Symmetry and Hybrid Contingentism

Forthcoming in Peter Fritz & Nicholas K. Jones (eds.), *Higher-Order Metaphysics*

Maegan Fairchild

mmfair@umich.edu

Abstract. This paper outlines a defense of hybrid contingentism: that it is contingent which individuals there are, but not contingent what properties there are. Critics pursue two main lines of concern. First, that the hybrid contingentist’s treatment of haecceitistic properties (like *being Elvis*) is metaphysically mysterious, and second, that hybrid contingentism involves an unjustified asymmetry in the associated modal logic. I suggest that in the setting of higher-order metaphysics these dismissals may be too quick. It is not at all obvious whether and to what extent we should expect particular ‘symmetries’ across the orders, and so whether — as Williamson (2013) argues — “the default preference is for a uniform metaphysics, on which being is contingent at all orders or none.”

Keywords: hybrid contingentism, higher-order necessitism, comprehension, free logic, uniformity

Apparently, greater honeyguides don’t actually lead honey badgers to beehives. But they could have! Had the world been a bit different, ragtag teams of drab little birds and striped predators might have roamed sub-Saharan Africa, terrorizing hives together. Or we could have been very unlucky: the honeyguides and honey badgers might not have existed at all. The same goes for much of the material world. You could have had different (and more exciting) properties than you actually have. You also could have failed to exist entirely. Modality giveth and modality taketh away.

— at least, that is how contingentists see things. According to contingentism, there are things that might not have existed, and there might have existed things that there aren’t. Those who reject contingentism accept necessitism: the view that necessarily, everything necessarily exists. Individuals like you, me, and the honey badgers could each have been more or less interesting than we are, but according to necessitists, we couldn’t have failed to be something.

With the help of higher-order languages, we can ask similar questions about how things stand beyond the special case of individuals. Had there not been any honey badgers, would there still have been the property *being a honey badger*? Had there not been Elvis, would there still have been the property *being Elvis*? More generally: is it a necessary matter what properties there are? *Second-order*...

1 I am grateful to Peter Fritz and Nicholas Jones for their hard and patient work editing this volume, and for their very helpful comments on an earlier draft. Thanks especially to Gabriel Uzquiano and Shieva Kleinschmidt for transformative feedback on a distant ancestor of this paper, and to Andrew Bacon, Dave Baker, Eliya Cohen, Louis deRosset, Jeremy Goodman, Oystein Linnebo, Jon Litland, Jamie Tappenden, and Mallory Webber for feedback and related discussion. Finally, I’m hugely indebted to participants in the Women in Metaphysics Working Group (organized by Li Kang) and in the 2020 Virtual Metaphysics Bootcamp (hosted by Vera Flocke), as well to audiences at Texas A&M, UNC Chapel Hill, and UT Austin. Work on this project was supported by the Harrington Faculty Fellowship at the University of Texas, Austin.
contingentists say no, second-order necessitists say yes.

The toolkit of higher-order metaphysics allows us to put this all a bit more rigorously. At the first order, the dispute centers on the status of the characteristic necessitist thesis:

\[
\text{NNE}. \quad \Box \forall y \exists x : x = y
\]

Where the quantifiers are absolutely unrestricted, ‘\(\Box \)’ expresses metaphysical necessity, and ‘\(\exists x : x = y \)’ is pronounced “\(y \) is something” or, equivalently, “\(y \) exists.”\(^2\) At the second order, the dispute centers on \(\text{NNE2} \):

\[
\text{NNE2}. \quad \Box \forall Y \exists X \forall x (X x \leftrightarrow Y x)
\]

Assuming (as I will throughout) that necessary coextensiveness is the second-order analog of identity, we can roughly translate \(\text{NNE2} \) as the characteristic thesis of second-order necessitism: necessarily, every property necessarily exists.\(^3\) (With the usual caveat that the quantifiers in \(\forall X \) and \(\exists Y \) are meant to be irreducibly higher-order, and so these nominalizing paraphrases must be taken with a ‘pinch of salt’. I’ll return to this in Section 1.2.)

This paper explores the prospects for a hybrid view: the combination of first-order contingentism with second-order necessitism. There’s a lot to be said for hybrid contingentism. As we’ll see, it delivers a familiar and compelling story about the modal metaphysics of individuals while retaining the considerable technical and theoretical advantages of higher-order necessitism. But although both \(\text{NNE} \) and its denial are consistent with \(\text{NNE2} \), discomfort with ‘hybrid’ approaches to modal metaphysics has a long history.

And on the face of it, the combination of first-order contingentism and higher-order necessitism does look unavoidably chimeric! Both leading alternatives — uniform contingentism and uniform necessitism — seem to offer more satisfying worldviews, each with one simple story to tell about the interaction between modality and existence at every order.\(^4\) Critics of hybrid contingentism have been even more blunt on this point: Sider (2016) dismisses it as “metaphysically ugly”, and Williamson (2013) calls it “suspiciously ad hoc” and “a messy hybrid”. In what follows, I suggest that in the setting of higher-order metaphysics these dismissals may be too quick. It is not at all obvious whether and to what extent we should expect certain ‘symmetries’ across the orders; and so whether, as Williamson insists, “the default preference is for a uniform metaphysics, on which being is contingent at all orders or none.”\(^5\)

I’ll be focusing on a series of criticisms drawn from Williamson (2013, 6.2). There, we find two main lines of concern: first, that the hybrid contingentist’s treatment of properties like \textit{being Elvis} is metaphysically mysterious, and second, that hybrid contingentism involves an unjustified asymmetry in the associated modal logic. Much of the recent work on hybrid contingentism (especially Perez Otero (2013) and Skiba (2022)) focuses on the former challenge. My main interest in what follows is the latter. I’ll argue that the demand for ‘theoretical uniformity’ must be handled with care when we’re dealing with

\(^2\) This terminology is from Williamson (2013). See also Menzel (2020) for a recent discussion of the relationship between necessitism/contingentism and the \textit{actualism/possibilism} distinction.

\(^3\) For convenience I’ll be focusing only on the monadic instances of various second order principles (like \(\text{NNE2} \)) but these can of course be generalized. Similarly, although I’ll explicitly mention only second-order principles, I’ll sometimes speak more broadly about ‘higher-order necessitism’, since parallel considerations extend to all higher orders.

\(^4\) These labels from Skiba (2022).

\(^5\) Williamson (2013: 274)
higher-order theories, and will ultimately suggest that hybrid contingentist is on much firmer footing here than her skeptics fear.

In the next section, I’ll briefly recap the debate as Williamson presents it, before turning in Section 2 to the challenges he raises for hybrid contingentism. I argue that the second of these — what I’ll call the *symmetry challenge* — is best understood as concern about whether various core principles of hybrid contingentism can be satisfactorily unified. In Sections 3 and 4, I suggest that they can be. The most pressing worry in the vicinity concerns the theory of quantification associated with hybrid contingentism, which I argue in Section 3 is compatible with understanding the hybridist as a steadfast free logician. Section 4 explores whether the symmetry challenge might re-arise elsewhere, and tentatively concludes that there’s reason for optimism.

1 Modal Logic as Metaphysics

In *Modal Logic as Metaphysics* (2013), Williamson defends necessitism on the grounds that the higher-order modal logic associated with uniform necessitism scores best on a balance of theoretical virtues.

Central to the framework he develops there is a commitment to resolving certain debates in metaphysics by applying abductive considerations directly to modal logics. On this approach, theories of modal metaphysics aren’t just helpfully *expressed* by means of formal languages — they are logics, comparable and evaluable as such:

“We fixed interpretations of the modal operators, as expressing metaphysical possibility and necessity, and of the quantifiers, as unrestricted, in accord with the ambitions of metaphysics. Modal logic in this form aims to discover which generalizations in such terms are true. The true generalizations constitute a quantified modal logic, but we don’t know ahead of enquiry which one. At least in this area of philosophical logic, our task is not to justify principles that already play a fundamental role in our thinking. Rather, it is in a scientific spirit to build and test theories that codify putatively true generalizations of the sort at issue, to find out which are true.” (425)

The Williamsonian approach is, unsurprisingly, contentious. Sullivan (2014) argues that Williamson’s ‘logic-driven’ methodology arbitrarily excludes relevant metaphysical considerations. Bricker (2014), on the other hand, worries that the application of the abductive methodology to modal logic introduces irrelevant considerations — for example, considerations of simplicity and expressive power that are perhaps properly applied to logics, but not to theories of modal metaphysics. In a similar vein, Sider (2016) argues that the presumption that the truths of modal metaphysics will be captured by a “simple” modal logic is unjustified — and so comparative simplicity judgments about contingentism and necessitism do less to decide the issue than Williamson hopes.

1.1 First-order contingentism and first-order necessitism

The defense of hybrid contingentism I’ll offer relies less on general concerns about Williamsonian methodology — which I will take mostly on board — than on concerns about how exactly we should tally the costs and benefits of candidate logics. Even granting much of the framework, the scorecard isn’t

6 For earlier defenses of necessitism, see Linksy and Zalta (1994) and Williamson (1998, 2000, 2002).
straightforward.

Take the first order case. The characteristic thesis of first-order necessitism is a theorem of the “Simplest Quantified Modal Logic” (SQML): the system that combines classical quantification theory and the system $S5$ of propositional modal logic. Paradigmatic necessitists hold that all of the theorems of $SQML$ are true when interpreted as Williamson describes in the passage above, and so perspicuously capture the core commitments of their theory of modal metaphysics. Contingentist theories, on the other hand, tend to involve either a weakening of the rule of necessitation or – more commonly – a restriction on the quantificational fragment of the logic.\(^7\)

Contingentists of the latter sort adopt some version of a free logic, replacing classical universal instantiation (and, correspondingly, existential generalization) with a weakened quantificational principle. The term ‘free logic’ is due to Karel Lambert, and serves as a broad label for logics “free of existence assumptions with respect to [their] terms, singular and general”\(^8\). Whereas classical logics enforce “tacit existence assumptions,” free logics aim to require that such assumptions be made explicit. So, for example, a contingentist free logician might restrict universal instantiation as follows:

$$\forall x A(x) \rightarrow (\exists x x = y \rightarrow A(y))$$

The contingentist’s first-order logic is in this way logically weaker and somewhat more unfamiliar than SQML – but famously has the payoff of a more straightforward metaphysics.

The most obvious cost of necessitism is its pantheon of possibilia. Since the Pope might have had a daughter, the necessitist says that there’s something which might have been the Pope’s daughter. This might-have-been-daughter is nowhere in spacetime: it is neither concrete, nor human, nor anyone’s daughter. Contingentists, on the other hand, can usually take most ordinary judgments about modal ontology at face value. Importantly, this includes not just comparatively arcane judgments about the occupants of distant possibilities, but also ordinary talk about the modal fragility of material objects. Contingentist metaphysics can straightforwardly accommodate a picture of material objects on which the ceramic mug on this table might not have existed if the potter had made other plans, or which might cease to exist if smashed. The necessitist tells a slightly more circuitous story: had the potter changed her mind, the thing that might have been a ceramic mug would still have existed, but would not ever have become material, would not have become a mug, etc. Similarly, the mug wouldn’t have been destroyed if I had smashed it — according to the necessitist, smashing only ends a mug’s career as a mug. It would have continued to exist, perservering unmugishly.\(^9\)

\(^7\) I’ll be focusing on contingentists who restrict classical quantification, so later generic claims about contingentism should be read in this spirit. For an initial overview of the range of options for contingentists see Williamson (2013: 39-44), and for an especially illuminating discussion of these options in the context of Arthur Prior’s work on modality, see Menzel (1991).

\(^8\) This phrase, and Lambert’s first use of the label ‘free logic’, is from a 1960 address, cited in Lambert (1962). Early key papers developing these ideas include Leonard (1956), Halperin and Leblanc (1959), Hintikka (1959), and Lambert (1963). For overviews of free logic, see Lambert (2001) and Priest (2008), as well as Lambert (2002). For further discussion of contingentist applications of free logic see Kripke (1963), Williamson (2013: 37-44), and Bacon (2013).

\(^9\) See especially Williamson (1998) and Williamson (2013: 5-14). For an argument against necessitism along these lines, see Hayaki (2006), who argues that the comparative simplicity of necessitist-friendly model theory is outweighed by the difficulty of accommodating talk of essential properties. Relatedly,
Further complicating the tally, not all contingentists are moved by a commitment to upholding “common sense” metaphysics, or even by an aversion to the apparent weirdness of necessitist ontology. A very familiar sort of contingentist is driven instead by general principles elsewhere in her metaphysics — some of which might in turn yield quite revisionary theories. For example, Williamson (2013: 315) mentions versions of contingentism motivated by a Humean “liberalism about possibility”. Such a contingentist rejects necessitism on the grounds that it illegitimately restricts the space of possibility to exclude worlds in which these objects exist without those, violating a prohibition on necessary connections between distinct individuals. Even closer to my own heart is a contingentist who is impressed by the idea that material objects have some non-trivial essential properties (like being human, being intentionally created by this very potter, etc) which partly characterize the conditions under which they exist. This sort of essentialism is sometimes also thought to yield a profligate ontology of coincident objects, many of which are far beyond the pale of ‘common sense’ metaphysics. (I’m thinking here, of course, of plenitude: the view that every eligible ‘modal profile’ corresponds to a material object.) Still other contingentists purport to be as ‘logic-driven’ as Williamson: just as necessitism is a downstream consequence of abductive arguments for SQML, some contingentists are compelled by an antecedent commitment to rejecting one or the other of its core principles. (We’ll return to this in Section 3.) None of these contingentists will be especially impressed by criticisms of necessitism that rely on “the populist rhetoric of weirdness", and instead reject NNE on more general theoretical grounds.11 We should thus be awfully hesitant about finalizing a tally that puts ‘common sense’ in the contingentist’s corner and ‘simplicity’ in the necessitist’s.

1.2 Going Higher-Order: Comp and NNE2

Williamson himself more or less grants that the first-order dispute is at a dialectical stalemate, and proposes a move to the enriched setting of higher-order metaphysics. The move to the higher-order expands our horizons in two big ways. Not only are we able to rigorously ask and answer a number of independently interesting questions but, more locally, we’re also able to rally new evidence bearing on first-order contingentism and necessitism by looking at how each embeds into a more complete (higher-order) modal theory.

Both payoffs depend partly on a picture we might call “Fregean realism” (following Trueman (2021)) or “neo-Fregean pluralism” (following Lederman (this volume)). Neo-Fregean pluralists understand higher-order quantification as a sui generis form of quantification, neither reducible to nor expressible by means of any form of first-order quantification. Higher-order theories therefore speak to genuinely new questions, even when the first-order quantifiers are already interpreted as absolutely unrestricted. Although (in the interest of being intelligible to our friends and copyeditors) we pronounce second order formulas as though they involve quantification “over properties”, such translations are officially regarded as illegitimate. This makes it somewhat harder to articulate the metaphysical significance that neo-Fregean pluralists attach to the use of higher-order languages. The difficulty is that,

Sullivan (2014) argues that the inability of Williamson’s framework to accommodate certain candidate positions in modal metaphysics (like essentialism) isn’t just a downstream cost of one view or the other, but rather a deep problem for the proposed methodology.

10For one version of the argument from essentialism to plenitude, see Bennett (2004), and for a brief discussion of a version of contingentism inspired by plenitude, see Goodman (2017: 167-168). For a recent overview of plenitude, see Fairchild (2020).

as Button and Trueman (this volume) nicely put it,

“(…) we must steadfastly avoid saying things like ‘Properties are not objects’. We might instead try to articulate Fregean realism as follows: different types of entity are incomparable, in the sense that what can be said of one type of entity cannot be said of another. That is certainly an improvement, but even this statement of Fregean realism is self-undermining. After all, to say that properties and objects are incomparable is still to try to compare them.”

As we’ll see, this warning will be especially relevant to the discussion of the challenges for hybrid contingentism in Section 2. The basic idea, though, is that we cannot give a complete metaphysics without the help of higher-order languages, because:

“…reality is hierarchically structured: there is a bottom layer of objects—the values of first-order variables—followed by a layer of ways for these objects to be (and to relate) —the values of second-order variables which belong to a different logical type— followed by a layer of ways for such ways to be (and to relate) —the values of third-order variables which belong to yet another logical type— and so on (ad infinitum)” (Skiba, 2021)

This picture is discussed extensively elsewhere in this volume, so from here (with apologies) I will simply assume it.

I will similarly be assuming the centerpiece of Williamson’s defense of necessitism, a strong second-order comprehension schema:

\[\text{Comp. } \exists X \forall x (Xx \leftrightarrow A) \]

Where \(A \) is a formula, \(X \) is a monadic predicate variable not occurring free in \(A \), and \(x \) is an individual variable that may occur free in \(A \).\(^{12}\) Like Williamson, we’ll regard the result of prefixing \(\text{Comp} \) with any combination of necessity operators and quantifiers binding parameters in \(A \) as an instance of \(\text{Comp} \). Second-order comprehension schemas express generalizations that tell us which values the second order variables can take — roughly, which properties there are. \(\text{Comp} \) corresponds to an ‘abundant’ conception of properties; it says that for any condition whatsoever (“however unnatural”) there is a corresponding monadic property. This slogan is already attractive to many of us caught in the neo-Fregean current, but Williamson’s own case for \(\text{Comp} \) is abductive: to secure the core expressive and metaphysical benefits of higher-order logic, we require a comprehension principle that corresponds in this way to the ‘abundant’ conception.

Here’s the kicker: \(\text{NNE2} \) follows straightforwardly from \(\text{Comp} \), since \(\text{NNE2} \) is just the instance of \(\text{Comp} \) with ‘\(Yx \)’ for \(A \) prefixed by ‘\(\Box \forall Y \Box \)’. Thus, anyone compelled by \(\text{Comp} \) must accept second-order necessitism.

Of course, much of \(\text{Comp} \)’s celebrity status in the current context depends on our assumption that necessary coextensiveness suffices for higher-order identification. There are a number of background

\(^{12}\) \(\text{Comp} \) is the principle Williamson calls \(\text{Comp}_d \) (2013:262), the monadic instance of the principle he calls \(\text{Comp} \) (2013:227).
features of the logic that might disrupt this assumption. It will be helpful to rehearse just one: the failure of what Williamson calls the being constraint (2013: 148-158). The being constraint says, roughly, that an individual exists if it has any properties at all. Of particular interest are instances of the following:

\[\forall x (\square (F x \rightarrow \exists z x = z)) \]

Contingentist free logicians are divided on the status of the being constraint. Broadly speaking, contingentists who go for a negative free logic accept it, and treat all predications as ‘existence-entailing’. Positive free logicians reject it, and allow for the truth of certain formulas \(F(t) \) from which we still can’t infer that \(\exists x x = t \). But, if the constraint fails in this way, necessary coextensiveness won’t manage to capture the analog of identity, since necessarily coextensive properties \(F \) and \(G \) may still fail to be intersubstitutable when instances of \(F(t) \) and \(G(t) \) differ as concerns some non-existent \(t \). In this case, the better second-order analog of identity might be:

\[\forall x (F x \leftrightarrow G x) \]

Williamson (2013: 264-265) discusses how similar disruptions might arise if the background logic is hyperintensional, or if the modal principle S4 fails.

For our purposes here, these disruptions can mostly be set aside. I’ll be interested in the contingentist who, moved by a commitment to a strong comprehension principle, finds herself saddled with second order necessitism. The case for a suitably ambitious comprehension principle in this context just is the case for a comprehension principle that is coordinated with second-order identity, so that for any condition, there’s a corresponding property. \(\text{Comp} \) reflects the assumption that necessary coextensiveness suffices for the relevant correspondence, but where that assumption is disrupted, the case for \(\text{Comp} \) becomes the case for some stronger principle. In each such case, the revised version of \(\text{Comp} \) entails a matching revision of NNE2. I’ll therefore proceed by focusing on \(\text{Comp} \) and NNE2, though much of what follows may be extended to these other settings.

2 The Case Against Hybrid Contingentism

2.1 Haecceities

Given \(\text{Comp} \), necessarily, there is a property that is necessarily equivalent to being Elvis:

\[\text{Elvis. } \square \exists x \forall y (X(y) \leftrightarrow y = e) \]

Call any such property a ‘haecceity’. Elvis’ haecceity is the unique, modally robust identity property that he has wherever he exists: necessarily, it is the way that something is just in case it is Elvis.\(^{16}\)

\(\text{Comp} \) guarantees that every musician, every rambling honey badger, and every scrap of chewing

\(^{13}\) And so resembles Plantinga’s (1983) ‘serious actualism’, which Fine (1985) instead calls ‘property actualism’ (“After all, it is not as if actualism itself were not serious.”)

\(^{14}\) The overviews referenced in fn 8 above all provide helpful introductions to positive and negative free logics. I will try where possible to remain neutral on the being constraint in what follows, since a satisfactory accounting of the choice points its denial introduces is sadly beyond what I can do here. As will become apparent in Section 4, my own temptation is to give it up.

\(^{15}\) See Williamson (2013:264-265).

\(^{16}\) See Williamson (2013:268).
gum has a haecceity. Comp also entails that even if none of those individuals had existed, there still would have been properties necessarily equivalent to being them. That is:

\[
\text{Haec. } \quad \Box \forall y \exists x \forall x (x \leftrightarrow x=y)
\]

For the higher-order necessitist, there is no contingency in which haecceities there are. If the piece of gum I found in the car yesterday had never existed, there would nonetheless have been the property that is its haecceity. If there had been entirely different pieces of gum than those that were in fact produced, they each would have had haecceities. Higher-order necessitism tells us that those properties — the would-have-been haecceities of the could-have-been pieces of gum — exist necessarily, as well.

This leaves the hybrid contingentist with what looks like an uncomfortable suite of commitments. Williamson initially puts this in terms of a worry about “tracking”:

“No if I had never been, by [Haec] there would still have been a property tracking me (and only me). But how can it look onto me in my absence? In those circumstances, what makes me rather than something else its target?” (2013:269)

We should be careful to distinguish this from another nearby concern.17 Here, for example, is Adams’ argument against necessary “thisnsses”:

“My thisnssis a property that I would have in every possible world in which I would exist — but equally, my thisnss could not exist without being mine. (...) If there were a thisnss of a non-actual individual, it would stand, primitively, in a relation to that individual. But according to actualism, non-actual individuals cannot enter primitively into any relation. It seems to follow that according to actualism there cannot be a thisnss of a non-actual individual.” (1981:11)

Thankfully, the higher-order setting allows an especially straightforward response to this sort of worry. Despite our paraphrases in terms of ‘properties’, Haec remains irreducibly second order. It neither commits us to any mysterious necessary entity (a ‘thisnss’) nor to any relation between existing and non-existing entities. Nor does it run afoul of the being constraint discussed above: the hybrid contingentist needn’t say that every haecceity is the haecceity of something. She’ll say instead that “some haecceities merely could have been the haecceity of something.” (Williamson 2013: 269)18

The problem for the hybrid contingentist, then, isn’t any direct conflict with Haec. Instead, the challenge is to provide “a plausible metaphysics of properties” (2013:270) capable of dissolving what Skiba (2022) calls the “explanatory embarrassment” of uninstantiated haecceities; to meaningfully account for properties that might have been the haecceities of particular individuals, but are actually had by nothing at all.19 Williamson’s presentation of the problem places a special emphasis on the

17 Williamson’s presentation of the problem (explicitly) echoes familiar worries about Alvin Plantinga’s invocation of individual essences to serve as proxies for contingent individuals. See eg. Plantinga (1983), Fine (1985), and Menzel (1990: 363-367).

18 See Skiba (2022) sections 2.1 and 2.2 for a discussion of the being constraint and the haecceities problem.

19 Skiba (2022) argues that the challenge is best understood as the demand for a contingentist-friendly grounding story for (eg.) the fact that Elvis’ haecceity ‘tracks’ Elvis in his absence. His proposed response
individuation of haecceities. For first-order necessitist, every haecceity is instantiated, and so in a very flat-footed sense my haecceity can be readily distinguished from Elvis’ — it is the one instantiated by me! But when neither Elvis nor I exist, the contingentist cannot provide the same story.

Ultimately, he suggests that the hybridist adopt what he calls a minimalist approach to the haecceities challenge, by

“... denying that they must provide any metaphysically deeper account of how properties and relations are individuated than one in terms of their modal application conditions, on which necessary co-extensiveness is analogous to identity. Such a minimalist endorses Comp (...) while insisting that we need no more explanation of how my haecceity singles me out in my absence than that it is the property that, necessarily, applies to something if it is me and not otherwise.” (2013: 273)

The minimalist line is that haecceities pose no special explanatory problem: like all properties, they are individuated by what they might have applied to. In this sense, the fact that haecceities are meaningfully distinguished even when uninstantiated isn’t significantly more puzzling than that the properties being a honey badger and being a honeyguide would be even if they were each (sadly) uninstantiated.

The hybridist I’ll be concerned with in the remainder of this paper is a minimalist of exactly this sort. Not only is this because I suspect this is the best attitude for the hybrid contingentist to take towards the haecceities challenge, but because the minimalism just sketched puts her in excellent company: the conception of properties it invokes is same conception of properties that (most) other higher-order necessitists assume. Nor is this style of response unprecedented: among the many advantages of moving to a higher-order framework is that it tends to help dissolve otherwise elusive questions inherited from attempts to understand properties within first-order metaphysics. Given the broader programme, the proposed ‘minimalist’ approach to the metaphysics of property individuation already seems like the natural route to take.

2.2 Asymmetries

Still, even if we’re unimpressed by the demand for an explanatory link between individuals and their

20 Williamson considers and rejects a number of attempts to rally metaphysically unmysterious resources for a contingentist-friendly account of haecceities, including the “relational strategy” (on which possible individuals can be ‘picked out’ by means of actual ones (2013: 270-271)) and a strategy on which individuals can be ‘picked out’ by means of ‘purely qualitative’ properties (271-273). Similar considerations play an important role in motivating particular versions of uniform contingentism; see especially Fritz and Goodman’s (2016: 648-651) discussion of Stalnaker (2012) and Fine (1977). For a recent illustration of the relational strategy, see Pérez Otero (2013) on ‘modal metaphysical atomism’.

21 Consider the response Williamson (1998: 268) offers to what seems to me to be a related challenge for necessitism: how are ‘possible rivers’ individuated? His response draws on the necessity of identity: is identical to a possible river just in case possibly, and are rivers and . He then imagines an opponent who presses for an answer to a further question: “What makes the merely possible river in one world the same thing as the genuinely flowing river in another world?” (Compare: “What makes the would-be haecceity of Elvis in one world the same as the haecceity of Elvis in another?”) Williamson replies: “This doubt is more obscure than that which it calls into question. Its focus is (...) possibilities for objects rather than identities. Why should one find ‘ could be a river’ problematic?” (Compare: Why should one find ‘ could be Elvis’ haecceity’ problematic?)

22 See, for example, Jones (2018).
haecceities, there remains something unsettling about the ‘hybrid’ part of hybrid contingentism. When contrasted with uniform contingentism or uniform necessitism, the hybridist’s differential treatment of the first- and higher- orders seems to call out for some justification. Williamson is skeptical that minimalists have the resources to answer this call:

“(...) Comp implies necessitism at every order except the first. The onus is on the metaphysician who postulates such logical differences between orders to justify the asymmetry in treatment. Minimalism deprives the contingentist of the resources needed to provide a satisfying justification.” (2013:274)

Unexplained asymmetries are theoretical red flags. When analogies break, we rightly look for difference makers. And so, given her divergent attitudes about NNE and NNE2, the hybrid theorist seems to owe some story capable of accounting for the distinctive modal status of individuals. The worry is that if we take our cue from the minimalist response to the haecceities argument, it is difficult to see what kind of explanation she could offer. This is the asymmetry problem for hybrid contingentism.

One option is to dismiss the challenge. Goodman (2017) points out that it is not at all uncommon for the base case of an inductively defined class to receive special treatment, and so there is ample precedent for regarding individuals as special case when it comes to generalizations about higher-order metaphysics. This is certainly right, but I’m still inclined to agree with Williamson (2017a)’s reply: such precedents only equip us to say that if we’re going to be non-uniform, “the best place to put the cut is between the first order and the rest.” What precedent doesn’t yet provide is any justification for the particular asymmetries between the orders that are characteristic of hybrid contingentism.

Here, though, there are a number of potential distractions. It clearly cannot be that we have a default expectation that the theorems of higher order logic in general perfectly mirror those of first order logic. Williamson offers the following “more metaphysical” elaboration of the problem:

“According to the minimalist contingentist, if your parents had never met, there would not have been you, a merely possible person, but there would still have been your haecceity. The latter claim depends on a minimalist standard of being for properties, on which they can be even in circumstances in which they leave no trace. The former claim, that there would not have been you, depends on a non-minimalist standard of being for individuals, on which they can be only in circumstances on which they leave some trace. Of course, this talk of leaving a trace is metaphorical, but it is the minimalist contingentist who needs to cash out the metaphor. The default preference is for a uniform metaphysics, on which being is contingent at all orders or none.” (2013:274)

We should tread exceptionally carefully here. Recall that we’re working within a framework on which the second-order quantifiers express sui generis forms of quantification; introduced by analogy with but not reducible to first-order quantification. Accordingly, we should be very reluctant to place too much weight on metaphors that threaten to impute some univocal notion of “being” across the orders. Nothing of the

23 This suggests that the minimalist contingentist has perhaps borrowed her name from the many varieties of ‘minimalism’ associated with broadly neo-Fregean programmes in metaphysics. See, for example, overviews in Thomasson (2001) and Linnebo (2012). See also Linnebo (this volume) on the minimalist argument for (non-modal) Comp.
kind is expressible in the logic, and so cannot – at least on the current approach – be captured by any recognizable commitments of the theory. A preference for a metaphysics on which “being is contingent at all orders or none”, in this setting, can be nothing more than a preference for a logic with a particular structural symmetry across the orders.

Relatedly, talk of “standards of being” is especially likely to be misleading. Compare the analogy between identity (for individuals) and necessary coextensiveness. Our logic reflects a difference between what we might call “the standard of identification” for individuals (’b=a’) and for properties (‘\(\forall x (Fx \leftrightarrow Gx)\)’). Of course, this is partly superficial: we might as well have introduced a primitive symbol for higher-order identity. But for those of us who think that necessary co-extensiveness suffices for higher-order identity, the difference reflects more than just our choice of vocabulary. Our theory encodes a commitment to a substantive view about higher-order identification and encodes no corresponding commitment at the first order. This disanalogy alone doesn’t violate any preference for theoretical uniformity — certainly not one best captured by talk of different “standards” of identification. Instead, uniformity demands only that identity and necessary coextensiveness are governed by many of the same explanatorily significant generalizations — like suitable analogues of Leibniz’ Law, for example. Similarly, the analogy between first and higher-order quantification requires only that expressions of the form \(\exists x A(x)\) and \(\exists y A(y)\) play similar roles in our theories, and are governed by appropriately analogous generalizations.

Focusing our attention on these structural disanalogies highlights what looks like a much more worrying asymmetry between the first and higher orders. We saw in Section 1 that necessitists tend to argue indirectly, deriving necessitism from more secure commitments to (eg.) universal instantiation, necessitation, and the logic of identity. At the first order, necessitists insist that we should be sufficiently impressed by the merits of SQML to accept its necessitist consequences. At the second order, Williamson’s defense of necessitism is premised instead on the strength of COMP. This alternative route to higher-order necessitism is what puts hybrid contingentism on the map in the first place: a first-order contingentist unmoved by the case for SQML may nonetheless be won over by COMP.

Even so, higher-order necessitists typically accept universal instantiation for second-order quantifiers:

\[
\text{UI2.} \quad \forall X A(X) \rightarrow A(F)
\]

We’ve been assuming throughout that hybrid contingentism is characterized by straightforward agreement with uniform necessitism at every order but the first. In particular: hybrid contingentism is given by a free logic at the first order (eg. FUI) and the relevant analogues of SQML at every higher order. This puts the hybridist in an especially tight spot. Not only does her rejection of NNE and acceptance of NNE2 reflect a modal asymmetry between individuals and properties, but also — and perhaps even more worryingly — her rejection of UI and acceptance of UI2 seems to reflect a change of heart about the logic of quantification.\(^2\)

Impressionistically speaking, it seems much more initially plausible that we should have a default preference for “symmetry” with respect to UI and UI2 than for the symmetry preserved by the

\(^2\)See Trueman (2021) for an especially forceful discussion of this point, esp 9.3.

\(^2\) Williamson gestures at this: he is unconvinced by attempts to answer the uniformity challenge merely by appeal to “metaphysical differences” between individuals and properties, since such differences do not “justify the asymmetry in the treatment of the quantifiers”. (2013: 274)
combination of NNE and NNE2. In part this is because, as I’ve tried to suggest, the demand for uniformity across the orders seems to concern explanatorily significant principles rather than theorems more broadly. Even for the uniform necessitist, necessitism (at each order) is explanatorily downstream of more core principles. Worse, insofar as the hybridist’s rejection of first order necessitism is bolstered by a case against SQML — as in the case of many contingentist free logicians — we’ve got special reason to be suspicious of her blasé embrace of UI2. (There may also be special pressure in the direction of uniformity for those of us who are hard-line primitivists about higher-order logic, since the analogy between the behavior of the quantifiers across the orders is the primary resource we have for interpreting second-order quantification.)

Understood this way, the uniformity challenge seems to me even more pressing than the appeal to a “default preference for a uniform metaphysics” might have initially suggested. Given that her first order is free, there are apparent asymmetries that are too central to the theoretical core of hybrid contingentism to easily dismiss, and so the minimalist contingentist does need to speak to the logical asymmetries between the orders. In doing so, however, she will not merely have to account for non-contingency of higher-order being, but also of the treatment of quantification that underwrites it.

3 How Free is HC?

In what remains of this paper, I sketch a diagnosis and tentative response to these challenges. Both turn on the observation that UI2 isn’t especially avoidable for the first-order contingentist who accepts Comp. As we’ll see, higher-order free logic together with Comp straightforwardly collapses back into classical logic. But rather than deeping the rift between the orders, I want to suggest that this observation reveals an underlying uniformity in the hybridist’s approach to modal logic. With respect to what I’ll call the ‘quantificational’ fragment of her theory, the hybrid contingentist is a steadfast free logician. The apparent logical asymmetries stem instead from what I’ll call the ‘generative’ fragment of hybrid contingentism, characterized at the second order by Comp.

I worried above that it may not be obvious what sorts of “symmetries” we should expect across the orders, but conceded that we should at least expect some kind of uniformity when it comes to explanatorily significant core principles. The diagnosis I’ll offer invokes what I hope will be a therapeutic distinction between two families of core principles: those that characterize the inferential behavior of the quantifiers at each order, and those that (very roughly speaking) characterize the “domain” at each order. This paves the way for a two part response from the hybrid contingentist: first, that both UI2 and NNE2 are derivative principles, downstream of and explained by more central commitments, and second, that these core commitments do exhibit the motivational uniformity we should expect from a theory of modal metaphysics. My aim in this section is to provide the first part of this response, before attempting in

26 Briefly: primitivists must speak to worries about the learnability or intelligibility of higher-order languages. Opponents are (reasonably) skeptical of our ability to understand higher-order quantifiers if indeed they are genuinely not explicable in terms of first-order quantification. Primitivists often answer by emphasizing our ability to partially bootstrap from systematic relationships between quantification at each order, highlighting stable relationships between quantifiers and expressions of each type. The assumption of uniformity does similar work in Wright (2007), and also perhaps in Jones’ (2018) remark that “second-order existential generalization must surely satisfy some such principle if it is to count as a genuine existential quantification.” Williamson (2013:257) suggests that our competence with expressions of particular semantic categories “provides the groundwork for understanding quantifiers that bind variables of the given category.” See also MacBride (this volume) for nearby criticisms of second-order primitivism.
Section 4 to carve out new space for the second.

3.1 UI2 and Comp

A few technical observations, first. Although the typical higher-order necessitist package contains both UI2 and Comp, this isn’t absolutely inevitable. Bacon et al (2017) argue that a classical treatment of the quantifiers isn’t forced by a commitment to necessitism alone. There, they emphasize the distance between two ideas that are each central to the Williamsonian picture: that “existence doesn’t modally come and go” and that “existence comes cheap.” They are primarily interested in views that accept the former but not the latter, represented by varieties of higher-order necessitism in a free logic without full comprehension.

The “cheapness” slogan doesn’t sharply distinguish between the roles of UI2 and Comp, partly because there is so little daylight between the two. This is especially vivid in the special case of propositional quantification. Consider the analogous principles:

\[
\text{UI-p.}\; \quad \forall p A \to A(q/p) \\
\text{Comp-p.}\; \quad \exists p \Box(p \leftrightarrow q)
\]

UI-p straightforwardly entails Comp-p, by existential generalization on \(\Box(q \leftrightarrow q) \).\(^{27}\) But things are slightly more delicate in the case of quantification into predicate position, as an analogous attempt to argue from UI2 to Comp by generalizing on \(\Box \forall x(Fx \leftrightarrow Fx) \) only gives us monadic instances of Comp:

\[
\text{Comp-F.}\; \quad \exists X \Box \forall x(Xx \leftrightarrow Fx)
\]

Defenders of the classical picture may also be tempted by a stronger version of universal instantiation:

\[
\text{UI2+.}\; \quad \forall X A(X) \to A(\phi)
\]

where \(\phi \) is any formula (excepting the usual caveats to avoid variable clashes). Linnebo (this volume) emphasizes that UI2+ entail full comprehension, because unlike UI2 it corresponds to a version of existential generalization that licenses generalizing on instances of \(\Box \forall x(\phi(x) \leftrightarrow \phi(x)) \).\(^{28}\)

What about the route from Comp to UI2? Here there are a number of illuminating sensitivities to the surrounding logic. For example, Bacon & Russell (2019) illustrate how we might obtain UI2 from Comp and a tempting second-order analogue of Leibniz’s Law. The Leibniz-like principle of interest is:

\[
\text{LL.}\; \quad \Box \forall x(Xx \leftrightarrow Yx) \to (A(X) \leftrightarrow A(Y))
\]

Roughly, this says that if \(X \) and \(Y \) are necessarily coextensive then anything that goes for \(X \) goes for \(Y \). Together with very modest background principles for the quantifiers, this delivers the higher-order

\(^{27}\) See Bacon et al (2017), especially fns 25-27.

\(^{28}\) See Linnebo (this volume), footnote 5 and Section 5.
analogue of FUI. That is:

\[\forall X A(X) \rightarrow (\exists X \Box \forall x (Xx \leftrightarrow Fx) \rightarrow A(F)) \]

More importantly, in the presence of Comp UI2 is a quick consequence of FUI2, since full comprehension secures every instance of the inner antecedent. This will be the crucial observation for our purposes: whatever we ultimately say about background principles like (LL), UI2 is already a theorem of second-order free logic together with Comp.

To what extent does this depend on intensionalism? We’ve already noted how principles like LL and FUI2 derive their significance (as analogues of Leibniz’s Law and of FUI, respectively) from the assumption that necessary coextensiveness suffices for higher-order identification. Someone who is sympathetic to free logic but rejects intensionalism might not accept FUI2, if (eg.) they take there to be necessarily coextensive properties \(F \) and \(G \) such that \(F \) but not \(G \) is in the range of the quantifier. But just as before, this corresponds to reasons to rewrite all of the core principles of interest. As long as this is done uniformly, the structural relationship I’m emphasizing here — between full comprehension, higher-order free logic, and universal instantiation — will hold.

We’ve seen that things look uncomfortable for the hybridist who hopes to straightforwardly accept all but the first-order fragment of uniform necessitism, especially as concerns the treatment of the quantifiers. The observation that FUI2 and Comp together entail UI2 suggests much deeper roots. The problem is not merely that the hybridist has too readily opted for a higher-order package that happens to be modeled on necessitist foundations. Rather, by accepting Comp on the strength of Williamsonian abductive arguments while still holding on to the higher-order analogues of her own first-order quantificational principles, the hybridist is already committed to a fully classical second-order logic.

3.2 An Initial Diagnosis

Not every asymmetry evidences a failure of theoretical uniformity, especially when superficial asymmetries can be explained away by the interaction of deeper commitments. I’ve already suggested that this is how we should understand the hybridist’s treatment of NNE and NNE2; I now want to propose a similar understanding of her treatment of the logic of quantification. My aim in this section is to argue that the classicality of the higher orders is derivative: a downstream consequence of the interaction between Comp and FUI2. Upstream, the hybrid contingentist remains a steadfast free logician.

First, notice that we should be careful about importing too much in the way of highly specific motivations for free logic. Compare two very different approaches. One character insists that it is not in the purview of ‘logic’ to tell us about ‘ontology’, and rejects UI on the grounds that the resulting theory is insufficiently metaphysically conservative. This sort of free logician would be fabulously unmoved by the reassurance that classicality emerges only as a ‘downstream’ consequence of Comp. (“So much the worse for Comp,” they say, “if it threatens hard-won humility!”) Instead, the hybrid contingentist is better

29 The analogous argument appears in Bacon & Russell (2019: fn4, though see p91-94 for relevant discussion.
30 Moreover, as Linnebo (this volume) points out, Comp together with UI2 also gives us UI2+.
31 Thanks to Andrew Bacon for raising this point.
32 Lambert (2002: 14-1142) advises against too tightly associating free logic with aspirations of ontological neutrality: “As a former practicing scientist, I admit the grip of this primordial intuition on that mildly sentimental phosphorescence that inspires and bedevils each of our allotted wits. But it would be a mistake
understood as a second sort of free logician. The humility she demands from the logic of quantification isn’t aimed at quarantining ‘logic’ from ‘ontology’, but rather at more perspicuously articulating the relationship between instances and their generalizations. She rejects the classical picture — on which inferences from generalizations are licensed carte blanche — and instead holds that given a generalization, instances are licensed only in the presence of antecedent existential assurances. The quantificational core of hybrid contingentism serves to encode this commitment; not any further commitment to ontological neutrality.

Although free logic is famously associated with something like the first approach, early efforts to relax the existential assumptions of quantificational logic have some of the flavor of the second. Leonard (1956), for example, opens with the promise to show that

“...logic has never completely avoided some involvement with certain questions about existence; [and] that when certain of these involvements which had been implicit were made explicit, the power and utility of the logic were enhanced; that there still remain tacit or implicit involvements of logic with questions of existence; and that these can be removed in ways that will make modern logic a more powerful instrument of analysis than it can become in its present form.”

He goes on to emphasize the dangers of using systems without careful attention to their ‘tacit presuppositions’, proposing that

“The remedy is to make the presuppositions explicit. Upon doing this, one can also widen the potentials for application of the abstract system, by formally discriminating those cases in which the presupposition is relevant and those in which it is not.”

The aim is not to build a system too weak to seriously engage with questions about existence, but rather to improve on the explanatory reach of classical logic by untangling existential presuppositions from the logic of quantification.33

In a quite different context, Linnebo (2011:108-109) makes the following suggestive remarks about the choice to formulate higher-order theories in terms of UI2 and Comp, rather than by means of UI2+:

“The comprehension axioms interact in an important way with the elimination rules for the second-order quantifiers. The elimination rules formulated above allow only second-order variables and constants to count as instances. (...) It is of course possible to modify the elimination rule for the second-order universal quantifier to allow any open formula to count as a legitimate instance. But doing so is undesirable because it runs together two very different things: the uncontroversial step from a generalization to an instance, and the controversial question of what instances there are. In many situations, we may wish to keep tight control on what instances are regarded as legitimate.”

33 See similar abductive remarks in Hintikka (1959), as well as Lambert (1963).
When we take first-order logic — especially classical first-order logic — as our paradigm, these questions are easily run together. In standard axiomatizations of SQML, instances of Being are theorems:

\[\exists x \forall x = t \]

Familiar presentations of first order logic are in this way analogous to the ‘undesirable modification’ Linnebo warns about. Being implicitly plays a role at the first order much like the role that Comp plays explicitly at the second: it is a kind of ‘generative principle’, encoding the classical commitment that every singular term corresponds to something.

And so there’s a close resemblance between the case for separating Comp from the quantificational rules and the free logician’s desire to make the existential assumptions of first-order logic explicit. Together, they highlight the fruitfulness of a distinction already implicit in much of our discussion: a distinction between the quantificational core of a theory (speaking to the relationship between generalizations and their instances) and its generative core (speaking to “what instances there are”). Attention to the different sperable roles of the quantificational and generative fragments of a modal logic has a number of payoffs. Most immediately, it puts us in a better position to evaluate the symmetry challenge: at least where the quantificational fragment is concerned, the hybrid contingentist can claim a fully uniform story.

Nor does appreciating this distinction require us to take on the baggage of efforts to quarantine ‘logic’ from ‘ontology’, any more than the familiar practice of introducing SQML as the combined product of a theory of quantification and a theory of modality commits us to any particular stand on the ‘logicality’ of modality. Instead we recognize only that these fragments play different explanatory roles in our theory; roles that we must track insofar as we’re in the business of evaluating theories for features like simplicity, symmetry, and elegance. Elsewhere, in a defense of abductive methodologies in philosophical logic, Williamson (2017b) writes:

“We may speak loosely of inference to the best explanation, although in the case of logical theorems we do not mean specifically causal explanation, but rather a wider process of bringing our miscellaneous information under generalizations that unify it in illuminating ways.”

Good theories — like good explanations — unify target phenomena in illuminating ways. But often we’re not able to read those unifications directly off of the commitments of a theory. In such cases, we have to look under the hood a bit: what questions have we answered, and what answers have we given?

Williamson has harsh words for those who would “weaken, complicate, or uglify” a theory by “giving more weight to ontology than the vastly better developed and more successful discipline of logic.” (2013:26) But the hybridist as I propose to understand her no more compromises ‘logic’ for ‘ontology’ than the uniform necessitist does. Both provide theories which aim to give informative answers to the many questions that guide inquiry into modal metaphysics. Unsurprisingly, these include questions that are closely parallel to the familiar questions of ontology, answered at each order by the generative principles underlying the resulting modal logic.

4 Uniformity and Generative Principles

34 This label is borrowed from Bacon & Russell (2019), though they use it for a type-neutral principle.
Williamson’s initial challenge was that the combination of first order contingentism and higher order necessitism is inelegant, a “messy hybrid” resting on an unjustified asymmetry in the treatment of the quantifiers. I’ve argued that this asymmetry stems not from an unmotivated change of heart about the logic of quantification, but instead from the interaction between the quantificational and generative principles governing each order.

This leaves us with a conspicuous question. Does the hybrid contingentist’s generative core harbor a similarly worrying asymmetry? I think that it doesn’t, though here again we have to tread very carefully. I insisted in Section 2 that we do better to avoid metaphors that threaten to impute a univocal notion of ‘being’ across the orders, and so resisted comparisons in terms of “the standards of being” for properties and individuals. But given the framework of Section 3, we’ve now got a somewhat improved vocabulary for pressing the question. Just as we want to say that certain core principles of hybrid contingentism reflect a generalized theory of quantification, we might (cautiously) understand the generative principles at each order as together encoding a kind of theory of ‘being’ — similarly subject to demands for unification.

There are two important differences. First, it is much less clear in the generative case which symmetries we should expect our theories to preserve. As we’ve already seen, there are plenty of disanalyses between the orders that don’t seem to be any threat to the uniformity of a theory (or fragment thereof). In the quantificational case, we were able to lean implicitly on primordial inferentialist habits as a guide to which symmetries might matter. But these habits aren’t nearly as robust when it comes to thinking about generative principles, and so we’re left relying all too heavily on suspect metaphors.

One way to illustrate the difficulty here is to look more closely at a necessitist alternative. Consider two generative principles we’ve so far associated with uniform necessitism: Being and Comp. It is tempting to think of them as unified by the (unpronounceable) schema:

\[\text{Gen. } \exists \pi \pi \equiv \alpha \]

Where ‘\(\pi \)’ and ‘\(\alpha \)’ stand in for variables and terms of any type. But Comp ensures not just that the quantifiers are tied to terms of the relevant type, but also to formulas more broadly. So, the second order instance of Gen isn’t really Comp but Comp-F (from above), which ensures only that there are values corresponding to every predicate of the language. In effect, Comp — unlike Being — is a generative principle already imbued with the power to ‘outpace’ certain expressive limitations of the language. (This corresponds to a structural point we’ve already encountered: Being and Comp interact with UI1 and UI2 (respectively) to yield the corresponding version of universal instantiation — UI1 and UI2 — but Comp also allows us to derive the stronger UI2+.) Does this somehow constitute an ‘asymmetry’ between Being and Comp, calling out for unification by the necessitist who might give them starring roles in her theory of ‘being”? I don’t think so, but it is not entirely straightforward to say why not.

The force of these observations is of course deeply dependent on background features of the language (for example, our ability to form singular terms and predicate expressions). But so too is the picture that makes something like Gen seem attractive in the first place. Gen reflects the idea that the quantifiers are tied to meaningful expressions of the relevant type, and so underwrites generative principles that coordinate ‘existence’ with expressive legitimacy at each order. Williamson, for example, argues that it is a constraint on good theories that they be formulated in languages that are ‘ coordinative’ in this way.
“In a language well-designed for expressing good scientific theories, the denotation of any constant is one of the values over which the variables of the same type range, and the value of any variable is a legitimate denotation for a constant of the same type. Therefore, in such a language, a sentence is true if its universal generalization is (...) Thus the logic of a well-designed language for science is not completely free.” (2013: 131)

And so, in particular, in a ‘well-designed language’ the trivial truth of \(\forall x \exists y x = y \) ensures the truth of every instance of Being.\(^35\)

But as the free logician will be quick to insist, there is far more that we might want from scientific languages than coordinativity. We might want the ability to articulate candidate answers to the open questions that drive our inquiry — among them, direct questions about whether some meaningful expression designates an individual, or whether it might have.\(^36\) A very different approach to ‘well-designed’ languages says that rather than leaving our expressive capacity wholly hostage to the vicissitudes of ontological inquiry, we should first secure the necessary expressive resources for good theorizing. We could just as well aim to restrict our languages to include terms that are meaningful, and instead postpone presuppositions about the metasemantic apparatus that accounts for their meaningfulness.\(^37\) Understood from this vantage, Being is an available — but not inevitable — answer to a particular question about the relationship between singular terms and existence. The hybrid contingentist rejects Being in part because by her lights, the generative principles serve to answer questions that might be left open by our language. For her, symmetries having to do with the treatment of singular terms and predicates are less central litmus tests for the unity of a modal metaphysics.

Of course, we’re in no position here to make progress on many of the deeper issues raised by this line of discussion. My aim here is just to make vivid that questions about which symmetries are costly to surrender and which are merely superficial — like, for example, coordinativity in one direction or the other — are substantive. At least when it comes to the generative fragment, there is very little in the way of an obvious ‘default preference’ for any particular kind of uniformity.

The final difference between the asymmetry challenge as it arises for the quantificational and generative fragments of hybrid contingentism is that (for all I’ve said) we don’t even really have a positive proposal to evaluate. The hybrid contingentist needs a positive story; a generative principle for the first order and a metaphysics to match. Officially we know only that the hybrid contingentist rejects Being — not what she puts in its place.

Happily the field here is (almost) wide open, and incredibly rich. Without a very extreme

35 I am eliding here Williamson’s important discussion of ‘metaphysically universal’ formulas, which he argues constitute the structural core of a metaphysical theory. For details, see Williamson (2013) Sections 3.3 and 3.6, and for discussion and related criticism of the role of metaphysical universality see deRosset (2016). For some of the reasons discussed in Williamson (2016) I am hesitant about the alternative approach deRosset outlines there, but am very sympathetic to the general strategy.

36 Morscher & Simons (2001:3) write that “introducing a singular term for an allegedly existing planet, chemical substance, particle, number etc. should not in any way depend on our knowledge that the purported object allegedly denoted by the singular term in fact exists,” citing the “common aim of keeping our scientific language, in particular its vocabulary and its formation rules, independent of the facts we want to describe by it and independent of our knowledge of these facts.” This needn’t be understood as a play for neutrality, but rather as an attempt to do better than a system that, as Leonard (1956: 54-54) says “wait[s] on the systematic exploration of scientific matters of fact.”

37 Bacon (2013) provides one such alternative, a positive free logic in which ‘being referred to’ isn’t an existence entailing predicate.
departure from the Williamsonian methodological framework, the hybrid contingentist might motivate a
generative principle laid out in mereological terms, capitalizing on something like the analogy between
mereological universalism and neo-Fregean abstraction principles developed in Russell (2017). Or,
perhaps, contingentists with even more dramatic ontological ambitions might instead look to the principles
of plenitude alluded to in Section 1. Again the hybrid contingentist might be impressed by a particular
analogy: just properties are individuated intensionally, individuals are individuated by their modal
coincidence ‘paths’. From there, it is tempting to go for a similarly permissive generative principle:
there’s an individual answering to every such coincidence path. To get an initial sense for how this might
go, consider a variant of one of the principles of plenitude explored in Dorr et al (2021: 267-274): for any
instantiated property F, there’s some individual x such that necessarily, for any y, y coincides with x iff
something is X and y coincides with everything X. Of course — ‘coincidence’ is a placeholder that the
contingentist would need to fill out, but already there are evocative analogies between this principle and
Comp. In some sense, each delivers an ‘abundant’ conception of the relevant domain in terms of a modal
individuation condition.9

Whatever we think of these particular proposals, they suggest that we’re similarly in no position
to evaluate the ‘uniformity’ of hybrid contingentism without a more definite account in hand. Different
positive proposals in the vicinity set us up to explore quite different lines of analogy with Comp, and so
set up interestingly different approaches to the project of providing a unified modal metaphysics. And,
although this postpones a more thorough response to the questions we’ve been chasing, it seems to me to be exactly the right sort of response to the original challenge. The dismissal of hybrid contingentism on
‘symmetry’ grounds can’t get any further than the limits of the hybrid contingentist’s own positive
account; further complaints must await further progress.

38 This is Dorr et al.’s Coincidence Plenitude, with an added restriction to instantiated properties. For their
discussion of the restriction, see (2021:269).
39 For discussion of similar principles, see also Yablo (forthcoming) and Fairchild (forthcoming).
Bibliography

