; that is, the arguments and values of the 

function computed (Cummins 1991; Ramsey 2007; Egan 2014; 2019; 2020). 

This can be done through an interpretation function which maps computational state types 

onto numerical values, in a way such that the physical interactions among computational states 

will march in step with the function to be computed. An example might clarify this point. Thus, 

let p be the prediction signal, i the actual incoming input signal and pe the prediction error 

signal. Saying that prediction error is computed by subtraction is saying that there is a 

realization function f such that, if f(p)=x and f(i)=y, then the pe signal generated by the physical 

interaction between p and i is such that f(pe)=(x-y), for all the instances of p, i and pe. When 

this is the case, p, i and pe can be said to be representational vehicles having x, y and (x-y) as 

targets, respectively. 

Following Ramsey (2007; 2020), I will call these representations input-output 

representations, as they represent the arguments and values that a device computing a function 

takes as input and yields as outputs. Moreover, I will follow Egan (2014; 2018; 2020) and call 

the specific content of these representations “mathematical contents”, to distinguish it from the 

more familiar representational content of the species of representations introduced above. 

Input-output representations are in fact very different from the other kinds of representations 

I’ve sketched in many regards. 

First, Input-output representations (Ramsey 2007) and mathematical contents (Egan 2014; 

2020) are explanatory posits of computational59 theories. Conversely, receptors and structural 

                                                
59 Ramsey (2007) originally presented input output representations as explanatory posits of classical 
computational theories, seemingly suggesting that non-classical computational theories (e.g. analog computation, 
connectionism and probabilistic theories of computation) do not posit input-output representations. I believe this 
is a mistake: insofar these theories are committed to the claim that cognitive systems compute functions, they 
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representations have no necessary tie to computational theories. John Locke, for instance, 

might be seen  as proposing an account of mental representations as detectors (see Cummins 

1991), and Tolman (1948) suggested that something quite like structural representations (as 

sketched above) were implicated in numerous cognitive tasks. Yet, neither Locke nor Tolman 

were computationalists. Something similar might also be said about superposed 

representations: albeit the term “superposed representation” was introduced by connectionist 

researchers (which are computationalists), something like superposed representations had 

already been proposed by Lashley (1929), who was not a computationalist. 

Secondly, as noticed by Miłkowski (2017), a vehicle can be the vehicle of both an input-

output representation and of a receptor/structural representation/superposed representation. A 

single “thing” can play the role of an input-output representation (in virtue of the role it plays 

in the computational economy of the system) and function as a measurement tool, or as an 

inner model. This also means that a single representational vehicle can in principle carry two 

contents: a mathematical content, which is tied to it being the vehicle of an input-output 

representation, and a representational content, grounded in its indicator capacities or in a 

relevant structural resemblance. 

Notice that mathematical and representational contents are quite different. The former is 

narrow (Egan 2014), the latter is typically wide. The former is determined only by the 

computations a system performs, the latter is determined by some privileged naturalistic 

relation. The former can represent only mathematical objects, the latter has no such restriction. 

This invites one to wonder how these contents might be related. On Egan’s (2014; 2020) 

account, the relation is loose to non-existent: she contends that representational vehicles have 

mathematical content intrinsically, whereas representational contents are just a matter of 

                                                

have to posit that certain physical states “stand-in for” the arguments and values of the function computed. Thus, 
it seems to me that both classical and non-classical computational theories posit input-output representations. See 
also (Cummins 1991, Ch.11). 



53 

interpretation.60 Others (e.g. Wiese 2017; 2018) contend instead that these two kinds of content 

are deeply related. But since these proposals form the backbone of the structural-

representationalist reading of PP, they will be discussed in the next chapter. 

Lastly, a point on how mathematical contents are determined. What is the relation grounding 

them? Cummins (1991) only speaks of an “interpretation function”, which systematically maps 

vehicles to contents according to a rule, and so does Egan (2014). Yet, they both leave the 

relevant interpretation function almost unanalyzed.61 It is thus not clear whether finding an 

appropriate interpretation function (whatever it might be) will provide appropriately 

naturalized mathematical contents. Egan (2019) is explicitly skeptical in this regard. In her 

view, it is unlikely that mathematical contents will be naturalized, as there can be no 

naturalistically respectable relation holding between representational vehicles and numbers. 

Yet, in other publications (Egan 2010; 2020) her account of mathematical contents seems 

to entail that mathematical contents are determined by computational implementation.62 In 

these accounts, the interpretation function is accompanied by a realization function, which 

specifies how physical states of computational devices should be clumped together in vehicle 

types. For instance, the realization function might specify that firing rates below a certain 

threshold x all are instances of the same vehicle type, whereas firing rates above x are all 

instances of a different vehicle type. In this way, the realization function allows us to see the 

neurons as computational devices with two well-defined internal states relevant to the 

                                                
60 In Egan’s view, representational contents are assigned by researchers “from the outside” of the system based 
on pragmatic considerations. This is because, in her view, representational contents are not part of cognitive-
scientific explanations proper; rather, they form a non-explanatory gloss that allows researchers to connect the 
computational formalism (the explanans) with cognitive phenomena and intelligent behaviors (the explananda) 
in an intuitively pleasing way. 
61 This is almost spectacular in Cummins (1991: 102-108). In that passage, Cummins introduces the notion of a 
direct interpretation of a device; that is, the interpretation that assigns, to each vehicle, the mathematical content 
it actually carries. But then he candidly admits: “But I must confess I don’t know how to define directness” 
(Cummins 1991: 104). 
62 Dołega (2017: 15) noticed this too. In his words, the mapping assigning mathematical content “is supposed to 
obtain between the computational description and its physical vehicles manipulated by the computational 
mechanism”. But to specify such a mapping just is to specify (at least in part) the relation of computational 
implementation. 
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computations the neuron performs, thereby unraveling how neurons (or other devices) 

physically implement the relevant computations they execute.  

Crucially, in her most recent account, Egan (2020: 26) characterizes the vehicle types at one 

end of the realization function as numerals; that is, as representations of numbers. But to 

conceive something as a representation of a number just is to assign it a mathematical content. 

Hence, if it is correct to say that the realization function is an account of implementation, and 

that such an account maps physical state-tokens onto vehicle types which are numerals, then 

it seems correct to say that the account of implementation determines the relevant mathematical 

content. In a less convoluted way, the idea is this: if it is literally true that a device computes 

the subtraction function, then, in virtue of the fact that the device literally computes 

subtractions, it is literally true that certain states of the device will represent the arguments and 

values of the subtraction function.63 

Thus, if an appropriate (i.e. naturalistic) account of computational implementation mapping 

physical states onto numerals can be provided, then mathematical content can be naturalized. 

But, as signalled by the second caveat in §1, I do not wish to take a stance on computational 

implementation here. Hence, for present purposes, I will assume that such an account of 

implementation can be provided, and conclude that input-output representations bearing 

mathematical contents have strong representational credentials.64

                                                
63 Cummins (1991: 93) apparently concurs: “There is a sense in which an adding machine adds because it 
represents numbers, but there is a more important sense in which it represents numbers because it adds”. 
64 Upon further reflection, I discovered that this is a huge concession: in fact, no naturalistically acceptable theory 
of computational implementation seems able to deliver well-determined mathematical contents. See (Facchin 
submitted) for the argument. 
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Chapter three - The structural-representationalist view of predictive processing65 

 
1 - Representations in the predictive processing framework 

PP claims brains are fundamentally in the task of minimizing prediction error, thereby 

realizing a form of Bayesian inference (Friston 2009; 2010). But inferences, at least prima 

facie, are processes that manipulate representations. Moreover, prediction error is computed 

relative to the predictions issued by a (generative) model of how sensory states are caused. The 

explanatory lexicon PP leverages is thus ripe with representations, so much so that many 

philosophers66 argue that PP would not be intelligible without them (e.g. Clark 2015a, 2016: 

291-294). PP is also said to be the “last word” of representationalism, since its representational 

posits allegedly put an end to the philosophical debate on the role of representations in 

cognitive science (Clark 2015a; Williams 2017; Constant, Clark and Friston 2021). 

Here, I illustrate the most prominent representationalist interpretation of PP, namely the 

structural-representationalist interpretation. It claims that PP posits one fundamental kind of 

representational posits; namely generative models, which, being models, are naturally 

understood as structural representations. (e.g. Gładziejewski 2016; Williams 2017; 2018a; 

2018b; Kiefer and Hohwy 2018; 2019; Wiese 2018).67 

As clarified in the previous chapter, representations have both a specific functional profile 

and some content. I will now explain what those are in the case of generative models interpreted 

as structural representations, starting from the former. 

 

                                                
65 Part of §4.1 reproduces material originally presented in (Facchin 2021a). 
66  There are exceptions (e.g. Orlandi 2014, 2016; Downey 2017, 2018), but these are few and far between. See 
(Pezzulo and Sims 2021) for a nice survey of the conceptual landscape.  
67 Since this view is shared by both “radical” or action-centric (Clark 2015b) and “conservative” or inference-
centric (Hohwy 2013) accounts of PP, I here clump the two together. I feel safe to do so, because these two 
accounts are closely aligned on a number of issues, representations included (Gładziejewski 2017). 



56 

2 - Generative models as structural representations: the functional profile 

As previously seen (Ch. 2: § 3.2) structural representations function as models or 

simulations of their targets. How do generative models fulfil this functional role? The answer 

the structural-representationalist reading provides is that generative models function as models 

by being effective control structures that are decouplable from their targets and that allow for 

error detection (e.g. Gładziejewski 2016; Williams 2017; 2018a). Let me unpack. 

 

2.1 - Generative models as effective control structures: structural similarity and action-

guidance 

Consider the following usage of the word “model” in the PP literature. According to Anil 

Seth: 

“The body of a fish can be considered to be an implicit model of the fluid 
dynamics and other affordances of its watery environment.” (Seth 2015: 
6, emphasis added). 

similarly, according to Karl Friston: 

“ [...] an agent does not have a model of its world—it is a model.” (Friston 
2013: 32, emphasis added) 

These two passages point to the thinnest notion of model present in the PP literature: models-

as-control structures. Recall that, on the view active inference offers, motor control depends 

crucially on how brains and bodies are wired (Ch.1: §4). Indeed, being active inference a 

variant of the so-called equilibrium point hypothesis of motor control (Friston 2011), motor 

control heavily depends on bodily features, such as the body’s synergies and passive dynamics 

(Feldman 2009; Friston and Parr 2019). Moreover, bodily features such as type and location of 

sensors and actuators typically mirror (in a sense clarified below) to a non-trivial level the 

relevant features of an agent’s niche, thereby providing an implicit model of the niche.68 

                                                
68 See (Pfeiffer and Bongard 2007: Ch. 3 to 5) for a systematic exploration of these themes devoid of the model-
based talk. See also (Linson et al. 2018) for a PP exploration of these themes. 
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Similarly, since the brain controls the barrage of input it receives, it will be an implicit model 

of the generative process generating these inputs. But why should these control structures be 

labelled as (implicit) models, rather than, say, as control structures? 

The answer is the following: in order for a control structure to be effective, it must be 

homomorphic to the structure controlled (Conant and Ashby 1970; Seth 2015). Thus, effective 

controllers are action guiding structures that are structurally similar to their controlleé. 

An example to clarify. Suppose I use a thermostat to regulate the temperature of a room, so 

as to keep it to a specific value x. When the temperature drops below x, the bi-metallic strip of 

the thermostat must be straight, so as to close the circuit that powers the heating system. But 

when the temperature rises and exceeds the value x, the bi-metallic strip must be curved, 

opening the circuit and depowering the heating system. Now, in the present case, there is a 

controlled system (the room’s temperature) which can be in any of two states: above or below 

x. There is also a controller, namely the bi-metallic strip, that can be in two states: it is either 

curved or straight. There is a one-to-one mapping between the states of the two: when the 

temperature is below x the strip is straight, and then the temperature is above x the strip is 

curved. Furthermore, such a mapping preserves the relations holding among the states: the 

hotter the temperature, the bigger the curvature. Thus, a structure-preserving mapping holds 

between the controller and the controlleé, and the two are structurally similar in the sense 

clarified in (Ch. 2: § 3.2; see also Ch. 5:§§  2.1.1 - 2.1.2). 

Notice also that their structural similarity guides the thermostat’s “actions” to control the 

temperature. This idea should be minimally unpacked69 in terms of counterfactual statements 

of the following form holding true: “weren’t the controller structurally similar to the controlleé, 

then its actions would non-accidentally cause it to fail to aptly control the controlleé in a range 

of circumstances'' (see Gładziejewski and Miłkowski 2017: 341-348). For instance, weren’t the 

                                                
69 A stronger unpacking in terms of exploitability will be offered in the next chapter (Ch. 4:§ 1.2). 
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bi-metallic strip curved when the room’s temperature exceeds values x, then the room’s 

temperature would continue rising, and so the bi-metallic strip would fail in keeping the room’s 

temperature at value x. 

The example is doubtlessly simplistic70, but suffices to show in which sense effective 

controllers are models in a non-trivial sense: they are models in a non-trivial sense because 

they structurally resemble the controlled plant, and that structural similarity is what makes them 

effective controllers. Hence, models-as-control structures thus bear the following two features: 

Structural similarity: An effective control structure V of a system T is 
structurally similar to T 

Action guidance: The success of a control structure V in controlling T 
non-accidentally depends on V being structurally similar to T in an 
appropriate way (see Conant and Ashby 1970) 

These are the first two functional features of (generative) models, which spell-out the 

functional profile of models-as-controllers. 

 

2.2 - From control structures to structural representations 

Prima facie, control structures, such as thermostats, infrared receptors of garage doors, 

switches, and the like bear no content. But content is an essential feature of representations 

(Ch. 2: §2.2). Moreover, as seen in (Ch 2: § 2.3), it is typically assumed that representational 

vehicles are decouplable from their targets. But surely many control structures are not 

decouplable from the plant they control. A thermostat cannot control the temperature of a room 

unless it is somehow coupled with the room. So, the notion of models-as-controllers is not 

really a representational notion, and models-as-controllers are not really representations. But 

it is possible that some models-as-controllers are also decouplable and contentful. Hence, by 

imposing further constraint on the notion of models-as-controllers one might single out a subset 

                                                
70 See (Baltieri, Buckley and Bruineberg 2020) for a less simplistic example, in which a Watt Governor is treated 
as a generative model of the steam engine. 
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of models-as-controllers which are also models-as-structural-representations. This is exactly 

what the structural-representationalist interpretation of PP does (e.g. Seth 2015; Gładziejewski 

2016; Williams 2017; 2018a). 

Consider first, decouplability. One intuitive way to define it could be as follows: 

Decouplability*: A control structure V is decouplable from T when it can 
successfully control T even in absence of any signal coming from T   (e.g. 
Haugeland 1991: 62)71 

Are generative models, as PP conceives of them, decouplable from their targets? If the 

answer were positive, then generative models would appear to be models in a more 

representational sense of the term - they would be more than just Models-as-controllers. 

The answer is positive: generative models are decouplable from their targets. To see why, 

consider, first, active inference. As previously exposed (Ch. 1: §4) forward models are needed 

because the signals from the sensory periphery reach the brain after a delay, and so they are 

not available to the control system when needed. But this means that our brain can (and does) 

control our body in absence of the reafferent signals coming from the body. And, according to 

PP, our brain “just is” a forward model. Indeed, on the account active inference offers, motor 

control is essentially proactive in nature: in order to act an agent first generates a non actual 

stream of predicted sensory inputs, and then cancels out the error relative to the non-actual 

prediction through movement. But clearly this entails the “endogenous generation” of sensory 

inputs to which the system is not yet coupled; namely the ones that will eventually be brought 

about through movement (cf Gładziejewski 2016) 

Importantly, as Grush (1997; 2003; 2004) repeatedly voiced72, the fact that generative 

                                                
71 As I will clarify in (Ch. 4: § 1.3) the structural-representationalit interpretation of PP actually uses a slightly 
stronger (i.e. more restrictive) notion of decouplability; namely, it defines decouplability as the absence of causal 

contact between V and T. But not all forms of causal contact are signals: my shirt is in causal contact with my 
skin, but it is not conveying a message to my skin. This is why decouplability appears here with an asterisk.  
72 A historical note. Grush did not make that observation while dealing with PP. He was dealing with forward 
models as special purpose generative models as seen in (Ch. 1). Regardless, forward models are generative models 
in the relevant sense, hence the observation can be painlessly transposed in PP 



60 

models can predict not-yet-received-inputs naturally suggests that such models can (at least in 

principle) function in absence of environmental stimulation. This naturally suggests that 

generative models can be used offline, to engage in predictions regarding counterfactual 

scenarios. But surely counterfactual scenarios, being counterfactual and thus non-existent, send 

no signal to the system (See Gładziejewski 2016; Williams 2018a). 

This should come as no surprise. In fact, the wake-sleep algorithm examined in (Ch. 1: § 

2.2) leverages precisely that insight. Recall: according to the “wake-sleep” training schedule, 

the generative model is used to train the recognition model (i.e. the internal model mapping 

input patterns onto labels). It does so by spreading an endogenously generated pattern of 

activation from the output layer (containing the labels) to the input layer, so as to “tell” the 

recognition model where to map patterns of that kind. The important thing to notice here is that 

such a learning procedure makes explicit the fact that generative models can routinely work 

offline, without the guidance of any incoming stimulation. More sophisticated generative 

models-based learning procedures can almost “throw away the world”, and let the agent learn 

inside an entirely “hallucinated dream” (see Ha and Schmidhuber 2018a). Strikingly, the body 

of knowledge and skills learned inside the “hallucinated dream” can then be transferred to 

guide online action in the actual environment with a high degree of success, testifying the 

power (and usefulness) of such off-line, generative models based learning procedures. 

There is a last functional feature that, according to the structural-representationalist reading 

of PP, singles out models-as-structural-representations from models-as-controllers. Unlike 

simple control structures, models-as-structural-representations allow for representational 

error detection: 

Representational error detection: A control structure V can detect 
representational errors if: 

(a) V is equipped with a feedback channel that, by monitoring T, can 
detect failures in control, or 

(b) V is equipped with a feedback channel that, by monitoring T, allows a 
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comparator to detect discrepancies between the expected and actual states 
of T (Gładziejewski 2015b: 80-81) 

Surely generative models, as PP conceives of them, satisfy this condition: after all point (b), 

by design, simply describes how prediction error is computed (Gładziejewski 2015b: 81). 

Recall, for instance, the learning algorithm employed by Bongard, Zyklov and Lipson (2006) 

to enable a simple robotic agent to infer its own bodily morphology. First, the robot moves 

randomly, to generate some sensory data. It then uses the data thus acquired to “build” a series 

of bodily models, which are then consulted so as to choose the course of action upon which the 

predictions of all models disagree the most. The action is then executed, and the models which 

predicted its sensory consequences the worst are eliminated. Why? Well, because they 

evidently are incorrect models, since they are unable to account for the relevant incoming 

input. In this way, active inference allows agents to detect the representational problems of 

their models. As  Gładziejewski (2016: 580) puts it: “the size of prediction error signifies for 

the system whether (or to what extent) it got things wrong representationally”. Notice that, 

once again, such a form of error detection is essential to the functioning of generative models, 

at least as PP conceives of them. In fact, as seen in the previous chapter, PP conceives both 

perception and action as processes of error minimization. Weren’t generative models able to 

generate system detectable error, the entire theoretical apparatus of PP would crumble to the 

ground. 

Tacking stocks: generative models, as PP conceives of them, are a specific sub-type of 

models-as control structures: they are not just controllers bearing a structural similarity to their 

targets. They are decouplable effective controllers able to detect their representational error. 

Do these four functional features specify a representational functional profile? The answer 

the PP literature provides is overwhelmingly positive (e.g. Gładziejewski 2016; Williams 2017; 

Wiese 2018), as these four functional features identify the core functional profile of 

paradigmatic public representations, such as cartographic maps. Maps are structurally similar 
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to their targets: a map of a city preserves the pattern of spatial relations holding between 

various points of the city. Such a structural similarity guides the actions of the system using 

the map (normally, a person): we can use maps to choose which road to take, for instance. In 

doing so, we exploit the structural similarity holding between the map and the terrain: if we see 

that the map displays A above B, and we wish to reach A from B, we head north. Maps are 

obviously decouplable for their targets: my map of Madrid need not be in any causal contact 

with Madrid in order to function. Maps also afford us the detection of their representational 

error through action. For instance if, by using a map, we reliably get lost, then we deem the 

map inaccurate, and seek for a different way to navigate the territory. 

 

3 - Going towards content: control structures modeling the environment 

As presented above, generative models seem special (decouplable and error-detecting) 

control structures. But control structures need only to be structurally similar to the controlled 

plant (cf. Chemero 2009: 60-65; Kelin 2018).73 This seems to stand in the way of their 

representational status: standardly, representations in cognitive science are thought to represent 

the external world. Control and representational status appear here to clash. How, then, can 

generative models represent the external world, rather than merely controlling the motor plant? 

The structural-representationalist view suggests that, by repeatedly controlling the agent’s 

actions, and by improving this control, generative models end up modeling the salient 

regularities of  the environment. Hohwy makes the point vividly: 

“Imagine being charged with plugging holes in a large, old, and leaking 
dam. [...] The occurrence, frequency, and nature of the leaks all depend 
on the water pressure on the other side [...] but you do not know anything 
about that. Your job is just to minimize overall leakage.[...] After a while 
you begin noticing patterns in the leaks [...] such knowledge of leakage 
patterns will allow you to be better at anticipating where leaks will be and 
plug up in advance. [...] Eventually you will have very efficient patterns 

                                                
73 Technically speaking, this is a simplification: what generative models model and control through active 
inference is the generative process yielding their data: a controlled plant actively coupled to a world (or niche in 
the world). Kirchhoff and Kiverstein (2019: 57-59) make a similar remark. 
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of leak plugging, and the structure of the mechanical contraption will then 
carry information about the causal structure of the cause impinging on the 
other side of the dam [...]. The crucial bit, however, is that in achieving 
this successful representation of the causal structure of the world beyond 
the dam, you didn’t have to try to represent it. All you had to do was plug 
leaks and be guided in this job by the amount of unanticipated leaks. 
Similarly, all that is needed to represent the world for the human brain is 
hierarchical prediction error minimization” (Hohwy 2013: 62-63). 

In the next section, I will say something more about this form of “carrying information”, 

sketching how the structural-representationalist view articulates the relevant structural 

similarity holding between the generative model and the environment. Here, I will instead 

sketch why, according to the structural-representationalist view, effective control does not 

stand in the way of representation. 

Insofar as I can see, there are two broad, variously articulated, reasons as for why effective 

control can be thought to stand in the way of representation. 

The first depends on (broadly speaking) evolutionary considerations. If brains have been 

selected by natural selection to control agent-environment interactions, they should be geared 

towards survival and reproduction, rather than truth. They should prioritize effectiveness over 

accuracy. In short, natural selection does not care about representational properties, so we 

shouldn’t expect them to be selected. Brain representation, if at all present, should be 

“narcissistic”, incorporating any survival enhancing distortion (Churchland 1987; Cummins 

1996; Aikins 1996). And this, clearly, stands in the way of a generative model-environment 

structural similarity. 

The second depends on the observation that many action-salient properties are not objective 

properties of the environment. If generative models aim at successfully controlling an agent’s 

action, they must be sensitive to properties such as the dangerousness of a predator, the 

attractiveness of a potential mate, the safety-ness of a burrow, and so forth. But there is no 

physical structure “out there” that is objectively attractive, dangerous, or safe. This seems to 

shatter the generative model-environment structural similarity (e.g. Anderson 2017; Dołega 
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2017: 15-16). 

The structural-representationalist interpretation of PP deals with these worries as follows 

(e.g. Williams 2017; 2018a). 

To start, it points out that, in a sense, generative models do not capture the objective structure 

of the environment. Generative models are always models of some specific data, which, in the 

case of agents, are (at least partially) determined by the agent’s sensors and transducers. These 

capture the inputs produced by middle-sized objects (e.g. chairs) and properties (e.g. a surface’s 

texture). Commanding variables corresponding to such middle-sized objects and properties is 

typically enough to explain and predict one’s sensory states (Gładziejewski 2021). To account 

for why I’m now sensing a strong, hot and bitter sensation in my mouth it seems sufficient for 

my generative model to command the hidden variable “coffee” - there is no need for it to 

venture into the depths of our fundamental physics. As Hohwy puts it: 

“It is a mistake to think that just because the brain only does inference, it 
must build up its internal model like it was following a sober physics 
textbook. As long as prediction error is minimized on average and over 
the long run, it doesn’t matter which model is doing it.” (Hohwy 2016: 
20). 

Thus, generative models do not model the objective physical structure of the world, only its 

“middle-sized”, partially agent relative, rendition. But the variables describing such a middle 

sized rendition (e.g. chair) capture patterns that are really and objectively present in the data, 

even if they partially depend on the agent’s physical makeup. So, agent-relativity does not, by 

itself, rule out objectivity: agent-relative properties need not be illusory. 

Secondly, the structural representationalist reading of PP points out that generative models 

model the agents’ bodies - active inference would be impossible otherwise. Bodies are rich 

sources of sensory signals, and so are among the things a generative model models. This is 

important to notice in order to face the second objection. For, although dangerousness, 

attractiveness and the like are not properties of the environment, there really are objective 



65 

bodily responses to these properties trigger. We react to dangerousness by releasing adrenaline, 

building muscle tension and increasing our heart rate. And we react to safety-ness by doing the 

opposite. Disgustingness makes us coil backwards, contracting thoracic muscles to limit air 

intake. These responses create a perfectly objective stream of multimodal (extero-, proprio- 

and viscero- ceptive) inputs that are part of the data a generative model tries to predict. And a 

good way to predict that stream is by including an appropriate hidden variable in the generative 

model, which captures the causes of such responses. Disgustingness, dangerousness and safety-

ness look exactly like those variables (Williams 2017; 2018a; Clark 2018), that usefully predict 

our objective bodily responses by tracking their (most likely disjunctive, and surely agent-

relative) causes. 

What, then, about the “narcissistic” and biased nature of generative models? Does it stand 

in the way of representation? The answer the structural-representationalist reading of PP 

provides is negative, because, at least when it comes to models, there just is no un-narcissistic 

and unbiased representation. All models are idealized, selective, and to a degree distortive, not 

just action-guiding ones (Williams and Colling 2017; Gładziejewski and Miłkowski 2017). In 

fact, scientific models are partial, idealized, and distortive too (Giere 2004), but this does not 

prevent (at least some of) them from being paradigmatic cases of truth-aiming and objective 

models. The Mercator projection famously distorts the size of land masses far from the equator. 

Yet, this does not prevent maps using the Mercator projection from bearing a partial 

homomorphism to their targets (in this case, the Earth surface). And partial homomorphisms 

are all that is needed in order for an objective structural similarity to be present.74 

Now, the similarity between generative models and scientific ones should not be 

exaggerated. The fact that truth-aiming and objective scientific models are partial and distortive 

                                                
74 It might also be worth noticing that, from an historical point of view, Clark’s (2013b: 103-105) paradigmatic 
example of an action oriented representation just is a structural representation; namely, Matarics’s (1991) “spatial 
map”: a map coding for landmarks in terms of perceptuomotor signals and roughly mimicking the spatial map 
found in the rats’ hippocampus. See also (Tani and Nolfi 1999) for a predictive spatial map of that sort. 
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(while still being structurally similar to their targets) is a hefty observation in favor of the claim 

that the “narcissistic” nature of generative models does not stand in the way of their 

representational status. Yet, unlike scientific models, generative models are primarily 

controllers. As such, they are not aimed at truth, and do not follow truth aiming policies such 

as the ones scientific models are subjected to (Bruineberg, Kiverstein and Rietveld 2018; 

Williams 2018c). This is because generative models need not always fit themselves to the data: 

they can also fit the data to themselves through active inference. The same is not true for 

scientific models: ideally, if the data collected speak against a scientific model, the model is 

discarded in favor of a better one.75 This is an important part of what makes scientific models 

truth-aimed, and so it must be admitted that generative models are not truth-aimed in this 

specific sense (Clark 2015a, b; Williams 2017). 

Yet, albeit generative models are not truth-aimed, they are, and must often be, “truth-

stumbling-upon”. In order to successfully control an agent’s interaction with the environment, 

generative models must, to some degree, get things right. A generative model that simply 

avoids modelling an animal’s predators will not help the animal to interact with its environment 

successfully. Although not truth-aimed, generative models must, to an extent, be accurate and 

truth-sensitive. 

 

4 - Content: the relevant generative model-target structural similarity 

So, the fact that generative models are first and foremost controllers does not stand in the 

way of their having also a representational status. And, in fact, as said above, they are typically 

considered to be structural representations. Hence, they should be structurally similar to their 

representational targets. How should this structural similarity be conceived? What are the 

                                                
75 This picture is simplified in a number of important respects (e.g. it makes no mention of auxiliary assumptions), 
but a full rendering of model testing and model choice in science is beyond the scope of this chapter. 
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contents of generative models? I address these two questions in turn 

 

4.1 - The model-target structural similarity 

Gładziejewski (2016), conceives the relevant generative model-target structural similarity 

along the following lines. Generative models can be thought of as complex graphs of the sort 

briefly seen in (Ch. 1,§ 2.1, figure 2). Hence, they can be conceived of as sets of nodes (or 

variables) connected by edges, which stand for probabilistic relation holding among variables. 

On the view Gładziejewski (2016: 572-573) offers, such a graphical model is structurally 

similar to the environment in virtue of the following mapping relation. 

First, each node (or variable) encodes the likelihood76 of the corresponding cause generating 

any given observation (or pattern in the input data). In his own words: 

“Worldly causes are thus represented in terms of the likelihoods of 
producing different sensory patterns in the system.” (Gładziejewski 2016: 
572; references omitted) 

Secondly, the way in which the values of the variables (or nodes) changes over time “mirrors” 

the way in which environmental causes interact with each other; hence each probabilistic 

dependence relation among variables can be mapped onto a corresponding causal relation 

holding among worldly causes (ibidem: 573). Lastly, the prior probability77 of each node in the 

graph should correspond to the prior probability of a given environmental cause. 

Kiefer (2017: 14; 2020), proposes a different mapping rule. Inspired by the computational 

model presented in (Hinton and Sejnowski 1983), he proposes that each processing unit (i.e. 

node in the model’s graph) corresponds to a proposition describing an environmental state of 

affairs, and the probability of the unit being “on” corresponds to the probability of the 

corresponding environmental states of affairs to be the case. Connections between processing 

                                                
76 Where the likelihood is the probability of an observation, conditioned over a cause (which is supposed to be 
correct). 
77 Roughly, the probability of a cause prior to any observation. 
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units (and their numerical weights) are instead mapped onto the inferential relations holding 

among propositions. Thus, for instance, if the proposition describing ta (e.g. the glass is empty) 

strongly justifies the proposition describing tb (Mary finished her martini), then there will be a 

large positive connection running from va to vb. This proposal has been further fleshed out in 

(Kiefer and Hohwy 2018). On the view Kiefer and Hohwy now offer, the patterns of 

connections among units mimic inductive inferential transitions or “material inferences”; that 

is, the sort of inferences that allow one to infer “It is raining” from “The street is wet” (see 

Kiefer and Hohwy 2018: 2393). In this way, the pattern of connections among the units (i.e. 

nodes in the graph, and therefore variables) mimic the gross patterns of causal relations 

connecting the worldly states of affairs. 

Although Gładziejewski and Kiefer propose two different model-environment structural 

similarities, their accounts agree on two fundamental points.  

First, they both accept that the representational vehicle (the machinery instantiating the 

model) is constituted by discrete nodes representing variables standing in various relations of 

probabilistic dependence.  

Secondly, they both accept that if two environmental states of affairs ta and tb causally 

interact in some way R’, then the corresponding nodes of the model va and vb bear a relation of 

probabilistic dependence R. Hence, on both accounts, the topology of the model bears at least 

a second-order structural resemblance to the causal structure of the environment (see Williams 

2018a: 106). 

Generative models can also be conceived (in a simplified way) as a deterministic function 

of (nested) environmental causes plus estimated noise (see Ch 1: § 2.1): 

• c2 = f3(c3) + ω3 

• c1 = f2(c2) + ω2 

• s = f1(c1) + ω1 

If we conceive generative models in this way, then: 
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“Everything describable by such sets of equations is part of the content of 
the brain’s generative model: the equations define relations between parts 
of a system and thus provide a structuralist description.” (Wiese 2018: 
216) 

Notice that these equations roughly describe the computational profile of each layer of the 

model78; that is, the predictions it outputs given the inputs it receives. Hence, adopting this 

perspective clarifies that the structure of the environment is “mirrored” in the computational 

structure of the model. 

Now, as seen in (Ch. 2: §3.4), the fact that a device computes a function determines the 

mathematical contents of that device.79 Hence, according to the structural-representationalist 

reading of PP, mathematical contents determine (at least partially) representational contents. 

Wiese (2017; 2018) is pleasingly explicit on this matter.80 He writes: 

“[...] lest ascriptions of cognitive content become arbitrary, they must at 
least be constrained by mathematical contents entailed by computational 

models. [...] The more complex the computational model, the more the 

mathematical contents constrain the set of possible ascriptions of 

cognitive contents (which are compatible with the computational 

description). In principle, a computational model could be so complex and 

specific as to allow only a very limited set of cognitive content 

ascriptions.” (Wiese 2017: 724) 

even more explicitly: 

“[...] if hierarchical models in PP are structural representations, this means 
that contents carried by the representational vehicles are (at least partly) 

determined by their structure. [...] As we will see, this structure is 

                                                
78 To be precise, the topological/graphical structural similarity indicated by Gładziejewski and Kiefer describes 
the computational profile of the model too, though in a way that would strike many of us as “intuitively less 
computational”. In fact, the topology of a graph can readily be turned into a series of equations detailing the 
relations of conditional (in)dependence holding among the variables represented by the nodes. 
79  Notice that in the case at hand, the vehicles of mathematical contents are vehicle constituents of the structural 
representation (the generative model). An equation such as  s = f(c) + ω captures the functioning of the entire 

model; that is, the entire vehicle V representing T. But if such an equation correctly describes V, then it follows 
that V has at least some constituents va and vb the state of which ranges in a way such that it captures the range of 
values variables c and ω can assume. And, at least if V is an accurate representation, the target constituents ta and 
tb upon which va and vb map must be able to occupy a similar range of states - otherwise the entire target would 

not be describable by something of the form:  s = f(c) + ω and V and T would not be structurally similar (ex 

hypothesis). 
80 Notice that, by so arguing, Wiese significantly departs from Egan’s view on content as described in the previous 
chapter. 
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determined by mathematical contents.” (Wiese 2017: 726) 

in his view, some computational PP description might also be so stringent so as to completely 

determine the relevant representational content the generative model represents; for instance: 

“Computational descriptions in PP models not only specify mathematical 
contents, they also specify at least some cognitive contents. For instance, 

according to the theory of active inference developed by Friston and 

colleagues, action is not brought about by motor commands, but by 

predictions of the (perceptual) changes that will be brought about by the 

respective actions. Motor commands and perceptual changes are not 

mathematical contents, they are cognitive contents. [...] Apart from that, 

optimizing precision estimates is typically regarded (by proponents of PP) 

as the computational mechanism underpinning the allocation of attention. 

This also entails a cognitive interpretation of mathematical contents.” 
(Wiese 2017: 733; references omitted) 

Wiese’s view seems to be implicitly shared by most (if not all) the proponents of the structural-

representationalist reading of PP, because it is entailed by their explicitly formulated claims.81 

Thus, for instance, both Gładziejewski (2016) and Kiefer (2017; Kiefer and Hohwy 2018; 

2019) define the relevant structural similarity holding between generative models and their 

representational target in mathematical (and, more specifically, probabilistic) terms. As seen 

above, Gładziejewski defines the relevant structural similarity in terms of priors and 

likelihoods. But priors and likelihoods are functions outputting values (mathematical contents) 

ranging between 0 and 1. Similarly, Kiefer holds that the probability associated with an 

hypothesis being true is represented by the probability of a unit being in the “on” state. But 

such a probability is the result of a complex mathematical function computed by the network. 

It thus seems that in both Gładziejewski and Kiefer’s case the relevant structural similarity 

which determines the relevant representational content of the generative model is at least 

                                                
81 To be clear, I’m here assuming (for the sake of clarity and ease of exposition) that all proponents of the 
structural-representationalist reading of PP are committed  to mathematical contents in the way Wiese is. Whilst 
this assumption might be strictly speaking false, there’s a sense in which the commitment to mathematical contents 
is not necessary to articulate this point (as I will briefly discuss in Ch. 6: § 2.3). So, the assumption is fairly 
innocuous, and  the point I’m articulating here applies whether proponents of the structural-representationalist 
reading of PP are committed to mathematical content or not. 
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partially built upon the mathematical functions the network computes. As a consequence, the 

mathematical contents involved in the computations of those functions end up at least partially 

determining the representational content of the generative model. 

Clark (2015a: 2) seems to endorse an even more extreme position. In his own words:  

“To naturalize intentionality, then, “all” we need do is display the 
mechanisms by which such ongoing viability-preserving engagements are 

enabled, and make intelligible that such mechanisms can deliver the rich 

and varied grip upon the world that we humans enjoy. This, of course, is 

exactly what PP sets out to achieve” 

Williams (2017: 164) espouses a similar position:  

“The core thesis of predictive processing is that brains install and deploy 
a generative model of environmental causes in the service of homeostasis. 

If we can explain how cortical networks come to embody these pragmatic 

structural models, and how such models can be exploited in cognitive 

functioning, we will have ‘‘naturalized’’ intentionality in the only way 
that could be important to the representational status of the framework” 

But the explanation PP provides of how brains “install and deploy” generative models is a 

computational explanation, which will mention mathematical contents. It thus seems that both 

Clark and Williams support, at least implicitly, the idea that mathematical contents account for 

the intentionality (hence, the representational content) of generative models. 

Notice also that this idea is entailed by the claim that the relevant content of a generative 

model is determined by the structural similarity holding between a model’s topology and the 

causal structure of the environment. This is because the topology of the model is a formal 

property of the model that can be easily converted into a set of mathematical contents. For 

instance, if a graphical model displays no connection among two nodes, the corresponding 

variables will be conditionally independent, meaning that the value of the probability computed 

for the first node X is not affected by the value of the probability computed for the second note 

Y. This idea is so dominant in the structural representationalist reading of PP that Kiefer and 

Hohwy (2019: 400-401) take the relevant degree of structural similarity to be assessable 
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directly through graph-comparison techniques. 

 

4.2 - The contents of generative models 

What sort of contents are grounded by such a structural similarity? The question is 

ambiguous between two readings. It can be interpreted as a question concerning the 

metaphysical status of the contents: are they propositions, modes of presentations or something 

else entirely? But it can also be interpreted as a question concerning what sort of things get 

represented. I tackle both questions in order. 

The question concerning the metaphysical status of contents has a crisp answer in the PP 

literature: contents are possible worlds (Kiefer and Hohy 2018; 2019). The idea comes directly 

from the connectionist tradition of generative modelling: 

“A mental state is the state of a hypothetical world in which a high-level 

internal representation would constitute veridical perception.” (Hinton 
2005: 1774)82 

This shouldn’t be surprising: after all, it seems natural to say that (metaphysically speaking) 

the contents of generative models are possible worlds, given that their content is rooted in the 

structural similarity they bear to the (causal structure of) the world. 

The question concerning what gets represented by generative models has a less clear cut 

answer. Worlds (both possible and actual) will surely be represented. But this is too vague an 

answer to be informative. Mathematical objects will be represented too, since mathematical 

contents are the building blocks of the relevant structural similarity. But, again, this kind of 

answer is not really informative: presumably, questions like “what is the content of…?” inquire 

about representational contents, as opposed to mathematical ones. 

In reality, what gets represented by generative models depends on how the relevant 

structural similarity the model bears with its target is spelled out. Hence, it varies as the relevant 

                                                
82 See also Ha and Schmidhuber (2018b) for a similar position. 
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similarity varies. Kiefer (2017; 2020), for instance, opts for a transparent code, according to 

which the relevant structural similarity holds between a system encoding network of material 

inferences and the gross causal makeup of the environment. So, in his view, representational 

contents seem for the most part what ordinary propositions express: facts such as “it is raining” 

or “the street is wet” (see above). 

Others suggest instead something quite different: that the generative models might represent 

in a way that simply has no translation in terms of propositional contents. After all, the 

generative model is supposed to simultaneously capture causal regularities spread across 

multiple distinct spatiotemporal scales, ranging from milliseconds to years, together with the 

state-dependent noise expected in the input it receives. It is doubtful that such a content has a 

natural, non-arbitrary translation in terms of propositional contents. As Clark colorfully puts it, 

generative models: 

“make it even harder (perhaps impossible) adequately to capture the 

contents or the cognitive roles of many key inner states and processes 

using the terms and vocabulary of ordinary daily speech. That vocabulary 

is “designed” for communication, and (perhaps) for various forms of 
cognitive self-stimulation. The probabilistic generative model, by 

contrast, is designed to engage the world in rolling, uncertainty-

modulated, cycles of perception and action.” (Clark 2015a: 2, references 
omitted) 

This, I believe, shouldn’t come as a surprise. It is well known that the contents of “neuromorph” 

computational systems are opaque and hard-to-pin-down (e.g. McCloskey 1991) even in 

relatively simple systems. 

At present, then, the question “what sort of things do generative models represent” seems 

only to be answerable only in reference to the specific model-target structural similarity one is 

committed to. Different conceptions of that structural similarity yield radically different 

contents. Given that such a structural similarity is partially constituted by the model’s 

computational functioning, and that, at present, there is no “canonical” PP scheme (e.g. Ciria 
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et al. 2021), I think that it is wise, at present, to leave the question unanswered. 

 

5 - Other representational posits (predictions and prediction errors) 

Thus far, I have briefly sketched how the structural representationalist account of PP 

conceives generative models. But what about the other representational posits PP seems to 

postulate, such as predictions and prediction errors? 

Consider prediction errors. They are bottom-up signals “telling” the system what “has been 

missing” from the original predictions. As such, they seem to be indicators of sort: an error 

signal indicates that something other than what has been predicted is the case. And, in fact, the 

bottom-up flow of error signals can be conceived as a “filtered” version of the standard bottom-

up flow of sensory evidence, which is normally taken to indicate environmental features: 

“Prediction error signals are [...] not radically different to sensory 

information itself. This is unsurprising, since mathematically (as Karl 

Friston has pointed out) sensory information and prediction error are 

informationally identical, except that the latter are centred on the 

predictions. [...] The forward flow of prediction error thus constitutes a 

forward flow of sensory information relative to specific predictions.” 
(Clark 2015c: 5)83 

Now, according to the received knowledge, the feed-forward flow of information is carried 

out by receptors; and indeed, the receptor notion of representation seems to fit both top-down 

predictions and bottom-up errors pretty well (Hohwy 2013: Ch. 8; Orlandi 2014; Downey 

2018). As seen in the previous chapter, predictions just are a “downward” flow of cortical 

activity aimed at re-constructing the expected input; whereas error is an “upward” flow of 

activity aimed at ensuring that the “downward” flow marches in step with the incoming sensory 

stimulation. In this way, the relevant states of the cortical hierarchy will come to carry 

information about the external causes of the sensory input; and indeed learning to predict 

                                                
83 See (Cao 2020) for sustained discussion of this point. 



75 

accurately the incoming input is guaranteed to increase the mutual information between 

internal and external states of a PP system (Hohwy 2013: Ch. 2). It thus seems possible to 

conceive the internal states of the brain as receptors of specific environmental contingencies. 

The structural-representationalist view of PP, however, does not endorse this claim. 

According to the structural-representationalist view of PP, predictions and prediction errors are 

representations, but they are not receptors. And they cannot be receptors because, according 

to the structural-representationalist view of PP, receptors are not representations (e.g. Williams 

and Colling 2017: 1949). 

There are two reasons as for why the structural-representationalist view of PP holds that 

receptors are not representations, and both have been inspired by Ramsey’s (2003; 2007) attack 

on the receptor notion of representation. 

The first has to do with the content of receptors, or better the content-grounding relation to 

which they are typically associated. As seen in (Ch. 2: §3.1), receptors are typically associated 

with teleo-informational accounts. These accounts typically considered a special case of 

“covariance” or “tracking” theories of content (e.g. Cummins 1991; Egan 2019); that is, 

theories of content that suggest that the relevant content grounding relation is a relation of 

regular covariance holding between the representational vehicle and its target. What singles 

out teleo-informational accounts from other tracking theories is the fact that, in the case of 

teleo-informational accounts, the relevant tracking relation is spelled out formally, using 

information-theoretic terms. Hence it need not be a brutishly causal relation (e.g. Fodor 

1987).84 Yet it is still a covariance relation in the relevant sense: it is only because the states 

                                                
84 I think I owe this observation to Manolo Martinez (personal communication). Sending and receiving 
information need not involve any form of mechanical energy transfer (or billiard-ball causality). Consider: A and 
B decide that if A calls before 5 pm, then the meeting is cancelled; otherwise, the meeting will be held as planned. 
At 5:01, B has received no phone calls from A. So now B is certain that the meeting will be held as planned: B’s 
uncertainty has been reduced. But if B’s uncertainty has been reduced, then the sender (in this case, A) has 

conveyed a message to B in the relevant sense. But no causal chain connects A to B in the vignette presented here. 
Hence, theleo-informational (or just informational) theories of content need not imply any form of causal contact 
between representational vehicle and target (Dretske 1981:26-39 makes essentially the same point while dealing 
with what he calls ghost channels). 
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of V and T reliably covary within a range of states that observing V occupying state va makes 

one more confident that T is in state ta. 

Yet covariance, even if purposive, surely is insufficient to constitute content (Hutto and 

Myin 2013). For one thing, covariance is a symmetric relation: if V covaries with T, then T 

covaries with V. But contents are not “janus faced”: the activation of a V1 neuron might be 

about edges, but edges are not about anything. Covariance is also a transitive relation: if V 

covaries with T over some range of states, and T covaries with T* over some range of states, 

then V covaries with T* over some range of states (Cummins 2010). Perhaps the covariance 

relation between V and T* is less regular than the one between V and T, but a less regular 

covariance still is covariance. Lastly, covariance massively overgeneralizes: there are just too 

many things covarying with other things. Adding a teleological component does not 

significantly ameliorate the dialectical situation, for a number of non-representational “things” 

are supposed to covary with a number of other “things”. For instance, the position of the firing 

pin of a gun is supposed to covary with the position of the trigger, but surely firing pins of guns 

are not representation of triggers (Ramsey 2003; 2007; Orlandi 2014). 

The other reason as for why the structural representationalist reading of PP holds that 

receptors are not representations is that the receptor notion over-reduces representations. 

Receptors end up “explaining away” the relevant notion of representation because they end up 

functioning as mere causal mediators (Orlandi 2014; Downey 2018) relevant for the triggering 

of appropriate behavioral responses. 

To see why, compare the following two scenarios (Ramsey 2007: 195-203). In both 

scenarios, a simple robot has to traverse an “S”-shaped track without physically bumping into 

the walls of the track. In the first scenario, the robot is equipped with an “S”-shaped groove in 

which a rudder fits. As the robot moves forward the rudder advances in the groove, steering 

the robot’s wheels in a way that depends on its position on the groove. So, if the “S” shapes of 
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the groove and the track are structurally similar, the robot will traverse the track without 

touching the track’s walls. In such a case, the robot’s behavioral success is creditable to the 

internal groove; that is, the internal structure that guides the robot’s behavior. Importantly, we 

would naturally describe such a structure as a sort of internal map that the robot “consults” in 

order to achieve its behavioral success. And the reason as for why we would naturally describe 

the “S”-shaped groove as an inner representation is because its fits the functional profile of 

models sketched above: the “S”-shaped groove is an internal structure that is structurally 

similar to the robot’s behavioral target, guides the robot’s actions directed to that target, can 

function while decoupled from the target (it would guide the robot’s behavior even if no “S”-

shaped track is causally affecting it) and could afford the detection of representational error 

(see Gładziejewski 2015b: 78-82). 

Consider now the second scenario. Instead of relying on an internally “S” shaped groove, 

the robot’s behavior depends on two rods protruding from its front side in opposite directions 

(left and right). If some pressure is applied to them, the rods slide inside the robot’s body, 

moving the groove. Thus, when the left rod slides in, the groove is pushed to the right (and 

vice-versa). In this way, the robot can navigate the “S” shaped track without ever getting stuck 

into the track walls. Notice that, ins such a case, the rods effectively function as indicators of 

proximity: their state (i.e. the degree to which they are slit in the robot’s body) reliably covaries 

with the distance between robot and wall, and they have, by explicit design, the function of 

indicating that distance. Yet, it seems natural to treat those rodes just as behavioral triggers: a 

complex causal structure that is driven by environmental contingencies and that triggers the 

appropriate response from the robot. As Ramsey puts it: 

“When explaining how the mindless car A [the robot, n.a.] makes it way 

though the curve, the account that seems most natural (and fulfills our 

explanatory goals) is one that treats the causal relay between the plunged 

rod and the turned wheels as just that – a causal relay that brings about an 

altered wheel alignment whenever the vehicle gets close to a wall. In fact, 
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[...] we can explain this process as one of brute causal interaction between 

the wall and the wheels. [...] There are certainly more mediating links 

between the car’s proximity to a wall and the turning of the wheels away 

from the wall. But – and this is the key point – there is no natural or 

intuitive sense in which one of the linking elements is playing the role of 

representing.” (Ramsey 2007: 196-197). 

In the case at hand, a simple causal story is sufficient to account for the robot’s behavior: the 

fact that rode-wall contact causes the rode to slid in, which causes the robot to turn in the 

opposite direction is sufficient for us to understand how the robot manages to navigate the “S”-

curve. There just seems to be no need to invoke representational (or otherwise semantically 

charged) notions. Rodes play a purely causal role. 

For these reasons, the structural-representationalist view does not take receptors to be 

representations. Now, given that intuitively predictions and prediction errors seem to be 

receptors, it is reasonable to expect the structural-representationalist view of PP to conclude 

that predictions and prediction errors are not representations. If that were correct, predictions 

and prediction errors would then be just causal patterns of activity in the brain, whose 

occurrence triggers appropriate behavioral responses. 

Yet this is not what the structural-representationalist interpretation of PP claims. In fact, the 

structural representationalist interpretation of PP takes prediction and prediction errors to be 

constituents of the overall generative model (e.g. Kiefer and Hohwy 2018: 2394-2395). This 

should not be surprising: recall, just to give one example, that, according to Gładziejewski 

(2016), the relevant generative model-target structural similarity is partially built upon 

likelihoods. But likelihoods are predictions, and prediction errors just are inverse likelihood 

functions (the “tell” how much the given hypothesis mispredicts - or fails to account for - the 

incoming data). Prediction and prediction error, thus, are representations according to the 

structura-representationalist reading of PP. They are representations because they are vehicle 

constituents of the overall generative model. And, as seen in (Ch. 2: §3.2)  the vehicle 
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constituents of a structural representation are representational vehicles, which function as 

representations by functioning as elements in a map or model, and whose content is the relevant 

target constituent they are mapped onto by the structural similarity. 

Importantly, the structural representationalist reading of PP contends that it is only by 

looking at neuronal responses (that is, predictions and prediction errors) through these lenses 

that the patterns of covariation between cortical activity and the environment make functional 

sense. By looking at predictions and prediction errors as constituents of a structural 

representation, one does not just see the brain’s responses to environmental stimuli and some 

mysterious self-generated cortical activity. Rather, one sees a complex causal mechanism that 

“attunes” the behavior of an organism to the relevant environmental contingencies, by curating 

and maintaining a fine-grained statistical model of the environment: 

“[...] what is the function of such anticipatory dynamics? [...] how are they 

achieved? It is in answering these questions that the representationalist 

interpretation of predictive processing is required: effectively anticipating 

the incoming signal is necessary for the organism’s ability to intervene 
upon the environment to maintain homeostasis, and it is made possible by 

the exploitation of an internal model of the signal source. Without this 

representationalist interpretation, the brain’s ability to so successfully 
‘‘predict1’’ [i.e. make its state coviary with] its incoming sensory inputs 
is both unmotivated and unexplained.” (Williams 2017: 161). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part II: Generative models as instantiations of sensorimotor mastery
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Chapter four - Are generative models structural representations?85 

 

1 - Gładziejewski's account of structural representations 

The last chapter presented the structural-representationalist view of PP in broad strokes. 

Here, I focus on (Gładziejewski 2016), for this argument is widely supposed to have 

established, once and for all, that generative models are structural representations.86 

The argument builds upon Gładziejewski's (2015b) account of structural representations, 

according to which 

Structural Representation: In a system S, a vehicle V is a structural 

representation of a target T if, and only if:87 

(a) V is structurally similar to T; & 

(b) V guides S's actions regarding T; & 

(c) V can satisfy (b) when decoupled from T; & 

(d) S can detect the representational error V generates. 

Each point needs to be briefly clarified. 

 

1.1 - Point (a): structural similarity 

In (Ch. 2: §3.2) I clarified that the relevant notion of structural similarity is second-order 

structural resemblance, which is defined as follows:  

Second-order structural resemblance (rewritten): V is structurally similar to 

                                                
85 This chapter is based on (and expands upon) Facchin, M. (2021b). Are generative models structural 
representations?, Minds and Machines, 31, 277-303. 
86 This is somehow and understatement: Gładziejewski's argument in favor of the structural representational status 
of generative models is the sole argument to that effect, which has informed each and every other subsequent 
representational analysis of PP, see (Wise 2017, 2018; Dołega 2107; Williams 2017; 2018a, 2018b, Pezzulo et al. 
2017; Kiefer and Hohwy 2018, 2019; Sachs 2018; Vásquez 2019; Hohwy 2020a). 
87 Here, I present (a) to (d) as necessary and sufficient conditions even if, strictly speaking, Gładziejewski (2015b) 
presents (a) to (d) just as necessary conditions. However, it is clear that in his (2016) Gładziejewski takes them 
also to be sufficient conditions, whose satisfaction is sufficient to ensure the metaphysical status of a structural 
representation to an item. Weren’t that the case, the argument presented in Gładziejewski (2016) would have little 
sense: weren’t (a) to (d) sufficient conditions, showing that they are satisfied by generative models would not be 

sufficient to show generative models are structural representations. Notice, however, that strictly speaking, all I 
need for my argument to work is only that (a) and (b) are necessary conditions.  
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T if and only if: 

(i) there’s a one-to-one mapping from at least some vehicle constituents 
(vxs) onto at least some target constituents (txs); & 

(ii) there is a one-to-one mapping from at least a relation R holding among 
the vehicle constituents onto at least a relation R’ holding among the target 
constituents; & 

(iii) For all the vehicle constituents satisfying (i), vaRvb → taR’tb (i.e. the 

same pattern of relations hold in V and T) 

Gładziejewski (2015b; 2016) accepts this definition.88 I now rehearse two features of second-

order structural resemblance that will be central in the following. 

The first is semantic unambiguity. If V represents T because it bears an exploitable second-

order structural resemblance to it, then, for each vehicle constituent of V (or relation among 

vehicle constituents of V) it is in principle possible to determine the corresponding target 

constituent (or relation among target constituents) of T. This is because of (i) and (ii): if a 

vehicle constituent va participates in the second-order structural resemblance, then there is one, 

and only one, target constituent ta
89 to which it corresponds. The same goes for the relations: if 

a relation vaRvb participates in the resemblance, then there is one, and only one, relation taR’tb 

to which it corresponds. Hence, it is always possible to say what each “bit” of the structural 

representations means in an unambiguous way. 

Secondly, although a second-order structural resemblance can hold among any two systems, 

in the case of  structural representations the relevant (content-determining) structural similarity 

must hold between the representational vehicle and its target. Structural representations are 

concrete particulars that represent by resembling their targets. This is also why the contents of 

structural representations are said to be intrinsic to their material structure. This is because they 

depend on the relevant (i.e. structural similarity-constituting) physical properties of the vehicle 

                                                
88 He typically refers to the definition of second-order structural resemblance given in (O’Brien and Opie 2004: 
11) to which my modified definition is identical (apart from the notation). 
89 Recall that, to simplify the notation, I assume that the mapping in (i) is “subscript preserving”. 
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(O'Brien and Opie 2001; O'Brien 2015; Kiefer and Hohwy 2018; Williams and Colling 2017).90 

 

1.2 - Point (b): action guidance, or exploitability 

Point (b) requires V to guide S's behavior directed at T. Thus, it requires the relevant 

structural similarity V bears to T to be exploitable by S (Gładziejewski and Miłkowski 2017). 

As far as I know, there is only one canonical definition of exploitability, which is provided by 

Shea (2014; 2018: 120). Shea (2018: 120) defines exploitability as the conjunction of two 

requirements: 

Exploitable structural similarity: The structural similarity holding between V 
and T is exploitable by S if, and only if: 

(iv) The relevant relation or relations R are relations S's downstream 

computational processing is systematically sensitive to; & 

(v) The target constituents tx and the relation or relations R’ defined over them 

are of significance to S91 

Condition (iv) imposes that the structural similarity-constituting relation (or relations) 

holding among the constituents of V are, in a sense, computed upon by S.92 Changes in these 

relations must thus affect the behavior of S in some systematic way. Notice that condition (v) 

further reinforces the idea that the relevant structural similarity must hold between a vehicle 

and a target. In fact, computation in cognitive systems is a causal affair. Hence, it seems that 

for a relation to systematically orient a system's computational processing, either the relation 

itself, or at least the relevant constituents among which it holds, must possess some relevant 

                                                
90 Johnny Lee (2018) goes so far that he identifies contents with the similarity-constituting properties of the 
vehicle. 
91 I adapted the notation used in Shea’s definition for the sake of orthographic consistency. 
92 There is a potential problem here, at least insofar Shea's definition of exploitability does not mention consumers. 
This is because Gładziejewski's (2015b) account does include consumers, and it is intuitive to think that the 
relevant structural similarity must be exploitable for the vehicle's consumer. This would make the definition of 
exploitability a bit more restrictive. However, Gładziejewski's (2016) application of his account of structural 
representations to PP does not mention consumers, and the alternative definition of exploitability sketched in 
(Gładziejewski and Miłkowski 2017) does not mention them either. It thus seems fair to suppose Gładziejewski 
has (more or less implicitly) eliminated consumers from his account. Note, however, that albeit “naked” structural 
similarity is a two place relation, exploitable structural similarity is a three place relation. In fact, a vehicle (1st 
relatum) bears an exploitable structural similarity to a target (2nd relatum) for some system (3rd relatum).  
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causal power. And, in cognitive systems, causal powers pertain to vehicles (e.g. Egan 2012; 

2020). 

Condition (v) mentions significance. Significance is here relative to the way the system 

produces the output it is supposed to produce. Hence, a complete unpacking of (v) would 

require me to introduce Shea's complex account of functions (Shea 2018: Ch. 3). But, given 

that condition (v) will play no role in the overall argumentative structure of this chapter, I 

postpone the exhibition of that account to (Ch. 6: § 2.2). 

In Ch.2 (§ 3.2) I mentioned that exploitability solves the problems of reflexivity and 

symmetry similarity-based accounts of content suffer from (Goodman 1969). It also (partially) 

solves the problem of content determination associated with these accounts. The reasons 

supporting these claims should now be clear enough. Conditions (iv) and (v) “chunk down” 

the number of targets a vehicle can be exploitably structurally similar to, thereby contributing 

in determining a vehicle's content (see Nirshberg and Shapiro 2020). Condition (v) solves the 

problem of symmetry, reflexivity and transitivity. V surely is structurally similar to itself, and 

it is surely correct to infer that, if Vs structurally similar to T, then T is structurally similar to 

V. However, V is not of significance to S. Hence, V is not exploitably structurally similar to 

itself, and T bears no exploitable structural similarity to V. 

 

1.3 - Point (c): Decouplability 

According to (c), V is required to be able to satisfy (b) even when decoupled from T. Hence, 

the relevant notion of decouplability needs to be clarified. Decouplability is notoriously hard 

to define (Chemero 2009; Orlandi 2014: 122-134; 2020). Luckily, Gładziejewski (2015b: 76-

77) provides his own crisp definition. In his view, decouplability comes in two degrees: weak 

and strong. 

Decouplability: A vehicle V is decouplable from T if, and only if, V is 
weakly decouplable or strongly decouplable from T 
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Weak decouplability: V is weakly decouplable from T if, and only if, V 
can perform its action-guiding duties even when: 

(vi) No causal connection holds between V and T; & 

(vii) No causal connection holds between T and V's consumer within S 

Strong decouplability: V is strongly decouplable from T if, and only if, 
V can perform its action guiding duties when: 

(viii) No causal connection holds between T and S 

Notice here decouplability is spelled out in terms of causal connections (or lack thereof) 

between V and T. This reinforces the idea that the relevant structural similarity is required to 

hold between a vehicle and a target; as, among all the components of a representation, only the 

vehicle and the target can be in any causal contact. 

There are few other things to notice. First, weak decouplability is a form of decouplability, 

and so it is sufficient to satisfy (c). Secondly, (c) is satisfied when V and T are decouplable, 

that is, when they can be decoupled. Hence V and T need not be always decoupled for (c) to 

be satisfied. 

As a technical aside, notice that (vi) mentions consumers. As suggested above (fn 96), 

Gładziejewski's application of his account of structural representations to PP does not mention 

consumers, and it really seems Gładziejewski (2016) has implicitly eliminated consumers from 

his account of structural representations. Hence, condition (vii) will be largely ignored in the 

following. 

 

1.4 - Point (d): Error detection. 

Everyone agrees on the fact that if V represents T, then V can also misrepresent T. Point (d) 

can be seen as an extreme version of that simple truth (Bickhard 1999; Miłkowski 2013). In 

this view, a good theory of representations need not just account for the possibility of 

misrepresentation; it must also provide a way for representational systems to detect their 

misrepresentations. 
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In public representations error can be readily detected by comparing the vehicle to its target. 

If I have a picture of x, I can check whether the picture correctly depicts x by comparing the 

two. But a system can access a representational target only through its internal representations 

of it. Hence it has no independent access to its representational targets, and it cannot compare 

them to its inner representations of them. So how can the error of cognitive representations be 

detected? 

Gładziejewski (2015b: 80) suggests such a detection is possible if the relevant system 

possesses a sub-component detecting pragmatic failures. It is standardly assumed that correct 

representations non-accidentally lead to successful actions, and that unsuccessful actions are 

non-accidentally due to incorrect representations. Thus, pragmatic successes and failures can 

function as reliable indicators of the accuracy of a system's representations.  

More in detail, Gładziejewski suggests there are two ways in which pragmatic successes 

and failures can indicate the semantic status of representations. The first, and most obvious, 

way in which representational error can be detected is through a feedback signal, which 

indicates whether pragmatic success has been attained. The second, less obvious, strategy is to 

use a “predict and compare” strategy (Gładziejewski 2015b: 81). The idea is as follows: the 

representation generates a “mock” signal of how actions should unfold were its content correct. 

The “mock” signal is then contrasted with the signal delivered by actually unfolding actions. 

The mismatch between “mock” and real signal can then be used to assess by a system to 

monitor the semantic status of its own inner representations. 

Notice that, in both cases, an additional monitoring mechanism is needed, either in the form 

of an appropriate mechanism “reading” the feedback signal or in the form of a comparator, 

computing the mismatch between expected and actually achieved outcomes. 

This concludes the presentation of points (a) to (d). 
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1.5 - The scope of Gładziejewski’s account 

Before moving forward, it is important to clarify the scope of Gładziejewski’s account of 

structural representations. Following Chemero (2009: 67-68), it is possible to distinguish 

between an epistemic representationalist claim and a metaphysical representationalist claim. 

Bluntly put, the epistemic representationalist claim is the claim that our best explanations of 

cognition need to posit representations. The metaphysical representationalist claim is instead 

the claim that cognitive systems contain components that really are representations. The two 

claims can in principle come apart. A fictionalist about representations, for instance, endorses 

the epistemic claim and denies the metaphysical one (Sprevak 2013).93 Gładziejewski’s 

account of structural representations aims at vindicating both claims (Gładziejewski 2015b: 

70).94 Thus, his account of structural representations succeeds just in case the relevant 

representational posits of PP (i.e. generative models) satisfy features (a) to (d) and these are 

the relevant sort of structures identified as representation by our best explanatory practices. 

 

2 - Generative models as structural representations: Gładziejewski's argument 

Gładziejewski (2016) argues his account of the functional profile of structural 

representations is tailored to fit generative models. His argument is as follows. 

(P1) Items satisfying conditions (a) to (d) in conjunction are structural representations. 

(P2) Generative models satisfy conditions (a) to (d) in conjunction 

(C) Generative models are structural representations 

The argument has a straightforward structure, and its force hinges almost entirely on (P2). I 

now examine each step of Gładziejewski's argument for (P2). 

 

                                                
93 See also (Downey 2018) for a fictionalist interpretation of PP. 
94 This commitment seems shared by the majority of accounts of generative models as structural representations 
(e.g. Williams 2017; Wiese 2018; Kiefer and Hohwy 2018; 2019). 
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2.1 - Point (a): Gładziejewski's argument for structural similarity 

Gładziejewski's (2016: 571-576) argument is as follows. Generative models can be formally 

treated as graphs (see Ch. 1, § 2.1), and in particular as Bayesian nets or Directed Acyclic 

Graphs (DAGs). DAGs are made up of a finite number of nodes connected by edges. In a DAG, 

each (labelled) node corresponds to one, and only one, environmental variable. Edges can be 

formally treated as relations (see Leitgeb 2020), and they can be mapped onto some relevant 

relation in the target domain. In the case of DAGs, the relevant relations in the target domain 

are typically causal relations. In a graph, two nodes are connected if, and only if, the 

corresponding relation holds among the corresponding variable in the target domain (Danks 

2014: 39-41).95 Hence, since the graph’s topology mirrors the causal relations among the 

elements in the target domain, graphs bear at least a second-order structural resemblance 

(really, and homomorphism) to their targets (Ch. 3: § 4.1). 

Gładziejewski (2016) also proposes a specific structure preserving mapping holding 

between the generative model and its representational target. As seen in the previous chapter, 

he claims that each of the graph encodes the likelihood of encountering a given pattern of 

sensory stimulation, that relations between nodes mimic the dynamical relations among 

different environmental causes and that each node also encodes some expectation about the 

prior probability of encountering a given pattern of sensory stimulation. 

This specific structure preserving mapping, however, is unconvincing. As Wiese (2017) 

rightfully notices, not every PP model encodes likelihoods (cfr. Buckley et al. 2017). 

Moreover, it is hard to understand how prior probabilities can partake in a structure preserving 

mapping with a represented target, given that, in Bayesian statistics, prior probabilities are 

                                                
95 A bit more formally: let each labeled node in a graph V be a vehicle constituent vx. and let each variable 
describing a target T be a target constituent tx. Let the labeling be “subscript preserving” (i.e. node va maps one-
to-one onto ta). Let R denote the relation “being connected to” holding among the nodes, and let R’ denote the 
causal relations holding among the target variable. Now, in a graph, vxRvy ⟺ txR’ty; which is clearly enough for a 

second-order structural resemblance to hold between V and T. 
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subjective degrees of belief (Feldman 2016; Bolstad and Curran 2017). Yet, the fact that 

Gładziejewski’s proposed mapping is unconvincing should not distract us from the more 

general, more widespread and more defensible claim; namely, that a structure preserving 

mapping holds between the topology of the graph and its represented target. And, as said above, 

this claim seems sufficient to vindicate point (a). In the following I will discuss only this claim, 

ignoring the (questionable) structure-preserving mapping Gładziejewski proposes. 

 

2.2 - Point (b): Gładziejewski's argument for action guidance/exploitability 

The argument Gładziejewski (2016: 575-576) provides to claim generative models satisfy 

(b) is basically the following: generative models can engage in active inference. Hence, they 

can guide the actions of the system. 

More in detail, Gładziejewski's reasoning seems to be the following. If generative models 

really are graphs, the success of perceptual inference non-accidentally depends on the structural 

similarity holding between the graph and the target. The more graph and target are structurally 

similar, the more the model is able to infer the correct cause of the incoming sensory barrage. 

As a cause (or hypothesis) is selected, it can then be tested in active inference. But, again, a 

model's success in bringing about the selected sensory states through active inference non-

accidentally depends on the structural similarity holding between model and target. Only if a 

tight structural similarity holds between the two a given course of action will deliver the 

predicted sensory inputs. 

To simplify, consider the following toy example. I've inferred that the current cause of my 

visual inputs is a glass of vodka. Now, my generative model commends some vodka-related 

expectations. However, the model incorrectly predicts some vodka-related sensory states (for 

instance, it predicts that the ingestion of vodka will cause the same states that would be caused 

by ingesting water). As these states are actively inferred (i.e. as I drink vodka) my prediction 
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error will not be minimized, as the expected states will not be encountered (drinking vodka and 

drinking water do not bring about the same sensory states). In such a case, the failure in error 

minimization is due to a mismatch between the generative model and the relevant target; that 

is, the fact that the “vodka” node is connected to the wrong set of sensory observations. Were 

the relevant connections different, active inference would have been successful. 

As the simple example above shows, PP systems are sensitive, in their functioning, to the 

relevant relations holding among the nodes. This seems a vindication of (iv). But what about 

(v)? To claim that generative models satisfy (v), Gładziejewski points to the fact that prediction 

error minimization is a tool for homeostasis (e.g. Seth 2015). Hence, we should expect 

generative models not just to be organism-relative, but also busy modeling what matters for an 

organism's survival -  which, prima facie, is significant for the system. 

 

2.3 - Point (c): Gładziejewski's argument for decouplability 

To claim generative models satisfy (c), Gładziejewski (2016: 576-577) puts forth a number 

of different considerations. 

First, he argues that generative models can be decoupled because they provide an 

endogenous and future oriented96 source of control. Generative models are endogenous sources 

of control as active inference need not be a reaction to external stimulation: it might also be the 

way is which an agent controls, from the top-down, its sensory states (e.g. Linson, et al. 2018; 

Ramstead, Kirchhoff and Friston 2019). Moreover, the sensory states that active inference tries 

to bring about are not yet present: they have to be brought about through movement. But surely 

generative models cannot be in causal contact with something not present. Hence, at least weak 

decouplability follows. 

                                                
96 It is important to notice, however, that the future-oriented nature of predictions in PP systems should not be 
overstated. In fact many predictions are predictions of current sensory states (Bubic, von Cramon and Schubotz 
2010). The relevant sense of prediction at play in PP is the statistical sense of prediction, which is not synonymous 
with “foreseeing”. 
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Moreover, Gładziejewski notices that early sensory and motor cortices are active not just 

when a subject is perceiving or moving, but also when the subject is imagining to perceive 

and/or to move (e.g. Miller et al. 2010; Albers et al. 2013). But we surely are strongly 

decoupled from imaginary targets. So, generative models can function even when strongly 

decoupled from their targets. 

Generative models can also represent counterfactually. For instance, they might represent 

what sort of sensory states would be encountered were a given policy pursued (e.g. Seth 2014; 

Friston et al. 2012b; FitzGerald, Dolan and Friston 2014). And, again, counterfactual scenarios 

are not-yet-actual scenarios, with which a generative model cannot be in any form of causal 

contact. 

Lastly, Gładziejewski notes that PP has been used to account for multiple aspects of REM 

dreaming (e.g. Hobson and Friston 2012). And we surely are strongly decoupled from dreamed 

objects. 

Thus, Gładziejewski concludes that we have a number of strong empirical reasons to accept 

that generative models can function when decoupled from their targets. 

 

2.4 - Point (d): Gładziejewski's argument for error detection 

Gładziejewski's argument (2016: 577-579) for (d) is straightforward: “predict-and-

compare” strategies to detect representational error capture exactly how prediction error is 

computed (mainly, by subtracting expected and received sensory inputs). In this way, 

prediction error can function as a reliable indicator of the generative model's semantic standing 

(see Ch. 3: 2.2). 

This concludes the presentation of Gładziejewski's argument. I will attack it in the next 

paragraph. 
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3  - A critique of Gładziejewski's argument 

I claim that the argument above fails to establish the status of generative models as structural 

representations. This is because of two major flaws in Gładziejewski’s argument for (a). The 

two flaws are the following: first, the argument does not establish that generative models satisfy 

condition (a). Secondly, were the argument sufficient to show generative models satisfy (a), 

then (b) would not obtain. I discuss these two flaws in turn. 

 

3.1 - Gładziejewski's argument for (a) fails 

Gładziejewski’s argument for (a) is based on graph-theoretic consideration (§ 2.1). If I 

understood it correctly, it boils down to the following: 

(P1) Generative models are graphs 

(P2) Graphs are structurally similar to their targets 

(C) Generative models are structurally similar to their targets 

But this line of reasoning does not vindicate the claim that (a) obtains. If one is a realist 

about representations (as Gładziejewski is, see Gładziejewski 2015b; 2016; Gładziejewski and 

Miłkowski 2017), then one is committed to the claim that representations are concrete 

particulars encoding content (e.g. Shea 2018: 25-43). Hence, structural representations are 

concrete particulars (i.e. representational vehicles) carrying content in virtue of the relevant 

exploitable structural similarity holding between them and their representational targets. They 

are representational vehicles that do the representing by structurally resembling. The relevant 

structural similarity must thus hold between a representational vehicle (a concrete particular) 

and a represented target. This is why the content of structural representations is supposed to be 

intrinsic to their material constitution (e.g. O'Brien and Opie 2001; Williams and Colling 2017; 

Lee 2018). Their content is intrinsic as it is inscribed in the physical form of the representational 

vehicle (the concrete particular that does the representing). 
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But Bayesian nets, and graphs in general, are mathematical objects (e.g. Danks 2014: 40; 

Leitgeb 2020). They are defined as a finite set of nodes connected by a finite set of edges (Koski 

and Noble 2009: 41) and sets, nodes and edges are mathematical objects. Mathematical objects 

might or might not be particulars (it is irrelevant for the purpose of the argument), but definitely 

are not concrete. So they cannot be representational vehicles, given that representational 

vehicles are concrete particulars. Hence, the structural similarity Gładziejewski points to 

cannot be used to vindicate point (a). It just isn’t what point (a) requires.97 In even simpler 

terms: there literally are no graphs in the brain. 

 

3.2 -  If Gładziejewski's argument for (a) were successful, then (b) would not obtain 

Further, were Gładziejewski's argument for (a) to succeed, then (b) would fail to obtain. 

Recall that (b) requires the relevant structural similarity to be exploitable. Which structural 

similarity? Obviously, the one satisfying (a). But it is very doubtful that the relevant structural 

similarity Gładziejewski leverages to satisfy (a) could be exploitable, because of condition (iv) 

on exploitability. 

Condition (iv) requires the system relying on the putative vehicle to be sensitive, in its 

downstream computational operation, to the relations holding among the vehicle constituents. 

But, as noticed above, computational operations are, in the relevant sense discussed here, a 

physical affair. Hence, either the relations themselves or the vehicle constituents upon which 

they are defined must have some appropriate causal power, so as to systematically influence a 

system's downstream computational operations. 

However, neither nodes nor edges have causal powers, as they are mathematical objects; 

and mathematical objects typically lack causal powers. Hence, the structural similarity graphs 

                                                
97  Notice that I'm not claiming that graphical models are not structurally similar to their targets. They are. As 
clarified above, a structural similarity might hold among any pair of entities. Yet, the relevant class of structural 
similarities that can be used to vindicate (a) is the class of structural similarities holding between representational 
vehicles and their targets; and graphs are not representational vehicles. 
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bear with their targets is not exploitable, as it fails condition (iv) on exploitability. Therefore, 

if Gładziejewski's argument for (a) were successful, then (b) would not obtain. 

 

3.3 - A diagnosis 

What went wrong in Gładziejewski's argument for (a)? The problem seems to be the 

following: structural representations are defined in terms of their vehicle properties. Hence they 

should be identified at the level of the physical machinery doing the computation (what Marr 

would call the implementation level). Structural representations are bits of information 

processing systems literally resembling their target. But graphs, wherever they sit in the 

explanatory hierarchy of cognitive science, surely do not sit at the level of the physical 

machinery doing the computing (Danks 2014, pp. 13-37; 218-221). Gładziejewski's argument 

seems to be pitched at the wrong level of the relevant explanatory hierarchy. 

I believe that the problem lies in (P1). It is ambiguous between generative models as 

mathematical objects (joint probability distributions represented by graphical models) and the 

physical machinery implementing them; that is, the representational vehicle. If we consider 

generative models mathematical objects, then (P1) is true. But then the argument, albeit valid 

and sound, does simply not concern representational vehicles, leaving the claim that the 

vehicles instantiating generative models are structurally similar to their targets unsupported. 

Hence, under this reading, the argument would simply leave (a) unsubstantiated. To 

substantiate (a), the term “generative model” in (P1) should be read as “the physical 

implementation of a generative model”. Whilst under this reading the argument is surely valid, 

it ceases to be sound. For, under such a reading, (P1) would simply be false: no physical 

implementation literally is a graph.98 Hence (a) would again be left unsubstantiated. And, 

                                                
98 Let me add, for the sake of clarity, that physical objects (such as appropriately traced inkmarks) can represent 
graphs. But surely representing is not being: a picture of me represents me without being me. 
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clearly, we cannot read “generative model” in (C) as referring to physical implementations 

while reading “generative model” in (P1) as referring to mathematical objects, for that would 

be a quaternio terminorum. Hence the argument would not be valid. 

 

4 - Alternative arguments for (a) 

Gładziejewski's argument is not the only possible argument to claim that (a) obtains. Here, 

I consider some alternative arguments to the same effect, which might be used to establish the 

claim that generative models are structural representations. 

 

4.1 - Alternative argument #1: Graphs, physical machinery, and transitivity 

One could try to apply graph theoretic notions at the implementation level to vindicate (a): 

after all, system-level neuroscience routinely applies graph theoretic notions to the study of 

biological brains (cf Sporns 2010). So, graphs can be used to describe the functional and 

structural properties of the neural machinery, which plausibly hosts the relevant vehicles of 

generative models. This suggests an alternative way to vindicate (a) by transitivity. 

The basic idea is this. Consider a graph detailing a generative process (i.e. the process 

generating the sensory data the generative model is trying to account for). That graph is, qua 

graph, structurally similar to its target. But that graph (or, an approximation of it) should also 

be somehow encoded in the brain by some well-defined set of neural regions, which are 

candidate vehicles of the relevant generative model. Hence, if that graph can be mapped in a 

structure-preserving way onto a candidate vehicle, and the graph is structurally similar to the 

generative process these neuronal region purportedly represent, then the candidate vehicle is 

structurally similar to its target, since structural similarity is a transitive relation.99 Importantly, 

                                                
99 Notice that the argument tries to vindicate point (a), which only requires a structural similarity. And structural 
similarities are transitive; only exploitable structural similarities are not transitive. But exploitability is not 
required to vindicate (a) - it is only required to vindicate (b). So an argument for (a) can rightfully leverage the 
fact that structural similarities are transitive. An appeal to transitivity does not undermine the argument. 
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some (Kiefer 2017; Kiefer and Hohwy 2018; 2019100) defend the claim that generative models 

are structural representations in a somewhat similar way. 

This argument is fairly attractive, and it nicely integrates with the existing scientific 

literature on PP, at least insofar some generative models, rendered as Bayesian nets, have been 

mapped onto cortical structures (e.g. Bastos et al. 2012; Friston, Parr and de Vries 2017). Isn't 

this sufficient to show that at least these generative models are structurally similar to their 

targets? 

A negative answer seems appropriate, because the graphs presented in  (Bastos et al. 2012; 

Friston, Parr and de Vries 2017) and a number of similar publications in the PP literature do 

not model any worldly target. There is thus no specific worldly target that they represent. So, 

even if the cortical machinery is in some relevant sense structurally similar to these graphs, 

there is no third element to which the cortical machinery can be structurally similar by being 

structurally similar to these graphs. For this reason, it seems to me correct to conclude that the 

alternative argument for (a) provided above fails. 

But what, then, is the purpose of the graphs in  (Bastos et al. 2012; Friston, Parr and de Vries 

2017)? The answer, if I understand the literature correctly, is the following: these graphs are, 

in a sense, didactic tools, aimed at showing, with a fair degree of approximation, that the 

cortical machinery is arranged in a way such that it can easily perform the inferential processes 

PP revolves around (see Bastos et al. 2012, p. 703; Friston, Parr and de Vries 2017, p. 393). In 

fact, it seems to me that, within the PP literature, graphical models are often deployed to capture 

the message passing within the brain; that is, how inference is performed (see, for instance, de 

Vries and Friston 2017; Friston et al. 2017b, c; Donnarumma et al. 2017; Matsumoto and Tani 

2020).101 I believe that this is an important point to notice for two distinct reasons. 

                                                
100 To anticipate something that will emerge later on in the discussion, I actually believe that Kiefer and Hohwy’s 
essays do not defend (or end up not defending) the claim that generative models are structural representations; 
they only defend the claim that generative models are structurally similar to their targets.  
101 Notice that the scope of my claim is restricted to PP and the usage of graphical models in the PP literature. I 
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First, if these graphical models are intended to be models of the relevant message passing, 

it seems more natural to suppose they will map onto the cortical machinery performing the 

inferences (i.e. the entire computational system), rather than on the representational vehicles 

manipulated in inferential processes (i.e. the single computational/representational vehicles).102 

Secondly, and relatedly, if those graphical models are accurately characterized as portraying 

the inferential message passing in the brain, it seems to me that they presuppose the presence 

of some relevant representational vehicle, as inferences are defined over representations. These 

representations might (but, as far as I can see, need not) be structural representations. However, 

as these graphical models seem to presuppose the presence of representations, it seems to me 

that they cannot be invoked to justify one’s representationalist claim, on pain of circularity. 

Importantly, I do not believe that the considerations offered above rule out in any way the 

concrete possibility of using graphical models to justify (a). As far as I can see, one might still 

resort to a graphical model to argue that at least some representational vehicles in the brain are 

structurally similar to their targets using the argument by transitivity sketched above. However, 

to do so, one would need a graphical model depicting some specific worldly target. And, to the 

best of my knowledge of the PP literature, no such graphical model has yet been proposed. 

 

4.2 - Alternative argument #2: Artificial Neural Networks, weights and structural 

similarity I 

Artificial neural networks might provide a different way to leverage graph theoretic notions 

to vindicate (a). As formal objects, artificial neural networks are graphs. But they are also 

somewhat plausible sketches of the physical machinery implementing or realizing some given 

computational process of interest (see Haykin 2009: 1-18; Rogers and McClelland 2014). 

                                                

make no claim on how graphical models are used in the rest of cognitive neuroscience (and related disciplines). 
102 Importantly, this seems exactly how Kiefer interpreted these models, see (Kiefer 2017, pp. 12-16). 
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Moreover, at least some artificial neural networks encoding generative models (such as 

Helmholtz machines) are Bayesian graphs (Dayan and Hinton 1996). Therefore, even if these 

artificial neural networks cannot prove that generative models in the brain are structural 

representations, they can show that generative models can be structural representations, and 

thus provide circumstantial evidence in favor of (a) obtaining. If our plausible sketches of the 

physical machinery encoding generative models are graphs (or at least graph-like), then we 

have a solid reason to believe the real physical machinery encoding generative models is graph-

like. And given that graphs are structurally similar to their targets, we have a solid reason to 

believe in the obtaining of (a). 

However, I think such a belief would be misplaced. Indeed, it seems to me that a closer 

consideration of artificial neural networks provides a reason to believe that (a) does not obtain. 

To see why, consider first that artificial neural networks are often said to encode generative 

models in their weighted connections (e.g. Dayan and Hinton 1996; Hinton 2014; Spratling 

2016: 3).103 But weighted connections (or, more precisely, weight matrices) are typically 

considered to be superposed representations (Ch. 2, §3.3). And superposed representations are 

not structurally similar to their targets. As a consequence, if considering artificial neural 

networks provides evidence regarding the status of (a), the evidence they provide is not in favor 

of (a) obtaining. 

Recall the notion of a superposed representation. A representation R is said to be a 

superposed representation of two targets T and T* when R encodes information about T and 

T* using the same set of physical resources. When applied to weight matrices, the idea is that 

weight matrices superpositionally represent their targets when each individual weight is 

assigned a value such that the network can exhibit the functionality needed to operate on all its 

targets (Clark 1993: 17-19, see Van Gelder 1991, 1992 for further discussion). For instance, a 

                                                
103  The claim, however, is not entirely correct, as I will soon clarify in the main text (§4.4) 
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single net can be first trained to recognize (or generate) instances of T. If the network is then 

trained so as to recognize (or generate) both instances of T and T*, then the weights of the net 

will encode information about both representational targets, and the weight matrix will be a 

superposed representation of both. 

However, in weight matrices: “Each memory trace is distributed over many different 

connections, and each connection participates in many different memory traces” (McClelland 

and Rumelhart 1986: 176). So, it seems each individual weight maps onto many different 

representational targets (or aspects thereof). But if this is the case, then either condition (i) or 

(ii)104 on structural similarity is blatantly violated, since they require a one-to-one mapping. As 

a further proof of their violation, recall that the obtaining of (i) to (iii) in conjunction entails 

semantic unambiguity. That is, if (i) to (iii) jointly obtain, it is always in principle possible to 

tell which bit of the represented target each vehicle constituent corresponds to. However, in 

superposed representations: “It is impossible to point to a particular place where the memory 

of a particular item is stored” (Rumelhart and McClelland 1986: 70). Superposed 

representations are thus not semantically unambiguous. Therefore, at least one condition 

among (i) and (iii) is not met. As a consequence, they do not support the claim that (a) obtains. 

 

4.3 - Alternative argument #3: Artificial Neural Networks, weights and structural 

similarity II 

The strength of the previous argument hinges on the fact that no discernible structural 

similarity seems to hold among individual weights and represented targets. But what if 

individual weights are not the right unit of analysis? A discernible weight matrix-target 

structural similarity might emerge at a different level of analysis. If I understand it correctly, a 

                                                
104 Or both. The formulation in terms of “either (i) or (ii)” is due to the fact that it seems to me that one might 
interpret weighted connections both as vehicle constituents or as relations holding among vehicle constituents 
(that is, nodes). 
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(fairly obscure) paper by O'Brien and Opie (2006) aims to show precisely that. 

Their argument hinges on the notion of fans-in, defined as the set of connections providing 

inputs to a node.105 According to O’Brien and Opie, the weight matrix of a connectionist system 

and the system’s target domain are structurally similar roughly in the following way: each fan-

in vx maps onto an element tx of the target domain, and there are two relations R (defined over 

fans-in) and R’ (defined over the elements of the target domain) such that if txR’ty then vxRvy.106 

To justify this claim, O’Brien and Opie (2006) trained a number of simple (three-layer, fully 

connected, feedforward) artificial neural networks to classify color hues. They then compared 

color hues and fans-in, showing that the mean spectrum of each color (rendered as a diagram 

showing wavelength on the x axis and amplitude on the y axis) is similar to one, and only one, 

fan-in in the network (rendered as a diagram showing input index on the x axis and weight 

value on the y axis). On this grounds, they concluded that, in trained connectionist systems, 

weighted connections, analyzed in terms of fans-in, bear a structural similarity to the target 

domain a system has been trained to operate upon. 

Yet their conclusion does not seem to follow from their data. Their data only show that each 

fan-in vx of the network maps on an element tx of the domain the net has been trained to operate 

upon. But this does neither entail nor show that there is a pattern of relations among the 

elements of the target domain which is systematically mirrored by the relations holding among 

fans-in. Indeed, as far as I can see, O’Brien and Opie (2006) mention no such pattern of 

relations. Hence, the claim that weight matrices, analyzed in terms of fans-in, are structurally 

similar to the network’s task domain is not justified by the empirical evidence O’Brien and 

Opie show. 

Moreover, even if O’Brien and Opie (2006) had found such a pattern of relations, it  would 

                                                
105 Notice that, thusly defined, fans-in have nothing to do with ordinarily understood fans-in (i.e. the number of 
input that a logic gate can handle). 
106 Notice that, in order for O’Brien and Opie’s claim to work, fans-in need to be interpreted as vehicle 
constituents. 
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still be doubtful whether their claim generalizes to all weight matrices of all networks. Surely, 

we cannot generalize by induction: all O’Brien and Opie “provided” is just one, fairly specific, 

case. Some argument seems needed to claim that such a sweeping generalization holds - or, 

better, that it would hold, were fans-in structurally similar to the network’s task domain. Yet, 

no such argument is provided.  

In fact, it seems to me that there are compelling reasons to believe that such a claim would 

hardly generalize. To see why, consider the fact that not every layer in an artificial neural 

network does the same kind of computational job. There are convolutional layers, whose job 

is to identify some feature in the input pattern irrespectively of the feature’s position in the 

incoming input (Foster 2019: 46-51). There are simple recurrent layers, whose job is that of 

providing a “short-term memory” to the system (Elman 1991). There are dropout layers, whose 

job is that of avoiding overfitting (Forster 2019: 54-56). As far as I can see, there is just no 

reason to believe that the fans-in of these layers will correspond to anything in the target domain 

the net operates upon. 

For these reasons, it seems correct to conclude that O’Brien and Opie’s (2006) argument 

provides no evidence in favor of (a). 

 

4.4 - Alternative argument #4: Artificial Neural Networks and weightless structural 

similarity 

Perhaps the two preceding arguments have over-emphasized the importance of connections 

in artificial neural networks. Generative models are not encoded in connections alone; they are 

jointly encoded by connections and activity vectors (e.g. Buckley et al 2017: 57). Moreover, 

the definition of structural similarity relevant to the obtaining of (a) quantifies only over some. 

Thus, noticing that connections do not participate in any one-to-one mapping does not, in and 

by itself, provide a compelling argument to the effect that (a) does not obtain: connections 



102 

might simply be excluded from the vehicle constituents (or relations) participating in the 

structural similarity. Perhaps the relevant vehicles encoding generative models are activity 

patterns, and the relevant structural similarity should be sought between activity patterns and a 

target domain. Alternatively, the generative model might be encoded by both connections and 

activity patterns, but only activity patterns bear a structural similarity to the represented target. 

After all, the definition of structural similarity quantifies only over “some”. 

For the sake of clarity, it is now important to stress that generative models are jointly 

encoded by activity vectors and weighted connections as the alternative argument suggests 

(Buckley et al. 2017). So the two arguments provided above did overemphasize the importance 

of weighted connections in the encoding of generative models. To my excuse, I’d like to stress 

that the PP literature encourages this excess of emphasis on emphasis on weighted connections: 

“We allowed the network to learn a hierarchical internal model of its natural 
image inputs by maximizing the posterior probability of generating the observed 

data. The internal model is encoded in a distributed manner within the synapses 

of the model at each level”. (Rao and Ballard 1999: 80, emphasis added) 

“The representation at any given level attempts to predict the representation at 
the level below; at the lowest level this amounts to a prediction of the raw 

sensory input. It is the backward connections, therefore, that instantiate the 

generative model.” (Shipp 2016: 3, emphasis added) 

“The generative model, which in theories such as hierarchical predictive coding 
is hypothesized to be implemented in top-down cortical connections, specifies 

the Umwelt of the organism the kinds of things and situations it believes in 

independently of the current sensory data [...]” (Kiefer 2020: 2, emphasis added) 

This might be enough of an excuse, but excuses are not arguments. So, does factoring in 

activity patterns (alongside weighted connections) afford a way to vindicate (a)? I don’t think 

so. 

First, simply factoring activity patterns in (presumably, as vehicle constituents) does not 

change the fact that weighted connections do not map one-to-one onto target constituents or 

relations holding among target constituents (§4.2). So, considering activity patterns in the 
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relevant structural similarity (as vehicle constituents) is not enough. It is also necessary to 

exclude weighted connections: it must be claimed they do not participate in the relevant 

structural similarity. 

Can some relevant network-target structural similarity be defined without taking into 

account weighted connections? The answer is surely positive. There is nothing particularly new 

in this claim: Paul Churchland’s state-space semantic is the most obvious example of a 

network-target structural similarity that does not involve connections (see Churchland 1989; 

2012). In his view, the entire activation space of the hidden layers of a network structurally 

resembles the target domain upon which the network has been trained to operate. And I’m 

ready to concede that a similar structural similarity can be found by considering artificial neural 

networks encoding generative models.107 

Isn’t this just conceding that (a) obtains? No, it is not. For activation spaces (the first relevant 

relatum of the structural similarity) are not vehicles, because they are not concrete particulars. 

They are abstract mathematical spaces that are used to account for the systematic behavior of 

artificial neural networks. So, they fail to vindicate (a) for the same reasons Gładziejewski's 

argument fails to vindicate (a). The same reasoning applies also to other accounts of network-

target structural similarity that do not factor in connections (e.g. Grush 2008; Garzón and 

Rodríguez 2009). All these accounts show that the abstract mathematical space that describes 

the activity of the network is structurally similar to the target. But these abstract mathematical 

spaces are not concrete particulars, so they are not vehicles. The vehicles are the individual 

patterns of activity tokened within the network. And the argument here considered does neither 

entail nor show that these individual patterns are structurally similar to their representational 

targets.108 Indeed, there are good reasons to hold that individual patterns of activation are not 

                                                
107 I’m doing so for the sake of discussion. I’m actually now persuaded that finding such a structural similarity in 
generative models will be hard, and that, even if present, it would not substantiate a structural representationalist 
reading of generative models. See (Ch. 6: § 5.2) for discussion of this point. 
108 To be clear: I’m not denying that it is possible to use the structural similarity holding between the activation 
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(in general) structurally similar to their targets. This is because patterns of activation are 

superposed representations too.109 Even leaving aside the activity vectors resulting from the 

combination of other activity vectors (e.g. Smolensky 1990), all individual activity vectors 

represent, to some degree, multiple possible targets (e.g. McClelland and Rumelhart 1986, vol 

2: 390-341).110 So, if this is correct, and individual vectors are superposed representations, they 

will not be structurally similar to their targets, for reasons that, mutatis mutandis, are identical 

to the one provided in (§4.1). 

Moreover, I honestly doubt that it is possible to rightfully exclude weighted connections 

from the relevant structural similarity. To see why, consider the following: if a vehicle 

represents in virtue of the structural similarity it bears to a target, then the more the vehicle and 

the target are structurally similar, the more the representation will be accurate. The accuracy 

of a structural representation non-accidentally increases when (and, at least prima facie, only 

when) the elements of the vehicle that participate in the relevant structural similarity are 

rearranged in a way such that their newfound arrangement increases the extent to which the 

vehicle is structurally similar to the target (see Gładziejewski and Miłkowski 2017). 

If this is correct, then there seems to be a solid reason to deny that we can exclude 

connections from the relevant network-target structural similarity, for modifications of 

weighted connections made in accordance to the relevant learning algorithm do improve the 

representational accuracy of connectionist systems. Thus, if these systems represent by means 

                                                

space of a network and its target domain to ground the content of each individual vector of activation. But this 
would not entail that each vector is a structural representation of its target. To see why, notice that in such a case 
the entire”vehicle” V is the entire activation space, of which individual vectors are “vehicle constituents”. But, in 
general, the vehicle constituents of a structural representation need not be structurally similar to the target 
constituents they map onto; hence they need not be structural representations (although they may). Hence, in order 
to substantiate the claim that activation vectors are structural representations, one would need to show that each 
individual vector is structurally similar to the target it represents. And that is not what the argument shows, nor 
something that can be shown by looking very carefully at activation spaces. 
109 Thanks to Erik Myin for having reminded me of  this. 
110 To be precise: all activity vectors are superposed, unless the network uses a localist (1 node = 1 feature) coding 
scheme. But such networks were ancient even in the ‘80s (cf. Clark 1989), and are not plausible models at the 
implementation level. So, I won’t consider them here. 
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of structural similarity, it seems that weighted connections must be counted among the elements 

participating in the similarity. Surely, the relevant definition of structural similarity provided 

when unpacking condition (a) quantifies only over some, but that “some” seems to include 

weighted connections. However, if the argument offered above (§4.2) is correct, weighted 

connections are not structurally similar to their targets. In sum: if artificial neural networks 

deploys structural representations, connections must be involved. Yet, their involvement seems 

to prevent the obtaining of (a). 

 

4.5 - Alternative argument #5: Artificial Neural networks, weights and structural 

similarity III 

It is now tempting to wonder whether the relevant definition of structural similarity could 

be relaxed, allowing connections to participate in the structural similarity in spite of the lack 

of any intelligible one-to-one mapping holding between them and the elements of the target 

domains. In fact, some definitions of structural similarity do not seem to require such one-to-

one mappings. Kiefer and Hohwy (2019: 400), for instance, define structural similarity as 

follows: 

“The notion of structural representation is of course only as clear as the relevant 
notion of structural similarity. Gładziejewski and Miłkowski adopt the 
definition offered by O’Brien and Opie (2004: 11), which may be paraphrased 
as follows: suppose that a system S consists of a set of elements E and a set of 
relations R defined on those elements. We may say system S1 is structurally 
similar to S2 just in case there is a mapping from members of E1 to those of E2 

and a mapping from R1 to R2 that together preserve the relational structure among 
the elements of S1 for “at least some” elements and relations in E1 and R1.” 
(Kiefer and Hohwy 2019: 400). 

Notice that this “paraphrasis” of O’Brien and Opie’s definition does not require the relevant 

mappings (from vehicle constituents onto target constituents and from R to R’) to be one-to-

one. Hence Kiefer and Hohwy’s notion of structural similarity is significantly less demanding 

than O’Brien and Opie’s. Similarly, Shea (2018: 117) argues that structural similarities can 



106 

allow for many-to-one mappings. 

I do agree with Shea: many-to-one mappings are fine. So, I would allow the relevant 

definition of structural similarity to be relaxed so as to include many-to-one mappings. What I 

would not allow (for I believe allowing it would be a mistake) are one-to-many mappings. And 

I believe that the philosophers interested in defending structural representations are better off 

not allowing them either, for allowing them makes the content of structural representations 

indeterminate. More precisely, allowing one-to-many mappings makes the content of structural 

representations disjunctive.111 

To see why this is the case, let us consider the simplest possible structural representation V. 

Its vehicle is constituted by two vehicle constituents va and vb, in a relation R. Suppose that va 

maps on a target constituent ta, and that R maps on a relation R’ holding among target 

constituents. Suppose further vb maps onto many (for the sake of simplicity, two) target 

constituents tb and tc. 

Now, given the mapping sketched above112, V is accurate when taR’tb is the case. But it is 

also accurate when taR’tc is the case: after all, vb maps also onto tc, and so vaRvb maps in the 

desired way also onto taR’tc. So, there is also a structural similarity holding between V and 

taR’tc, given the relevant mapping, and, as a consequence, V is accurate also when taR’tc is the 

case. 

 But this means that V is inaccurate when, and only when, both  taR’tb and  taR’tc are not the 

case, and these are the conditions of satisfaction of a vehicle representing (taR’tb or taR’tc); 

hence the content of V is disjunctive. Yet, as seen in (Ch.2: § 2.2), a theory of content must 

deliver non-disjunctive contents. And, in the case at hand, disjunctive contents are a result of 

one-to-many mappings. So, it seems to me that, in order for a structural-resemblance based 

                                                
111 This issue is further discussed in (Ch.6: §4). 
112 Importantly, I’m assuming that both mappings will be exploitable and thus that they both contribute to 
determine the content of V. 
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theory of content to be successful, it must exclude one-to-many mappings. Now, the issue with 

weights in connectionists systems is that they seem to map onto many: each weight encodes 

information about many targets (see Clark 1993: 13-17; Van Gelder 1991: 42-47; Ramsey, 

Stich and Garon 1991: 215-217 for early renditions of this point). So, it seems to me that 

allowing weighted connections to participate in the relevant structural similarity is bound to 

generate a problem with content determinacy. But, as argued above, there are compelling 

reasons not to exclude weighted connections from the relevant structural similarity 

This, I believe, creates a nasty dilemma for the philosopher willing to resort to artificial 

neural networks to defend the claim that generative models are structural representations. 

 

4.6 - Alternative argument #6: Wiese’s defense of structural similarity 

Wanja Wiese (2018: 215-217) puts forth an argument in favor of (a), which might 

supplement Gładziejewski's original argument. 

The argument is straightforward. Wiese notices that the deterministic equations such as: 

• c2 = f3(c3) + ω3 
• c1 = f2(c2) + ω2 

• s = f1(c1) + ω1 

are often used to describe both neural dynamics instantiating a generative model and the 

causal dynamics of the environment (cfr Ch 1: §2.1; Ch. 3: §4.1). But of course this implies 

that both the neural dynamic instantiating the generative model and the causal dynamics of the 

environment satisfy the same mathematical description. And that, at least prima facie, entails 

that the two systems are structurally similar. In fact, the same set of arguments can be mapped 

onto both systems; in a way such that the relevant mathematical relation holding among 

arguments are preserved in both systems. Isn't this sufficient to establish that a relevant 

structural similarity is present? 

A negative answer seems warranted for several reasons. Firstly, Wiese does not specify how 



108 

the mathematical contents of the vehicle constituents are determined. In (Ch. 2: §3.4) I have 

suggested  that mathematical contents seem to be  determined by computational 

implementation: the inner vehicles of a system carry a determinate mathematical contents 

because the system computes a specific function; that is, implements a specific computation. 

But, plausibly, different accounts of implementation will assign different mathematical 

contents. Moreover, some accounts might assign indeterminate mathematical contents, 

whereas others might assign no mathematical contents at all (e.g. Piccinini 2015: 137-138; 

Fresco, Copeland and Wolf 2021; Facchin submitted). So, what Wiese needs seems to be an 

account of computational implementation, which, as far as I can see, is nowhere to be found in 

his articles. This is troubling, since Wiese (2017; 2018) explicitly claims that the relevant 

pattern of relations preserved on both sides of the structural similarity is the mathematical 

structure obtained by ascribing mathematical contents to vehicle constituents (see Ch. 3, § 4.1). 

But, to put it bluntly, if we do not know how mathematical contents are assigned to the vehicle 

constituents of the structural representation, we simply cannot know whether the vehicle of the 

structural representation is really structurally similar to its target.113 

Secondly, Wiese’s argument for (a), even if successful, would fail to vindicate epistemic 

representationalism; at least when it comes to generative models.114 This depends on the 

interplay between the vehicle of the structural representation and its vehicle constituents, which 

are vehicles of input-output representations carrying the relevant mathematical contents (see 

Ch 3: §4.1, fn. 80). Equations of the form: 

• c2 = f3(c3) + ω3 

• c1 = f2(c2) + ω2 

                                                
113 Wiese seems to have recently endorsed the mechanistic account of computational implementation (see Wiese 
and Friston 2021). Endorsing it, however, does not solve the problem I raised here, for the mechanistic account 
of implementation does not assign determinate mathematical contents to vehicles. Indeed, they seem to allow for 
multiple assignments of mathematical contents, leaving it indeterminate at best (Piccinini 2015: 137-138; 
Dewhurst 2018; Fresco, Copeland and Wolf 2021; Facchin submitted). 
114 Notice, however, that Wiese’s account does vindicate epistemic representationalism in respect to the 
constituents of generative models, which, in his account, are at least construed as input-output representations. 
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• s = f1(c1) + ω1 

describe the computational functioning of the entire generative model. If the entire 

generative model is a vehicle V, and the description these equations provide is correct, we can 

conclude that certain parts or vehicle constituents of V carry specific mathematical contents; 

hence, that they are input-output representations. Hence, according to Wiese, the structural 

similarity holding between the generative model V and its target T is (at least partially) 

constituted by the way in which input-output representations are tokened within V. Notice that 

this fits nicely with Wiese’s claim that these equations describe the dynamics of the nervous 

system; for, if we assume the nervous system computes, its activity, and thus, its dynamics, 

must at least in part consist in the tokening of input-output representations. 

However, and this is the key point, notice that, on the side of V, the relevant relations holding 

among the relevant vehicle constituents (i.e. the input-output representations) are 

computational state transition; that is, the rules according to which input-output 

representations are tokened within a computational system. So, on Wiese’s view, V is the entire 

computational system; that is, a system in which the tokening of representational vehicles takes 

place. But, in general, computational systems are distinct from the representations tokened 

within them and they are not considered to be representations (or representational vehicles) in 

their own right.115 Compare: it seems literally false to say that my computer is a representation 

of anything, although it seems literally true to say that a physical state within my computer 

(e.g. a physical state of a register) is a representation. Compare further: it seems false to say 

that brains are representations of edges, whereas it seems correct to say that specific activation 

patterns in the early visual cortex are representations of edges. 

More in general, it is descriptively accurate to say that in the actual practice of the mind 

                                                
115 The point is ambiguous between computational systems as mathematical objects (e.g. a finite state machine 
defined as a quintuple) and their physical implementations. Whilst real and important, this distinction makes no 
difference when it comes to the point I’m trying to articulate: mathematical objects are not vehicles, and their 
physical implementations are typically not considered to be vehicles, as explained in the main text. 
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sciences computational systems are considered to be distinct from the (input-output) 

representations tokened within them. Consider the following representative citations: 

“Granting these limitations, we may nonetheless be able to catch a glimpse of 
what representations might look like within the parallel style architecture of the 

brain by taking a look inside a connectionist network. The place to look is in the 

dynamics of the system; that is, in the patterns of activity generated by the system 

of interconnected units.” (Churchland and Senjowski 1992: 358; emphasis 
added). 

and, coming from the PP literature: 

“In general, ‘representation’ in machine learning (and in particular in 
connectionist approaches) refers to an internal state of a system that carries 

information, as it does throughout most of cognitive science.” (Kiefer and 

Hohwy 2018: 2396; emphasis added). 

In both these citations, the authors make a sharp distinction between the (input-output) 

representations tokened within computational systems and the systems within which (input-

output) representations are tokened. Notice further that in neither citation the system in which 

the (input-output) representations are tokened is considered to be either a representation or a 

representational vehicle in its own right. 

Now, to vindicate epistemic representationalism, one must provide an account of 

representations which identifies as representations the kind of things cognitive science 

ordinarily refers to using the term “representations”. These are the relevant explanatory posits 

of cognitive science (or, at least, the relevant explanatory posits cognitive scientists call 

“representations”). But the relevant structural similarity Wiese points to does not hold between 

those posits and their alleged targets. Rather, it holds between the entire system (in which the 

tokening of those posits takes place) and the environment surrounding it. Hence, Wiese’s 

proposal does not vindicate epistemic representationalism: the structural representations it 

delivers (if any), do not vindicate the explanatory posits of cognitive science. 

Lastly, is it correct to say that the dynamics of the generative model and of its 

representational target can be described by the same set of equations? Many commentators 
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(e.g. Baltieri 2019: 34-35; Raja et al. forthcoming: 40-41) have noticed that this is an 

assumption that is often made in computational modelling. That is, it is common to assume that 

the probability distributions in the model match, in the relevant sense, the probability 

distributions in the environment. But if this is correct, then it seems that Wiese’s argument in 

favor of (a) is subtly circular, as the empirical studies Wiese invokes to substantiate his 

argument assume (for modelling sake) the presence of the structural similarity Wiese’s 

argument tries to vindicate. 

 

4.7 - Alternative argument #7: “whole brain” representations? 

In all the arguments considered above, it was assumed that the relevant structural similarity 

holding between the vehicles of generative models and their targets should be the upshot of 

adopting some specifical theoretical perspective on generative models. But what if the relevant 

structural similarity could be found just by looking at the relevant vehicle? Consider, for 

instance, The following citations: 

“Hierarchical models enable empirical Bayesian learning of prior densities and 

provide a plausible model for sensory inputs. Single-level models [...] depend 

on prior constraints for unique inference and do not call upon a hierarchical 

cortical organisation. On the other hand, if the causal structure of generative 

processes is hierarchical, this will be reflected, literally, by the hierarchical 

architectures trying to minimise prediction error, not just at the level of sensory 

input but at all levels” (Friston 2003: 1343; emphasis added) 

“[...] every aspect of our brain can be predicted from our environment. [...] A 

nice example is the anatomical division into what and where pathways in the 

visual cortex. Could this have been predicted from the free-energy principle? 

Yes – if the anatomical structure of the brain recapitulates the causal structure 

in the environment, then one would expect independent causes to be encoded in 

functionally segregated neuronal structures” (Friston 2013: 133; emphasis 
added) 

Since the definition of structural similarity quantifies only over some, these quotes by 

Friston are sufficient to vindicate the obtaining of (a): if Friston is right, there is a structure-

preserving mapping from some cerebral regions onto some environmental targets. Furthermore, 
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examples of the sort the quote highlights seem fairly easy to multiply. It might be pointed out, 

for instance, that the anatomical segregation of visual and auditory cortices reflects the fact that 

visual and sensory input can have different worldly causes. So there is, I submit, a relevant 

brain-world structural similarity. Therefore, if the whole brain is the generative model (a claim 

that is not uncommon in the PP literature, e.g. Bastos et al. 2012: 702), then condition (a) is 

met. 

However, it seems to me that such a vindication of (a) is, at best, a Pyrrhic victory. 

To begin with, Friston’s claim that if the structure of the generative process is hierarchical, 

then the generative model must be hierarchically organized in a similar manner is disputable. 

In fact, “shallow” (three layer) networks can in principle approximate all functions computed 

by deep (hierarchically structured) ones, because three-layer networks can approximate every 

computable function (Hornik 1991). This does not mean that shallow networks compute better 

(or even as well as) deep ones - in fact they don’t (Lin, Tegmark and Rolnick 2017). But it 

means that Friston’s conditional is false: hierarchically structured generative processes do not 

entail the presence of hierarchically structured generative models “mirroring” the structure of 

the generative process. Thus, Friston’s arguments lacks the force Friston’s wording suggests: 

a model capturing a hierarchically deep generative process may, but need not, be itself 

hierarchically structured. Hence, the relevant structural similarity Friston is seemingly pointing 

to may, but need not, be present. 

Now, as a matter of fact cortical networks are hierarchically structured, and so the kind of 

structural similarity Friston is pointing to seems to be present. Yet, notice that such a structural 

similarity seems to hold between the entire brain and the environment. And, typically, the brain 

is assumed to be a computational system rather than a vehicle tokened in a larger computational 

system. Thus, whilst the structural similarity Friston points towards can surely vindicate (a), it 

cannot vindicate epistemic representationalism for the same reasons seen in the previous 
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subsection. The structural similarity presented above seems to enable us to vindicate only 

metaphysical representationalism about the whole brain (i.e. the claim that the whole brain 

really is a “big” representation). Given that Gładziejewski’s account of structural 

representations aims at vindicating both metaphysical and epistemic representationalism, this 

way of vindicating (a) seems to lead to a partial failure of his account. 

One might contend this verdict is premature because vehicle constituents and their relations 

of structural representations are representational vehicles in their own right (e.g. Shea 2018: 

118; Ramsey 2007: 79, footnote 3). Thus, claiming that the brain as a whole is a structural 

representation might in principle justify the claim that the relevant elements of the structural 

similarity (i.e. patterns of activation) are representations too, thus vindicating epistemic 

representationalism. I believe that the problem with this line of reasoning is the following: the 

brain-world structural similarity Friston envisages is not defined over patterns of activation in 

the brain. Rather, it is defined over the anatomical structure of the brain. The relevant elements 

in the structural similarity are not patterns of activation. Hence, this way of vindicating (a) 

entirely fails to vindicate the epistemic representationalist claim.116 

Secondly, a complaint about content. What would such a “whole brain” structural 

representation represent? If I understand Friston correctly, the brain is supposed to recapitulate 

the causal structure of the world or the environment. Thus, the relevant structural similarity 

holds in between the anatomical structure of the brain and the causal structure of the 

world/environment. But a structural representation represents the target whose structure is 

mirrored in the structure of the vehicle, and here such a target is the world/environment (see 

Wiese 2018: 219; Williams 2018a: 154-155). This is not the kind of content naturalistic theories 

of content are supposed to deliver, for the world/environment is not the kind of content invoked 

                                                
116 Thus notice that, in this regard, the proposal under examinations scores worse than Wiese’s one, which was 
able to vindicate epistemic representationalism about patterns of neural activation, treating them as input-output 
representations. 
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in the scientific explanations of our cognitive capacity, nor the kind of content relevant to our 

personal-level mental states. This isn’t a knockdown objection, but it surely shows that the 

argument has some very undesirable consequences. 

Lastly, and, I believe, most importantly, this way of vindicating (a) seems to prevent (c) 

from obtaining. If the entire brain is a single gigantic representation representing the 

world/environment, it is very hard to see how decouplability might be met. There is always 

some sort of causal contact  between brains and world/environment. Since point (c) spells out 

decouplability in terms of causal contact, this way of vindicating (a) seems to prevent the 

obtaining of (c).117 

This problem is even more worrisome than it prima facie appears. For, arguably, the 

representational target of a generative model is not “the world”, in the sense of the extra-

organismic environment. Rather, as seen in (Ch. 3 (§3), the target of a generative model is the 

generative process, which includes the animal’s body and bodily responses. And surely well 

functioning brains are never decoupled from those. And even if there are extreme cases in 

which one’s brain is decoupled from one’s body (e.g. if one suffers from complete locked-in 

syndrome, or brain-in-a-vat scenarios), one is never decoupled from the generative process. 

For “the generative process” simply denotes the process generating one’s sensory signals. And 

there is no decoupling from that - not even in cases of complete sensory deprivation: the 

absence of a sensory signal is a sensory signal in its own right. 

At this juncture, one might be tempted to purge the relevant account of structural 

representations from point (c), thereby vindicating the claim that generative models are 

structural representations of the relevant generative process. As far as I can see, this is a 

                                                
117 One might worry that the arguments presented in the two previous indents hinge upon an extremely 
uncharitable interpretation of Friston, as he sometimes more cautiously claims that the structure of the generative 
model “mirrors” the structure of the generative process (rather than the one of the world/environment). Whilst 
entirely correct, I fail to see how such a reading is more charitable. For one thing, it entirely prevents the obtaining 
of (c), as described in the main text. 
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legitimate move. However, it seems quite an ad hoc move. There are good independent reasons 

to hold that representations are necessarily decouplable from their targets (see Grush 1997; 

Webb 2006; Pezzulo 2008: Orlandi 2014: 120-134; 2020). Moreover, abandoning (c) would 

likely make Gładziejewski’s account of structural representations far too liberal, as 

Gładziejewski himself acknowledges (Gładziejewski 2016: 571).  

 

4.8 - Alternative argument #8: Making “whole brain” representations work? 

Perhaps there is a way to make “whole brain” representations work. Thus, consider Kiefer 

and Hohwy’s (2018; 2019) defense of generative models as structural representations.118 

According to Kiefer and Hohwy, we should conceive the brain as a complex causal network. 

If I understand them correctly, we should interpret each node in such a network as a definite 

pattern and neuronal activity, and the arrows connecting the nodes as causal relations between 

patterns (i.e. if node a is connected to node b, then pattern a causes pattern b). On the account 

Kiefer and Hohwy propose, this network of causal relations structurally resembles the causal 

structures of the world as captured by “material inferences”; that is, inferences such as that 

from “It’s raining” one infers “The street is wet” (see Kiefer and Hohwy 2018: 2392-2393). In 

this way, the entire brain (which instantiates the causal network), comes to reflect, and hence 

to represent, the causal structure of the world. 

Kiefer and Hohwy’s account of “whole brain” structural representations seems to me a 

significant improvement from the previously scrutinized one. For one thing, given that in this 

view the relevant elements of the structural representation are patterns of activation, and given 

that the elements of a structural representations can be counted as representations in their own 

right, Kiefer and Hohwy’s proposal seems better poised to substantiate the epistemic 

                                                
118 To be fair, Kiefer and Hohwy do not explicitly set out to defend “whole brain” representations. However, it 
seems to me that their account entails that the whole brain is a structural representation, at least insofar they take 
the entire causal network instantiated by the brain to be the relevant structural representation. 
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representationalist claim.  

However, it seems to me that relying on Kiefer and Hohwy’s proposal to vindicate (a) has 

serious drawbacks. 

To start, the problem with (c) is not solved by Kiefer and Hohwy’s account.119 If the brain 

is a complex causal network mirroring the causal structure of the world, it is correct to say that 

the relevant structural representation (i.e. the brain) represents the world. I simply do not see 

how one could sever the constant brain-world (or brain-generative process) causal contact so 

as to vindicate (c).120 

Secondly, Kiefer and Hohwy’s account rises a puzzle about the inferential status of brain 

processes. If causal relations holding among patterns of activation are the relations holding 

among vehicle constituents that “mirror” the relations on the other side of the structural 

similarity, it follows that they are part of the vehicle. But if this is the case, then it seems to me 

that these causal relations cannot be inferential processes, for inferential processes seem to be 

distinct from the representational vehicles upon which they operate. So, it seems that if Kiefer 

and Hohwy’s (2018; 2019) account of structural similarity is accepted, causal interactions 

among neural activity patterns cannot be rightfully called inferences. And this seems a problem, 

given that the inferentialist reading of predictive processing tends to go hand in hand with the 

claim that generative models are structural representations (e.g. Kiefer 2017; Gładziejewski 

2017; Hohwy 2018).121 

Lastly, a wholesale acceptance of Kiefer an Hohwy’s (2018; 2019) account might, 

                                                
119 Notice, importantly, that Kiefer and Hohwy consider decouplability a necessary feature of representations, see 
(Kiefer and Hohwy 2019: 400) 
120 Of course, individual patterns of activation can be decoupled from the target they represent in virtue of the 
overall brain-world structural similarity. However, point (c) is defined over the entire structural representation, 
not its individual vehicle constituents.  
121 Notice that this problem is closely related to a problem emerged in §4.6; namely the fact that, on Wiese’s 
account, computational state transitions are taken to be the relevant relations holding among vehicle constituents. 
In both cases, what happens is that a set of relations typically defined over representations (computational 
transitions defined over input-output representations or inferential relations) ends up being treated as the set of 
relations holding among the vehicle constituents of the generative model that “mirrors” the relational structure of 
the model’s target. 
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paradoxically, force one to abandon the claim that generative models are structural 

representations. The point is subtle but important. According to Kiefer and Hohwy: 

“The contents of parts of a structural representation are (at least in the case of 
causal generative models of an environment) in effect determined by their 

internal functional roles.” (Kiefer and Hohwy 2018: 2393; see also Kiefer and 
Hohwy 2019: 402; Kiefer 2020, endnote 17) 

But this is not how the parts (i.e. vehicle constituents) of a structural representation acquire 

their contents. The content of a structural representation is determined by the relevant structural 

similarity it bears to a target; and the content of its vehicle constituents is determined by the 

way in which they participate in the relevant structural similarity; that is, by the way in which 

they map onto a corresponding element of the target (e.g. Cummins 1996: 96). The relevant 

relation determining the contents of the elements of a structural representation is the structural 

similarity holding between the vehicle and the target; not the relations holding among vehicle 

constituents. Surely, since structural similarity is structural it must, in some relevant sense, be 

sensitive to these relations. But this does not entail that they determine the content of the vehicle 

constituents of a structural representation.  

Another, perhaps more perspicuous, way to flesh out the same point is this: were the content 

of the vehicle constituents determined by the relations  holding among them, then a vehicle 

constituent va  would represent a target constituent ta whether V is structurally similar to T or 

not. If the content of vehicle constituents is determined by the relevant relations holding among 

them, it follows that their content is not determined by the structural similarity holding between 

V and T (if any), for the relations holding among vehicle constituents (and hence their contents) 

would be the exactly the same even in cases in which no structural similarity between V and T 

holds.122 Figure 4 exposes the point in a pictorial format. 

                                                
122 Moreover, even if V and T are structurally similar, there is no principled reason as for why the contents that 
vehicle constituents would bear, were these content determined by their relations, should match the content they 
would bear, were their content determined by the relevant structural similarity. 
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Figure 4. According to a structural similarity theory of content a 

vehicle constituent va represents a target constituent ta because V is 

structurally similar to T. Conversely, according to functional role 

semantics, va represents ta because it bears some specific relations 

with over vehicle constituents, whether V is structurally similar to 

T or not. The graphical conventions are the same as in figure 3 

(drawing by the author). 

To put the point bluntly, what I’m trying to point out is this: Kiefer and Hohwy espouse a 

form of functional role semantics. But functional role semantics and structural similarity have 

no essential connections, pace Kiefer and Hohwy. It thus seems to me that a wholesale adoption 

of Kiefer and Hohwy’s proposal ends up undermining the broader structural-representationalist 

claim. Kiefer and Hohwy might provide a way to vindicate (a); but a wholesale acceptance of 

their proposal seems to make such a vindication redundant. If one adheres to functional role 

semantics, one is not in need of a structural similarity. 

This is not to deny that Kiefer and Hohwy (2018: 2393; 2019: 402) stress that the relevant 
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(i.e. content conferring) functional relations among vehicle constituents mirror, in the relevant 

sense, the causal structure of the world: on their view, functional role semantics entails a 

relevant structural similarity. But this surely does not allow us to count Kiefer and Hohwy as 

defenders of structural representations. For, on their account, the relevant structural similarity 

does not determine the content of the vehicle, nor, strictly speaking, holds between the vehicle 

and the target. In fact, on the view functional-role semantics offers, what I have thus far called 

“vehicle constituents” are simply vehicles, whose content is determined by their mutual 

relations. And no such vehicle is (or needs to be) structurally similar to anything. Hence, when 

it comes to vindicate (a) the problem with Kiefer and Hohwy’s account is the same problem 

examined in §4.4 above: the structural similarity does not hold between a vehicle and a target, 

but rather between the entire set of representational vehicles tokened within a system and the 

set of targets the system can represent.123 

 

4.9 - Alternative argument #9: The “whatever” argument 

One might further try to vindicate (a) by claiming that, since generative models can be 

rendered as Bayesian nets, and that Bayesian nets are computationally useful because they are 

structurally similar to their target (Danks 2014: 39), whatever piece of machinery is 

instantiating the relevant generative models must, to be computationally useful, be structurally 

similar to its target too. This way of vindicating (a), however, seems flawed. Generative models 

can be run by everyday personal computers: Von Neumann architectures computing over 

arbitrary symbols. And symbols surely aren't structural representations: in fact, the two are 

typically contrasted (O'Brien and Opie 2001; Williams and Collings 2017). 

                                                
123 There is, however, an important difference between Kiefer and Hohwy’s proposal and the one examined in 
§4.4. Whereas in §4.4 the structural similarity between the set of representational vehicles and the set of 
represented targets determined the content of each vehicle, in Kiefer and Hohwy’s case the content of each vehicle 
is not determined by that structural similarity, but by the relations holding among vehicles. Thus, in their view, 
the structural similarity, even if present, is purely “epiphenomenal”, as it does not contribute to content 
determination. 
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5 - Tacking stocks (and pointing forward) 

I have examined the argument Gładziejewski offers to claim that generative models are 

structural representations. I have argued that the argument is faulty, because it fails to establish 

that the vehicles instantiating generative models bear an exploitable structural similarity to their 

targets. I have also considered some alternative arguments to the same effect, and argued that 

none of them suffices to establish the desired conclusion. Hence, at present, the claim that 

generative models are structural representations is unjustified. 

The previous discussion might have left a halo of confusion concerning the physical 

structures implementing generative models: are these entire brains/neural networks, or 

neuronal responses, or sets of connections about processing units, or something else entirely? 

The correct answer is provided in §4.5 above: they are patterns of activation and sets of 

weighted connections between units. In Ch. 6, I will carefully analyze one such structure, 

claiming that, thusly conceived, generative models are non-representational structures 

instantiating an agent’s sensorimotor mastery. 

But before doing so, I must face a more pressing problem. The bulk of the argument I have 

offered here concerned the fact that, at present, there is no convincing reason to claim that the 

physical structures encoding generative models are structurally similar to their targets. But 

what if it were? Would the structural-representationalist reading of predictive processing be 

vindicated? I think that the correct answer is negative, because structural representations do 

not meet the Job Description Challenge. I will defend this claim in the next chapter.
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Chapter Five - Structural representations do not meet the Job Description Challenge124 

 

1 - The Job Description Challenge 

In the last chapter, I’ve argued that, at present, we have no reason to believe that the vehicles 

of generative models are structurally similar to their targets. But what if such a structural 

similarity were to be found? Wouldn’t that turn the tide in favour of a structural 

representationalist reading of PP? 

Here, I argue the answer to this question is negative, for structural representations, as 

Gładziejewski (2015b, 2016) defines them, do not meet the “Job Description Challenge” 

(Ramsey 2007). For this reason, conditions (a) to (d) do not spell out a representational 

functional profile, and items satisfying them do not function as representational vehicles within 

the systems in which they operate. 

As I understand it, the Job Description Challenge (Ramsey 2003; 2007; 2016) begins with 

the following premise: representations belong to two distinct kinds at once. 

To start, representations belong to an intentional kind, as they necessarily encode, carry, or 

“have” content. Representations are items125 (vehicles) that are about other items (targets). If 

I say that something is a representation, it makes perfect sense to ask what its target is, and how 

the target is represented (see Ch. 2: §2.2). 

Secondly, representations belong to a functional kind (Ch. 2: §2.3). The point is well 

accepted in the relevant literature126, yet I know of no “official” argument  substantiating this 

claim. As far as I can see, the claim rests only on two informal, yet persuasive, observations. 

One is that the items belonging to the class of representations are unruly disjunctive, as the 

                                                
124 This chapter is based on, and expands upon, Facchin, M. (2021c). Structural representations do not meet the 
Job Description Challenge, Synthese, https://doi.org/10.1007/s11229-021-03032-8 
125   Here, “item” is used broadly, to designate at once objects, events and states of affairs. 
126 On representations forming a functional kind, see (Peirce 1931-58; Millikan 1984; 2020; Haugeland 1991; 
Ramsey 2007; 2016; 2020; Lee 2018: 2). 
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class includes pictures, sentences, engraving, utterances, maps, scale models and (according to 

many) neural states. Moreover, it is a class whose borders can be constantly expanded, as we 

might in principle use any object to represent something else (e.g. we can stipulate that my 

glasses represent x, so when you see me wearing glasses you know x is the case). It seems clear 

that it is very unlikely that all these items will end up having some common property127, around 

which the class of representations is built. It thus seems more likely that what ties all these 

items together in a single class is a common function. Functional kinds can in fact be realized 

in many different ways: a quick survey on Wikipedia, for instance, reveals there are no less 

than six different types of pumps. Nevertheless, all these pumps are (bona fide) pumps because 

of what they do; namely, displacing fluids (liquids or gasses) by exerting some mechanical 

action. That is, all pumps are pumps because of the function they perform, in spite of their 

superficial differences. Hence, if “representation” really denotes a functional kind, it can easily 

be understood why the various different types of representations all qualify as members of a 

single kind (Ramsey 2007: 7-14) 

The other is that representations can be, and often are, characterized functionally, as “stand-

ins” for absent targets.128 As cognitive science conceives of them, representations are 

theoretical posits that are needed to explain how intelligent systems can organize their behavior 

in respect to something that is not actually present. But, as Orlandi (2020) has recently noticed, 

this means that representations all have a specific function; namely, that of allowing a system 

to “coordinate with the absent”. Strikingly, this is roughly the same role public representations 

are supposed to play: namely, that of providing us information about targets out of our 

                                                
127 Intentionality or “aboutness” might be considered as the property tying all representations together in a single 
kind. However, things are not so straightforward. On the one hand, intentionality or aboutness might not be a 
single property (for example, original and derived intentionality might be two different properties). On the other 
hand, there might be forms of “aboutness” or intentionality that have nothing to do with representations - or so 
some phenomenologists and enactivists claim (e.g. Hutto and Myin 2017; Rietveld, Denys and van Westen 2018). 
See also (Schlicht and Starzak 2021) for a fair critical discussion of these proposals. 
128 See, for instance, (Haugeland 1991; Grush 1997; Clark 1997; Clark and Grush 1999; Pezzulo 2008; Orlandi 
2020) 
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immediate reach, so as to allow us to coordinate with them in spite of their absence.129 And 

this, again, suggests that representations all have a similar functional profile. 

Now, if representations really belong to both kinds, and cognitive scientists really posit 

representations, it follows that the relevant posits must satisfy two demands in conjunction. 

First, they must have content. Secondly, they must have a representational functional profile. 

Notice that both demands spell out a necessary condition: something belongs to an intentional 

(or functional) kind only if it possesses content (or the relevant functional profile). Notice 

further that, albeit these two requirements need to be satisfied in conjunction, they are 

conceptually independent (Ramsey 2016) and are satisfied in very distinct ways. 

Naturalistic theories of content (e.g. Millikan 1984; Fodor 1990) are typically invoked as a 

principled way to satisfy the first requirement, as they aim at accounting for the content or 

aboutness of representations in non-semantic and non-intentional terms. These theories are not 

my focus here. 

My focus will be squarely on the second requirement of the Job Description Challenge. 

Sadly, however, it is a bit unclear how the second requirement should be satisfied. As far as I 

can see, there is no analogon of naturalistic theories of content when it comes to satisfy the 

second requirement; hence we lack general theories of representational functioning.130 In fact, 

aside from fairly quick remarks on “standing-in” (see references given above) no well-defined 

functional characterization of reprepresentation has been offered (see Millikan 2020; Egan 

2020 for this complaint). 

Here, “compare-to-prototype” arguments, as Gładziejewski (2016) dubbed them, come into 

play.131 This is how Gładziejewski understands them: 

                                                
129 See, for instance, (Bechtel 2008: 159-161; Godfrey-Smith 2009). 
130 Perhaps (Orlandi 2020) could be read as proposing one, but her account still deals with aspects of 
representations that at least prima facie have little to do with their functional profile, such as being explanatory 
posits of psychological sciences. 
131 It should be noted, however, that such a similarity, albeit sufficient to meet the challenge, is not necessary to 
meet it. In fact, Ramsey seems to allow that certain posits actually qualify as genuinely representational mostly 
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“[...] one starts out by pointing out a type of structure that can be 
pretheoretically categorized as a representation in an uncontroversial way. 
In particular, one concentrates on the functions served by the structure in 
question—on what it does for its users that makes it a representation. This 
is our representational prototype. Subsequently, one concentrates on a 
particular concept of representation used in cognitive science and verifies 
whether structures that fall under this concept have a functional profile 
that matches, to a non-trivial degree, the functional profile of the 
pretheoretical prototype. In other words, one asks whether a given type of 
representation posited by cognitive scientists plays a functional role that 
is similar enough to the role played by the prototype that the former can 
be naturally regarded as (truly, non-trivially, genuinely, etc.) 
representational in nature. If it does play this role, then the Job Description 
Challenge is successfully met.” (Gładziejewski 2016: 565) 

The idea behind this procedure is intuitive and straightforward: in fact, “compare-to-

prototype” arguments simply are arguments by analogy. If some putative representation posited 

by a cognitive theory (or family thereof) functions in a way that is sufficiently similar to some 

paradigmatic public representation, such as a map, then we have at least a pretheoretical and 

intuitive understanding of how that posit functions as a representation within the cognitive 

system; namely, it functions as a representation by functioning as a map. Notice, however, that 

the very same procedure can deny that a given posit actually qualifies as a representation.  If, 

for instance, an alleged representational posit has a functional profile nontrivially similar to 

that of a battery, we clearly cannot say that it functions as a representation by functioning as a 

battery. Indeed, if the structure under scrutiny is correctly characterized as a battery, describing 

it as a representation (e.g. by saying it represents how much longer a process can still run) is 

explanatorily redundant, and might put at risk future research (Freeman and Skarda 1990; 

Webb 2006). In the case at hand, future research would be hindered because considering that 

item as a representation leads us to wonder how content is encoded rather than how energy is 

stored. 

To further clarify the matter, I will now consider two “prototypical” compare-to-prototype 

                                                

because of their explanatory role within a theory. Arguments by analogy, however, are by far the most popular 
way to confront the challenge, and therefore they will be the focus of the present treatment. 



125 

arguments. The first concerns receptors, and yields a negative result. The second concerns 

structural representations, and allegedly yields a positive result. 

 

1.1 - Compare-to-prototype: receptors and firing pins 

The first case I intend to examine is that of receptors, which provide the (almost) universally 

accepted case of a representational posit failing the Job Description Challenge.132 Painted with 

a broad brush, the idea behind the receptor notion of representation is fairly simple: if an 

internal state V of some system reliably co-occur with some distal event T, then V is a 

representation of T. 

Receptors are often further elucidated referring to Dretske’s (1981; 1988) account of 

representation (Ramsey 2003; 2007; Morgan 2014; Nirshberg and Shapiro 2020). At the core 

of Dretske’s account of representation lies the notion of indication. As defined in (Ch. 2: §3.1): 

Indication: For all the states of V and T in a relevant range of states, va 
indicates ta if, and only if,  P(ta|va) > P(ta); that is, the occurrence of va 
increases the odds of ta being the case133 

Recall that, to determine content in an appropriate way, this notion of indication134 needs to be 

conjoined with a teleological component. To represent T, V need not only indicate T, it also 

must be “supposed to” indicate T, where the “supposed to” part gets unpacked by saying that 

V is supposed to indicate T just in case V has been recruited within some system in virtue of 

the fact that it indicates T (according to revised definition of indication). The recruitment 

procedure might vary: Dretske (1988) extensively relies on reinforcement learning, but natural 

selection and intentional design are typically held to be sufficient recruitment procedures too 

(e.g. Neander 2017; Shea 2018, Ch. 3). 

                                                
132 See (Ramsey 2003; 2007; Orlandi 2014; Anderson and Chemero 2019; Williams and Colling 2017; Downey 
2018). For a tight defense of their representational status, see (Artiga 2021). 
133 See (Dretske 1988; Rupert 2018). 
134 As clarified in (Ch. 2: §3.1, fn. 46), not all informational accounts of content need to incorporate a teleological 
component. However, accounts that do not incorporate it face formidable challenges, see (Artiga and Sebastián 
2018; Roche and Sober 2019). 
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Several structures135 qualify as receptors according to this picture. Single neurons, for 

instance, are often said to represent whichever distal variable (object or state of affairs) triggers 

their suprathreshold firing the most (e.g. Levittin, et al. 1959; Hubel and Wiesel 1962, 1968). 

In this view, their increased firing rate indicates the presence of some specific target in the 

animal’s visual field (see Eliasmith 2005 for an updated discussion). In a similar spirit, the 

nodes in the hidden layers of connectionist architectures are often said to represent the input 

patterns with which their activity correlates the most. Furthermore, each individual node is said 

to represent the microfeature driving the node’s activity the most (e.g. Goschke and Koppelberg 

1991). 

It seems obvious that these structures can leverage Dretske’s (1988) account of content to 

satisfy the demand for content. Yet, they seem unable to satisfy the functional demand.  

Indication is surely not sufficient for representation (the sea level indicates the position of the 

moon, but surely the sea does not represent the moon136). Having the function of indicating 

does not seem sufficient either. In fact, all sorts of things are recruited within systems in virtue 

of their indicator properties, without thereby becoming representations of what they indicate. 

Bi-metallic strips of thermostats and photosensitive cells of optical smoke detectors all have 

the function (by purposeful design) of indicating some distal target; yet they are not, prima 

facie, representations. In fact, within these mechanisms, both receptors act just like reliable 

causal mediators, allowing the system to robustly produce a certain output (for instance, turning 

off a furnace) when a given environmental condition obtains. The same holds, for instance, for 

                                                
135 A reviewer of the journal Synthese noticed that taking entire structures as representations is a deviation from 
Dretske’s framework. In Dretske’s view, it is not correct to say that, for instance, a barometer represents the 
pressure. Rather, we should say that the barometer being in state s represents the fact that the pressure is n Pascals. 
However, this loose usage is not just prominent in the literature (e.g. Morgan 2014: 231-232; Williams and Colling 
2017: 1947), it also strikes me as entirely unproblematic. To continue with the previous example, the claim that a 
barometer represents the pressure is entirely intelligible and easily unpacked by saying that the barometer 
represents the pressure of a given environment by occupying, at  any moment, the state that indicates the pressure 
at that moment. 
136 In order to justify this claim, it is sufficient to notice that the level of the sea cannot misrepresent the position 
of the moon. But something can count as a representation only if it can misrepresent in at least some cases. 
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the firing pin of a gun. The state of the firing pin indicates the position of the trigger: if the 

firing pin is in contact with the bullet, then the trigger has (typically) been pulled. Hence 

P(trigger pulled|firing pin in contact with the bullet) > P(trigger pulled). Moreover, firing pins 

are included in guns because of this relation: it is the fact that their position indicates whether 

the trigger has been pulled that enables us to control when to shoot. But surely guns are not 

representational systems. Thus, when it comes to the functional profile of receptors, they 

behave as mere causal mediators (such as firing pins); and, for this reason, they shouldn’t be 

considered representations. Indeed, many believe that considering receptors as representations 

has nasty consequences. 

Panrepresentationalism is the first. Considering receptors as representations entails that they 

satisfy both the demand for content requirement and the functional requirement imposed by 

the Job Description Challenge. But then it is almost impossible to deny bi-metallic strips (or 

firing pins) also satisfy them. Given the shared functional profile, if receptors satisfy the 

functional demand, then bi-metallic strips (and the like) satisfy it too. And we can apply 

Dretske's (1988) account of content to allow them to satisfy the content demand. After all, they 

have, by design, the function of indicating something within the systems deploying them. Thus, 

accepting that receptors are representations entails panrepresentationalism: the (clearly 

mistaken) view that whichever entity reliably coordinates with environmental contingencies is 

representing these contingencies.137 But any account of representations entailing 

                                                
137  Notice here that panrepresentationalism is a problem only because I’m assuming that the content at play here 
is original. There is, I believe, no problem of panrepresentationalism related to non-original (or derived) content, 
for each and every thing can, in principle, be assigned some derived content. We could surely stipulate, for 
instance, that a mug represents Napoleon, or that a pair of shoes represents Castor and Pollux. This seems also the 
reason why semioticians (who are interested in representations with both original and derived content) have no 
problem in saying, for instance, that a cigarette butt found on a crime scene represents the fact that the murder is 
a smoker, or that finding my fingerprints on a surface signals the fact that I touched that surface. In all these cases, 
the relevant signs (or representations) are tied to their targets only by a loose causal connection. However, this 
does not generate any problem with panrepresentationalism because their content is derived, as it depends on the 
interpretation of some clever detective (or some other interpreter). Notice further that the distinction between 
mental and public representations is orthogonal to the distinction between original and derived content according 
to at least some naturalistic accounts of content. For instance, according to Millikan’s teleosemantics, bee dances 
have original content, even if they are not mental representations (see Millikan 1984; see also Lyre 2016; Vold 
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panrepresentationalism is surely metaphysically flawed, as it fails to establish a substantial 

distinction between representational and non-representational states (Ramsey 2003; 2007: 125-

127). 

The empirical adequacy of the relevant notion of representation is also under threat. If 

philosophical theories of cognitive representation aim at capturing the notion of representation 

cognitive science deploys, they must provide a notion of representation which is distinctively 

psychological or cognitive. But a notion of representation that applies to thermostats or firing 

pins seems to lack any distinctively psychological or cognitive connotation (Orlandi 2014: 107-

110; Ramsey 2017, see also Webb 2006).  

Accepting that receptors are representations also reduces the explanatory power of the 

notion of representation invoked. Since treating bi-metallic strips (and the like) as 

representations add nothing to our non-semantic comprehension of these devices, the notion of 

representation appears to be merely a semantic gloss glued to an ultimately non-semantic 

understanding. This explanatorily inert notion of representation is at odds with the 

representationalism of cognitive science – at least as long as we regard it as a substantial 

empirical hypothesis (cf Ramsey 2017). 

Many found that these problems are collectively sufficient to reject the receptor notion of 

representation (e.g. Ramsey 2003; 2007; Orlandi 2014; Downey 2018). And even when the 

notion is not explicitly rejected, more than a shadow of doubt is cast over its explanatory 

potential (e.g. Williams and Colling 2017: 1949). Importantly, as the essay by Williams and 

Colling nicely testifies, structural representations are often taken to be substantially immune 

from these problems, as they do meet the Job Description Challenge. Or so Gładziejewski 

(2015b; 2016) apparently showed. 

                                                

and Schlimm 2020). There might even be mental representations whose content is not original (see Clark 2010 
for a possible case). Hence the problem of panrepresentationalism cannot be avoided just by stipulating that public 
representations have only derived content. One has to argue for that claim, and doing so forces one to confront 
prominent accounts of content, such as Millikan’s. 
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1.2 - Compare-to-prototype: structural representations and maps 

Recall how Gładziejewski (2015b; 2016) defined structural representations: 

Structural Representation: In a system S, a vehicle V is a structural representation of 
a target T if, and only if: 

(a) V is structurally similar to T; & 

(b) V guides S's actions regarding T; & 

(c) V can satisfy (b) even when decoupled from T; & 

(d) S can detect the representational error V generates. 

On Gładziejewski’s (2015b; 2016) view, features (a)-(d) are the functional features 

paradigmatically associated with a class of items we pre-theoretically recognize as 

representations; namely, cartographic maps. 

Very little elaboration seems needed. To start, recall the relevant notion of structural similarity: 

Second-order structural resemblance (rewritten): V is structurally similar to 
T if and only if: 

(i) there’s a one-to-one mapping from at least some vehicle constituents 
(vxs) onto at least some target constituents (txs); & 

(ii) there is a one-to-one mapping from at least a relation R holding among 
the vehicle constituents onto at least a relation R’ holding among the target 
constituents; & 

(iii) For all the vehicle constituents satisfying (i), vaRvb → taR’tb (i.e. the 

same pattern of relations hold in V and T) 

It is intuitively clear that cartographic maps satisfy (i) to (iii). Consider a map of Italy. Each 

point on the map (i.e. each vehicle constituent) maps onto an Italian city (i.e. a target 

constituent). And the relevant spatial relation holding among vehicle constituents map onto the 

relevant spatial relations holding among cities, in a way such that the relevant pattern of 

relation is preserved on both sides of the mapping. So, for instance, if the map shows a point 

va been left of vb, then the city ta upon which va maps, is east of the city tb, upon which vb maps. 

Secondly, we do exploit the relevant structural similarity holding among maps and the 
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terrains they represent. In particular, we are systematically sensitive to the relations holding 

among the vehicle-constituents of the map, for instance when we scan the map to find the 

shortest path from va to vb so as to decide which road to take. And we generally use maps to 

interact with targets that are significant to us, given our current tasks and purposes (e.g. arriving 

on time at a conference venue, or finding our hotel in a foreign city). 

Cartographic maps can also be surely used in a totally decoupled fashion. I can rely on a 

map of Tokyo to plan my trip to Japan while still in Europe; that is, when no causal contact ties 

me (or the map) to Japan. 

Lastly, we can detect the representational error of maps. For instance, if by relying on a map 

I reliably get lost, it is likely that I will deem the map inaccurate, and buy another one. 

It thus appears that structural representations, as Gładziejewski (2015b; 2016) defines them, 

“fit” the prototype offered by cartographic maps. For this reason, it seems that structural 

representations successfully meet the Job Description Challenge, and, unlike receptors, really 

qualify as representations. 

In the next paragraph, I will argue that this is not the case. More in detail, I will argue that 

at least some receptors satisfy points (a) to (d) too. Hence, if, as many agree, receptors 

paradigmatically fail the Job Description Challenge, it should be concluded that structural 

representations, as Gładziejewski conceives of them, fail it too. 

 

2 - Structural representations fail the Job Description Challenge 

In this section, I will argue that structural representations, as Gładziejewski (2015b; 2016) 

conceives of them, actually fail the Job Description Challenge. To do so, I offer a two stepped 

argument. First, I will show that at least some receptors satisfy, as a matter of fact, points (a) 

to (d). Secondly, I will show, by means of a “compare-to-prototype” argument, that some non-

representational structures (such as capacitors) satisfy (a) to (d). I will therefore conclude that 
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structural representations, as Gładziejewski defines them, do not meet the Job Description 

Challenge. 

 

2.1 -At least some receptors satisfy (a) to (d) in conjunction 

I wish to substantiate two claims, with a different scope. The first is a universal claim: I will 

argue that all receptors satisfy (a) and (b). More precisely, I will claim that if a candidate 

receptor V does not satisfy (a) and (b), then V cannot be a receptor, because it does not indicate 

its target. Having done so, I will argue that, as a matter of fact, some receptors can also satisfy 

(c) and (d). I will, however, discuss each point (a) - (d) separately. 

 

2.1.1 - All receptors satisfy (a) 

All receptors satisfy (a). This is not a new claim, and it is well-attested in the literature on 

the argument (Morgan 2014; Nirshberg and Shapiro 2020). In fact, Gładziejewski and 

Miłkowski (2017) have conceded the point, if only as a matter of contingent empirical fact. I 

believe instead that all receptors satisfy (a) as a matter of conceptual necessity, but the claim 

is better presented when discussing (b), so I postpone its discussion to (§ 2.1.2). 

As for now, let me illustrate why every receptor satisfies (a). Consider a paradigmatic 

receptor such as the bimetallic strip of a thermostat. It surely indicates the temperature: finding 

the strip occupying a given state raises the probability that the temperature in the room is in the 

corresponding state. Moreover, the strip has the function of indicating the temperature. In fact, 

bi-metallic strips are included in thermostats (by human design) precisely because of their 

properties as indicators. 

It is fairly easy to show that such a receptor is structurally similar to the environmental 

temperature (its target). Let the various states of the strip be defined as elements vx belonging 

to a set V, and let the range of temperatures indicated by the strip be defined as elements tx 
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belonging to a set T. By definition, V and T have the same cardinality. Moreover, since each 

element of V indicates one and only one element of T, the one-to-one mapping from vxs onto 

txs required by (i) obtains.  

Let now two relations be defined, one (longer than) over the elements of V, and one (hotter 

than) over the elements of T. Notice that these relations are not arbitrarily defined: in fact, they 

are essential to the functioning of the thermostat. Importantly, these two relations can be easily 

mapped onto one another as (ii) requires. 

Notice now that both relations impose a strict total order among the elements over which 

they are defined: for each arbitrary pair of elements (va,vb) ordered by longer than, there exists 

a pair (ta,tb) ordered by hotter than such that va maps onto ta and vb maps onto tb.  Hence, V and 

T have the same internal mathematical structure and non gratuitously map onto each other, 

thereby satisfying (iii).138 Notice that this is just an abstract description of the way the bi-

metallic strip works: it gets longer as the temperature rises. Hence, the relation of indication 

making the bi-metallic strip a receptor of the environmental temperature is per se sufficient for 

a structural similarity to obtain between the two. 

This point easily generalizes. Given any arbitrary receptor, its states will always map one-

to-one onto the states of the environment they indicate, providing the mapping in (i). The states 

of the receptor and the states of the environment will also always bear some receptor specific 

reciprocal relations, providing what (ii) requires.139 Lastly, each arbitrary pair (or other 

polyadicity) of receptor states in a given relation will map one-to-one onto the corresponding 

states of the environment in the corresponding relation, satisfying (iii). This is just how 

receptors work. Thus, (a) obtains for all receptors. 

 

                                                
138 I owe the phrasing of this point to my colleague Silvia Bianchi. 
139 Some examples in service of intuitive clarity: the hair in a hair hygrometer gets longer as the humidity rises; 
the floating unit of a fuel gauge gets lower as the tank gets emptier; the return signal of a proximity sensor is faster 
as the target gets closer, and so on. 
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2.1.2 - All receptors satisfy (b) 

Receptors can surely guide a system’s behavior. A number of automated (or semi-

automated) systems deploys them, from automatic faucets to simple, “purely reactive” robots 

(e.g. Nolfi 2002; Pfeifer and Bongard 2007).140 But that does not mean that any receptor target 

structural similarity is exploited; or so, at least, Gładziejewski and Miłkowski (2017) argue. 

Their argument is roughly as follows: consider again the bi-metallic strip of the thermostat. 

Let it be sensitive to three environmental temperatures, ordered by hotter than in the triplet 

(ta,tb,tc). Let va, vb and vc be the corresponding states of the bi-metallic strip. Suppose now that 

longer than orders these states in the triplet (vb,vc,va), which prevents the relevant strip-

temperature structural similarity from obtaining. Yet the strip can still successfully orchestrate 

the behavior of the thermostat, at least as long as it enters in each state when the environment 

is in the corresponding temperature (i.e. as long it correctly indicates) and each state leads the 

system to behave as it has been designed to behave. So, the relations among indicator states are 

irrelevant to the functioning of the system. As a consequence, the structural similarity is not 

exploited, as a structural similarity is exploited only if a system is sensitive to the relations 

holding among the relevant features of the vehicle, in our case the indicator states (Shea 2014; 

2018 p. 120). Receptors might be structurally similar to their targets (and as a matter of 

contingent empirical fact they are). Yet, this similarity does nothing for the system and deserves 

to be called a mere epiphenomenon. 

In reply, I claim that there exists at least one target-receptor structural similarity which every 

receptor must instantiate (as it is built upon the relevant indicator states) and that cannot be 

epiphenomenal in the sense just seen. Consider again the triplet (ta,tb,tc), this time letting the 

three temperatures be ordered by their temporal relations (i.e. tx is followed after an amount of 

                                                
140 Notice that this observation provides strong support in favor of the claim articulated in (§2.1.1), at least if 
effective control structures must be structurally similar to what they control, see (Ch. 2: §2.1). 
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time x by ty). Again, let va, vb and vc be the corresponding states of the strip. Let them be ordered 

again in the triplet (va,vc,vb), this time by their temporal relations141 (i.e. vx is followed after an 

amount of time x by vy). Ex hypothesis, the structural similarity is again absent. Yet, in this 

case, the system will malfunction. The reason is simple: if va is followed after an amount of 

time x by vc and ta  is followed after an amount of time x by tb, then the strip will occupy state 

vc when the temperature is tb. But the state of the strip indicating tb is vb, not vc. Therefore, the 

receptor mis-indicates. As a consequence, the system will malfunction: its inner state will bring 

about the behavioral outcome appropriate to tc instead of the one appropriate to tb. Therefore 

the system is sensitive to (at least) the temporal relations holding among the elements of V; 

and the obtaining of such a time-dependent structural similarity between V and T determines 

the appropriate functioning of the system. Hence, at least this time-dependent structural 

similarity is not epiphenomenal. Notice that this structural similarity too obtains purely in 

virtue of indication, as indication is time-dependent: if V is a receptor of T, then V must occupy 

state va when T is in state ta. In fact, each and every receptor must instantiate the kind of time-

dependent structural similarity seen above, as an item failing to instantiate it cannot be a 

receptor. This can be shown by reductio. 

Suppose V is a receptor of T. Suppose further no relation (not even temporal ones) can be 

found such that (i) to (iii) obtain in conjunction. Ex hypothesis, V and T are not structurally 

similar. But this entails that when the receptor is in a state va, the target can be in any arbitrary 

state tx. To see why, consider the following scenario. Suppose that, at time t, the receptor is in 

a state va and the target is in a state ta. Now, at time t*, the receptor and the target change state: 

the receptor goes in state vb and the target goes through a sequence of state changes tb...tn.142 

Suppose further that, at time t**, the receptor returns in state va. Let us call x the amount of time 

                                                
141 Notice having the same kind of relations on both sides of the similarity is perfectly legitimate. Indeed, maps 
do represent spatial relations through spatial relations. 
142 This sequence might also include ta. States can also repeat within the sequence. The point I’d like to make 
does not require these assumptions. 
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lapsed between t and t**. It is thus correct to say that va was followed va after an amount of time 

x. Now, it is fairly easy to show that, ex hypothesis, at time t** the target must be in any other 

arbitrary state tx different from ta. For, if it were in state ta, it would be correct to say that ta was 

followed by ta after an amount of time x, which is enough to make the receptor and the target 

structurally similar.143 But, by stipulation, V and T are not structurally similar. Thus, if a 

receptor and its target are not structurally similar, when the receptor is in a given state va, the 

target can be in any arbitrary state tx.144 But if when the receptor occupies state va the target 

can be in any state tx, then the probability of finding the target in any individual state given that 

the receptor is in state va equals the probability of that state itself. Hence, it would be false that 

va indicates any state tx of the target, as P(tx|va) = P(tx). But since this line of reasoning holds 

for all the states of the receptor, it would then be false that V is a receptor of T. And this runs 

counter to the initial stipulations; namely, that V is a receptor of T. 

In perhaps less convoluted terms, for any arbitrary receptor state va to indicate an arbitrary 

target state ta it must be the case that, when the receptor occupies state va, it is more likely than 

otherwise that the target occupies state ta. The same holds for all other receptor states vb...vn 

and the corresponding target states tb...tn. As a consequence, if va is followed after an amount 

of time x by vb, then it must be likely that ta is followed after the same amount of time by tb.  

 Notice that this line of reasoning is perfectly general, as it holds for all time-spans, receptor 

states and target states. Thus, it seems that the relevant time-dependent structural similarity 

holds purely in virtue of indication. Notice also the important corollary of this: every (action-

guiding) receptor must, qua (action-guiding) receptor, exploit at least this time-dependent 

structural similarity with its target. 

                                                
143 To be sure, that would be a very thin structural similarity. Yet notice that the relevant definition of structural 
similarity Gładziejewski endorses quantifies only on “at least some”, and it thus seems satisfied by what it is 
shown in my example. On the same issue, see also (Morgan 2014: 232). 
144 Notice that ta is included, as it was (by stipulation) the state occupied by the target in the beginning of the 
example. 
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2.1.3 - Some receptors satisfy (c) 

Notice, to begin, that the scope of the claim is now restricted to some. Thermostats, 

hygrometers and the like can indicate only in virtue of a constant causal contact holding 

between them and their target. A thermometer somehow shielded from the causal touch of the 

surrounding mean kinetic energy would simply stop indicating. I’m not denying this. I’m only 

denying that all receptors are thermometer-like in constantly needing the causal touch of their 

target to function.  

As an example of a very simple receptor which does not constantly need the causal touch of 

its target to function and orchestrate the behavior of a system, consider the control system of a 

simple Braitenberg vehicle displaying a light-following behavior (Braitenberg 1984: 6-9, 

vehicle 2b). The control system of this robot is fairly rudimentary: it consists only in two 

laterally placed front-facing photoreceptors, each contralaterally connected to a motor by an 

excitatory link. When this simple agent faces a light source, two beams of light will impinge 

onto its photoreceptors, coupling the two. The receptors will thus excite the two motors, 

causing the robot to beeline towards the light source. But if the light source is located on one 

side of the vehicle, only one receptor will be coupled to it by a light beam. Thus only one wheel 

will turn, causing the robot to spin in place, re-orienting it towards the light source. Notice that 

albeit in this case only one receptor is coupled, the behavior is orchestrated by both receptors. 

Indeed, it is only because one receptor is not coupled to the light source that one wheel does 

not turn, allowing the robot to spin in place. This is a very minimal case in which a decoupled 

receptor is playing a key role in orchestrating the behavior of a system. 

Now, as in the case above one receptor was still coupled to the light source, it might be 

objected that (c) is not actually satisfied. However, a minimal increase of complexity allows 

for a weak decoupling to doubtlessly obtain. A nice example is provided by DidaBots (Maris 
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and Schaad 1995; Maris and te Boekhorst 1996): simple robots tasked with clustering cubes in 

an arena. Their control architecture consists of four lateral proximity sensors connected to two 

lateral motors through both excitatory (ipsilateral) and inhibitory (contralateral) connections. 

Thus, when a receptor “sees'' a cube, it speeds up the movements of the wheels on its side and 

slows down the speed of the wheels on the other side, causing the robot to turn away from the 

cube. Notice these robots are “blind” to the front, so if a robot and a cube are lined up, the robot 

will impact the cube, “picking it up” and pushing it along the way. When, while pushing a 

cube, the robot “sees'' a cube on its side, it will turn away from it, “dropping” the cube it was 

pushing near the one it has sensed. This is how the robot cluster cubes. The important point to 

notice here is that the “picking up” and pushing of a cube is a behavior governed by decoupled 

receptors, as the robot can enact this behavioral routine only as long as all its sensors are not 

coupled to any cube. Were one of them coupled to a cube, the robot would immediately turn 

away from it, dropping the cube it was pushing as a result. So the “picking up a cube” 

behavioral routine is, in Gładziejewski's terminology, orchestrated by weakly145 decoupled 

receptors. 

It might be argued that the case presented above is still not sufficient to show that receptors 

satisfy (c). This is because representations (structural or otherwise) are supposed to provide the 

means for endogenous and proactive control (e.g. Gładziejewski and Miłkowski 2017; Pezzulo 

2008; 2017). But receptors merely react to the presence of some environmentally delivered 

magnitude, or lack thereof. Hence, receptors do not satisfy condition (c), at least, not in the 

way in which genuine representations supposedly satisfy it.146 

                                                
145 Notice strong decouplability fails to obtain: the whole robot is coupled to the cube it's pushing. 
146 Notice, however, that this line of objection, pursued in (Gładziejewski and Miłkowski 2017), factually changes 
the relevant notion of decouplability mentioned when unpacking (c). In fact, Gładziejewski (2015b: 77) defines 
decouplability in purely causal terms; namely, as the lack of a causal connection between the representational 
vehicle (or the whole system) and the represented target. Hence, the original definition of “decouplability” at play 
in Gładziejewski’s account of structural representations has no essential tie to the idea that representations are a 
proactive locus of endogenous control. Artiga (2021) makes an analogous point.  
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However, this objection fails too, as some receptors can be the endogenous causes of 

proactive behaviors directed to targets from which the whole system is strongly decoupled. The 

recurrent artificial neural networks Harvey and colleagues “evolved” as control systems for 

robotic agents provides a nice example (Harvey et al. 1997). One such agent was tasked with 

visually tracking a moving target (Harvey, Husbands and Cliff 1994). Since the target was 

moving and the robot was not placed in front of it at every trial, there were significant spans of 

time in which no robot-target coupling obtained, and thus significant spans of time in which 

the two were strongly decoupled. In such cases, the robot self-initiated an exploratory behavior 

(namely, spinning in place to detect the target). This behavior was produced by a generator unit 

of the net (Husbands, Harvey and Cliff 1995): an artificial neuron able to “recycle” its output 

at time t as input at time t+1 through a self-recurrent connection. Since the network was noisy, 

generator units were able, by constantly feeding themselves back their noisy output, to generate 

significant activity within the net in absence of any environmental input. In the case at hand, 

the generator unit was a tactile receptor selected (by genetic algorithms) to trigger the “look 

around” behavioral routine in absence of any relevant external input. Notice the “look around” 

routine is caused by the intrinsic (noisy) dynamics of one receptor in the net. In other terms, 

the causal starting point of that behavior is within one of the net's receptors, not in the 

environmental input or lack thereof. Hence, a simple receptor was able both to coordinate a 

system's behavior regarding a strongly decoupled target and to do so by endogenously initiating 

the causal chain leading to the relevant behavior of the system. In conclusion, it appears that at 

least some receptors can satisfy (c), even according to this revised, and more demanding, notion 

of decouplability. 

 

2.1.4 - Some receptors satisfy (d) 

Some receptors can generate system detectable errors. As a nice example, consider the 
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control architecture for robotic agent Bovet (2007) engineered. The architecture consists in a 

series of homogeneously connected feedforward artificial neural networks, one for each 

sensory or motor modality of the robot.147 Simplifying a bit148, each net consists of three 

identical populations of simple neuron-like receptors. Two of these populations jointly form 

the input layer, and the other is the output layer. Each net works as follows.149 The current state 

population receives input from the sensors of the modality controlled by the net, entering in 

the state corresponding to the incoming sensory barrage. The desired state population receives 

input from the nets of all other modalities, thus entering in the state the controlled modality 

should occupy, given the activity of the rest of the system. For instance, if the visual desired 

state population receives the signal that the robot is moving forward, it will enter in the state 

corresponding to an optic flow expansion, as moving forward typically correlates with optic 

flow expansion. Together, the current state population and the desired state population 

constitute the input layer. The output layer consists of the desired state change population, 

responding to the difference between the states of the two halves of the input layer, and 

spreading that difference to the rest of the system. So the receptors of the output layer respond 

to the mismatch between “desired” and received sensory input, which is a very simple form of 

prediction error.150 

Notice these “error receptors” are as causally potent as any other receptor in the system. In 

fact, the activity of the motors is determined (through the motor desired state population) by 

the output layer of each modality, which spreads the mismatch between the two halves of the 

                                                
147 Notice these nets lack both self-recurrent connections and hidden units: the typical resources that are 
considered representational vehicles in connectionist systems (e.g. Shea 2007; Shagrir 2012). Their activity is thus 
interpretable in a straightforwardly non-representational manner (Ramsey 1997). 
148 The architecture will be the focus of the next chapter, so I will introduce the relevant details there, when they 
are actually needed. 
149 After the learning period, in which the net learns the robot's sensorimotor contingencies (see O'Regan & Noë 
2001): the ways in which stimulation changes as a consequence of movement.  
150 Technically, the architecture behaves as if it were detecting the mismatch between the received inputs and the 
ones self-generated by a forward model (see Bovet 2007, pp. 79-106). This mismatch is ordinarily considered as 
prediction error in the predictive processing literature, and Gładziejewski (2015b; 2016) himself relies on this 
very same notion of error. 
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input layer. This means the motors are active only if there is at least one net spreading error. So 

error is what, causally speaking, drives the system around. Moreover, in a series of experiments 

(Bovet and Pfeifer 2005a; 2005b, see also Pfeifer and Bongard 2007, pp. 295-333) the robot 

learned to solve a simple working memory task (i.e. finding the reward at one end of a T-maze) 

by learning to trust a tactile-motor correlation (it learned to “expect” to turn in the direction of 

the active tactile receptor sensing the cue) over a visuomotor one. This shows that the robot 

can, implicitly, assess which error is important to minimize and which error is irrelevant. 

Importantly, in these experiments, the receptors of the net satisfied (a) to (d) jointly. If the 

arguments provided thus far are sound, (a) and (b) must obtain, as they obtain for every 

receptor, and the net is just a series of receptors systematically connected. (d) obtains, as the 

system has a specialized set of receptors in the task of detecting the error between “expected” 

and actually occupied sensory states. Lastly, (c) obtains too, as, at the onset of each trial, the 

robot was strongly decoupled from the reward it had to find. Indeed, at the onset of each trial 

the robot and the reward are in different “arms” of the T-maze, and no causal chain connects 

the two.  Moreover, the robot exploration of the maze was self generated, as it was due to an 

inbuilt discrepancy in the two halves of the input layer for the “reward” modality (i.e. battery 

level). 

 

2.2 - Moving towards the second step 

As the example provided above demonstrates, in appropriately complex systems, receptors 

satisfy (a) to (d) in conjunction. Given that receptors paradigmatically fail the Job Description 

Challenge, it seems that structural representations, as Gładziejewski defines them, fail it too. 

Or do they? After all, one could simply object that all that I’ve shown is that there are 

receptors that meet the Job Description Challenge, namely the receptors that jointly meet (a) to 
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(d).151 Perhaps one could say that receptors that do not satisfy (c) and (d) actually function 

merely as causal mediators, but those which do satisfy (c) and (d) are endowed with a genuine 

representational status. Or perhaps one could say that I’ve only shown that some structures that 

prima facie qualify as receptors actually are, upon closer scrutiny, structural representations 

and thus meet the Job Description Challenge. This would be in line with the conclusions of 

(Morgan 2014; Nishberg and Shapiro 2020). 

Moreover, notice how, in moving from (a) to (d), the receptors I considered while 

articulating my claims were embedded in progressively more complex structures. While 

defending the claim that receptors satisfy (a) and (b), I considered very simple receptors, such 

as thermometers. Yet, to defend the claim that some receptors satisfy (c), I had to introduce 

full-blown artificial agents, such as Braitenberg vehicles and DidaBots. And to defend the 

claim that receptors can allow proactive behaviors and allow for error detection (point (d)), I 

had to introduce robots governed by neural networks that are way more sophisticated than 

thermometers and Braitenberg vehicles. Yet, agents governed by such networks could qualify 

as representation-users (at least, intuitively). This observation provides further support to the 

claim that receptors satisfying (a) to (d) actually are representations of some sort, perhaps even 

structural representation. 

I wish to resist these conclusions. In the next block, I will put forth an argument by analogy 

to intuitively show that (a) to (d) do not spell out a representational functional profile, in the 

style of both Ramsey’s (2003; 2007) original analysis or receptors and Gładziejewski’s (2015b; 

2016) treatment of structural representations. The argument will also show that receptors 

satisfying (a) to (d) are in no way specific to artificial agents, and thus that they can be found 

in physical structures that, at least intuitively, do not qualify as representation-users. 

 

                                                
151 I owe this observation, and its brilliant framing, to an anonymous reviewer of the journal Synthese.  
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2.3 - Compare-to-prototype: structural representations and capacitors 

Consider an optical smoke detector: a simple device tasked with ringing an alarm when it 

detects a fire. Fires generate smoke, and, as smoke fills the air, it fills the inner chamber of the 

detector, refracting a beam of light on a photosensitive surface. This, in turn, closes a switch 

supplying electric power to an alarm. This is a simple, receptor-based, non-representational 

device. 

Suppose one such device operates in an environment in which the typical combustion also 

generates heavy smokes: toxic fumes that tend not to rise even when heated, and that linger in 

the environment even after the fire has been put off. Suppose we want to enable the device to 

signal us their presence. It has to keep the alarm ringing when heavy smokes linger in the 

environment, putting it off when the heavy smokes have been dispersed by the ventilation 

system. This poses a challenge: heavy smokes tend (being heavy) to linger on the floor. But the 

optic smoke detectors are mounted on ceilings: “normal” smoke rises when heated. So the 

system, as it stands, is incapable of indicating the presence of heavy smokes, as they will not 

deflect the light beam. Indeed, the two are in no obvious causal contact. 

Placing a capacitor between the switch and the alarm enables the system to indicate the 

presence of heavy smokes. When the system detects a fire, it closes the switch feeding energy 

to the alarm. If a capacitor is placed between the two, it will store some energy when the circuit 

is closed, slowly releasing it when the circuit opens (i.e. when the fire has been put off). So it 

will keep the alarm ringing when there is no fire but heavy smokes still linger. 

Strikingly, the capacitor will function as a receptor for heavy smokes. This is because the 

amount of energy stored by the capacitor depends upon  the time the circuit has been closed, 

which, in turn, depends on the time the fire has been raging. But so does the amount of heavy 

smokes. The longer the fire, the more the material combusted, and the more the material 
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combusted, the more the heavy smokes produced. Thus, due to a common cause152, the states 

of the capacitor actually indicate the amount of heavy smokes present in the environment. 

Observing the capacitor having in store an amount of energy vx rises the probability that a 

corresponding amount of heavy smokes tx is present in the environment. 

Notice also that the capacitor satisfies (a) to (c). If the arguments given above are correct, 

there is at least one non-epiphenomenal structural similarity holding between it and the heavy 

smokes, ensuring that (a) and (b) obtain. Namely, the chronologically ordered sequence of 

capacitor states (va,vb,...vn) must map onto the chronologically ordered amounts of heavy 

smokes (ta,tb,...tn). Otherwise, the system malfunctions: it either shuts up the alarm too soon 

(failing to indicate the presence of heavy smokes) or too late (indicating the presence of non-

existing heavy smokes). Moreover, the whole system is not in any causal contact with heavy 

smokes, so the capacitor is strongly decoupled from them. Indeed, this is the reason why the 

capacitor is needed. 

A slight modification of the system enables the capacitor to satisfy (d). Suppose a second 

switch is placed after the capacitor, and let it be closed by default. Suppose further the first 

switch also feeds energy to a mechanical timer running a countdown. When the countdown 

reaches 0, the timer opens the second switch, putting off the alarm. Lastly, let the circuit 

supplying energy to the timer be controlled by a bi-metallic strip, whose expansion opens the 

circuit, stopping the countdown.153 Collectively, these components will act as a control 

mechanism for the device. Their functioning principle is simple: if, in a set amount of time, no 

significant increase in temperature is detected (i.e. the bi-metallic strip does not expand), then 

there likely is no fire. So, the photosensitive cell misdetected a fire, leading the capacitor to 

“hallucinate” heavy smokes. The system corrects the error of its receptors opening the second 

                                                
152 Notice that this is just a “ghost channel” in the sense of Dretske (1981, pp. 38-39): a set of statistically salient 
dependency relations between the state of two systems that are not in causal contact. 

153 Notice that in thermostats bi-metallic strips are used as switches in the same way. 
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switch, putting the alarm off. However, if a high temperature is detected (i.e. the bi-metallic 

strip expands), then there likely is a fire. So, the photosensitive surface and the capacitor are 

working properly and the timer is stopped to keep the alarm ringing. 

In this modified system, the capacitor satisfies (a) to (d), and thus, according to 

Gładziejewski,  has the functional profile of a structural representation. But capacitors surely 

are mere causal mediators, and even in this (fairly complex) toy system the capacitor functions 

simply as a battery to keep the alarm ringing. It thus seems that bearing features (a) to (d) is 

not sufficient for an item to function as a representation. Hence (a) to (d) do not spell out a 

robustly representational functional profile. As a consequence, if structural representations are 

defined in terms of items bearing features (a) to (d), structural representations do not meet the 

Job Description Challenge. Indeed, it seems to me that the same sort of worries that motivated 

either the rejection of the receptor notion of representation (e.g. Ramsey 2007; Orlandi 2014) 

or a strong suspicion about its explanatory potential (Williams and Colling 2017) emerge again. 

If our most demanding account of structural representations identifies simple capacitors as 

representations, how could panrepresentationalism be avoided? How does such a notion of 

representation capture a distinctive psychological or cognitive phenomenon? Is the proposed 

notion of representation doing valuable explanatory work? Surely my toy system’s functioning 

can be entirely and transparently understood without invoking representations. If these are 

reasons to reject, or be skeptical of, receptors, they will also be reasons to reject, or be skeptical 

of, structural representations. As Nishberg and Shapiro (2020, p.2) nicely put it, structural 

representations and receptors have a common fate. 

 

3 - Facing some objections 

Here, I defend my claim by a number of foreseeable objections. 
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3.1 - Receptors and exploitability: a counterexample 

An anonymous reviewer of the journal Synthese greeted my argument to the effect that all 

receptors satisfy (b) with a counterexample and a challenge. In this sub-paragraph I deal with 

the counterexample. The challenge will be met in the next sub-paragraph. 

The counterexample is as follows: consider litmus papers; that is, stripes of chemically 

treated paper that change color when immersed in chemical substances, thereby indicating the 

pH of the substance. Suppose I use one such device to measure the pH of a substance at time t. 

At t*, I extract the paper from the substance, which I then dilute with water. The substance’s 

pH has changed, but the color of the paper has not. Yet, it is still correct to treat the paper as a 

receptor representing the substance’s pH. Isn’t this a proof that the time-dependent structural 

similarity discussed above does not hold universally for receptors? 

I concede that the litmus paper at t* is still indicating. In fact, I would add that it is mis-

indicating154, as its color does not match the substance’s pH. Notice however, that such a mis-

indication occurs at time t*, and only because the litmus paper has not changed color as the 

relevant time-dependent structural similarity prescribes. As long as misindication occurs, the 

time-dependent structural similarity is broken. But suppose now that, at a further time t**, the 

litmus paper is put in contact again with the substance. It would change color, and it would 

correctly indicate the substance pH. Let x be the amount of time lapsed between t and t**. The 

substance pH at t is thus followed, after an amount of time x, by the substance pH at t**. But 

the same relation holds for the states of the litmus paper: color at t is followed, after an amount 

of time x, by color at t**. Hence the time-dependent structural similarity is restored. Of course, 

the time-dependent structural similarity instantiated by the litmus paper has, in this example, 

proven insensitive to the change of state of the substance at t*. But similarity is a graded notion; 

                                                
154 The anonymous reviewer also suggested that in such a case the litmus paper would count as a decoupled 
receptor of pH-in-the-past. I think I disagree. It seems to me that litmus papers have, by design, the function of 
indicating the pH of substances in the present.  
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and even uncontroversial cases of structural representation are manifestly not perfectly 

structurally similar to their targets (Cummins 1996; Williams and Colling 2017 p. 1947; 

Gładziejewski and Miłkowski 2017). A map perfectly (e.g. millimeter by millimeter) similar 

to the depicted terrain would be useless. Hence the example fails to pose any substantial 

challenge to my claim regarding (b). 

The same line of reasoning, it seems to me, applies to all counterexamples with a similar 

structure. Local failures of indication (i.e. short spans of time in which a receptor fails to covary 

with its target) are as admissible as local failures of the relevant structural similarity. Hence, 

noticing that there are, as a matter of fact, short time spans in which a receptor fails to indicate 

a target does not, in and by itself, challenge the claim that indication is a special case of 

structural similarity. 

Notice, further, that the failure in the relevant receptor-target structural similarity the 

example highlights seems to depend directly on the fact that receptor and target are decoupled. 

In fact, it seems entirely correct to say that if the litmus paper had not been extracted from the 

chemical substance at t*, it would have changed color so as to match the substance pH. But if 

this is correct, then that case fails to constitute a compelling case against my argument, as I’m 

not committed to the claim that all receptors can function when decoupled from their targets; 

I’m only committed to the claim that some can. As noticed in (§2.1.3), if a thermometer were 

(somehow) shielded from the mean kinetic energy of the surrounding environment, it would 

simply stop indicating. 

 

3.2 - Dealing with cases of apparent unexploited structural similarity: Shea’s example 

Now, the challenge. Shea (2018, p. 119) illustrates a non-exploited structural similarity with 

the following example: suppose that a pack of vervets has three kinds of predators p1, p2 and 

p3. Suppose that the vervets have three types of alarm calls c1, c2 and c3, one for each predator. 
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Suppose that p1, is taller than p2; which is in turn taller than p3. Suppose further that the same 

ordering holds for the calls: c1 has a higher pitch than c2 which in turn has a higher pitch than 

c3. The system of calls is thus structurally similar to the system of vervet’s predators. However 

Shea argues that vervets are not sensitive to the relation “higher pitch than” holding between 

their calls. All vervets do, in Shea's view, is to respond separately to each individual call. Thus, 

Shea concludes that the structural similarity holding between vervet calls and predators is not 

exploited. Importantly, Nishberg and Shapiro (2020, p. 16) concede Shea the point that, taken 

as an array, the system of calls is not a SR of the heights of predators.155 The reviewer asked 

whether the time-dependent structural similarity I’m discussing contradicts Shea’s verdict, 

showing that an exploitable structural similarity holds between the system calls and the 

predators. 

I believe that, in this regard, it is important not to conflate two distinct issues. The first is 

whether it is necessary that a structural similarity holds between an array of receptors and the 

ensemble of their targets. To this question, I, together with Nirshberg and Shapiro (and 

presumably Shea), answer negatively. The hygrometer measuring the humidity of room A is 

structurally similar to the humidity in room A, and the thermometer measuring the temperature 

in room B is structurally similar to the temperature in room B. However, the thermometer plus 

hygrometer system need not be (albeit it might156) structurally similar to anything. An array of 

structural representations need not be a structural representation on its own. Notice that the 

same thing holds for uncontroversial instances of structural representation too. I can place my 

map of Sydney north of my map of Rome without thereby generating a new structural 

representation that misrepresents the relative positions of Sydney and Rome. 

                                                
155 Albeit they hold that each call is structurally similar to one predator (see Nirshberg and Shapiro 2020, p.16). 
156 Morgan (2019:8-9) presents a case in which an array of receptors (each structurally resembling a target) is a 
structural representation in its own right. In his example, each receptor is a bucket of water, the volume of which 
is proportional to the distance a boat has travelled in one direction. The array of water volumes is thus structurally 
similar to the cartesian coordinates of the boat (i.e. the fact that bucket 1 is fuller than bucket 2 maps onto the fact 
that the value of the coordinate of the Y axis is higher than the one on the X axis). 
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The second issue regards whether that system of calls actually is structurally similar to 

something (and whether such a structural similarity is exploited). And I believe the time-

dependent structural similarity I introduced actually allows for a positive answer to both 

questions. For the alarm calls to be effective, these must be tokened in a way such that the 

temporal ordering between calls matches the one holding between the apparences of predators. 

Thus, if the three predators appear in the temporally ordered sequence (p1, p2, p3), the alarm 

calls need to be uttered in the corresponding temporally ordered sequence (c1, c2, c3). Changes 

in this sequence result, at least prima facie, in dead vervets. Hence, the system relying on these 

calls to orchestrate its behavior (i.e. the pack of vervets) seems sensitive to at least these 

relations.157 

 

3.3 -Do “compare-to-prototype” arguments sidestep the Job Description Challenge? 

The same reviewer also raised a more general concern. The concern is that my treatment 

has simply sidestepped the Job Description Challenge. This concern articulates in two distinct 

worries. The first concerns the call to intuitions embedded in “compare-to-prototype” 

arguments. These are arguments by analogy, and thus rely heavily on our pretheoretical 

intuitions. But surely not all pretheoretical intuitions are correct. The second is that not enough 

care has been taken in discussing whether truth/accuracy conditions are causally relevant in 

accounting for a system’s success. If they are, then the Job Description Challenge is met (the 

reviewer also pointed out that this is the argumentative strategy of Gładziejewski and 

Miłkowski 2017). 

Let me begin by addressing the first worry. As things stand, it seems to me that calls to 

intuition are licensed as valid moves to address the Job Description Challenge (see Ramsey 

                                                
157 Notice also that, at least in this case, single calls afford the detection of representational error. It is in fact 
suggested that repeated mistokening of these calls might cause the “liar” vervet to be ignored by the pack (e.g. 
Cheney and Seyfarth 1985, p. 160). 
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2007: 10-11). Indeed, one of the significant aspects of the challenge is that of checking whether 

the term “representation”, as it is used by cognitive scientists, is sufficiently “in touch” with its 

everyday usage. Moreover, arguments by analogy seem sufficient to face the challenge. This is 

the case, for instance, of Ramsey (2007: 83-89) and Gładziejewski (2015b; 2016). Hence, if 

these arguments by analogy are sufficient to face the Job Description Challenge, mine should 

be too. Surely, one can deny that these arguments are sufficient to face the challenge, perhaps 

because they rely too much on intuition.158 However, determining the role intuitions should 

play in philosophical theorizing lies significantly outside the scope of the present chapter. 

What, then, about the second worry? Is checking whether the truth or accuracy conditions 

of a posit are causally relevant to a system’s success sufficient to determine whether the posit 

meets the Job Description Challenge? I doubt this is the case. To see why, consider the 

following two cases. 

First, the firing pin of a gun. As highlighted above, it indicates the position of the trigger, 

and has (by design) the function of doing so (firing pins are included in guns precisely because 

their state indicates the state of the trigger). Under mild teleo-informational commitment, this 

is sufficient to yield accuracy conditions to the firing pin: the firing pin accurately represents 

the position of the trigger if, and only if, it occupies the position it should occupy, given the 

state of the trigger. It is now possible to follow Gładziejewski and Miłkowski (2017) and 

wonder whether intervening on the degree to which these accuracy conditions obtain causally 

influences the success of the gun. And this is surely the case. The less the position of the firing 

pin corresponds to the position of the trigger, the more unreliable the gun is. In fact, the less 

the positions of the trigger and the pin correspond, the more the gun will fire at random. So, 

the accuracy conditions of the firing pin are causally relevant to the successful functioning of 

                                                
158 Notice also that such a move would undermine the claim that SRs meet the Job Description Challenge. In fact, 
to the best of my knowledge, that claim has only been supported by means of arguments by analogy. 
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the gun, but I (and, I think, many others) would be hard pressed to conclude on this sole basis 

that guns are representational systems. 

Consider now false, but useful, beliefs. The research on optimism bias, for instance: 

“Highlights the possibility that the mind has evolved learning mechanisms to mis-predict future 

occurrences, as in some cases they lead to better outcomes than do unbiased beliefs'' (Sharot 

2011: R495). It is also said that the lack of such an optimism bias negatively correlates with 

mental health  (Taylor 1989; Sharot 2011). It thus seems that certain beliefs lead a system to 

its success because they are false or inaccurate. However, it is commonly assumed that only 

correct representations non-accidentally lead to a system’s success (e.g. Shea 2018: 10). Thus, 

when checking whether the conditions of satisfaction of a posit lead to a system’s success, one 

checks whether correct representations lead to successful behavior. But this is not the case for 

optimistically biased beliefs. So our verdict, in this case, should be negative: these beliefs do 

not meet the Job Description Challenge and thus are not representations. However, 

optimistically biased beliefs are beliefs (in the ordinary sense of the term), and thus surely 

qualify as representations.  

One could perhaps argue that this is too fast, as optimistically biased beliefs serve a 

psychological function other than representing reality (e.g. a motivational function). Whilst 

sympathetic with this line of objection, I can help but notice that, even if true, it wouldn’t 

substantially damage the conclusion I’m trying to establish. In fact, it would still be true that 

the “accuracy condition” of some clearly non-representational items (such as firing pins of 

guns) are still crucial to the success of the system in which they operate. Hence, checking 

whether the conditions of satisfaction of one posit are causally relevant in explaining a system’s 

success is not sufficient (albeit it surely is necessary) to meet the Job Description Challenge. 
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3.4 - Do receptors fail the Job Description Challenge? 

The argument I have presented here hinges on a crucial premise; namely, that receptors do 

not meet the Job Description Challenge, and thus that they are not representations. But what if 

they were? Clearly, arguing effectively that receptors are representations would invalidate my 

argument. 

As far as I can see, there are, in the current literature, only two explicit defenses of the 

representational status of receptors. I discuss each in a separate subsection. 

 

3.4.1 - Rupert’s argument 

The first is due to Robert Rupert (2018). I will not discuss Rupert’s argument in detail, as 

in the present context, it suffers from a major problem that makes it unable to block my 

argument. 

 To put it bluntly, the problem is the following: if Rupert’s account were correct, then 

predictive processing would be a non-representational theory of cognition by definition. 

To see why this is the case, consider consider that according to Rupert’s (2018) account 

something (receptors included) qualify as a representation if, and only if, it bears some content 

and satisfies the following additional conditions (Rupert 2018: 205): 

1. It appears in an architecture which produces the distinctive explananda of 
cognitive science (i.e. intelligent behavior); & 

2. Its contribution to the functioning of these architectures rests on its 
representational capacities; & 

3. Its playing an explanatory role as a representation depends on the presence, 
within the architecture, of distinctively cognitive forms of processing 

Clearly, the acceptance of these conditions is sufficient to invalidate Ramsey’s (2003; 2007) 

arguments by analogy. Since firing pins of guns (and the like) do not satisfy (1) to (3), they are 

not even putative representations, and every analogy between them and genuine representations 

is fallacious (Rupert 2018: 213) So, Rupert’s argument can (in principle) “rescue” receptors, 
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endowing them a representational status. 

However, the philosopher interested in defending the claim that predictive processing is a 

representationalist theory of cognition simply cannot resort to Rupert’s defense of receptors to 

counter the argument I have offered here. This is because of condition (3). 

Now, I must confess that I’m not sure about what counts as a “distinctively cognitive form 

of processing”, and Rupert is not very clear on the matter. However, he (Rupert 2018: 210) 

suggests that only forms of processing found only in cognitive architectures count as 

distinctively cognitive. And, if that is the case, then predictive processing is, by definition, a 

non representational theory of cognition. This is because its core processing algorithm (i.e. 

predictive coding) is not found only in cognitive architectures. To the contrary, predictive 

coding is a data compression strategy which is routinely deployed by non-cognitive 

architectures to perform non-cognitive tasks. And, in fact, predictive coding originated only as 

a data compression strategy which simplified the transmission of images (see Shi and Sun 

2008: ch. 3; Spratling 2015; 2017). As such, predictive coding is not a “distinctively cognitive 

form of processing”. Hence, if Rupert is correct, the (putative) representations involved in 

predictive processing would not satisfy condition 3, failing to qualify as representations as a 

consequence. Thus, if Rupert’s (2018) proposal is on the right track, then predictive processing 

is by definition a non-representationalist theory of cognition. Hence, philosophers interested in 

defending the representational credential of predictive processing cannot resort to Rupert’s 

defense of receptors to block my argument. 

 

3.4.2 - Artiga’s argument 

Mark Artiga (2021) presents two arguments to the effect that receptors meet the Job 

Description Challenge. The first is that receptors are nothing over and above structural 

representations, and since structural representations meet the Job Description Challenge, 
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receptors meet it too (Artiga 2021:13). 

To start, notice that one cannot use Artiga’s argument as a way to reply to the claim I’ve 

been articulating here, for it would simply beg the question. This is because the argument 

assumes as a premise that structural representations meet the Job Description Challenge - that 

is, it assumes as a premise that my conclusion is wrong. And this clearly makes Artiga’s first 

argument unavailable when it comes to refuting the argument I’ve articulated here: one cannot 

refute an argument by assuming that the argument is wrong. 

Moreover, I think that Artiga’s first argument has very little bite, at least, if “receptors” 

means “all receptors” and structural representations are assumed to have the functional profile 

Gładziejewski proposes. In fact, as explicitly noticed in (§ 2.1.3) and reminded in (§ 3.1), 

although some receptors satisfy (a) to (d), not all receptors do: some fail to satisfy (c) and (d). 

And although Artiga’s first argument could be rescued by erasing point (c) and (d) from the 

functional profile of structural representations, doing so would plunge us knee-deep in 

panrepresentationalism, as (Gładziejewski 2016) acknowledges. 

Artiga’s (2021: 14-15) second argument defends the claim that receptors meet the Job 

Description Challenge because receptors are input-output representation, which meet the 

challenge. In short, the idea is that in order to understand the distally characterized behavior of 

a (computational) system deploying receptors to orchestrate its behaviors, we must see the 

system’s receptors as representing the environmental states of affairs relevant to the system’s 

behavior. 

In spite of the argument’s simplicity, it is important to notice at least three distinct things. 

The first thing to notice is that the argument can, but it is not guaranteed to, avoid the charge 

of panrepresentationalism that ensues from treating receptors as representations. This is 

because input-output representations are tokened only in computational systems, and prima 

facie, not all systems are computational systems. The “prima facie” qualifier, however, is 
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important, because the number of systems counting as computational systems depends on one’s 

theory of computational implementation. If one’s theory of computational implementation 

licenses a form of pancomputationalism (i.e. the claim that all physical systems compute at 

least some functions), then the charge of panrepresentationalism is not avoided: since all 

system compute, all systems relying on receptors token input-output representations, guns and 

optical smoke detector included. Now, Artiga does not say which theory of computational 

implementation he endorses, and in this dissertation I’ve committed myself to understand 

“computation” as “generic computation” (see Ch. 2: §1), without espousing any particular 

theory of computational implementation. So, I do not press the point further, and assume that 

Artiga’s account of computational implementation does not license pancomputationalism, 

keeping his account safe from panrepresentationalism. 

The second thing to notice is that it is manifestly false that in order to understand how 

receptors enable distally characterized behaviors we must regard them as representations of the 

distal states of affairs that are relevant for said behavior. We are surely able to understand how 

a thermostat keeps the temperature in a room constant or how an optical smoke detector alerts 

us of the presence of a fire without having to deploy a representational lexicon. The thermostat 

keeps the temperature constant because when the temperature exceeds certain thresholds the 

bimetallic strip is too curved to keep the circuit feeding power to the furnace closed, thereby 

putting the furnace off. The bimetallic strip alerts us of the presence of fires because the smoke 

the fires generate scatters the beam in the detector’s reflective chamber, thereby triggering the 

alarm. These are perfectly good and intelligible explanations of the distally characterized 

behaviors of systems deploying receptors that do not cast receptors as representations, and treat 

them as mere causal mediators. Notice that similar explanations can be offered for the behavior 

of systems that are far more complex than thermostats and optical smoke detectors. Indeed, in 

(§§ 2.1.3 and 2.1.4) I’ve briefly explained how robotic agents can rely on their receptors to 
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enact distally characterized behaviors and achieve distally characterized goals without using 

the word “representation” once (the next chapter will provide a further example). This is not to 

deny that we can regard receptors as representations of distally characterized states of affairs, 

for everything can be regarded in that way: the fact that the trigger of the gun has been pulled 

can be regarded as representing my homicidal desires, but it must not be regarded that way, 

and typically isn’t. 

The third and last thing to notice is how making the representational role of receptors 

piggyback on their role as input-output representations falls short of vindicating their status as 

representations usually understood. For, given the framework developed in (Ch. 2), regarding 

receptors as input output representations only licenses the claim that they carry mathematical 

contents. But mathematical contents are not representational contents usually understood. 

Unlike standard representational contents, they are not determined by a privileged naturalistic 

relation holding between a vehicle type and the target of the vehicle type. Hence, if the 

representational status of receptors were to depend exclusively on them being input-output 

representations, they would still fall short from being representations in the usual sense of the 

term (although it would of course be sufficient to make them representations in a fairly 

specialized sense, picked up by the label “input-output” representation). 

One might reply that  mathematical content and content “in the usual sense of the term” are 

not mutually exclusive: many vehicles of input-output representations (i.e. computational 

states) also carry regular representational content. Whilst this is true, appealing to such an 

observation seems to me to undermine Artiga’s argument. The observation conceptually teases 

apart mathematical contents and regular representational contents. But Artiga wants to 

conclude that receptors are representations (in the standard sense) because they function as 

input-output representations. The more input-output representations and regular 

representations are teased apart, the weaker his argument gets. 



156 

In conclusion, Artiga’s arguments fail to provide compelling reasons to regard receptors as 

representations. I thus conclude that receptors fail to meet the Job Description Challenge. 

 

3.5 - Changing the definition of structural similarity does not help 

It might be possible to defuse the conclusion of my argument by changing the relevant 

definition of structural similarity mentioned in (a). Perhaps second-order structural 

resemblance is too cheap, and structural similarities might be better understood in terms of 

isomorphism or homomorphism (see Swoyer 1991; Shea 2018). As these are more restrictive 

than second order structural similarity, leveraging them might prevent receptors from meeting 

(a) or (b) or both. But this is not the case. In every example I proposed when discussing (a) and 

(b) an isomorphism obtained. Each and every relation (vx,vy) among the features of the vehicle 

corresponded to only one relation (tx,ty) among the features of the target and vice versa. So 

appealing to isomorphisms does not challenge my conclusion. As isomorphisms are a special 

class of homomorphism, appealing to them will not alter my claim either. 

Another way in which condition (a) could be strengthened so as to defuse my argument is 

by placing some restriction on the relevant class of structural similarities apt to satisfy (a), such 

that the restriction would exclude, in a principled way, structural similarities instantiated 

through time. This would not counter my claim that all receptors satisfy (a); in fact, there are 

receptor-target structural similarities that are purely “static”, and are not instantiated through 

time. It would, however, counter my claim that all receptors satisfy (b), as the relevant 

structural similarity each and every receptor exploits is a structural similarity instantiated 

through time. Doing so would effectively refute my claim. 

However, I see two problems with this line of argument. 

First, what independent reasons support the claim that the only relevant structural 

similarities are not time-dependent? I know of no such reason. And in fact, it is typically 
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claimed that the relevant structural similarities holding between neural structures (or model 

thereof) and their targets are realized dynamically through time (e.g. Grush 2008; Garzón and 

Rodríguez 2009; Shagrir 2012; Morgan 2014; Shea 2018).  

Secondly, and relatedly, such a stipulation would hinder the empirical adequacy of structural 

representations. If the relevant structural similarities holding between computational models 

and their targets are time-dependent, ruling out that time-dependent structural similarities are 

“real” or “genuine” structural similarities would imply that many paradigmatic cases of 

structural representations are actually not structural representations at all.  

And, in fact, adding further restrictions to Gładziejewski’s account does not strike me as a 

promising way to deflect my claim. 

 

3.6 - Could adding a fifth condition rescue structural representations? 

Another way to block my claim by making the relevant definition of structural 

representation more demanding is by adding a fifth condition to Gładziejewski’s account. That 

might be sufficient to differentiate structural representations from receptors, blocking the 

argument here presented. 

However, I believe that adding a fifth condition to Gładziejewski’s account will do no good 

to the philosopher interested in defending the representational credentials of structural 

representations (and/or predictive processing). This is because of two distinct reasons. 

First, there is no obvious candidate for the fifth condition. Neither I nor the audience of the 

conferences in which this essay has been presented managed to find a plausible candidate. This 

surely does not prove that a fifth condition does not exist. But it suggests that such a fifth 

condition is far from obvious and hard to find. 

Secondly, Gładziejewski’s account is already very demanding. Condition (c) is arguably not 

necessary for representations (e.g. Chemero 2009: 50-65; Miłkowski 2017) and the 
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dispensability of condition (d) has already been suggested (Lee 2018). Gładziejewski (2015b) 

himself acknowledges this, and takes the demandingness of his own account to be a virtue, as 

it shields his account from many trivializing counterexamples (see Miłkowski 2013: 160-161 

for a brief, but insightful, case). But virtues, taken to the extreme, might easily turn into vices: 

in particular, it seems to me that adding a fifth condition to Gładziejewski‘s account would 

make it so demanding that few, if any, structures will satisfy the account. That is, adding a fifth 

condition to Gładziejewski‘s account might easily make it too demanding to be satisfied. 

Of course, the observations above do in no way rule out the possibility that adding a fifth 

condition might be sufficient to defend Gładziejewski‘s account of structural representations 

from the argument I’ve offered here. It is likely that any candidate fifth condition should be 

individually evaluated for how it impacts and modifies Gładziejewski‘s original four 

conditions. But doing so clearly presupposes the presence of some candidate fifth condition, 

and, as far as I can see, no such candidate has been proposed (yet).  

 

3.7 - Does adopting a minimalist attitude toward representations help? 

If strengthening Gładziejewski’s account by adding further conditions to it is an 

unpromising way to deflect my argument, then perhaps doing the opposite might help the 

representationalists’ cause. Maybe, then, one could argue that Gładziejewski is wrong in taking 

his own account to be a very demanding one, and stress instead that it is pretty undemanding. 

This provides a way to at least “tame” my argument: in fact, if Gładziejewski’s account of 

structural representations is undemanding, then no doubt very simple entities, such as the 

capacitors of somewhat complex systems, will satisfy it. But that is no problem, for, since the 

account is undemanding, structural representations can (and should be expected to) turn out 

pretty minimal. So, if Gładziejewski’s account really is undemanding, my capacitor-based 

example fails to provide a compelling counterexample to the account. If an argument is 
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designed to over-generalize, the fact it over-generalizes is no objection to the argument. 

However, when I added the control system, so as to enable the capacitor to meet condition 

(d), the functioning of the capacitor was not modified by the addition of the control circuit. The 

control circuit that I added in the final version of the system enabled the whole system to “figure 

out” the instances in which fires and heavy smokes where “hallucinated”159, without thereby 

modifying the functioning of the capacitor. The capacitor itself functions as it functions in the 

version of the system that has no control circuit, and that is thus unable to meet condition (d). 

And, in Gładziejewski’s own view, that way of functioning is not representational. So, it seems 

correct to say that the capacitor in my example does not function as a representation, not even 

if one takes Gładziejewski's account to provide a very minimal definition of structural 

representations. In other words, even if Gładziejewski’s argument were designed to 

overgeneralize, it would be correct to say it overgeneralizes too much: it identifies as 

representations things with a functional profile which is not representational even according 

to the account. 

Moreover, I must confess that it is not clear to me on what grounds one might hold that 

adding the control circuit would transform the capacitor into a structural representation. The 

addition of the control circuit does not modify the way in which the capacitor functions, nor its 

overall role within the system. If the way in which the capacitor functions when the control 

circuit is absent is non representational (and, on Gładziejewski’s account, that is true), why, 

then, the addition of the control circuit, which does not modify the way in which the capacitor 

operates in the system, makes its functioning representational? Surely, we can stipulate that it 

does, but why should we? Gładziejewski (2015b, pp. 78-79) simply asks us to accept condition 

(d) without offering any substantial justification for it. And the reasons as for why Bickhard 

(1999; 2009) deems error detection necessary for genuine representations seem to be fairly 

                                                
159 Or, in more mundane terms, the cases in which the system malfunctions. 
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alien to the theoretical commitments of cognitive science. For instance, Bickhard greatly 

stresses the fact that, in order for some internal state to count as a representation, it must be a 

representation for the organism “consuming” it. But such a requirement is by no means 

necessary in the theoretical framework of cognitive science; indeed, many paradigmatic 

examples of representations (e.g. syntactic trees, Marr’s 2 ½-D sketches) are not 

representations for the organism consuming them. And, in fact, cognitive scientists do not 

simply introspect them or somehow intuit their presence: they posit them as explanatory tools 

deemed necessary to account for the functioning of our cognitive system and the production of 

intelligent behavior.160 Now, I do not wish to simply rule out (d) as a necessary condition. 

Perhaps it is. But if it is, then there must be a way to spell out why error detection is necessary. 

As far as I can see, this reason has not yet been spelled out. 

 

3.8 - A reductio of the Job Description Challenge? 

One might also object that my argument is a reductio of the Job Description Challenge.161 

The reasoning behind this objection seems to be as follows. Any successful naturalistic account 

of representation should cast representations (more precisely, their vehicles) as causal 

mediators, whose causal role is systematically related to their semantic properties.162 Now, it 

is widely assumed that, in the case of structural representations, the relevant semantic 

                                                
160 To be fair to Bickhard, it is important to point out that the idea that genuine representations are representations 
for whole organisms is not the sole reason as for why he deems error-detection a necessary condition. The prospect 
of avoiding the problems of content indeterminacy seems to play an important role too. Yet, I do not see how 
requiring error detection helps in this regard: in order for the tokening of a representation to be counted as a 
representational error, the representational content must have already been determined: I do not see what else 
could justify considering that specific tokening as an error. Thus, it seems that content determination must 
logically preceed error detection: only once a determinate content certain tokens of a vehicle can be rightfully 
counted as misrepresentations. However, even if there were a way of making the possibility of error detection 
partially constitutive of the content of a representation (which I doubt), my main point would still be left 
unanswered: in the theoretical framework cognitive science offers genuine representations need not be 
representations for the entire organism. 
161 As an anonymous referee of the journal Synthese did. 
162 Notice that I do not actually dispute this claim. Above I have denied only the fact that the accuracy conditions 
of a posit are causally relevant to a system’s success is sufficient for that posit to qualify as a representation. But 
this clearly does not exclude that having causally relevant semantic properties is necessary in order for a posit to 
qualify as a representation. 
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properties just are properties of the vehicle; namely the features that make the vehicle 

structurally similar to a relevant target (see O’Brien 2015a; Williams 20017; Williams and 

Colling 2017; Lee 2018). And, if the relevant structural similarity is exploited, these properties 

are guaranteed to be the properties that are causally relevant to the system’s behavior 

(Gładziejewski and Miłkowski 2017). So, structural representations seem to be exactly the kind 

of posits that should meet the Job Description Challenge. If, as I’ve argued, they do not meet 

it, then there is probably something wrong with the Job Description Challenge itself. Maybe it 

is too demanding. Maybe it still hangs to a non-naturalistic conception of intentionality and 

content. At any rate, if no candidate representational posit is able to meet the Job Description 

Challenge, then the problem is likely to be the Job Description Challenge itself, rather than any 

candidate representational posit in question. Compare: if all the students always fail their tests, 

then one would be inclined to think that the problem is the tests, rather than the students. 

However, I do not think that my argument entails such a reductio of the Job Description 

Challenge. To start, my argument, if correct, only shows that structural representations do not 

meet the Job Description Challenge. It is silent on whether other types of representations meet 

it. Maybe they do or maybe they don’t, but adjudicating this issue lies significantly beyond the 

scope of this chapter. 

Moreover, alongside structural representations, there is another kind of representation that 

is widely supposed to meet the Job Description Challenge, namely input-output representations 

(see Ramsey 2007 pp. 68-77). These are representations of the values and arguments a 

computational system is supposed to compute upon. For instance, if really feedforward 

artificial networks acting as recognition models compute the probability of a label given (i.e. 

conditioned over) an input vector, they will need to manipulate vectors (arrays of variables or 

values) and probabilities (a value ranging from 0 to 1), which are mathematical objects. Since 

physical systems cannot manipulate (at least prima facie) mathematical objects, they must 
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manipulate something that stands-in for them, and that represents, in an appropriate way, the 

relevant mathematical objects. These are input-output representations (see Ch. 2: §3.4). 

As far as I can see, my argument does not change this state of affairs: if really input-output 

representations meet the Job Description Challenge163, they meet it whether my argument is 

correct or not. And, if input-output representations meet the Job Description Challenge, the Job 

Description Challenge can be met. It would thus be false that all students always fail the test.  

But what if it turns out that input-output representations fail the Job Description Challenge 

too? Wouldn’t that show that there is something wrong with the Job Description Challenge? 

Maybe yes. Yet notice: I’m not claiming that input-output representations fail the Job 

Description Challenge. The claim that input-output representations fail the Job Description 

Challenge might be a reductio of the challenge, but that claim is not defended here, and so the 

argument offered in this chapter is, as far as I can see, no reductio of the challenge. 

Moreover, even if it turns out that no candidate class of representational posits meets the 

challenge, the charge of reductio strikes me as excessive. Discovering that no representational 

posit meets the Job Description Challenge would be a reductio of the challenge only given a 

strong prior representationalist assumption. But one could also have some prior inclination 

towards anti-representationalism, and conclude that the Job Description Challenge yielded a 

correct result in each case. Now, I do not wish to adjudicate here whether one should be inclined 

more towards representationalism or anti-representationalism. I will only notice that, insofar 

representationalism and anti-representationalism are not taken to be a priori truths, but rather 

empirical research programs (or at least the conceptual bedrocks of empirical research 

                                                
163 Importantly, this at least partially depends on the theory of computational implementation one endorses. Here, 
I will stay neutral on the issue. Notice, however, that many (I suspect the majority of) theories of computational 
implementation try to avoid pancomputationalism; namely, the view that any complex physical system 
implements a number of (or perhaps all) computations (see Piccinini and Maley 2021 for a review). The important 
point to notice, for present purposes, is this: that many accounts of computational implementation would not deem 
sufficient, for a physical system to compute a function, that the causal goings-on internal to the system 
systematically “mirror” the transition between computational states. Thus, if the idea common to these accounts 
is correct, input-output representations need to be more than causal mediators allowing a system to “march in 
step” with some relevant computable function. 
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programs), we should be open to revise our representationalist or anti-representationalist 

inclinations.164 Thus, even if it were true that no candidate representational posit meets the Job 

Description Challenge (a strong claim that this chapter does not support), that fact alone would 

not necessarily lead to a reductio of the challenge. It might also lead to a revision of one’s 

representationalist commitments. 

 

4 - Conclusion 

In this chapter, I have argued that structural representations, as Gładziejewski defines them, 

do not meet the Job Description Challenge. In other terms, physical structures satisfying (a) to 

(d) function merely as causal mediators within the systems deploying them, and do not behave 

in a recognizably representational way. Hence, even if an argument to vindicate the claim that 

generative models meet condition (a) were provided, there would still be a reason not to 

consider generative models as representations (structural or otherwise).  

Suppose my claims, thus far, have been on the right track, and generative models really are 

not (structural) representations. It is now natural to wonder what generative models are. In the 

next section, I will answer that question, claiming that generative models are non-

representational structures instantiating an agent’s sensorimotor mastery.

                                                
164 This claim is typically made by philosophers leaning towards anti-representationalism (e.g. Chemero 2009; 
Ramsey 2017). But the rationale behind it works both ways: if anti-representationalism is not an a priori truth, 
one ought to revise one’s own anti-representationalist commitment in the light of the relevant empirical evidence. 
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Chapter Six - Generative models as nonrepresentational structures instantiating 

sensorimotor mastery165 

 

1 - What could generative models be, if not structural representations? 

In the last two chapters, I have argued that, at present, we have no compelling reason to 

think that generative models qualify as structural representations (Ch 4) and that, even if we 

had such a reason, their representational status would at least be dubious, as they would not 

meet the Job Description Challenge (Ch 5). But what could generative models be, if not 

structural representations? 

Here, I try to answer, claiming generative models are non-representational structures 

instantiating an agent’s sensorimotor mastery. I will argue generative models are implemented 

in physical structures that are not representational vehicles; and that these physical structures 

instantiate the agent’s tacit knowledge (or “practical know-how”) of the regular ways in which 

bodily movements change the incoming flux of sensory stimulation. To substantiate this claim, 

I examine the simplest PP system capable of active inference I know of, in the form of a simple 

robotic “brain”. I show that nothing in that “brain” qualifies as a representational vehicle, and 

that such a conclusion likely generalizes to all PP systems. This will naturally make the physical 

structures implementing generative models appear as non-representational structures 

instantiating an agent’s sensorimotor mastery. 

The next section concisely exposes three necessary features the obtaining of which identifies 

representational vehicles. Section three introduces the robotic “brain”, clarifying its 

functioning. Section four argues that such “brain” hosts no structure qualifying as a 

representational vehicle, whereas section five argues that the same verdict is likely to generalize 

                                                
165 This chapter is based upon, and expands on, Facchin, M. (2021a). Predictive processing and anti-
representationalism, Synthese, https://doi.org/10.1007/s11229-021-03304-3 
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to PP systems more generally. In this way, generative models, as PP conceives of them, will 

naturally appear to be non-representational structures instantiating an agent’s sensorimotor 

mastery. Lastly, section six considers and allays some worries my claim might raise. 

 

2 - Representational vehicles: three necessary features 

Here, I quickly rehearse some commitments of representationalism (already detailed in Ch. 

2 and 3), showing how each commitment spells out a condition that identifies representational 

vehicles; that is, a condition any item must satisfy to qualify as a representational vehicle. 

Hence, jointly, these commitments yield a set of (at least) necessary conditions the satisfaction 

of which (at least partially) identifies representational vehicles. 

 

2.1 - Distality and determinacy 

Representations are type-identified by their contents, which are both distal and determinate. 

Representations “are about” well-specified worldly targets, rather than the proximal conditions 

by means of which these targets are causally encountered (see Chapter 2, §2.2). Hence, 

representational vehicles can always be assigned a determinate and distal content, given a 

theory of content. 

As seen in (Ch.2: §2.2), the relevant senses of “distality” and “determinacy” are the ones at 

play in the horizontal disjunction/stopping problem (e.g. Neander 2017; Artiga and Sebastian 

2018; Rosche and Sober 2019). A correct theory of content must allow us to say that a vehicle 

V represents one, and only one, target T, rather than the disjunction of two or more targets (T 

or T*). This is determinacy. Moreover, a vehicle must represent an appropriately “out there” 

target. Cognitive agents represent objects and states of affairs of the distal world, rather than 

the more proximal states of affairs causally mediating one’s encounter with the distal world, 

such as the states of one’s transducers. 
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Notice that distality and determinacy are necessary features of representational contents. 

This is because if content is not distal and determinate, misrepresentation becomes problematic, 

if not impossible (e.g. Godfrey-Smith 1989). But representations are partially defined by their 

ability to misrepresent (e.g. Dretske 1986). So, necessarily, they can misrepresent (see again 

the discussion of Fodor’s crude causal theory provided in Ch.2: §2.2) 

Thus presented, distality and determinacy seem two requirements that a theory of content 

must satisfy; and, traditionally, they have been articulated in that way. Their traditional 

articulation is roughly as follows: representational vehicles have determinate and distal 

contents. If a given theory of content C does not assign them determinate and distal contents; 

then C is wrong and ought to be rejected. Notice the argument assumes representationalism, 

and assesses theories of content based on their ability to satisfy distality and determinacy. 

Yet, the issues concerning distality and determinacy allow to formulate an argument 

working the other way around; namely, by assuming that a given theory of content is correct, 

one can assess whether a candidate vehicle really qualifies as a vehicle, by checking whether 

it is assigned an appropriately determinate and distal content by the theory. In fact, a correct 

theory of content supposedly assigns determinate and distal contents to all and only 

representational vehicles. Therefore, if given such a theory a candidate vehicle is not assigned 

an appropriately distal and determinate content, then the candidate vehicle is not really a 

vehicle. If it were, it would have been assigned a determinate and distal content. I take this to 

be the first necessary feature of vehicles of content: 

Distality and determinacy: if a candidate vehicle V really is a representational 

vehicle, then there is a correct theory of content C such that, according to C, V 

represents a well determinate and distal target T. 

It seems obvious that to assess whether candidate vehicles really are vehicles using distality 

and determinacy one needs a correct theory of content C. This, prima facie, poses a problem: 

namely that of determining which is the correct theory of content. 
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2.2 - Exploitable structural similarity 

In this context, determining the “right” theory of content is surprisingly easy. As things 

stand, there are only two promising theories of content: teleo-informational semantics and 

structural similarity based accounts (cfr. Neander 2017; Shea 2018).166 But, if the arguments 

provided in (Ch. 5: §§ 2.1.1 - 2.1.2) are on the right track, the former reduce to the latter: teleo-

semantics is a specie of structural-similarity based semantics, and indication is a special case 

of structural similarity.167 So, we are left with just one account of content, imposing a crisply 

defined condition any candidate vehicle must satisfy in order to be identified as a vehicle; 

namely exploitable structural similarity. Thus, by requiring that V represents T if and only if V 

bears an exploitable structural similarity with T, one captures the candidate vehicles that 

actually qualify as vehicles according to the theory. Hence, the second necessary condition: 

Exploitable structural similarity: if a candidate vehicle V really is a 

representational vehicle, then it satisfies distality and determinacy in virtue of 

an exploitable structural similarity it bears to a relevant target T168 

As before, I understand structural similarities as second-order structural resemblances. 

                                                
166 I do not think that this claim is contentious: to be sure, there are other theories of content (such as purely 
informational or purely causal accounts, as well as accounts based on functional/computational role or 
interpretational semantics). But all these accounts face terribile and well known challenges (see Cummins 1996: 
Ch. 3 and 4; Artiga and Sebastian 2018), and, at least as far as I can see, no compelling answer to these challenges 
has been provided. This seems also a fairly widespread belief, given that, in current philosophy of cognitive 
science, these theories are hardly endorsed. 
167 Notice that indication is a special case of structural similarity because, whereas indication entails second order 
structural resemblance, the inverse is not true: second order structural resemblance does not entail indication (cf 
Shea 2018: 137-140). Now, perhaps one could leverage this point to argue that there’s a real sense in which 
structural similarity and indication are distinct content-grounding relations (if they were identical, we would 
expect every case of structural similarity to involve, or be, a case of indication), and thus that teleo-informational 
account do not really reduce to structural similarity based accounts. I’m fairly neutral about this move, as it does 
no damage to the argument I’m building here. Even if teleo-informational accounts and structural similarity based 
accounts were distinct, it would still be true that indication entails a form of structural similarity, and that is the 
only thing that  matters for my argument. 
168 Notice that the teleosemanticsist insisting that teleo-informational accounts do not reduce to explitable 
structural similarity based accounts must find this necessary condition fairly liberal: after all, since they leverage 
the fact that there are exploitable structural similarities that do not involve indication, they ought to insist that not 
all exploitable structural similarities ground contents. Hence they ought to concede that there are instances of 
contentless exploitable structural similarity; which entails that the necessary condition I’m developing here 
generates false positives (hence the liberality). 
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Notice that, in this context, understanding structural similarities in terms of second-order 

structural resemblances makes the condition easier to obtain. This is because second-order 

structural resemblances are easier to obtain if compared with other popular “unpackings” of 

structural similarity, such as isomorphism or homomorphism (see O’Brien and Opie 2004). 

Hence, by unpacking structural similarity in terms of second-order structural resemblance I’m 

placing a (relatively) low bar on what must be the case in order for a candidate vehicle to really 

qualify as a vehicle. 

Recall now the canonical definition of exploitability (Shea 2018: 120) discussed in (Ch. 4: 

§1.2): 

Exploitability: V bears an exploitable structural similarity to T if, and only if: 

(a) The relevant (i.e. structural similarity-constituting) relations holding among 

the constituents of V are such that the system’s processing is systematically 
sensitive to them; & 

(b) The relevant target constituents and their relations are of significance to the 

system 

Condition (a) imposes that the functioning of the system in which the candidate vehicle is 

tokened must be systematically sensitive to the relevant relations holding among the vehicle 

constituents. This means that the obtaining, or not obtaining, of a similarity-constituting 

relation among two or more vehicle constituents must affect the outputs produced by the 

device. The idea is that the similarity itself (and the degree to which it obtains) must govern the 

success of the system relying on the candidate structural representation to organize its behavior 

(Gładziejewski and Miłkowski 2017). The more the candidate vehicle is structurally similar to 

its target, the more the system is likely to (non-accidentally) succeed. And the less the candidate 

vehicle is structurally similar with its target, the more the system is likely to (non-accidentally) 

fail. 

Condition (b) mentions the fact that the relevant target must be “of significance” to the 

system in which the candidate representation is tokened. Here, significance should be unpacked 
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in terms of the task functions of the system; roughly, the outputs the system is disposed to 

produce robustly and that it is supposed to produce in virtue of some stabilization mechanism 

having operated over it. The concept of a task function can be unpacked further (see Shea 2018: 

Ch. 3). Task functions have two main ingredients: robustness and stabilization.  

Robustness indicates a property of the outputs produced by a system. Here, “outputs” should 

be understood broadly, as encompassing movements, actions and their consequences (Shea 

2018: 55). An output is said to be robust if, and only if, it is produced in response to a range of 

different kinds of input and in different external conditions. What counts as different kinds of 

input and different external conditions clearly depends on the system in question and its 

activities. But, in general, for two inputs to be of different kinds their difference must be 

detectable by the system (e.g. two colored patches that differ only for how they reflect invisible 

light are different inputs for the mantis shrimp but not for me) and they must not be “groupable” 

together under the head of stimulus generalization (e.g. Pavlov’s dog salivating in response to 

the chime of bell A or bell B is not responding to different kinds of inputs). Equally broadly, 

external conditions count as different only when the variation affects the system’s ability to 

achieve an outcome (e.g. if the outcome is walking in a straight line, “being on Earth” and 

“being on Jupiter” count as different conditions, as the difference in the gravitational force 

makes me more or less likely to produce the outcome. A difference in temperature of 0.3° 

wouldn’t, and so does not count as a different condition). (Shea 2018: 55-56). 

Stabilization also indicates a property of the outputs, namely that of being produced because 

they lead to good consequences (Shea 2018: 56). Very broadly, an output is stabilized if the 

consequences of having produced an output in the past, provide an account for the existence of 

systems producing that output in the present. According to Shea, we should understand 

stabilization disjunctively: there are many distinct ways in which an output can be stabilized. 

Natural selection is one such way. With an overused example: hearts are now present and 
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disposed to pump blood because the blood-pumping of ancestral hearts was evolutionary 

advantageous for certain organisms, which thus survived and reproduced - that is, produced 

(among other things) other blood-pumping hearts. Learning with feedback is another way in 

which outputs can be stabilized (Shea 2018: 59-62). An individual organism’s history of 

reinforcements clearly accounts as for why the organism is disposed to behave in the ways in 

which it is disposed to behave. 

Importantly, explicit design can be an alternative way to stabilization (Shea 2018: 64-65). 

A system might be disposed to produce an output leading to good consequences not because 

of its past history (or the evolutionary history of its lineage), but because it has been engineered 

to be so disposed. This is probably the most obvious explanation as for why something is 

disposed to produce desirable (in some sense) outputs, and perhaps the only explanation 

available before the discovery of natural selection processes (Dennett 1996). 

Summarizing: a structural similarity is exploitable by a system when (and only when): (a) 

the degree of structural similarity between vehicle and target influences the chances of the 

system’s success, and (b) the target matters to the system, given its functions: the outputs that 

it produces robustly either in virtue of some stabilization process or explicit human design. 

 

2.3 - Mathematical contents constrain representational contents 

The last necessary feature individuating genuine representational vehicles is that their 

representational content (as determined by the relevant exploitable structural similarity) must 

at least be coherent with their mathematical content, as determined by the computations 

implemented by the system in which they are tokened. Thus, mathematical contents constrain 

representational contents. 

Mathematical contents constrain representational contents: if a candidate 

vehicle V really is a representational vehicle, then its representational content 

must at least be coherent with its mathematical content (i.e. computational role). 
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This might sound odd: surely, the structural-representationalist interpretation of PP buys 

into this constraint (Ch. 3: §4.4), but why should anyone else? Yet, the constraint is pretty 

innocent: recall that mathematical contents are determined by the relevant computations 

implemented in a system (Ch. 2: §3.4): each vehicle is thus assigned its mathematical content 

in virtue of its computational role. And surely every representationalist endorsing 

computationalism must accept that the content of representational vehicles must at least be 

coherent with its computational role.169 Otherwise, representational and computational 

explanations come apart, forcing us to choose between the two. 

To see why, consider the following: suppose our best theory of content ascribes to a signal 

carrying only two bits of information the representational content conveyed by all the volumes 

of the Encyclopedia Britannica. Since all that representational content cannot possibly 

“squeezed” in just two yes/no questions, and the physical shape of the vehicle must allow it to 

carry the representational content it carries (Dretske 1981: 41; Cao 2012), either the theory of 

content used or the informational description of the system is wrong. I take this to be an entirely 

unproblematic claim: it seems obvious that the informational capacity of a signal places an 

upper bound on what the signal can represent. 

 Now, as signalled in (Ch. 2: §1), I’m here understanding computation as generic 

computation, and transmitting some bits of information from a source to a receiver qualifies as 

generic computation (Piccinini and Scarantino 2011). Once generic computation is in place, 

the conclusion that the relevant theory of content must license ascriptions of content that are at 

least compatible with the computational capacities of the system under scrutiny (and the 

computational capacities of the vehicles tokened within that system) is easily reached. And, 

again, this conclusion strikes me as entirely unproblematic. If our best theory of content were 

                                                
169 One might now wonder what justifies the commitment to mathematical content: isn’t computational role 
enough? I personally think it is (also because I’m now skeptical about mathematical contents, see Facchin 
submitted), and the argument I’m going to present can be entirely rewritten in terms of computational roles. But 
the structural-representationalist view of PP is committed to mathematical contents, and so I will use it here. 
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to force  us to say that a two-layer perceptron is representing (either x or y), then something in 

the theory of content has gone awry: two layer perceptrons simply cannot compute the 

exclusive disjunction (e.g. Kruse et al. 2016: 19-20) 

Notice also that a far stronger version of this constraint was unproblematically adopted in 

classical cognitive science. Indeed, it was embedded in the conception of the mind as a 

syntactic engine emulating a semantic engine. Bluntly, the idea was that albeit computational 

systems cannot be sensitive to semantic properties, they can be sensitive to syntactic ones; 

namely, the physical features of vehicles upon which computational processes are defined 

(Fodor 1980; Dennett 1987). Thus, by arranging syntactic (computational) properties and 

semantic ones so that they “march in step”, computational systems can behave as if they were 

sensitive directly to meaning. Hence, Hageland’s (1989: 106) dictum: “If you take care of the 

syntax, the semantics takes care of itself”. Mathematical contents and representational ones 

had to “fit” each other to a non-trivial extent. Thus surely mathematical contents constrained 

representational ones. 

Whilst I don’t endorse that view, it is surely worth mentioning it here to highlight how very 

innocent the third criterion is, and how deeply it is woven in the very fabric of computational 

and representational explanations.170 Indeed, in order for computational and representational 

explanations to make sense, it seems necessary that computation and representation must 

“march in step”, hence the former must place at least some constain on the latter.171 

Tacking stocks: if a candidate vehicle V really is a vehicle, then it has a determinate and 

distal content, which bears in virtue of the exploitable structural similarity that V bears with a 

distal and determinate target T, and such a representational content is at least coherent with its 

mathematical content (that is, its computational role). 

                                                
170 See also (Piantadosi 2021; Mollo 2021) for two recent defenses of the idea that representational content should 
at least be constrained by computational roles. 
171 Yet notice that the opposite need not be true: for example, it would not be true if computation does not require 
representation, as some argue (e.g. Piccinini 2006). 
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In the next two sections, I will introduce a simple generative model capable of active 

inference, and argue that none of its components satisfies that description. Generative models 

will thus appear as non-representational structures instantiating the system’s sensorimotor 

mastery. 

 

3 - A simple robotic “brain” capable of active inference 

Here, I introduce a simple robotic “brain” capable of active inference. First, I introduce the 

architecture and its functioning principle. Then, I consider its operations “in vivo” by means of 

an example. An important note concerning the experimental methodology closes the section. 

 

3.1 - The architecture and its functioning principle 

According to PP, generative models are physically instantiated by patterns of neural 

activation and axonal connections (Friston 2005: 819-820; Buckley et al. 2017: 57); these are 

the relevant candidate vehicles. Connectionist systems are thus ideally suited to examine the 

representational commitments of PP (Dołega 2017; Kiefer and Hohwy 2018; 2019). 

Consider the network Bovet (2007) engineered as a control system for robotic agents, 

enabling them to execute a variety of behaviors involving simple sensorimotor coordinations, 

such as returning to a “nest” after having explored the environment (Bovet 2006), smoothly 

moving using different gaits (Iida and Bovet 2009) or successfully navigating simple T-mazes 

(Bovet and Pfeiffer 2005a; 2005b). 

The network is a series of homogeneously connected artificial neural networks, one for each 

sensory modality of the robotic agent (“motor” modality included). Each net consists of the 

following three input populations (ending in “S”) and two output populations (ending in “C”): 

(CS) or current state population, receiving input from the sensor or 
effector of one modality. 

(DS) or delayed state population, receiving the same input of (CS) after a 
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small delay. 

(VS) or virtual state population, receiving input from all other nets. 

(SC) or state change population, receiving input from (CS) and (DS). 

(VC) or virtual change population, receiving input to (CS) and (VS), and 
sending output to all other (VS)s. 

The overall structure of the network is displayed in figure 5 

Figure 5. Implementation of the model (one modality). © IEEE. Reprinted with permission from (Bovet 

and Pfeiffer 2005b). 

The number of neurons in each population varies across modalities, but remains constant 

within each modality. This allows the various populations of a single modality to be “copies” 

of each other. In particular, (DS)s and (VS)s can be “copies” of (CS)s; whereas (VC)s can 

“mimic” (SC)s. Within each net, the connections running from input to output populations are 

not trained, and have opposite weights. Moreover, these connections are neuronwise: the nth 

neuron of each input population projects only to the nth neuron of the relevant output 

population. Thus, the patterns of activation of the output populations are defined as the neuron-
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to-neuron subtraction of activity patterns of the corresponding input populations.172 

Conversely, connections between nets are trained, and involve all neurons of the (VC) 

population of a modality and all the neurons of the (VS)s of all other modalities (i.e. (VC)s and 

(VS)s are fully connected). 

To understand how the network works, consider first (CS)s: they encode, in each modality, 

the state of the relevant sensor. In the visual modality, for instance, (CS) will reflect the image 

captured by a camera. (DS)s do the same, but after a small delay: in the visual modality, (DS)’s 

activity reflects the image captured by the camera one timestep ago. (CS)s and (DS)s jointly 

determine the activation pattern of (SC)s, which thus reflect how the sensory state has changed 

in a timestep.173 Continuing with the previous example, (SC) in the visual modality captures 

how the camera image changed during the delay; for instance, whether it expanded or 

contracted. 

Consider now any two arbitrary modality a and b: there will be patterns of co-activation 

between the neurons in (SC) of modality a and those in (CS) of modality b. For instance, when 

visual (SC) encodes the expansion of the camera image, the motor (CS) is typically encoding 

the fact that the motors are pushing forward. These patterns of coactivation are then used to 

train, in a purely Hebbian fashion, the connections running from (VC) of modality a to (VS) 

of modality b. If the nth neuron in (SC) of modality a and the mth neuron in (CS) of modality b 

fire together, the nth neuron in (VC) of modality a and the mth neuron in (VS) of modality b 

wire together. 

This allows the information flowing from (VC)s to (VS)s to be transformed in a way so as 

to induce, in (VS)s, a pattern of activation that corresponds to the sensory state that modality 

typically occupies as the other modalities change in a given way; that is, the sensory state 

                                                
172 Hence, the basic function computed within each modality is vector subtraction. 
173 Notice that each change in sensory state is always due to the behavior of the robot or, during the learning 
period, the fact that an experimenter “moved” the robot’s body around. 
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expected, given the activity in all (SC)s.174 Thus, the activity of (VS) estimates (or predicts) a 

sensory state, given the motor-dependent changes of sensory states in all other modalities. And, 

in fact, the connections from all (VC)s to all (VS)s constitute a simple generative model, which 

predicts the sensory states expected, given the robot’s activity. In this way, they constitute a 

simple generative model instantiating an agent’s knowledge of its relevant sensorimotor 

contingencies: they allow the network to predict the incoming stimulation, given the robot’s 

movements (on generative models and sensorimotor contingencies see Ch. 1; §4). 

Recall now that the connections running from (CS)s and (VS)s to (VC)s are not trained, and 

have opposite weights. This means that the pattern of activity in each (VC) will reflect the 

difference between current and predicted sensory states, which is just prediction error, 

computed in the simplest possible way. Prediction error is then forwarded to all (VS)s, enabling 

them to update their estimate just as PP requires.175 

Notice further that in the motor modality, (VS) directly controls the motors. In this way, the 

robot will move so as to bring about the sensory states the network expects. The robot’s 

behavior is thus driven directly by the network’s motor predictions, and indirectly by the 

ensemble of expected sensory states. This is because the input to the motor (VS) just is 

prediction error from all other modalities. Thus, the robots will act if, and only if, the network 

needs to minimize prediction error in some modalities, and the robot will act so as to bring 

about the sensory stimulation the network expects, thereby minimizing prediction error in all 

modalities.176 In this way, Bovet’s networks qualify as minimal PP systems, able to “actively 

infer” the sensory states expected in all modalities. 

                                                
174 To be clear, (SC)s do not project on (VS)s. Only (VC)s do. But since within each modality each population 
has the same number of neurons, the (VC) of each modality can mimic the (SC) of that modality. 
175 Notice that albeit here all nets are homogeneously connected (and so there is no hierarchy) PP allows for 
horizontal (i.e. within level) message passing of error, see (Friston 2008:16). Intriguingly, such an horizontal 
message-passing is rarely implemented in robotic models inspired by PP, see (Ciria et al. 2021). 
176 This is because the (VC) in each modality effectively “mimics” the (SC) of that modality. Thus, the activity 
of (VC)s elicit in motor (VS) a pattern of activity corresponding to the motor state expected, given that change in 
sensory states. In this way, the robot will act so as to minimize that error. 
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3.2 - The functioning in vivo: an illustrative example 

Now, to see this simple generative model in action, consider the following experiment in 

which the network enabled a form of “phonotaxis”177 comparable with that of female crickets 

(Bovet 2007: 79-105). When a female cricket hears the song of a conspecific, she turns in the 

direction of the sound source and approaches the male to mate. The turning behavior of the 

cricket, however, generates optic flow in the opposite direction178; and optic flows tend to 

trigger the cricket’s optomotor response: a simple reflex that tries to correct for the visual flow, 

re-orienting the cricket in her original position. Clearly, in order for the cricket to reach her 

mate, her optomotor response needs to be inhibited. Empirical studies suggest that the 

inhibition is carried out through reafference cancellation: a simple forward model predicts the 

visual flow caused by the cricket reorientation, and that prediction is used to suppress the 

optomotor reflex (e.g. Payne, Hedwig and Webb 2010; Webb 2019). 

Bovet’s experiment was simple. First, he created a network mounted on a “cricket robot”, 

possessing four modalities: an “auditory” modality, a visual modality, a motor modality and a 

battery level modality, which equipped the robot with a minimal form of visceroception. The 

network was then trained (by making the robot interact with its environment) so that it could 

learn the relevant sensorimotor contingencies. Crucially, each time the robot reached the 

“auditory source”, the battery level was increased. 

After training, the experimental session began. The network’s visceroceptive (VS) was 

increased; and the mismatch between visceroceptive (CS) and (VS) propagated prediction 

error. Since increases of battery level highly correlated with certain patterns of activation of 

                                                
177 Due to the robotic hardware employed, “phonotaxis” really was phototaxis (i.e. the sound source really is a 
light source). This is why “phonotaxis”, “auditory modality” and “sound source” will appear under scare quotes 
in the text. 
178 That is, when the cricket turns left, the optic flow optic flow moves to the right. This is a simple sensorimotor 
contingence. 
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the “auditory modality” (recall, the battery level increased anytime the robot was in proximity 

of the “auditory source”), the “auditory” (VS) instantiated those patterns. The mismatch 

between “auditory” (CS) and (VS) was then propagated to all other modalities. Hence, the 

network “expected” the patterns of stimulation generated by movements towards the “auditory 

source”: a certain kind of motor activation, and the corresponding optic flow. The error relative 

to these expectations was then minimized through active inference; that is, by making the robot 

reach for the “auditory source”. 

Then, the (VS) of the motor modality was injected with some noise, and the robot’s 

“phonotactic” behavior was tested under two conditions. In the first, the synaptic coupling 

between motor and visual modality was removed; whereas in the second it was left untouched. 

In the first condition, the robot was often unable to display the “phonotactic” behavior. This is 

because the noisy activity in motor (VS) forced the robot to take sudden curves, and, given that 

the visual and motor modalities were disconnected, the visual modality was unable to predict 

the corresponding optic flow. This generated visual prediction error, which was propagated in 

the network, triggering the optomotor reflex, thereby hindering “phonotaxis”. The competition 

between “phonotactic” and optomotor behaviors can be seen in (Bovet 2007: 90, figures 5-7): 

the robot’s trajectories exhibit the zig-zag typical of two competing orienting reflexes. Yet, 

when the synaptic coupling between motor and visual modalities was re-established, the visual 

modality was able to predict the incoming optic flow. Thus, no optomotor reflex ensued, and 

the robot swiftly reached for the “sound source”.179 Hence, the synaptic coupling between 

visual and motor modality constituted a simple forward model180; and, more generally, the 

                                                
179

 Strikingly, a similar synaptic coupling enabling optic flow predictions has been observed in mammalian brains, 
and it nicely fits a number of theoretical predictions coming from PP, see (Leinweber et al. 2017). 
180 Notice, importantly, that I’m here using the term “forward model” just to denote the fact that such a synaptic 
coupling allowed the network to predict the sensory consequences of the movements of the robot. I’m not implying 
that the synaptic coupling estimated the sensory consequences of behavior from motor commands. In fact, there 
are no motor commands in such an architecture, and the robot’s behavior is directly controlled by the network’s 
sensory predictions, just as active inference prescribes. 
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connection between various modality constituted a simple generative model, enabling the 

network to predict the incoming input and to make some of those predictions come true through 

active inference. Notice further that the network qualifies as a genuine forward model, rather 

than merely as a system exhibiting a simple compensatory bias. In fact, its predictions are 

targeted to enhance or suppress behaviorally relevant stimulation, are modulated so as to match 

the incoming feedback and are able to adapt in an experience-dependent manner (see Webb 

2004).181 

 

3.3 - A note on synthetic methodology 

Before I move forward, I need to place a caveat. It is essential not to confuse networks and 

robots. Only networks literally are PP systems, generating and minimizing prediction errors. 

And only networks host connections and units exhibiting activation patterns. So, only networks 

are candidate vehicles of generative models. This is important, given how Bovet describes his 

experiments and his overall commitment to a synthetic methodology of research. I briefly 

elucidate both points in order. 

First, Bovet describes his systems in two different ways. Networks are described proximally, 

as receiving signals from sensors and motors and correlating those signals. For instance, when 

introducing the general architecture of the network, Bovet writes: 

“The essence of this neural architecture [...] is the following. 1) All signals 

of the sensors and motors the robot is equipped with are represented 

through the activity of artificial neurons. 2) All populations of artificial 

neurons are homogeneously coupled to each other through artificial 

synapses, whose plasticity follows a simple rule well-known to biologists: 

‘neurons that fire together wire together’” (Bovet 2007:12, emphasis 
added) 

Robots, however, are described distally, in terms of environment-involving behaviors. The 

                                                
181 On experience-dependent adaptability, see in particular (Bovet and Pfeiffer 2005a; 2005b). 
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“phonotactic” examples provided above clarifies the point: the robot is described (for instance) 

as approaching the “sound source”, or as manifesting the optomotor reflex. So, there are two 

levels of descriptions at play here. One, pertaining to the networks, is proximal. The other, 

pertaining to the robot, is distal. The proximally describable goings-on in the network give rise 

to the distally describable behavior of the robot. For instance (again, using the “phonotaxis” 

experiment described above), the mismatch between the patterns of activation of visceroceptive 

(CS) and (VS) generates prediction error, which modifies the states of auditory and motor (VS), 

thereby giving raise to the robot’s “phonotactic” behavior.182  

Now, on Bovet’s synthetic methodology of research. In extremely succinct terms, the aim 

of the synthetic methodology is that of “understanding by building” (see Pfeiffer and Bongard 

2007, Ch. 1 and 3, Tani 2016, Ch. 5, Hoffman and Pfeifer 2018). The basic idea animating it 

is that our best way to understand the mechanical underpinning of some (cognitive) behavior 

of interest is that of creating a real world artifact able to exhibit that behavior. Proponents of 

the synthetic methodology put forth two reasons as to why building real artifacts to understand 

cognitive behaviors should be our way of proceeding. 

One is that it avoids excessive abstraction and idealization. Surely, robotic and artificial 

neural networks models are abstract and idealized (e.g. they typically have less degrees of 

freedom than their biological counterparts). Yet, since the products of synthetic methodology 

are real world artifacts, these artifacts must comply with physical laws that are usually ignored 

in cognitive models, in a way that might sometimes strain the outputs of research (see Pfeiffer 

and Bongard 2007: 68-70).  

The other is the “law of uphill analysis and downhill invention”:  

“It is pleasurable and easy to create little machines that do certain things. 
It is also quite easy to observe the full repertoire of behaviors of these 

machines - even if it goes beyond what we originally planned, as it often 

                                                
182 Notice that this is a simple explanation of the robot’s distally characterized behavior that does not involve 
any usage of the term “representation”. So, I’m delivering what I’ve promised in (Ch. 5: §3.4.2). 
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does. But it is much more difficult to start from the outside and try to guess 

the internal structure just from the observation of behavior. [...] A 

psychological consequence of this is the following: when we analyze a 

mechanism, we tend to overestimate its complexity. In the uphill process 

of analysis, a given degree of complexity offers more resistance to the 

workings of our mind than it would if we encountered it downhill, in the 

process of invention. ” (Braitenberg 1984: 20 - 21) 

If this law is correct, then the best (i.e. the simplest and most productive) way we have to 

understand intelligent behavior and the mechanisms generating it is to try to build the simplest 

possible mechanisms generating the target behavior. 

Bovet’s work is an extreme example of synthetic methodology. For, typically, researchers 

adopting it have a target biological behavior that they wish to replicate in a robot (e.g. Webb 

1994) or at least a target behavior that they wish the robot to exhibit. But Bovet’s robotic 

models have no such target. Indeed, Bovet’s models have no purpose: 

“Before the agent starts interacting with its environment, all synaptic 
weights of the network are initialized to zero. In other words, sensors and 

motors initially do not interact: the agent has no built-in reflexes, nor any 

similar behavioral primitives provided by an external designer. [...] 

Similarly, the system has no goal.” (Bovet 2007: 30, emphasis added) 

The same holds for their controllers: 

“The main characteristic of the neural architecture is the absence of 
explicit control or regulation mechanisms.” (Bovet 2007: 29) 

And in fact Bovet describes what its networks are designed to do in squarely proximal terms. 

The importance of these methodological points will become apparent in the following. 

  

4 - The “brain” hosts no representational vehicle. 

Thus far, I have identified three necessary conditions a candidate vehicle must satisfy in 

order to be rightfully identified as a vehicle, and introduced a simple robotic “brain” capable 

of active inference. It is now time to check whether the structures in that “brain” qualify as 

vehicles according to the criteria given above. 
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4.1 - Activation patterns are not representational vehicles 

Consider first patterns of activity. In the connectionist literature it is standardly assumed 

that patterns of activity of the hidden layers are representational vehicles (e.g. Goodfellow, 

Bengio and Courville 2016: Ch. 15). But the network has no hidden layers.183 It is thus doubtful 

whether we should consider its activity patterns as candidate representational vehicles. 

Suppose we should. Are patterns of activity structurally similar to relevant environmental 

targets? As far as I can see, the answer is in principle positive: structural similarities are cheap 

to come by -  so cheap they can be arbitrarily defined (Shea 2018: 112-113). Hence, it is 

extremely likely that the patterns of activation of the network will turn out to be structurally 

similar to at least some environmental target. The relevant point is thus whether these structural 

similarities will be exploitable. 

Recall (from § 2.2 above) that exploitability is canonically defined as the conjunction of two 

requirements. A vehicle V bears an exploitable structural similarity with T just in case (a) the 

structural similarity-constituting relation or relations holding among vehicle constituents are 

such that the system is systematically sensitive to them, and (b) the target T is “of significance” 

to the system; that is, T matters (in the broadest possible sense of the term) for the system’s 

task-functions. Recall further that task-functions are outputs that a system produces robustly, 

either because of some stabilization process (natural selection, learning) or because of explicit 

design. Since Bovet’s networks (i.e. the systems in which the patterns of activation are tokened) 

are designed, their relevant task functions are determined by their designer. 

                                                
183 A reviewer of the journal Synthese objected that (VS)s should be counted as hidden layers, because they do 
not receive inputs from sensors or motors (and so they are not input layers) nor they convey outputs to other 
networks or effectors (and so are not output layers). So, why am I claiming the networks have no hidden layer? 
Mainly, because this is how Bovet characterizes them: “The network does not contain any so-called ‘hidden’ layer 
of inter-neurons” (Bovet 2007: 29). Perhaps it could be argued that both the reviewer and Bovet are right: if we 
focus on single modalities, then (VS)s naturally appear as input layers. Yet, when focusing on the entire network, 
(VS)s are more naturally considered as hidden layers. However, as far as I can see, granting (VS)s the status of 
hidden layers does not impact my argument. 
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However, as seen above (§ 3.3) Bovet describes his networks in squarely proximal terms. 

He says, for instance, that (CS)s only produce patterns of activation that capture the state of a 

sensor or motor. As he writes: “In the visual modality for instance, the activity of each neuron 

corresponds to the brightness of a pixel in the camera image” (Bovet 2006: 528, italics added). 

Similarly, he states (SC)s have been designed so as to reflect how the sensory inputs have 

changed in a timestep. Equally proximal descriptions are in fact given for each neural 

population. Notice that, when he so claims, Bovet is telling how the network has been designed 

to operate. That is, he is expressing the task functions of the network and its components. 

But then, by design, the network’s task functions target only proximal states, and therefore 

only proximal states will be of significance to it. And exploitable structural similarities can 

hold only between candidate vehicles and targets that are of significance to the system. Thus, 

if exploitable structural similarities are used to determine the content of the candidate vehicles 

under scrutiny (i.e. patterns of activation), their content can only be proximal. Hence, distality 

and determinacy fail to obtain. As a result, it should be concluded that the candidate vehicle is 

not really a vehicle. Conversely, if we assign candidate vehicles distal targets, then exploitable 

structural similarity fails to obtain, for the candidate vehicle is not assigned a distal (and 

determinate) content in virtue of an exploitable structural similarity. 

In sum, the relevant candidate vehicles (patterns of activation in Bovet’s network) appear to 

be unable to satisfy distality and exploitable structural similarity in conjunction. As a result, 

these candidate vehicles are not really representational vehicles. 

The same holds if instead of single patterns of activations we focus on the entire activation 

space (e.g. Churchland 1989; 2012): focusing on the entire activation space will not change the 

task functions of the networks. Thus, the entire activation space can bear an exploitable 

structural similarity only to proximal stimuli (or, perhaps more appropriately, the space of 

possible proximal stimuli). As a result, it fails to satisfy either distality or exploitability just as 



184 

single activation patterns. 

Notice also that this verdict does not change if instead of focusing on the entire activation 

space or single activation pattern one focuses on the activity of single units. It is surely possible 

to construe single units as receptors, and thus as elements that must bear an exploitable 

structural similarity to something. The problem is that, as Bovet’s citation provided above 

testifies, single units are receptors only of proximal states, such as the values of single camera 

pixels or the activity level of some motor. Hence, just entire activation spaces and single 

patterns of activity, they fail to bear an exploitable structural similarity to a distal target. Hence 

they fail distality, hence they are not representational vehicles. 

What if one focuses on the task-function of the robots, rather than the task functions of the 

network?184 Since the robots’ behavior is distally characterized, it seems legitimate to expect 

the robots’ task functions to be distally characterized (i.e. “long-armed”) too. That would solve 

the problem of distality just raised. 

Yet, as highlighted above, Bovet very clearly states that, by design, his robots have no 

function. There is nothing they are supposed to do: they are not designed to produce any target 

distally characterized behavior, and so there is no output (in the relevant sense) that they are 

designed to produce. Indeed, Bovet describes his robots as: “artificial systems endowed with a 

self-developing dynamics, yet without any particular task or motivation” (Bovet 2007: 8, 

emphasis added). Given that robots are artificial systems, and that the task functions of artificial 

systems are determined by their designer, it seems correct to conclude that Bovet’s robots have 

just no task function, long-armed or otherwise. Hence considering the robots’ (non-existent) 

task functions will not solve the problem with distality I just raised. 

Couldn’t perhaps the patterns of activation have acquired some distally characterized 

function through the network’s individual learning history? A negative answer seems 

                                                
184 I owe this objection to an anonymous reviewer of the journal Synthese. 
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warranted for two distinct reasons. First, albeit some philosophers do allow individual learning 

histories to dictate functions, the scope of the claim is restricted to supervised forms of learning 

involving some sort of feedback (e.g. Dretske 1988; Shea 2018: 59-62). But Bovet’s networks 

learn in a purely unsupervised manner, and no feedback is involved. Moreover, functions are 

typically understood as the upshot of processes of selection, in which certain features or traits 

are selected over competing features or traits in virtue of their effects. Hebbian learning, 

however, is not a process of selection. Hence, it cannot confer functions  (Garson 2012; 

2017).185 Mutatis mutandis, the same reasoning seems to apply to entire robotic agents. Notice 

that this is actually entirely compatible with the way in which Bovet characterizes the 

“developmental trajectory” of its robots: 

“The Hebbian learning rule, which modifies the synaptic weights of the 

network, is not modulated by any value system that would define a 

particular goal. It is worth noting at this point that the term learning can 

be slightly misleading: the Hebbian learning rule is not a learning strategy 

allowing the agent to achieve a given task or optimizing a given fitness 

function; rather, it is an arbitrary rule that defines the synaptic plasticity 

of the network [...]” (Bovet 2007: 30 emphasis added) 

Maybe we should assign content to single activation patterns (or, single units activation) in 

a different way. Wiese (2018: 219-223) has in fact recently suggested a different procedure to 

do so. He suggests that albeit the (generative) model as a whole represents the causal structure 

of the world in virtue of the exploitable structural similarity holding between the two, contents 

of individual patterns of activation should be determined by looking at the statistical 

dependencies holding between them and their worldly causes. Relying on Eliasmith’s theory 

of content, Wiese suggests that the target of a neuronal response is the set of causally related 

events upon which the neural response statistically depends the most under all stimulus 

conditions (see Eliasmith 2000: 34). That is, a neuronal response represents the events that, on 

                                                
185 Notice also that PP only requires Hebbian forms of learning, see (Bogacz 2017). Thus, given that Hebbian 
learning is not a selectionist process, it could be argued that no PP system can acquire functions through individual 
learning. 
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average, make its tokening most likely. Does this suggestion allow the candidate vehicles under 

scrutiny to meet distality and exploitable structural similarity? The answer seems to me 

negative for two reasons. 

First, resorting to Eliasmith’s theory of content seems redundant. Wiese (2018: 219-222) 

intends to use it to assign contents to individual neuronal responses, which he takes to be 

“proper parts” (i.e. vehicle constituents) of the generative model. He also maintains that the 

generative model is, as a whole, structurally similar to the causal structure of the world. 

However, in structural representations, the way in which each vehicle constituent participates 

to the structural similarity is already sufficient to determine its content (Cummins 1996: 96; 

Shea 2018: 125; Kiefer and Hohwy 2018: 2391). Consider, for instance, a map. As a whole, 

the map (V) is structurally similar to a target territory (T). This is because V’s constituents 

(va...vn) map one-to-one onto T’s constituents (ta...tn) in a way such that the same pattern of 

spatial relations holds among both (va...vn) and (ta...tn). But if this is the case, then it is entirely 

correct to say that va represents ta and vb represents tb and so on. Since individual vehicle 

constituents acquire content in virtue of the role they play in the overall structural similarity, 

there seems to be no need of resorting to Eliasmith’s theory of content. 

Secondly, suppose that content is assigned to vehicle constituents as Eliasmith’s theory of 

content suggests. Will the contents thus assigned be consistent with the ones assigned by the 

relevant structural similarity? If yes, then resorting to Eliamith's theory of content adds nothing 

to what structural similarity already provides. But if not, then there are at least some cases in 

which a vehicle constituent vx represents both tx by structural similarity and ty by Eliasmith’s 

theory. But then vx fails determinacy, because its content is disjunctive. In fact, given that vx 

represents tx, its conditions of satisfaction obtain whenever tx is the case. And, given it also 

represents ty, its conditions of satisfaction obtain whenever ty is the case. Hence, vx will 

misrepresent if, and only if, both tx and ty are not the case. But these are the conditions of 
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satisfaction of a vehicle representing (tx or ty).186 

To restore determinacy, one needs to deny either that vx represents tx or that it represents ty. 

Denying that vx represents ty rules out the contribution provided by Eliasmith’s theory, which 

again is left with no role to play. But one cannot rule out that vx represents tx either, as that 

would deny by modus tollens that V, of which vx is a constituent, is a structural representation. 

In fact, the statement “if V is a structural representation of T, then each constituent vx of V 

represents the constituent tx of T onto which it maps” is correct. So, by saying that vx is not a 

representation of tx one denies the consequent of a true statement. But if the consequent of a 

true statement is false, then the antecedent must be false too. Therefore, if vx does not represent 

tx, then V is not a structural representation of T. 

Summarizing: patterns of activation do not seem to bear any exploitable structural similarity 

to distal targets. Hence, if their content is determined by exploitable structural similarity, then 

distality does not obtain. Conversely, if their content is not proximal, then their content is not 

determined by an exploitable structural similarity. Appealing to a different content 

determination procedure appears to deepen the problem. I thus conclude that patterns of 

activation are not representational vehicles. 

 

4.2 - Connections are not representational vehicles 

What about the connections? As distality has thus far been particularly pressing, it offers a 

natural starting point: do connections have distal content? The answer seems negative. 

To begin with, what should their content be? Connections encode all a network learns (e.g. 

Rogers and McClelland 2004). But all Bovet’s networks learn is to predict the states of the 

sensors and motors of the robots they control. This seems definitely proximal content. 

Computationally speaking, connections are also trained in a simple Hebbian fashion. At each 

                                                
186 I will expand upon this point down below, in § 6.3 
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time step, the way in which the weight of a connection is modified is provided by a function 

that takes as arguments patterns of co-activation between the neurons in (CS) and (SC) and the 

learning rate (see e.g. Bovet 2007: 26-29). The mathematical content of these connections (i.e. 

their weight value) is thus exclusively determined by factors lying inside the system and 

carrying only proximal content (if any). If ascriptions of mathematical contents constrain 

ascriptions of representational contents, it seems that, in these cases, the mathematical contents 

constrain our ascriptions of representational contents in favor of proximal contents. 

The argument above is not conclusive, so I’m forced to concede that it might be possible to 

assign determinate and distal contents to weighted connections. But will it be assigned in virtue 

of an exploitable structural similarity? I believe the answer is again negative. This is because 

if connections are representations, they are superposed representations. And, given the standard 

notion of superpositionality (see Van Gelder 1991; 1992; Clark 1993: 17-19), superposed 

representations cannot be structurally similar to their targets (this was anticipated in Ch. 4: § 

4.2). 

Recall the relevant notion of superpositionality at play (Ch. 2: § 3.3).  The notion is defined 

in terms of a vehicle being conservative over a target (Van Gelder 1991: 43). Bluntly put, a 

vehicle V is conservative over a target T just in case the minimal set of resources a system 

needs to leverage in order to represent T equals V. For instance, given the representational 

resources of natural languages, “John” is conservative over John: to represent John I need 

(minimally) to token “John”, and “John” has no “representational space” left to represent 

something other than John. Conversely, “John plays” is not conservative over John: to represent 

“John” I need not minimally token “John plays”, which as a matter of fact has the 

representational space to represent something more than John. Superpositionality can then be 

defined in terms of conservativeness as follows: a vehicle V is a superposed representation of 

a series of targets Ta...Tn just in case V is conservative over each member of Ta...Tn. Notice the 
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plural: superposed representations are always, by definition, conservative over  more than one 

target (Van Gelder 1992; Clark 1993: 17-19). 

Structural representations, however, can be conservative over one target at most. If V is the 

vehicle of a structural representation, then there is at least one target T with which V is 

exploitably structurally similar. This entails that each relevant (i.e. similarity constituting) 

constituent of V va...vn maps (in an exploitable way) onto one, and only one, constituent tx of 

T. Now, if this mapping determines the content of each constituent, it seems that each 

constituent of V entirely “spends its representational credit” to represent one and only one 

constituent of T. Hence, each constituent of V will be conservative over one, and only one, 

constituent of T. By the same token, V will be conservative over one, and only one, target T. 

Why can't a constituent vx be conservative over two (or more) constituents tx and ty, making 

V conservative over T and T* (of which ty is a constituent)? Because it would have to map onto 

many. But (exploitable) structural similarities are defined in terms of one-to-one mappings (see 

O’Brien and Opie 2004: 11). Thus, it seems correct to say that if a vehicle represents by means 

of (exploitable) structural similarity, then it is conservative over one, and only one, target. 

Hence, if a vehicle is not conservative over one, and only one, target, then the vehicle does not 

represent by means of exploitable structural similarity. But superposed representations are not 

conservative over one and only one target. Hence, their vehicles fail to satisfy exploitable 

structural similarity.187 

Couldn’t perhaps the relevant definition of structural similarity be relaxed, so as to allow 

superposed representations to count as structural representations? Allowing structural 

similarities to be defined in terms of one-to-many mappings would easily defuse my argument. 

                                                
187 To my dismay, I discovered that this claim is not original: “In general, schemes of representation define a 
space of allowable representations and set up a correspondence with the space of items or contents to be 
represented. We are accustomed to thinking of such schemes as setting up a roughly isomorphic correspondence 
[...]. The notion of superposed representation overthrows this whole familiar picture, for superposition aims 
precisely at finding one point in the space of representation that can serve as the representation of multiple 

contents”. (Van Gelder 1991: 45-46, emphasis added). 
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However, allowing one-to-many mappings makes the content of structural representations 

disjunctive. In fact, if V is a structural representation of T and vx maps onto many (e.g. onto 

both tx and ty), it follows that vx misrepresents only when both tx and ty are not the case; and 

thus that vx represents (tx or ty). This argument has already been presented at length in (Ch. 4: 

§ 4.5) and will not be discussed further here. 

Summarizing: it seems correct to say that connections fail to satisfy distality. And, were that 

verdict wrong, they would still fail to satisfy exploitable structural similarity. Hence, it seems 

correct to conclude that, in the networks under scrutiny, connections do not qualify as 

representational vehicles, given the theoretical commitments of inferentialist and 

representationalist accounts of PP. 

 

4.3 - The network as a whole is not a representational vehicle 

Perhaps my analysis thus far has been unfair. Perhaps it is the network as a whole that 

instantiates the relevant generative model, rather than one of its parts (see e.g. Kiefer and 

Hohwy 2018: 2394-2395; Wiese 2018: 219). Albeit I think this is a fair point, I fail to see how 

it might challenge my conclusion. 

For one thing, as already noted in (Ch. 4: §§4.6-4.8), we should not confuse the vehicles 

tokened in representational systems with the systems in which vehicles are tokened. Although 

it is certainly true that there is a sense of the word “representation” according to which it makes 

sense to say that entire systems represent, this sense of “representation” is distinct from the one 

at play when we refer to things that are representations (that is, the material objects that 

function as representational vehicles). Hence, although it is entirely correct to speak of  

networks (and other computational systems) representing some target, this sense of the world 

“representation” is distinct from the one at play when we say that a pattern of activity of a 

network (or some other computationally relevant state of a computational system) represents a 



191 

target. In this second sense, the term “representation” denotes a representational vehicle: when 

one says that a pattern of activity represents, one is (typically) saying that the pattern of activity 

is a representational vehicle tokened within a system and bearing a certain content; and, in fact, 

rather than saying that the pattern of activity represent a target, one can easily say that the 

pattern of activity is a representation of that target. Conversely, when one claims that a network 

represents a target, one is typically not claiming that the network is tokened in some larger 

system in which it functions as a representational vehicle; rather, one is claiming that some 

specific vehicle is currently being tokened within the network; and, in fact, one could hardly 

sensically say that a network is a representation of a target. Entire networks are computational 

systems within which representational vehicles are tokened. It follows that they are distinct 

from the representational vehicles tokened within them. 

Notice, however, that even if the distinction above were spurious, there would still be 

reasons as to why the entire network would fail to qualify as a representational vehicle. After 

all, it would still be correct to say  that the only things “of significance” to the network, given 

the task function it has by design, are proximal sensory states. Thus, it seems to me that even 

conceding, for the sake of discussion, that the network as a whole is, in some sense, a candidate 

vehicle exploitably structurally similar to its target, it would still fail to meet distality. 

*** 

In this section, I presented the simplest PP system able to perform active inference I know 

of, and checked whether the candidate vehicles of the relevant generative model (i.e. patterns 

of activations and connections) actually qualify as vehicles, providing a negative answer. Thus, 

whilst the network instantiates a simple generative model “knowing” the robot’s sensorimotor 

contingencies, the structures implementing that model do not qualify as representational 

vehicles. Hence, they are non-representational structures. Nevertheless, as the example 

discussed above shows, these non-representational structures manifestly instantiate the 
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system’s knowledge of its own sensorimotor contingencies. The network here examined is thus 

a non-representational structure that instantiates the relevant system’s knowledge of its own 

sensorimotor contingencies.  

But what about all other PP architectures instantiating generative models? 

 

5 - Will it generalize? 

I think the most obvious objection to the verdict I have provided above is that it will not 

generalize. Bovet’s architecture is really a simple architecture, and PP systems are typically far 

more complex than that. Moreover, it is just one case, so it is definitely not a strong inductive 

basis. Indeed, as previously noticed (Ch. 4: §4.5), there are many different network 

architectures, some of which far removed by the simple network considered above: why should 

one believe that no genuine vehicle could be found in those? 

These are simple, but powerful, reasons to believe that my verdict will not generalize. And 

I do think they are solid reasons. But I also think that my verdict is likely to generalize, and in 

this section I am going to provide a cluster of arguments to this effect. To be clear, none of my 

arguments will be conclusive. But this, I think, is fine: after all, I’m basically providing an 

inductive generalization, and inductive generalizations are defeasible by their very nature. 

That being said, what reasons are there to believe that my verdict will not generalize? 

 

5.1 - The model is not deviant 

Surely one reason is that Bovet’s network is very unlike other networks implementing PP 

systems. So, perhaps it is a deviant PP architecture full of idiosyncratic features, and the 

outcome of its analysis does not easily transfer to other PP architectures. 

A problem with this objection is that it presupposes that there are non-deviant PP 

architectures. But all PP architectures are deviant to a degree, as there just is no standard 
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implementation of PP, especially when it comes to robotic models (Ciria et al. 2021). So, for 

instance, there are PP architectures that do not have distinct prediction and error units 

(O’Reilly, Wyatte and Rohrlich 2014), or that have no distinct set of ascending and descending 

connections (Matsumoto and Tani 2020), or that incorporate specific “parametric bias” units 

to govern their computational functioning (Tani 2014). There are also architectures that do not 

represent neither predictions nor prediction errors (Thornton 2017). All these architectures are 

significantly different from the one proposed by Rao and Ballard (1999).188 But they are 

nevertheless PP architectures in the full sense of the term. Now, if this is the case, and the 

relevant insights that the analysis of these “deviant” networks offer generalize, why shouldn’t 

the insights obtained analyzing Bovet’s network generalize too? 

 

5.2 - Missing ingredients do not block the generalization 

Maybe, then, the problem is that Bovet’s networks lack a key ingredient of PP - one which, 

when taken into account, would force the revision of the anti-representationalist verdict I have 

offered here. But what could that ingredient be? 

Hierarchy is plausibly the most obvious candidate. Bovet’s networks are non hierarchical, 

whereas the majority (but by no means all, see Tani 2014; Lanillos and Cheng 2018) of PP 

systems are. However, I simply fail to see how hierarchy would force me to revise my verdict. 

To start, adding hierarchy means adding hidden layers and connections to (and from) these 

layers. But these connections would most likely be superposed representations just as the 

connections of Bovet’s network. The “most likely” qualification is important: I cannot in 

principle exclude that in some particular connectionist implementation of PP connections will 

turn out to be structurally similar to the (distal and determinate) target domain the network has 

                                                
188 It is also worth noting that there is no intrinsic reason as to why Rao and Ballard’s (1999) network should be 
taken to be the canonical connectionist implementation of PP. As far as I can see, Rao and Ballard’s network is 
just a convenient (hence, often cited) example. 
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been trained to operate upon. But, at present, I see no positive reason to believe that such an 

exceptional connectionist system exists (or that it will be produced). Weight matrices of 

connectionist systems have traditionally been considered superposed representations, and the 

only argument I know of claiming that they are structural, rather than superposed, 

representations is rather weak (see Ch. 4: § 4.3). Hence, when it comes to considering the 

putative representational role of weighted connections in hierarchical PP systems, the 

argumentative burden is not mine; rather, it is carried by those who wish to claim that 

connections qualify as representational vehicles in the light of the (fairly minimal) necessary 

conditions stated above. 

But what about the hierarchically higher layer of units? Won’t they qualify as 

representational vehicles? There are, I believe, several reasons suggesting a negative answer. 

One is that it is very doubtful that their patterns of activity can be assigned appropriate distal 

contents (O’Regan and Degenaar 2014). From a strictly computational point of view, 

hierarchically higher layers are just models of the layers directly below them, as they must only 

learn to predict how the layer directly below them will behave.189 To give a concrete (but not 

overly complex) example, in hierarchically stacked recurrent neural networks encoding a 

generative model, the hierarchically higher layer only estimates the rough behavior of the 

recurrent network directly below it in the next timestep (see Tani 2003).190 Notice that the same 

purely proximal ascription of content carries over in the informal presentation of the 

computational activity of these layers. In fact, these layers are often informally characterized 

as producing “abstract statistical summaries of the original visual input” (Bulow et al. 2015: 

5-6; emphasis added) or representing “increasingly sophisticated aspects of the original input” 

                                                
189 (see, for instance Hinton 2007b; Eliasmith 2013: 92; Simione and Nolfi 2015;  Dołega 2017: 12-13; Spratling 
2017: 97). See also (Ch. 1; §2.1). 
190 More precisely, the hierarchically higher layer estimates the parametric bias vector: an input vector of the 
lower layer that basically determines the sensory predictions of the lower layer (by determining its predictive 
activity). 
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(Foster 2019: 33). Notice that this seems a case in which mathematical contents (i.e.the 

computational activities of the higher level under scrutiny) are constraining the 

representational content ascribed to these layers. And they are doing so in favor of a proximal 

characterization. This poses a challenge to a representationalist reading of these layers, as it 

strongly suggests that their content would not be distal (see also Orlandi and Lee 2019).191 

But what about the standard account of representations in hidden (i.e. hierarchically higher) 

layers of artificial neural networks? Often, careful mathematical analysis of the activity of 

hierarchically higher layers reveals that the activity of these layers exhibits a structure 

preserving mapping g holding between patterns of activation and features of the distal domain 

the network has been trained to operate upon (e.g. Elman 1991; Shagrir 2012; Churchland 

2012). If the output of these analyses are correct, then there is a (likely exploitable) structural 

similarity holding between hierarchically higher layers and appropriately distal and 

determinate targets. This would be enough to block the generalization I’m trying to defend. 

In reply, I wish to notice two things. One is that although it is surely possible that analytic 

techniques will reveal such structural similarities, it is also possible that they will not reveal 

them. So, when it comes to finding structural similarities in hierarchically higher layers, both 

the representationalist and the anti-representationalist are making a bet. And, surely, the 

representationalist can marshall some empirical evidence favoring its position. But the anti-

representationalist can do it too. Consider, for instance, the mathematical analysis of the 

networks used for the neuro-robotic experiments reviewed in (Tani 2003; 2014; 2016: Ch. 6-

9). The networks are simple recurrent neural networks with a parametric bias, busy predicting 

the sensory stream the robotic agent will experience at the next timestep. Importantly, these 

networks have three kind of input units: “normal” input units (reflecting the state of the relevant 

                                                
191 Notice that, at least sometimes, defenders of the structural representationalist reading of PP acknowledge this 
point. For instance: “One key task performed by the brain, according to these models, is that of guessing the next 

states of its own neural economy” (Clark 2013a: 183). 
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sensor or motor), “context” input units (which “recycle” part of the net’s output as input at the 

next timestep) and parametric bias units, whose state can be either externally set or generated 

by the networks’ dynamics depending on the task. The mathematical analysis of these networks 

often reveals the presence of a structure-preserving mapping in between the networks’ activity 

and the robot’s domain of operation. However, such a mapping is often very rough (e.g. in Tani 

2003 and Tani 2016 Ch. 8 the mapping only consists in the bi-partition of a single plane), and 

holds between the level of activation of the parametric bias units and the robot’s actions 

expressed in terms of the robot’s sensory input (e.g. joint angles of the robot’s actuators). 

Hence, the relevant structure-preserving mapping holds between a relatively small portion of 

the network’s structure and a proximal target (roughly, the state of the robot’s sensors and 

motors). Surely this kind of structure-preserving mapping does not support a structural-

representationalist reading of the network - even if it does illuminate the network’s functioning 

in an explanatorily useful way. 

The second thing I wish to notice is that, even when an appropriately structure-preserving 

mapping is revealed by means of mathematical analysis, its mere existence might not be enough 

to substantiate the desired structural representationalist reading (see Ch. 4: §4.4). For, such 

mappings often hold not among individual patterns of activation and targets, but the entire 

activation space and the target domain. But the activation space is not a vehicle that can be 

tokened within a connectionist system: it is an abstract mathematical space that describes its 

behavior. Moreover, activation spaces-target domains structural similarities are often defined 

in a way that does not take into account weighted connections. However, if V is a structural 

representations of T, then changes to V that make it more accurate just are changes to V that 

make it more structurally similar to T. And, in the case of artificial neural networks, the change 

that makes them more accurate surely includes changes in their connections weights, hence it 

is correct to say that if artificial neural networks are structural representations, then weights are 
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elements in the relevant structural similarity. But, in the case at hand, we are denying weights 

any role in the relevant structural similarity. Hence accepting it should lead us to conclude (by 

modus tollens) that artificial neural networks are not structural representations. 

I do not think that any of my two remarks provides conclusive evidence in favor of the claim 

that hierarchically higher layers do not qualify as representations. So my argument is again not 

conclusive: it could be argued that hierarchically higher levels are, as a matter of fact, 

exploitably similar to some distal target. And that might be done without violating the 

constraints mathematical contents place upon representational contents. Yet, as far as I know, 

an argument to that effect has still to be made. As things stand, I only see circumstantial 

evidence favoring the claim that higher layers do not qualify as representational vehicles. It 

thus seems that the available evidence favors my anti-representationalist verdict over the 

representationalist one. 

A second missing ingredient from Bovet’s network is precision. This might be worrisome, 

as PP suggests that precision plays a key role in enabling active inference (see Brown et al. 

2013). 

However, I believe that considering precision will not change my verdict. On the one hand, 

precision is only supposed to modify, in various ways (see Friston 2012a) the relevant patterns 

of activation to which it is applied. But if, as I argued, these patterns of activation are not 

representational vehicles in the first place, then any mechanism operating upon them should 

not be considered a representational mechanism. Moreover, from the computational point of 

view, precision is typically equated with the inverse variance of the predicted signal (Buckley 

et al. 2017). If, as I’ve argued, predictions only have proximal content, and the mathematical 

content of precision signals (i.e. inverse variance) constrains our ascription of representational 

contents, it then seems we can only ascribe proximal contents to precision signals too. 

A further “missing ingredient” that might block the generalization depends on the fact that 
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Bovet’s networks are relatively ancient, and so do not take advantage of many techniques that 

are used in more recent connectionist systems (e.g. max-pooling, long-short term memories). 

While this is certainly true, I do not think that the fact that Bovet’s networks do not take 

advantage of such techniques blocks the generalization I’m proposing. The reason is that such 

techniques do not seem to be part of the computational/algorithmic apparatus of PP (cfr. 

Millidge, Seth and Buckley 2021). And though it is most likely possible to augment PP systems 

by means of such techniques  (e.g. Ororbia and Kelly 2021), these techniques seem extraneous 

to the computational core of PP (at least as exposed in Ch.1). 

 

5.3 - Considering non-aritficial PP systems does not solve distality 

Perhaps the verdict I have provided here will not generalize because I’ve considered an 

artificial neural network whose task functions have been proximally defined by a human 

designer, whereas “natural” neural networks implementing PP have long-armed task functions. 

I think there are reasons to suspect this will not be the case. 

To see why, it is important to notice that functions are normative: they are outcomes that a 

system is supposed to produce, in virtue of its design (natural or artificial) or learning history. 

Task functions (and, more generally, functions) dictate the standards against which to test the 

performance of a system (e.g. Neander 2017, Ch. 3). A system can perform optimally or 

abnormally only given the standards determined by its functions. 

This seems to speak against PP systems having long-armed functions. Consider, for 

instance, the fact that, on the account PP offers, perceptual illusions are optimal percepts 

(Brown and Friston 2012). Now, if perceptual illusions are optimal percepts, it follows that the 

machinery producing them (i.e. the PP system) is not malfunctioning when a perceptual illusion 

is produced. But, if this is correct, then it seems that perceptual PP systems do not have long-

armed functions. That is, their functions do not appear to be defined in terms of distal states of 
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affairs (e.g. tracking the distal environment, recognizing the external causes of the sensory 

inputs, etc). For the output produced by the system here does not match distal states of affairs; 

hence, were the system’s function defined in terms of the latter, the system would have been 

malfunctioning. As a consequence, perceptual illusions would not have been optimal percepts. 

Moreover, PP systems are often described as just in the task of minimizing prediction error 

(e.g. Friston 2010; Hohwy 2015).192 In fact, the discussion about what PP systems are supposed 

to do is typically couched in proximal terms, such as avoiding sensory states with high 

surprisal193 or encountering the sensory states predicted by the model (see Hohwy 2020b). 

Notice that the purely proximal rendering of what PP systems are supposed to do is no accident: 

it is actually needed to account for how these systems function in practice. Since PP systems 

have by assumption194 access only to proximal states, the relevant tasks they are “supposed to” 

perform must be defined in terms of these states. 

As further evidence of the proximal character of what, according to PP, generative models 

are supposed to do, consider the so-called “dark room” problem (see Sims 2017 for discussion). 

The problem is roughly as follows: why, if PP systems are only trying to minimize prediction 

error, they do not lock themselves in environments delivering extremely predictable stimuli, 

such as a completely dark room? Notice that such a problem would be immediately dispelled 

if PP systems were assigned long-armed functions: if PP systems were supposed to, say, find 

mates to reproduce (rather than just minimize prediction error) it would be immediately clear 

why they do not end up in dark rooms: there just are no mates there. Notice further that the 

standard reply to the “dark room” problem is not to concede that PP systems are supposed to 

                                                
192

 Here, I trust neurocomputational modellers (e.g. Tani 2014; Spratling 2017) and consider free-energy 
minimization as a PP algorithm, bracketing the complex relation between the free-energy principle and PP 
“proper” (see Hohwy 2020b). 
193 In extremely crude terms, surprisal is an information theoretic quantity (also known as self-information) which 
captures how improbable a sensory state is, given a model. 
194

 This assumption is a corollary of the assumption that sensory states are under-informative in respect to their 
worldly causes (see Orlandi 2014; Anderson 2017 for discussion). 
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do more than minimizing prediction error. Rather, the reply is that “dark room” sensory states 

are prediction-error inducing, given the models possessed by PP systems (Friston, Clark and 

Thornton 2012). 

All this suggests that, according to PP, all PP systems have to do can be spelled out in 

proximal terms: they have to minimize the error relative to the expected sensory input. But if 

this is the case, there seems to be little reason to think that “natural” PP systems will be assigned 

long-armed functions. Thus, there seems to be little reason to think that “natural” PP systems 

will satisfy both distality and exploitable structural similarity in the desired way.195 

 

5.4 - Representation hunger 

The verdict I provided could also be challenged arguing that Bovet’s networks enable the 

robotic agents to perform only very “low level” sensorimotor coordinations with the 

surrounding environment. Had I considered different (and, plausibly, more complex) networks 

able to confront more complex (less “low level” sensomotoric) task domains, my verdict would 

have been different, as confronting with such more complex task domains simply requires 

representations. The idea is thus that there are two different “tiers” of cognition: low-level 

sensorimotor coordination and everything else.  

This challenge is typically made precise by invoking “representation hungry” cognitive 

                                                
195 In the discussion above, the relevant notion of function at play was that of task-functions, as defined by Shea 
(2018). But that clearly isn’t the only notion of function on offer at the philosophical market (see Garson 2016 for 
an overview). So one might wonder what would happen if a different notion of function were adopted: would a 
different notion of function allow one to identify genuinely representational vehicles? Here, I clearly cannot 
consider each and every individual notion of function to check whether it would allow to vindicate 
representationalism about PP. But I will provide a quick remark to motivate a negative answer. Consider an 
alternative account of functions F. Is the account normative (i.e. able to tell apart function from malfunction) or 
does it identify functions with causal dispositions (e.g. Cummins 1975)? If the former, then the remarks about 
normativity made above seem to apply. If the latter then it seems that there is a problem when it comes to account 
for misrepresentation. One reason as for why accounts of representations based on functions are attractive is that 
the normativity of functions allows to understand misrepresentation in a straightforward way: if V is, for instance, 
supposed to indicate T, then a tokening of V can be easily said to misrepresent whenever its tokening does not 
indicate what it is supposed to indicate. Yet, if functions are not normative, this attractive move is precluded, and 
an alternative account of misrepresentation is needed. The non-normativist about function is thus faced with a 
challenge, which, as far as I know, has not been met (yet). 
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domains; that is, task domains in which no environmental signal can guide the agent 

performance (Clark and Toribio 1994). These task domains are defined either by the physical 

absence of the cognitive target (e.g. planning one’s next summer vacation) or the sensitivity to 

parameters whose physical manifestation is complex and unruly (e.g. discriminating dogs and 

cats). Since, in these task domains, there seems to be no unambiguous environmental signal 

able to lead the agent’s performance, then the agent’s performance must be due to some 

knowledge-structure internal to the agent; that is, a representation. 

Hence, the generalization I’m proposing is blocked because cognition is divided in two 

distinct “tiers”196: low-level sensorimotor coordinations and representation-hungry cognitive 

tasks. The model I have here considered is a model able to deal only with cognitive task 

domains belonging to the first “tier”. As such, any putative anti-representationalist conclusion 

extracted from it does not generalize to systems able to master representation-hungry task 

domains. And, had I considered a model able to master such task domains, I would not have 

drawn an anti-representationalist conclusion (as mastering these task domains requires 

representations to be in place). 

I see two reasons as to why the representation hungry challenge cannot block the 

generalization I’m proposing here. One is purely factual: as a matter of fact, Bovet’s networks 

can enable a robot to achieve mastery in a representation-hungry cognitive task domain. The 

other is conceptual, and it has to do with the explanatory breadth PP is supposed to have. I 

unpack both points in turn. 

                                                
196  It is not entirely clear what these “tiers” are. A natural reading is that these “tiers” are two distinct kinds of 
cognitive processes: Indeed, interpreting the two “tiers” as kinds would noticeably bolster the representation-
hungry argument. In fact, conclusions reached by means of induction surely cannot be transferred from one kind 
to another - if we inductively establish that all crows are black, we have not thereby established that all cows are 
black. However, neither Clark and Toribio (1994) nor their commentators (Degenaar and Myin 2014; Zahnoun 
2019) characterize the two “tiers” as different kinds. Moreover, Clark has often (Clark 2013b: 153-154; 2015b, 
2015c, Linson et al, 2018 Constant, Clark and Friston 2021) suggested that the two “tiers” of cognition are in an 
important sense continuous. Yet, the more their continuity is stressed, the less potent the pull of the “representation 
hungry” argument: if, at the end of the day, the two tiers are essentially the same thing, then it is not clear what 
what exactly is blocking the generalization from “low-level” sensorimotor coordinations to “representation 
hungry” cognition. 
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5.4.1 - Factual problems with “representation hunger” 

Factually speaking, in numerous simulations and robotic experiments systems guided by 

Bovet’s architecture self-initiated their behavioral routines. This is because the network 

controlling these systems expected a stream of input that the environment didn’t deliver, 

thereby leading to the generation of prediction error and its minimization through active 

inference (Bovet and Pfeiffer 2005a; 2005b; Bovet 2006). Is the agent guided by an 

unambiguous environmental signal emanating from its target? If not, then it seems that the 

network has enabled the agent to achieve some mastery in a cognitive task domain in which 

the target is absent. If yes, then what is the relevant signal triggering the agents’ actions? It 

seems to me that the only candidate is the flow of the external stimulation that, mismatching 

the networks’ expectations, generates the prediction error that triggers the agents’ actions (via 

active inference). But this surely is a parameter whose physical manifestation is unruly and 

open-ended, as it encompasses all the sensory states that are not the expected ones. Thus, in 

both cases, the networks enabled the robot to cope with a “representation hungry” task domain. 

Moreover, the network architecture Bovet engineered is capable of delayed reward learning 

in the context of T-maze tasks (Bovet and Pfeiffer 2005a; 2005b). The experimental procedure 

is easily explained as follows: at the beginning of each trial, the agent is placed at one end of a 

“T” shaped maze, typically the one at the end of the long arm of the “T”. The agent is then let 

free to roam the maze - ideally, it should head to one specific arm of the “T”, in which a 

reward197 is placed. In order to discriminate in which arm to turn, the agent can use a cue - in 

                                                
197 A PP enthusiast might question my use of the word “reward” in this context, as active inference does not, 
strictly speaking, posit rewards (see Friston, Adams and Montague 2012). It is thus worth noting that Bovet 
himself acknowledges that, when it comes to his experiment, “reward” and “punishment” are arbitrary tags, which 
he uses to simplify the exposition of the experimental procedure. The “reward” modality of the net really only 
tracks the state of the robot batteries, and the reward itself is a reduction of prediction error between the predicted 
and actually sensed state of the batteries (see Bovet and Pfeiffer 2005a; 2005b). Notice further that, in Bovet’s 
architecture, a “reward” only aligns expected and actually sensed battery states. Hence, “rewards” just are highly 
predictable sensory states, exactly as PP suggests. 
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the case at hand, a laterally placed “bumper” stimulating the robot’s tactile modality. 

Now, albeit delayed reward learning in the context of T-mazes198 is a simple (and highly 

standardized) task, it is worth noting that it is typically considered to be a working memory 

task, as, to correctly solve it, the agent has to associate cue and motor behavior, recall the 

association when the outcome (reward or punishment) is received, and forge a novel 

association, which must be remembered for the entire duration of the experiment. Thus, solving 

the relevant T-maze task prima facie qualifies as an instance of “representation hungry” 

cognition. And, in fact, the “memory space” needed to solve such a task has been precisely 

quantified (in bits, see Kim 2004), and it is often thought that such a task cannot be mastered 

by agents lacking some form of internal memory storage (Carvalho and Nolfi 2016).199 

Nevertheless, Bovet’s non-representational network managed to enable a robot to solve the 

task with a high degree of accuracy only by learning a set of relevant sensorimotor associations. 

More precisely (but see Bovet and Pfeiffer 2005a; 2005b and Bovet 2007: 123-153 for the full 

account), the network enabled the robot to solve the task only by learning to predict shifts of 

visual flow conditioned on the activity of tactile sensors stimulated by the cue. The mismatch 

between expected and actually received visual flow was then minimized through active 

inference, thus making the robot turn so as to bring about the expected visual flow. But by 

turning, the robot also entered in the correct arm of the T-maze, thus “stumbling upon” the 

reward.200 It thus seems correct to conclude that Bovet’s networks are non-representational 

systems able to successfully master at least some representation-hungry cognitive tasks. Thus, 

the anti-representationalist conclusion I am defending can generalize to representation-hungry 

                                                
198 These results have been replicated in other kinds of mazes as well, ranging from Y-mazes to more exotically 
shaped asymmetrical mazes in which each arm has several turns (see Bovet 2007, figures 7-13). 
199 However, it is worth noticing that the experimental data collected by Carvalho and Nolfi positively show that 
even very simple agents lacking any memory storage can solve both T-maze and double T-maze tasks with a 
decent degree of success. 
200

 In this way, it seems to me that Bovet’s systems provide some empirical support to the enactivists’ claim that 
complex non-representational structures instantiating sensorimotor knowledge are sufficient for 
“higher”/”representation hungry” cognition (e.g. Bruineberg, Chemero and Rietveld 2019). 
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cognitive domains, and I have obtained such a conclusion by analyzing a system capable of 

representation-hungry cognition. 

 

5.4.2 - Conceptual problems with “representation hunger” 

As said above, I think that there is also a conceptual reason as to why the representation 

hungry challenge fails to block the generalization I’m proposing here. To put it bluntly, I think 

that the “representation hungry” line of defense is not open to the representationalist willing to 

endorse PP, at least if PP has the explanatory breadth it is said to have. Supporters of PP often 

claim that PP delivers us a “cognitive package deal in which perception, understanding, 

dreaming, memory and imagination may all emerge as variant expressions of the same 

underlying mechanistic ploy” (Clark 2016: 107). Such a view is widespread in the PP literature, 

(Seth 2015, Spratling 2016, Pezzulo 2017), and it often gives rise to the claim that PP explains 

everything about the mind (Friston 2009; 2010; Hohwy 2015). Indeed, PP (at least in its most 

popular, Frinston-inspired) formulation is a grand unified theory of brain functioning and 

cognition (cf Anderson and Chemero 2013). But if this is correct, and really PP can account 

for all cognitive phenomena using the same set of resources functioning in the same way, then 

it seems to me that representationalism or anti-representationalism should be valid across the 

board: there can be no difference regarding the representational status of the two “tiers” of 

cognition. If the posits of PP are representational (as many believe), then cognition, as PP 

describes it, is representational in its entirety; “low-level”, environmentally-driven 

sensorimotor coordinations included. 

 And if, as I have argued here, these posits are not representational, then cognition, according 

to PP, will be non-representational in its entirety; “representation-hungry” cognition included. 
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5.5 - Two-tiering predictive processing 

Perhaps, however, there is a way to defuse the argument I have just given and construe PP 

as a two-tier account of cognition. A forthcoming paper by Gładziejewski could be read as 

doing just that. 

As I understand it, Gładziejewski (forthcoming) aims to “fuse” representationalist and anti-

representationalist readings of PP in a single overarching conceptual framework. His proposal 

is that some instances of predictions, through non-representational in nature, could be rightfully 

treated as representational by invoking implicit representations, thereby subsuming them under 

an overarching representational framework. Other instances of predictions, however, require 

full-blown explicit representations, and are literally representational. Or so, at least, 

Gładziejewski (forthcoming) argues. 

What matters here is that this proposal suggests that there are two rather different senses of 

predictions at play in predictive processing (see also Anderson and Chemero 2013). According 

to the first sense, predictions are not representations, although it is useful to treat them as if 

they were, by deploying the theoretical construct of an “implicit representation”. According to 

the second sense, predictions are literal representations built using an internal generative model 

of the world. Provided with this distinction, one could divide predictive processing in two 

distinct “tiers”. In the first tier, there are non-representational predictive processes, whereas in 

the second tier there are representational predictive processes. It is important to note that these 

two tiers are inhibited by different predictive mechanisms with different functional roles. 

In the first (nonrepresentational) tier, predictions are realized by hardwired mechanisms 

whose main task is that of encoding signals efficiently. To do so, the physical shape of these 

mechanisms “embodies” some specific expectations. For example, retinal ganglion cells are 

wired so as to fire only when some discontinuity in the light intensity is detected, and in this 

sense, we can treat them as predicting uniform light intensity and as reporting only deviations 
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from the predicted values. Similarly, the fact that in the primary visual cortex neurons tuned to 

cardinal orientations outnumber neurons tuned to oblique orientations suggests that our visual 

cortex implicitly predicts natural orientation statistics (both examples come from 

Gładziejewski forthcoming: §3.1). What makes these cases instances of “first tier” prediction 

is the absence of any discretely identifiable representational vehicle (hence the need for implicit 

representations) and the fact that information flows through these mechanism in only one 

direction; that is, they do not exhibit the bidirectional flow of information due to the interplay 

of prediction and prediction errors (see Ch. 1: §2.3). 

In the second (representational) sense, predictions are realized by mechanisms which can 

alter their state as new information comes from the bidirectional flow of predictions and 

prediction errors. Here, there is an easy to individuate vehicle of the prediction (i.e. the state of 

the mechanism) and predictions are not used only to encode signals, but also to update one’s 

estimates concerning the sources of the sensory signals (Gładziejewski forthcoming: §3.2). 

Now, given the difference of mechanisms involved, it is reasonable to suppose that 

conclusions established in regard to tier-one prediction will not transmit to tier-two prediction 

(and vice versa). Hence, if the networks here considered were a case of tier-one prediction, 

Gładziejewski’s argument would block the generalization I’m here advocating for. So, the 

relevant question is: are Bovet’s networks capable of tier-two prediction, or are they only 

capable of tier-one prediction? 

I’m not sure. On the one hand, Bovet’s networks are non hierarchical, so there is no 

bidirectional flow of information.201 This would put them in tier-one. However, Bovet’s 

networks are not hardwired, they do not (only) encode signals efficiently, they update their 

estimates based on the errors they receive, and there are clearly identifiable states (such as 

                                                
201 This is not entirely true, as there still is a bidirectional horizontal flow of information (modality a to modality 
b and vice versa). It’s not clear whether Gładziejewski will consider it bidirectional in the relevant sense. I assume 
he won’t, so as to make his case as strongly as possible. 
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activation vectors) that carry predictions and prediction errors. This seems to put them into tier-

two. So, unless hierarchy were necessary for tier-two prediction, Bovet’s networks seem to fall 

more in the tier-two camp than in the tier-one camp. Hence, even adopting Gładziejewski’s 

distinction, the generalization I’m proposing does not seem to be blocked. It would be blocked 

if adding hierarchy were to substantially modify the representationalist credentials of PP 

systems, and I’ve already argued (§5.2) above that this is most likely not the case. 

Now, I’m willing to concede that the judgment on whether Bovet’s networks realize tier-

one or tier-two predictions might still be uncertain. But I’m equally willing to offer some 

reasons not to adopt Gładziejewski’s proposed partition between the “two tiers”.  

 

5.5.1 - The distinction between the two tiers does not generalize well 

One reason not to adopt it is that it does not provide clear cut distinction in many cases. 

Indeed, it seems to apply only to Gładziejewski’s chosen example! As seen above, the partition 

does not apply particularly well to Bovet’s network - but that is far from the only case in which 

the partition does not apply neatly (if at all applicable) 

 Consider, for instance, the networks proposed by Spratling (2016) to show that PP is able 

to simulate empirical data collected from humans engaged in sophisticated cognitive tasks 

(including categorization, context dependent task switching and naive-physics reasoning), 

thereby suggesting that PP can accounts for these sophisticated cognitive domains. The 

network Spratling proposes are hierarchical and token easily identifiable prediction states, but 

are also hardwired. Would this make their predictions tier-one or tier-two predictions? As far 

as I can see, Gładziejewski’s framework offers no crisp answer to this question. Consider 

further models of PP relying on continuous-time recurrent neural networks (see Tani 2016: Ch. 

9-10). The connections in these networks are hardwired; and to change them modellers 

typically rely on genetic algorithms, and so their change occurs only through simulated 
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generations of networks (e.g. Harvey et al. 1997). Does this make these models hardwired? 

Presumably yes, as even the number of cells in the visual cortex sensitive to oblique 

orientations or the lateral connections of retinal ganglion cells can change through generations, 

and these are the examples Gładziejewski offers of hardwired mechanisms. But then, does this 

mean that all PP models using continuous time recurrent networks are capable only of tier-one 

prediction? These networks are very powerful, and capable of mimicking complex cognitive 

capacities - capacities a representationalist would typically like to indicate as genuinely 

representational. Again, it seems that Gładziejewski’s framework offers no crisp answer in this 

case. 

 

5.5.2 - Explicitating the troubles with implicit representations 

A second reason not to adopt Gładziejewski’s framework is that it presupposes a workable 

distinction between implicit and explicit representations. Yet, no such distinction is offered. 

When it comes to explicit representations, Gładziejewski characterizes them referring back to 

his own work on generative models as structural representations (Gładziejewski 2016), and I 

have already argued at length that the argument offered there is flawed and cannot be easily 

ameliorated (Ch. 4). As for implicit representations, Gładziejewski’s characterization is far too 

liberal. In fact, he seems to adopt a conception of implicit representations based on Dennett’s 

(1978: Ch. 6) example of the chess-playing program (see Gładziejewski forthcoming: 10-11). 

Without entering into the details of the example, Dennett’s point is that sometimes it is 

legitimate to ascribe belief and/or desires to systems which have no corresponding internal 

states, if this allows us to interact better with said systems. Gładziejewski elaborates the idea 

as follows: 

“Although there is no localized, separable, causally active internal vehicle 
that bears this content, the overall dispositional pattern of the program’s 
behavior embodies the desire implicitly. [...] on this notion, (implicit-
)representational ascriptions are grounded in the fact that a given 
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information-processing system is wired in a way that allows it to embody 
dispositions to behave or respond ‘as if’ it (explicitly) represented the 
world t be certain way” (Gładziejewski forthcoming: 11) 

There are several points worth unpacking here. First, the passage oscillates between implicit 

representations as dispositional patterns within systems and representational ascriptions. But 

these are not the same things: representational ascriptions typically ascribe explicit 

representations202, and  dispositions within a system (assuming that they are the vehicles of 

implicit representations) can be there even in absence of any ascription. 

Notice also that to equate implicit representations to ascriptions makes their content non-

natural: ascriptions require ascriptors, which are presumably intentional systems having 

contents in their own rights. Since I doubt that Gładziejewski wants to allow non-natural 

representations in his framework, I will only focus on the dispositional patterns, equating them 

with implicit representations. 

Now, it is safe to say that implicit representations cannot be simply identified with 

dispositions (Ramsey 2007). Salt is soluble in water, but its microphysical structure does not 

represent “solubility”. Wood and alcohol are inflammable, but it would be peculiar to say they 

represent flames. 

The same holds if we restrict the scope of the claim to disposition of information processing 

systems: every information processing system has a myriad of dispositions that cannot possibly 

be (or ground) any implicit representations. My brain has the disposition to fry, if subjected to 

appropriately high temperatures. But surely it does not represent fryability. It also has the 

disposition to splat, if hit with sufficiently high forces, but it is very hard to claim my brain 

implicitly represents “splattability”. 

The same still holds if we restrict the scope of the claim to disposition of information 

processing systems that causally contribute to the intelligent behavior of such systems, for this 

                                                
202 Indeed, in Dennett’s original example, what gets ascribed are full blown personal level propositional attitudes. 
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set still includes an inordinate amount of dispositions, and many of them are presumably non 

representational at all. For example, the slippery aluminium “paws” of the robot dog Puppy 

causally contributes to Puppy’s stabilization and gait change (Pfeiffer and Bongard 2007: 98-

99), but it would be far-fetched to say that Puppy’s paws being made of aluminium represents 

anything. 

Perhaps, then, the claim should be understood as the claim that dispositions of the 

processors of information in information processing systems are implicit representations. But, 

again, the claim overgeneralizes: processors have all sorts of dispositions (e.g. breakability), 

and even the ones that matter for their information processing capacities (e.g. channel capacity, 

degrees of freedom of their input gates, memory capacity, etc.) are not all obviously 

representational. 

So, it seems that in order to make the claim that implicit representations are dispositions 

tenable we need some further constraint. As far as I can see, Gładziejewski provides none. 

To conclude: Gładziejewski’s proposed distinction between tier-one and tier-two 

predictions is, prima facie, unable to block the generalization I’m proposing. Moreover, at least 

as Gładziejewski articulates it, the distinction between tier-one and tier-two prediction is a bit 

nebulous, and does not give clear cut results in many cases. Lastly, the conceptual bedrock 

Gładziejewski relies on to articulate the distinction is not solid, as it provides no tenable 

conception of an implicit representation. These, I think, are compelling reasons not to accept 

the proposed distinction between tier-one and tier-two prediction in the first place. 

*** 

There can be other arguments by means of which one might try to resist the sweeping 

generalization I’m proposing here. But, at present, I can think of no such argument.203 Hence, 

as things stand, I think it is safe to conclude that the generalization I’m proposing holds. In the 

                                                
203 Nor could the two anonymous reviewers of the journal Synthese. 
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following, I will thus consider and allay some worries my claim can raise. 

 

6 - Allaying some worries 

Thus far, I’ve argued that the anti-representationalist verdict I provided examining Bovet’s 

networks is likely to generalize to other PP systems. But my anti-representationalist verdict 

might raise other worries. For example, isn’t the argument I just provided extremely dependent 

upon a sectarian and idiosyncratic understanding of what cognitive representations are? And, 

even supposing that my argument is on the right track, does it imply that PP is a radically 

revisionist theory of cognition? Am I suggesting that global anti-representationalism is correct? 

In this section, I will briefly consider a number of similar worries, and try to allay them all. 

 

6.1 - Is this a “Hegelian argument”? 

Chemero (2009, Ch. 1) notices a recurrent argumentative pattern in cognitive science. First, 

a research program or modeling tool is proposed, and starts gaining attention. Then, it is 

thoroughly analyzed (typically by researchers hostile to it), and it is concluded that it cannot 

possibly provide a satisfactory account of its explanatory target, and that it is therefore best 

abandoned. Strikingly, Chemero notices, such analyses are made on entirely a priori  grounds, 

and are supported by little to no empirical evidence. Moreover, they typically rely on 

contentious assumptions, which are often not endorsed by the proponents of the research 

program/modeling tool under attack. Hence, they systematically fail to persuade their target 

audience and/or advance the discussion. Chemero dubs these arguments “Hegelian arguments”, 

and urges us not to make them. Haven’t I just made one? Here’s two reasons to answer 

negatively. 

First, the argument I offered does not target a research program or modeling tool. It 

considers the philosophical interpretation of PP, suggesting that such a philosophical 
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interpretation is best abandoned. But the philosophical interpretation of a theory should not be 

confused with the theory. Compare: one could attack a specific philosophical interpretation of 

certain chemical processes, suggesting that they do not support strong emergentist claims but 

only weak emergentist ones. Such an argument surely won’t force us to revise our practice of 

chemistry: whether salt strongly or weakly emerges from sodium and chloride, salt would 

remain NaCl, it would retain all of its familiar properties and it would still respond in the exact 

same way to experimental manipulations. 

Secondly, and, I believe, most importantly, the premises of my argument are not 

contentious. In general, their acceptance is widespread, and the structural-representationalist 

account of PP endorsed them all. Perhaps one could argue that the third necessary condition I 

imposed is contentious, since not everyone endorses computationalism. However, PP is a 

neurocomputational theory, and examining it at least prima facie presupposes a commitment 

to computationalism. Weren’t computationalism true (in some form or another), we would have 

little reason to care about PP. 

One might further argue that endorsing computationalism does commit one to the existence 

of mathematical contents. Given that the third condition I imposed is spelled out in terms of 

mathematical content, then it is contentious even if computationalism is assumed. Yet, although 

it is correct to say that endorsing computationalism does not in and by itself commit one to the 

existence of a special kind of content (mathematical content), the third condition can be 

rewritten dropping mathematical content in favor of computational roles. And surely every 

computationalist must admit that, if a candidate vehicle bears representational content, then 

that content must be at least coherent with the computational role of the vehicle. The 

“contentiousness” associated with mathematical contents is thus both very minimal and easily 

eliminated. 

I thus conclude that the argument I provided is not a “Hegelian argument”. 
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6.2 - “two-level attribution” versus non-representationalism 

My arguments against Wiese’s (2018) appeal to Eliasmith’s theory of content presuppose 

that vehicles can be assigned contents in only one way (§ 4.2). But what if, as a reviewer of the 

journal Synthese asked, vehicles could be assigned multiple contents according to multiple 

theories of content, based on one’s explanatory focus? For instance, if one’s focus is centered 

on the inner workings of Bovet’s network, it might be appropriate to assign it only proximal 

contents via exploitable structural similarity. But if one’s explanatory focus is how the entire 

robot interacts with the environment, it might be appropriate to assign it distal content resorting 

to Eliasmith’s theory of content (or vice versa). Given that contents thus attributed sit at 

different explanatory levels and respond to different explanatory aims, they need not be 

mutually exclusive. Such a “two-level attribution”204 of content can thus allow us to follow 

Wiese’s suggestion, without thereby inviting the problems I raised before. What could be said 

in response? 

To start, I wish to point out an ambiguity. Talking of “attributing content” is ambiguous 

between two readings. On a first reading, content attributions are not mere ascriptions: the 

vehicle really bears multiple contents in virtue of the fact that it satisfies multiple content-

determining relations with multiple targets. Our explanatory interests only select, among the 

many contents a vehicle really and objectively bears, the one that best serves our explanatory 

needs. On a second reading, content attributions are mere ascriptions of content: given our 

explanatory aims, we speak of a vehicle as if it represents something, but as a matter of fact the 

vehicle does not represent that thing. This seems a form of content pragmatism (Mollo 2020: 

109). 

I wish to consider both readings, and to argue that each reading yields an outcome 

                                                
204 The phrase has been coined by the anonymous reviewer. 
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unfavorable to the “two-level attribution” view. 

Consider, first, the realist reading. There is a sense in which the realist reading is deeply 

compatible with the structural-representationalist reading of PP. In fact, the structural-

representationalist reading of PP already ascribes multiple contents to vehicles, as it claims 

that vehicles have both mathematical and representational contents.  When one is interested 

only in the computational goings-on inside a PP system, one will be concerned just with the 

mathematical contents associated with its computational structure. This happens, for instance, 

when researchers strive to determine whether prediction error signals are computed by division 

or by subtraction (see Spratling 2017), or when they wonder whether the probabilities 

represented in PP systems (if any) should be interpreted as Bayesian priors or in simpler 

information-theoretic terms (e.g. Thornton 2017; 2020). Conversely, when one is interested in 

how PP systems interact with the environment, one needs to be concerned with the 

representational contents present in PP systems (if any). This looks like a “two-level” 

attribution of the kind suggested above.205 

 Now, if such a “two-level attribution” works, then why can’t one hold that vehicles have 

multiple contents in virtue of the fact that they satisfy multiple content-grounding relations, 

and simply pick up the content which is most relevant given one’s explanatory interests? 

Because there is a problem with the “two-level attribution” thus interpreted. Suppose V 

jointly satisfies the conditions spelled out by two theories of content C and C*. According to 

C, V represents T; whereas it represents T* according to C*. According to a realist “two-level 

attribution”, V really and objectively represents T as well as T*. Thus V has two 

representational contents, and we are free to “pick one” based on our explanatory needs. 

                                                
205 And perhaps it is, but an important difference should nevertheless be noticed. Mathematical and 
representational contents are different kinds of content (Egan 2014: 118). One is narrow, the other is (typically) 
wide. One is determined by the computations a system performs, the other by some privileged naturalistic relation 
holding between vehicles and targets. But the “two level attribution” here examined assigns different contents of 
the same kind (representational) to the same vehicle. And it does so by appealing to two (intuitively competing) 
content-grounding relations, rather than a content-grounding relation and the computational profile of the vehicle. 
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Now, V is a representational vehicle objectively bearing some content. So, there are some 

tokenings of V which objectively are misrepresentations - but which ones? I think there are 

only three possible cases: 

Case 1: A tokening of V is a misrepresentation when T, and only T, is not the 
case (mutatis mutandis for T*) 

Case 2:A tokening of V is a misrepresentation when at least one among T and 
T* is not the case 

Case 3: A tokening of V is a misrepresentation when both T and T* are not the 
case 

Which is the correct one? For my purposes here the answer does not matter, because 

considering each case more closely makes evident that all three options end up assignin one, 

and only one, content to V. 

If case 1 is correct, then it seems that V represents only T (or only T*). It’s accuracy 

conditions are sensitive only to Ts, just as those of a vehicle representing only Ts, and thus 

having only one content, determined only by C (or C*). 

If case 2 is correct, then V appears to be representing (T and T*). In fact, a vehicle 

misrepresenting when T or T* are not the case just is a vehicle representing (T and T*). But 

then it seems that V has a single “conjunctive” content, determined by neither C nor C*. 

If case 3 is correct, then V appears to represent (T or T*). A vehicle misrepresenting only 

when both T and T* are not the case just is a vehicle representing (T or T*). But then, again, 

V seems to have a single disjunctive content, determined by neither C nor C*. 

So, it seems that, in all cases206, the “two-level attribution” view entails that V does not have 

multiple contents, but only a single (perhaps disjunctive or “conjunctive”) content. Moreover, 

in two cases out of three, that content is not determined by any of the theories of content 

                                                
206 A reader might wonder why I have not considered option (b) when considering Wiese’s proposal. The answer 
is that I did so merely for ease of exposition. Noticing the presence of option (b), however, does not solve the 
problems with determinacy Wiese’s proposal suffers from. Indeed, it seems to me that it makes them harder to 
solve. For now it is unclear whether following Wiese’s suggestion delivers us vehicles representing (T or T*) or 
(T and T*). And, as far as I can see, there is no principled reason to choose one option over the other. 
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accepted (C and C*). This seems to put these theories under pressure, as it suggests that those 

theories inadequately capture the content that representational vehicles bear. 

A defender of the “two-level attribution” view might now object that content is as a matter 

of fact determined in a way that it is only partially captured by C and C*, and that only by 

wielding them together we understand what vehicles really represent. But why then shouldn’t 

we resort to a third theory C** “mashing up” C and C*? Indeed, if one considers case 2 or case 

3 as the correct case, C** looks desirable: it would be the single theory of content capturing 

the single (“conjunctive” or disjunctive) content possessed by vehicles. 

Now, the above is too quick of a discussion for me to declare that an objectivist and realist 

reading of the “two-level attribution” view is untenable. There might be a convincing reply to 

the argument I have just put forth. But, as far as I can see, such a reply has still to be provided. 

At present, then, the realist and objectivist reading of “two-level attribution” view does not 

really seem viable. 

Does the content pragmatist reading of the “two-level attribution” fare any better? I doubt 

it, because content pragmatism strikes me as a form of anti-representationalism in disguise.  

Whilst it is surely true, as Mollo (2020: 108) rightfully notices, that content pragmatism differs 

from content eliminativism (i.e. anti-representationalism) because content pragmatism holds 

that content cannot be eliminated from cognitive-scientific explanations, content pragmatists 

do not take content ascriptions to be part of these explanations. Rather, content pragmatists 

interpret them as a strictly speaking unnecessary gloss over cognitive-scientific explanation 

proper (Egan 2014: 127-128; 2020: 33-34; Mollo 2020: 105). On their view, ascriptions of 

content only provide a “user-friendly”, but explanatory idle, tool to highlight, in an intuitively 

perspicuous manner, how the internal goings-on of a computational system relate to the 

environment. Content pragmatists are thus explanatory anti-representationalists: they hold 

that, strictly speaking, cognitive-scientific explanations do not posit representational vehicles 
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bearing representational contents. Content pragmatists are also metaphysical anti-

representationalists: they hold that there is no fact of the matter about what vehicles represent, 

because representational contents are not really “in the system”, but are merely ascribed from 

an external observer.  

In sum, content pragmatists hold that representations are not really posits of our cognitive-

scientific theories, that representations are not really necessary to the explanation of our 

cognitive capacities, and that representational contents are not “really in there”. How this 

position qualifies as a form of representationalism is, for me, a mystery.207 

 

6.3 -  Aren’t generative models still representations in some sense? 

One could object that my argument relies on a too narrow conception of representation. 

Perhaps a representationalist can accept some degree of content indeterminacy (e.g. Ramsey 

2020: 57-58). Perhaps purely proximal contents are fine. Perhaps not all vehicles need to bear 

an exploitable structural similarity with their targets.208 At any rate, my too narrow conception 

of representation pushed me to impose necessary conditions that are just too strict. So, I need 

to relax them. And once those are relaxed, my anti-representationalist verdict might no longer 

hold. 

So, should I relax these three conditions? I think the answer is negative. 

To start, these three conditions are typically accepted, as I have repeatedly argued. The claim 

that they need revision needs to be argued for. But, as far as I can see, there are few, if any, 

                                                
207 A reader might object that, at least as articulated in Egan (2014; 2020) content pragmatism is committed to a 
form of explanatory and metaphysical representationalism in regards to representations of mathematical contents. 
As a matter of historical reconstruction, the observation is correct. Yet, as both Ramsey (2020) and I (Facchin 
submitted) have argued elsewhere, a combination of realism for mathematical contents and antirealism for 
representational contents is not a stable position: it “slides into” full-blown content realism or content irrealism. 
208 Notice that albeit I never found the previous two claims articulated in the literature, representationalists do 

often argue that anti-representationalists operate with a too strict conception of representation; see (Clark and 
Toribio 1994; Clark 2015a, 2015b; Williams 2017). 
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arguments to that effect.209 Indeed, even Ramsey (2020: 57-58) does not provide any argument 

to think that some degree of content indeterminacy is acceptable. He simply states that it is. 

And that is fine, given that his objective is that of arguing that, even if present, content 

indeterminacy wouldn’t be a problem for representational realism. 

Yet, perhaps, reasons to reject, or weaken, these three conditions could be provided; and the 

fact these conditions are widely accepted does not guarantee their truth. However, I believe 

that it is highly unlikely that these reasons could be provided, even in principle. In fact, it seems 

to me that weakening even one of my three conditions has very nasty consequences, which are 

at least very hard to accept. 

Consider, first the distality and determinacy condition. Could it be outright rejected? I doubt 

it. To outright reject it is to reject that content must be determinate. But content determination 

is constitutively connected with the possibility of misrepresentation (Ch. 2: §2.2; §6.2 above). 

If content is radically indeterminate, then misrepresentation becomes problematic or 

impossible. But this is a problem for the representationalist, given that the obtaining (or non 

obtaining) of a representation’s conditions of satisfaction is what should explain the non-

accidental success (or failure) of a system (e.g. Godfrey-Smith 2006; Shea 2018; Gładziejewski 

and Miłkowski 2017). Accepting that content can be indeterminate cripples the explanatory 

power of representations. 

What about distality, then? Could we accept that representational content is purely 

proximal? The answer seems negative for similar reasons. Content is supposed to meaningfully 

connect the internal goings on of a system with the environmental contingencies relevant to 

that system (e.g. Egan 2014; 2018; Shea 2018: 31-36). This is why content is explanatory 

powerful. But proximal contents do not connect a system with its environment: they only 

                                                
209

 This is no longer true: Bergman (2021) has offered an explicit argument to the effect that content 
indeterminacy is not a problem for sub-personal cognitive representations (as opposing to mental ones). Owing 
to space limitations, I will not discuss it here. Yet, in my view, the considerations I offer in the rest of the paragraph 
are sufficient to resist Bergman’s argument. 
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connect a system with its internal and peripheral states. 

What if the determinacy (or distality) requirement were just weakened, rather than rejected? 

Perhaps content need not be entirely determinate or distal for representational explanations to 

work. The problem I see with this suggestion is that distality and determinacy are not graded 

properties: they are all-or-nothing properties. If we accept that there is no way to determine 

whether, say, the fuel gauge of a car indicates the amount of gasoline in a tank, or the amount 

of liquid in the tank (or the actual height of float in the tank), how can we put an end to the 

disjunction? How can we exclude that the gauge indicates (the amount of gasoline or the 

amount of liquid or the height of the floater or the amount of air in the tank or the state of the 

connected potentiometer or the state of some other intermediate component in the system)? As 

far as I can see, there is no way to exclude this long and cumbersome disjunction. And once 

such a disjunction is in place, the system’s ability to misrepresent seems compromised. 

Moreover,it should be noted that allowing contents to be indeterminate or proximal does not 

provide a good fit with the empirical practice of cognitive science. When cognitive scientists 

mention contents, these contents are typically determinate and distal. So, if the point of the 

philosophical debate on representations is to analyze and account for the kind of representations 

invoked in the explanatory practice of cognitive science, allowing contents to be indeterminate 

and proximal amounts to changing the end goal of the whole endeavor.  

Couldn’t, then, the second requirement be rejected or weakened? Perhaps exploitable 

structural similarity is not the relevant relation that will yield us determinate and distal contents. 

It is hard to see how it could be weakened. I’ve already deployed the weakest notion of 

structural similarity on offer. Moreover, the less demanding the notion of structural similarity, 

the more content determinacy is problematic. And the same problem makes weakening 

exploitability even less attractive: as things stand, exploitability is what makes the content of 

structural similarity-based theories determinate (Shea 2018: 119-126). Thus, weakening the 
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exploitability requirement invites indeterminacy. 

What about rejecting the second requirement, then? I think this might be a promising move, 

provided that one has a strong theory of content at one’s disposal. Yet, as I have been at pains 

to argue in the previous chapter, our strongest alternatives to structural similarity-based theories 

of content (teleo-informational theories) require a vehicle-target exploitable structural 

similarity too. So, even if one wants to avoid reducing teleo-informational theories of content 

to structural similarity based theories of content, the second best option suffers from all the 

same problems of the first best option. And, as far as I can see, there is no further alternative: 

a robustly realistic interpretational semantics either makes content proliferate uncontrollably 

(Cummins 1991) or collapses into structural similarity (as shown in Shagrir 2012). Consumer-

based teleosemantics is turning out to be just another variation on structural similarity (Millikan 

2020).210 Functional role semantics seems unable to account for misrepresentation (see 

Cummins 1996: 29-53). Purely informational accounts of content are plagued by the challenges 

of distality and determinacy (Artiga and Sebastian 2018; Rosche and Sober 2019). As far as I 

know, there is no other naturalistic theory of content on the market. 

Lastly, one could weaken or abandon the third requirement, namely that mathematical 

contents (or computational role) must place some constraint on representational contents. But 

it is hard to see how it can be weakened, given that all that constraint requires is that the two 

must be at least coherent. And, as argued above (§ 2.3) if computational role and 

representational content part ways, we are forced to choose between the two. If computational 

role and representational content do not cohere, we are forced to either trust the computational 

description of the system or our theory of content of choice.  

                                                
210 It might be worth noting, as an historical aside, that Millikan (1984) already partially defined content in terms 
of vehicle-referent mappings, and that her explicit aim was to defend a picture theory of language (and signs more 
generally). Indeed, she defended a wittgenstenian picture theory of language, according to which: “The fact that 
the elements of a picture are related one another in a determinate way represents that things are relates one another 
in the same way” (Wittgenstein 1921/2013 §2.15). This is precisely how structural representations represent. On 
Millikan’s picture theory and its connections with PP, see (Sachs 2018). 
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For all these reasons, I conclude that my anti-representationalist verdict does not hinge on a 

too narrow conception of representations, and that generative models are not “in some sense” 

still representations. 

 

6.4 - Does my anti-representationalist verdict entail a radical revision of cognitive 

science? 

My anti-representationalist verdict might be taken to entail a strong form of revisionism in 

regard to the explanatory practices and/or lexicon of cognitive science.211 So, is my verdict 

revisionist? And, if yes, to what extent? The answer to the first question is positive: anti-

representationalism is a revisionist position. But, it is not radically or dangerously revisionistic. 

Or so, at least, I want to argue. 

The explanatory practices and the explanatory lexicon of cognitive science surely seem 

strongly committed to representationalism. Anti-representationalism is thus a revisionary 

position. But the revision might not be as deep as it might prima facie appear.  

To start, albeit in cognitive-scientific explanations it is commonplace to use the word 

“representation”, it is not always clear whether that word designates representations. Ramsey 

(2007), for instance, rightfully notices that many cognitive scientists routinely use the word 

“representation” to refer either to simple causal mediators or dispositions of cognitive 

architectures. Jacobson (2003; 2013) notices that cognitive neuroscientists often refer to 

instantiations as representations. She points out, for instance, that a cognitive neuroscientists 

might refer to a pattern of activation of the amygdala as representing a subject’s fearful state, 

while plausibly intending to claim that activations of the amygdala instantiate the subject’s 

fearful state. Cognitive scientists are starting to notice this issue, as well as the theoretical 

problems connected to it, and are striving to incorporate a philosophically robust notion of 

                                                
211 Thanks to an anonymous reviewer of Synthese for having raised these questions. 
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representation in their explanatory practices (e.g. Brette 2019; Poldrack 2020; Backer, Lansdell 

and Kording 2021). Although I sincerely applaud this effort, I cannot help but notice that it at 

least implicitly admits that many non-representational structures have in fact been wrongly 

labeled as representational in the past years. Hence, cognitive-scientific explanations might not 

be as reliant on representations as their expression in public language suggest.212 

Notice that such an over-usage of representational terminology affects PP too. In the PP 

literature, the term “model” has been used to refer to: (a) the whole brain (see Ch. 4: §§ 4.7, 

4.8), (b) axonal connections (Ch.4: §4.4), (c) functionally specializes neural circuits (e.g. the 

mirror neuron system as body-model, se Kilner, Friston and Frith 2007), (d) neuronal responses 

and connections (Buckely et al. 2017), single hierarchical layers anatomically individuated 

(e.g. Kiefer and Hohwy 2019: 387), (e) the alpha motor neurons of the spinal cord that directly 

innervate muscles (Friston 2011: 491), and (f) single neurons (Palacios et al. 2019). It is at 

least plausible that not all elements in (a) to (f) are considered representations by PP theorists, 

even if they normally use the term “model” when referring to them.213 

At this point, then, it is important to notice that the claim that models (both generative and 

inverse) are essentially controllers mediating agent-environment interactions is commonplace 

both  in the literature on the free-energy principle214 and PP (e.g. Seth 2015; Baltieri and 

Buckley 2019; Kirchhoff and Kiverstein 2019; Corcoran, Pezzulo and Hohwy 2020). In the 

theoretical vocabulary PP deploys, “model” primarily denotes control structures. Given the 

“good regulator theorem” (Conant and Ashby 1970), such control structures must be 

homomorphic to what they control; namely the generative process.215 This much is accepted 

                                                
212 It is also worth noting that some cognitive scientists are explicitly anti-representationalists, see, for instance, 
(Chomsky 1995). 
213 Indeed, one of PPs architects, namely Karl Friston, seems to endorse some form of anti-representationalism. 
See (Ramstead, Kirchhoff and Friston 2019). 
214 See, for example (Bruineberg and Rietveld 2014; Bruineberg, Kiverstein and Rietveld 2018; Baltieri, Buckley 
and Bruineberg 2019; Tshantz Seth and Buckley 2020). Notice also that, due to space limitations, I will not discuss 
the complex relationship between the free-energy principle and PP. 
215 Does this entail that there is a mistake in Ch. 4, and that generative models really are structurally similar to 
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both in my account and the structural-representationalists’ ones. My account part ways from 

the structural-representationalist ones when they claim that, models-as-controllers are also 

models-as-structural-representations; that is, when the structural-representationalist claims that 

on top of the homomorphism entailed by the law of requisite variety there is also a content-

constituting exploitable structural similarity holding between the controller and some well 

determined and distal worldly target, such that the model-as-controller is also a structural 

representation of that target (e.g. Pezzulo 2017; Williams 2018a: 117-124).216 Thus, my claim 

that generative models are non-representational structures instantiating an agent’s sensorimotor 

mastery is entirely compatible with the theoretical commitments of PP. Thus, no revision of 

the theory is forced here. 

Noticing that my anti-representationalist verdict is also entirely compatible with PP’s 

commitment to models-as-controllers also has the addit benefit of enabling us to continue using 

a model-based vocabulary when discussing matters related to PP, without having to adopt a 

fictionalist (or otherwise irrealist) stance towards models. This, I think, is a very positive result. 

We avoid a painful revision of our scientific vocabulary: we are not forced to substitute every 

occurrence of “model” with some cumbersome, ad hoc expression. We also avoid an equally 

painful, and conceptually suspect (see Sprevak 2013; Ramsey 2020) revision of the usage of 

said vocabulary: we can still use the word “model” to refer to objectively present and robustly 

real models-as-controllers (rather than mysterious posit of some fictionalist/irrealistic 

framework).217 

                                                

the environment, and thus that a structural-representationalist reading of them is warranted? No, it does not. For 
one thing the generative process is not the environment, unless “the environment” designates everything but the 
brain. The generative process also includes an agent’s active body, as well as physiological bodily states. And I 
have never denied that the generative model is structurally similar to the generative process (see Ch. 4: §4.7). I’ve 
only argued that such a structural similarity is insufficient to substantiate a structural-representationalist reading 
of generative models. 
216 Notice that this does not completely exhaust the additional commitments of the structural-representationalist 
reading of generative models. As seen in Ch. 4, this reading is also committed to the model being decouplable 

form and allowing for representational error detection in regard to its target.  
217 What, then, about inference? PP is, at some level of description, committed to a view of cognitive systems 
approximating Bayesian inferences. But inferences require representations; perhaps even language-formatted 
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Notice further that the anti-representationalist verdict I am proposing is compatible with 

(and, indeed, motivated by) the current explanatory practices of cognitive science. As discussed 

above (§ 6.1) my anti-representationalist verdict does not hinge on an idiosyncratic 

understanding or representations. Indeed, the three necessary features I have listed are fully 

compatible with the philosophically rich notion of representations that is being deployed by 

cognitive scientists (as opposed to philosophers of cognitive science, see e.g. Brette 2019; 

Poldrack 2020; Backer, Lansdell and Kording 2021). Moreover, I reached my verdict by 

examining an artificial neural network, and artificial neural networks are surely central in the 

current empirical practice of cognitive science. So, my verdict is not fueled by, nor promotes, 

alternative research programs in cognitive science, such as ecological psychology (e.g. Kelso 

1995; Chemero 2009), or some variant of enactivism (Hutto and Myin 2013; 2017). 

These, it seems to me, are solid reasons to believe that my anti-representationalist verdict 

does not in any way force us to strongly revise the lexicon and/or the explanatory practices of 

cognitive science as it is currently practiced. 

 

6.5 - Does my anti-representationalist verdict entail a radical revision of our self 

conception? 

The last worry I wish to consider (and allay) is that my non-representationalist verdict might 

be taken to entail some radical form of revisionism regarding our own self-conception as 

rational agents. Nicholas Shea articulates this worry beautifully when he writes: 

“Some want to eliminate the notion of representational content from our 
                                                

ones. So, it seems I’m forced to be a revisionist about the inferential lexicon of PP. Yes, but revisionism about 
inferences is not nearly as painful as revisionism models. For one thing, connectionists already revised the concept 
of inference equating it to the concept of “network reaching a stable state” (see McClelland, Rumelhart and the 
PDP research group 1986). That is a concept of inference I’m simply free to adopt. Moreover, the structural-
representationalist reading of PP is forced to revise the commitment to inference too. Here’s three examples. Clark 
adopts a notion of inference-as-action-selection (see Clark 2016: 15; 176-194). Hohwy (2019: 200) candidly 
admits that, to be literally inferential, PP must utilize a revised notion of inference with a far broader extension. 
Kiefer, claims that even simple systems such as bacteria are literal inference engines (Kiefer 2020: 7). It seems 
clear that in all these instances “inference” does not denote a truth-preserving transition between lingua-formatted 
states expressing propositions. 
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theorizing entirely, perhaps replacing it with a purely neural account of 

behavioural mechanisms. If that were right, it would radically revise our 

conception of ourselves as reason-guided agents since reasons are mental 

contents. That conception runs deep in the humanities and social sciences, 

not to mention ordinary life.” (Shea 2018:6) 

Does my anti-representationalist verdict force us to revise our conception of ourselves as 

rational agents guided by reasons? I think the correct answer to this question is: no more than 

the structural-representationalist reading of PP.218 

Indeed, as far as I can see, nowhere my argument entails the form of content nihilism that 

would force us to abandon our conception of ourselves as agents guided by reasons. In fact, the 

claim that generative models are non-representational structures does not, by itself, entail a 

form of global anti-representationalism about the mind. It does not even entail, by itself, global 

anti-representationalism about cognition. There are two reasons as to why this is the case. 

One is that the claim has no direct entailment when it comes to personal-level mental content 

(e.g. what I recall when I recall the melody of my favorite song; what my beliefs and desires 

are about). In general, we should be wary of projecting the sub-personal level onto the personal 

level and vice versa (Dennett 1991; Hurley 1998). The content of personal-level mental states 

might, but need not, have a sub-personal level counterpart. Hence, the fact that generative 

models are non-representational structures (and are thus devoid of content) need not imply that 

the personal level is devoid of content too. And our self-image as rational agents sensitive to 

reasons is an image describing us at the personal level. Hence, it is not threatened by the claim 

that generative models are non-representational structures. 

The other is that the claim that generative models are non-representational structures does 

not by itself entail that the sub-personal level is devoid of such structures. To be sure, 

proponents of PP often claim that PP is an account of cognition in general, and that it can 

explain all cognitive processes (e.g. Friston 2009, 2010; Hohwy 2015; Clark 2016; Spratling 

                                                
218 On the relationship between PP and folk-psychology, see (Dewhurst 2017). 
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2016; Pezzulo 2017). But the evidence for this claim is far from conclusive. Surely, the 

simulations detailed in (Spratling 2016) show that handcrafted PP models can master a variety 

of cognitive domains in isolation. But these data do not entail that a single, generic generative 

model can master a variety of cognitive domains at once. Moreover, the only PP architecture 

for general cognition I know of (Ororbia and Kelly 2021)219 introduces a declarative memory 

module and a working memory module that are not generative models. Those might be 

representational structures - nothing in the arguments here offered imply that they are not. 

Moreover, PP suffers from an at least prima facie problem when it comes to account for 

cognitive processing targeting cognitive domain with no clear sensory manifestation (Williams 

2020). It is hard to see how a generative model of sensory observations could be used to cognize 

about justice, or the number 27, or the law of excluded middle. Williams considers two possible 

ways in which PP could be expanded so as to account for these cognitive processes. One way 

is that of modifying the cognitive architecture I described in Ch.1, perhaps adding some 

specialized components, like a module for “abstract thought”. The other is to claim that 

“abstract thought” depends on our mastery of cultural practices, and in particular linguistic 

ones (Clark 2016: Ch. 9; Fabry 2015; 2018). It has long been speculated that the mastery of 

natural languages can modify one’s cognitive architecture, installing a “virtual machine” 

capable of entirely novel cognitive processes (Dennett 1991; Clark 1993, Ch. 8). 

Now, to recommend which strategy to follow lies far beyond the scope of the present 

treatment. The only thing I wish to highlight is this: that in the theoretical space lying between 

outright modifying the standard PP architecture and specifying how to install a virtual machine 

on it, it is at least possible that genuine cognitive representations will be encountered. 

Thus, in and by itself, my anti-representationalist verdict does not entail, nor invite, content 

                                                
219 Importantly, as things stand, such an architecture still needs empirical validation. At present, the architecture 
is just a blueprint. 
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nihilism.
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Conclusion 

In this dissertation, I have examined the metaphysical status of generative models in the PP 

framework. I have argued that they are not structural representations. If I’m right, they are best 

understood as non-representational control structures, whose main task is that of coordinating 

agent-environment interactions. 

My claim has been defended as follows. First (Ch.4), I’ve argued we presently lack any 

compelling reason to think generative models qualify as structural representations. For, 

structural representations are partially identified by the similarity tying them to their target, and 

there’s no reason to believe generative models bear such a similarity. 

And, even if such a reason were provided, we still would lack any compelling reason to 

think generative models are structural representations. For, as currently characterized, their 

functional profile is not a representational functional profile (Ch. 5). 

In fact, scrutinizing a simple connectionsit implementation of a generative model (Ch.6) 

readily shows generative models being nonrepresentational structures instantiating an agent’s 

sensorimotor skills. And this verdict, I argued, can be easily generalized well beyond the case 

here directly observed. 

Suppose I’m correct: where from here? What’s the natural next step of this line of inquiry? 

Interest is rising about PP as a theory of phenomenal consciousness (e.g. Seth 2021). And the 

arguments provided here can be readily put in contact with phenomenal consciousness. After 

all, the line of thought sketched here is broadly consonant with sensorimotor enactivism, which 

just is a theory of phenomenal consciousness. 

Yet, being a closet-illusionist, I don’t care about phenomenal consciousness. I care, 

however, about (cognitive) representations. And in Ch.6: §6.5 I’ve been a bit undecided on 

them. On the one hand, I’ve argued that my non-representationalism can face the challenge 

posed by “ “representation hungry” cognition (Clark and Toribio 1994), which supposedly 
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keeps global anti-representationalism at bay. On the other hand, I’ve argued there are also 

reasons to resist  the conclusion to global anti-representationalism. Maybe PP does not explain 

everything about the mind (e.g. Williams 2020), and to account for what PP leaves unexplained 

we will need to posit (or discover) representational structures. 

Are these reasons to resist the conclusion to global anti-representationalism solid? I’m not 

entirely sure. Could generative models account for intelligence writ large? The question is 

largely empirical - but, pace Williams (2020), I’m not sure the answer is negative. On the one 

hand, his clever argument cannot attack non-representational versions of PP, as it is entirely 

predicated on generative models having an iconic representational format. On the other hand, 

some, admittedly very limited, empirical results paint what, to me, looks an unexpectedly rosy 

picture (Hua and Kunda 2020, Kunda 2021). 

So, how far does the anti-representationalism defended here goes? Can we really cognize 

without representing at all? And if not, how do the representational and non-representational 

pieces of the thinking machinery interface with each other? These are questions I’d love to 

answer in the near future. Wish me luck.
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