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ABSTRACT

The concept of Boolean filters is introduced in principal p-algebras. Many properties of
Boolean filters are studied. A set of equivalent conditions is given to characterize Boolean
filters. For a closed element a of a principal p-algebra L, we observed that the filter [Fa)

which is generated by the Glivenko congruence class Fa is a Boolean filter of L. It is
proved that the set FB(L) = {[Fa) : a ∈ B(L)} forms a Boolean algebra on its own. Finally,
some properties of Boolean filters are investigated with respect to the direct products and
homomorphisms.
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1 Introduction

The study of pseudocomlemented lattices or shortly p-algebras has a long tradition in lattice
theory(see [5] or [7]). The best known examples of p-algebras are the Boolean algebras and
Stone algebras. The class of quasi-modular p-algebras was introduced by T. Katrin̆ák [8].
M. Haviar [4] introduced the class of principal p-algebras which contains all quasi-modular
p-algebras having a smallest dense element,i.e., it also generalizes the Boolean algebras.
Recently T. Katrin̆ák and J. Guric̆an [9] discussed the tight connection between the spectra
and the Glivenko congruence of finite pseudocomplemented lattice.

Recently M. Sambasiva Rao and A. Badawy [10] introduced and characterized μ-filters of
distributive lattices. A. Badawy and M. Sambasiva Rao [1] introduced σ-ideals of distributive
p-algebras. M. Sambasiva Rao and K.P. Shum [11] introduced the concept of Boolean filters
of bounded pseudocomplemented distributive lattices. Also A. Badawy and K. P. Shum [2]
studied the relationship between certain congruences and Boolean filters of a quasi-modular
p-algebra.

After Preliminaries in section 2, the concept of Boolean filters is introduced in principal p-
algebras and then many properties of Boolean filters are studied in section 3. It is observed that
every maximal filter is a Boolean filter and the converse is not true. However, a set of equivalent
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conditions are derived for a Boolean filter to become a maximal filter. Also a characterization of
Boolean filters of principal p-algebras is given. In section 4, we introduced a Boolean filter [Fa)

for each a ∈ B(L), which is generated by the congruence class Fa of the Glivenko congruence
relation Φ on a principal p-algebra L. It is proved that the set FB(L) = {[Fa) : a ∈ B(L)} forms
a Boolean algebra on its own. It is also observed that FB(L) is isomorphic to B(L). Some
properties of the direct products of Boolean filters are investigated in section 5. In the last
section of this paper, the Boolean filters are characterized in terms of homomorphisms.

2 Preliminaries

In this section, we recall some definitions and results which are taken mostly from the papers
[3], [4], [5], and [8] for the ready reference of the reader.

A pseudocomplemented lattice (or p-algebra) is an algebra (L;∨,∧,∗ , 0, 1) where (L;∨,∧, 0, 1)
is a bounded lattice and ∗ is the unary operation of pseudocomplementation, i.e.,

x ∧ a = 0 ⇔ x ≤ a∗

A p-algebra L is called distributive (modular ) if the lattice (L;∨,∧, 0, 1) is a distributive (mod-
ular). The variety of modular p-algebras contains the variety of distributive p-algebras. A
p-algebra satisfies the Stone identity

x∗ ∨ x∗∗ = 1

is called an S-algebra. A distributive S-algebra is called a Stone algebra.

Let L be a p-algebra. An element a ∈ L is called closed if a = a∗∗. The set B(L) = {a ∈ L :

a = a∗∗} of all closed elements of L forms a Boolean algebra (B(L);�,∧, 0, 1), where the join
� is defined by the rule

a� b = (a∗ ∧ b∗)∗ = (a ∨ b)∗∗.

In S-algebra, B(L) is a subalgebra of L where a� b = a ∨ b. An element d ∈ L is said to be
dense if d∗ = 0. The set D(L) = {x ∈ L : x∗ = 0} = {x ∨ x∗ : x ∈ L} of all dense elements of
L is a filter of L.

Besides distributive and modular p-algebras, a larger variety of quasi-modular p-algebras is
interesting to investigate (see [5]). The variety of quasi-modular p-algebras is defined by the
identity

((x ∧ y) ∨ z∗∗) ∧ x = (x ∧ y) ∨ (z∗∗ ∧ x).

It is known (see [6.1, 8]) the quasi-modular p-algebras satisfy the identity

x = x∗∗ ∧ (x ∨ x∗)

which can be weakened to the equation x = x∗∗∧(x∨dL) in the case the filter D(L) is principal
and D(L) = [dL).

For an arbitrary lattice L, the set F (L) of all filters of L ordered under set inclusion is a
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lattice. It is known that F (L) is a distributive (modular) if and only if L is distributive (modular).
Let a ∈ L, [a) denote the filter of L generated by a.

The relation Φ of a p-algebra L defined by

(x, y) ∈ Φ ⇔ x∗ = y∗

which is called the Glivenko congruence relation, is a congruence relation on L, and L/Φ ∼=
B(L) holds. Each congruence class [x]Φ contains exactly one element of B(L) which is the
largest element in the congruence class. The greatest element of [x]Φ is x∗∗. Hence Φ parti-
tions L into {Fa : a ∈ B(L)}, where Fa = {x ∈ L : x∗∗ = a} = [a]Φ, a ∈ B(L). Clearly F0 = {0}
and F1 = D(L). It is known that [Fa) = {x ∈ L : x∗∗ ≥ a}, for each a ∈ B(L).

We shall frequently use the following rules of the computations in p-algebras.

For any two elements a, b of a p-algebra L, we have (see [7],[9])

(1) 0∗∗ = 0 and 1∗∗,

(2) a ∧ a∗ = 0,

(3) a ≤ b implies b∗ ≤ a∗,

(4) a ≤ a∗∗,

(5) a∗∗∗ = a∗,

(6) (a ∨ b)∗ = a∗ ∧ b∗,

(7) (a ∧ b)∗ ≥ a∗ ∨ b∗,

(8) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗,

(9) (a ∨ b)∗∗ = (a∗ ∧ b∗)∗ = (a∗∗ ∨ b∗∗)∗∗.

M. Haviar [4] introduced the class of principal p-algebras which contains all quasi-modular
p-algebras having a smallest dense element.

Definition 2.1. [Definition 2.1, 4] A p-algebra (L;∨,∧,∗ , 0, 1) is called a principal p-algebra,
if it satisfies the following conditions :

(i) the filter D(L) is principal, i.e., there exists an element dL ∈ L such that D(L) = [dL);

(ii) the element dL is distributive, i.e., (x ∧ y) ∨ dL = (x ∨ dL) ∧ (y ∨ dL) for all x, y ∈ L;

(iii) x = x∗∗ ∧ (x ∨ dL) for any x ∈ L.

If L satisfies the identity x∗ ∨ x∗∗ = 1, then it will be called a principal S-algebra. Throughout
this paper, dL stands for a smallest dense element of a principal p-algebra L, unless otherwise
mentioned.

3 Boolean filters of principal p-algebras

In this Section, the concept of Boolean filters is introduced in a principal p-algebra. Some
properties of Boolean filters are investigated in a principal p-algebra. It is proved that the
maximal filter and prime Boolean filter are equivalent. A characterization of Boolean filters of a
principal p-algebra is given.
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Definition 3.1. Let L be a principal p-algebra with a smallest dense element dL. A filter F of
L is called aBoolean filter if x ∨ dL ∈ F for each x ∈ L.

Now we give some Examples

(1) For any principal p-algebra L with a smallest dense element dL, the filter D(L) = [dL) is a
Boolean filter of L as x ∨ dL ∈ D(L) for all x ∈ L. Moreover D(L) is the smallest Boolean filter
of L and L is the greatest Boolean filter of L.

(2) Let L be a Boolean algebra. Then D(L) = {1}. Thus any filter F of L is a principal Boolean
filter as x ∨ 1 = 1 ∈ F for each x ∈ L.

(3) Let B4 = {0, a, b, c : 0 < a, b < c} be a four elements Boolean lattice and C2 = {d, 1 : d < 1}
a two element chain. Clearly B4

⊕
C2 is a principal p-algebra (where

⊕
stands for ordinal

sum). The set of all Boolean filters of L is {{c, d, 1}, {a, c, d, 1}, {b, c, d, 1}, L}. We observe that
the filters {d, 1} and {1} are not Boolean.

Lemma 3.1. Every maximal filter of a principal p-algebra L is a Boolean filter.

Proof. Let M be a maximal filter of L. Suppose x∨dL 
∈ M for some x ∈ L. Then M∨[x∨dL) =
L. Hence a ∧ b = 0 for some a ∈ M, b ∈ [x ∨ dL). Then we have

a ∧ b = 0 ⇒ 0 = a ∧ b ≥ a ∧ (x ∨ dL) ≥ (a ∧ x) ∨ (a ∧ dL)

⇒ a ∧ x = 0 and a ∧ dL = 0

⇒ a ≤ x∗ and a ≤ d∗L = 0

⇒ a = 0

Then 0 = a ∈ M which is a contradiction. Hence x ∨ dL ∈ M for all x ∈ L. Therefore, M is a
Boolean filter of L.

It is not true that every Boolean filter is a maximal filter. For, in Example 3 above, the filter
{c, d, 1} is a Boolean filter but not a maximal filter.

Lemma 3.2. A proper filter of a principal p-algebra L which contains either x or x∗ for all x ∈ L

is a Boolean filter.

Proof. Let F be a proper filter contains either x or x∗ for all x ∈ L. Then x ∨ x∗ ∈ F and
D(L) ⊆ F . Since L is a principal p-algebra, we have D(L) = [dL) for some dL ∈ L. Then
x ∨ dL ∈ D(L) implies x ∨ dL ∈ F . Therefore F is a Boolean filter.

Now, we study some equivalent conditions for a Boolean filter of a principal p-algebra to be-
came a maximal filter.

Theorem 3.3. Let F be a filter of a principal p-algebra L. Then the following conditions are
equivalent

(1) F is maximal,

(2) x 
∈ F implies x∗ ∈ F for all x ∈ L,

(3) F is prime Boolean.
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Proof. (1) ⇒ (2) : Let F is a maximal of L. Suppose x ∈ L − F . Then F ∨ [x) = L. Thus
a ∧ x = 0 for some a ∈ F . Hence a ≤ x∗, which implies that x∗ ∈ F .

(2) ⇒ (3) : Suppose F is not Boolean. Then x ∨ dL 
∈ F for some x ∈ L. Then x 
∈ F

and dL 
∈ F . Now y ∨ y∗ = dL 
∈ F for some y ∈ L. Hence y 
∈ F and y∗ 
∈ F , which is
a contradiction to the condition (2). Then F is a Boolean filter. Suppose F is not prime. Let
x ∨ y ∈ F such that x 
∈ F and y 
∈ F . Then by the condition (2), we get x∗ ∈ F and y∗ ∈ F .
Hence (x ∨ y)∗ = x∗ ∧ y∗ ∈ F . Therefore 0 = (x ∨ y) ∧ (x ∨ y)∗ ∈ F , which is a contradiction.
So F is prime. Then F is a prime Boolean filter.

(3) ⇒ (1) : Let F be a prime Boolean filter of L. Suppose F is not maximal. There exists
a proper filter G of L such that F ⊂ G. Choose x ∈ G − F . Since F is Boolean, we get,
x ∨ dL ∈ F . Then x ∨ x∗ ≥ x ∨ dL ∈ F implies x ∨ x∗ ∈ F . Since F is prime and x 
∈ F , we
get x∗ ∈ F ⊂ G. Hence we have 0 = x ∧ x∗ ∈ G, which is a contradiction. Therefore F is a
maximal filter.

The following lemma is obvious from the Definition 3.1 of Boolean filter.

Lemma 3.4. Let L be a principal p-algebra. Then we have the following :

(1) Any filter of L containing D(L) is a Boolean filter,

(2) Any filter of L containing a Boolean filter is a Boolean filter,

(3) The set BF (L) of all Boolean filters of L is a {1}-sublattice of the lattice F (L).

Now, we characterize the Boolean filters on the following Theorem 3.5

Theorem 3.5. Let F be a proper filter of a principal p-algebra L. Then the following conditions
are equivalent.

(1) F is a Boolean filter,

(2) x∗∗ ∈ F implies x ∈ F ,

(3) For x, y ∈ L, x∗ = y∗ and x ∈ F imply y ∈ F .

Proof. (1) ⇒ (2) : Assume that F is a Boolean filter of L. Suppose x∗∗ ∈ F . Since F is a
Boolean filter, we have x∨dL ∈ F for all x ∈ L. Then x∗∗∧(x∨dL) ∈ F . Since x = x∗∗∧(x∨dL)

for every x ∈ L, then x ∈ F and the condition (2) holds.

(2) ⇒ (3) : Let x, y ∈ L and x∗ = y∗. Suppose x ∈ F . Then y∗∗ = x∗∗ ∈ F . Then by the
condition (2), we get y ∈ F .

(3) ⇒ (1) : Let x ∈ D(L). So x∗ = 0 ≤ a∗ for all a ∈ F . Then x∗∗ ≥ a∗∗ ∈ F . Hence x∗∗ ∈ F .
Since x∗ = x∗∗∗ and x∗∗ ∈ F , by the condition (3), we have x ∈ F . Then D(L) ⊆ F . Thus by
Lemma 3.4(1), we get that F is a Boolean filter of L.

4 Boolean filters via Glivenko congruence classes

In this section, we show that for every closed element a of a principal p-algebra L, the
congruence class Fa of the Glivenko congruence relation Φ on L generates a Boolean filter
[Fa). Many properties of the Boolean filters [Fa) for all a ∈ B(L) are studied in a principal
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p-algebra L. Also, we derived that the set FB(L) = {[Fa) : a ∈ B(L)} forms a Boolean algebra.
It is observed that FB(L) is isomorphic to B(L).

Theorem 4.1. Let L be a principal p-algebra. Then for any two closed elements a, b of L we
have the following conditions :

(1) [Fa) = [a ∧ dL),

(2) [Fa) is a principal Boolean filter of L,

(3) a ≤ b in B(L) if and only if [Fb) ⊆ [Fa) in FB(L),

(4) [Fa∧b) = [Fa) ∨ [Fb),

(5) [Fa�b) = [Fa) ∩ [Fb),

(6) [Fa∨b) = [Fa) ∩ [Fb) whenever L is a principal S-algebra.

Proof. (1). Since L is a principal p-algebra, then x = x∗∗ ∧ (x∨ dL) for every x ∈ L. Now for all
a ∈ B(L), we get

[Fa) = {x ∈ L : x∗∗ ≥ a} = {x ∈ L : x = x∗∗ ∧ (x ∨ dL) ≥ a ∧ (x ∨ dL)}
= {x ∈ L : x ≥ a ∧ dL}
= [a ∧ dL)

(2) Since dL ∨ x ≥ dL ≥ a ∧ dL, then dL ∨ x ∈ [a ∧ dL) = [Fa). Therefore [Fa) is a principal
Boolean filter of L.

(3) Let a ≤ b in B(L). Assume x ∈ [Fb). Then x∗∗ ≥ b ≥ a. Hence x ∈ [Fa) and [Fb) ⊆ [Fa)

Conversely, suppose [Fb) ⊆ [Fa). Since b ∈ Fb ⊆ [Fb) ⊆ [Fa). Then we get b = b∗∗ ≥ a.

(4) From (1) we have [Fa∧b) = [a ∧ b ∧ dL). Then

[Fa∧b) = [a ∧ b ∧ dL)

= [(a ∧ dL) ∧ (b ∧ dL))

= [a ∧ dL) ∨ [b ∧ dL)

= [Fa) ∨ [Fb)

(5) Since a, b ≤ a� b on B(L), then by (2), we have [Fa�b) ⊆ [Fa), [Fb). Then [Fa�b) is a lower
bound of both [Fa) and [Fb) on FB(L). Assume [Fz) ⊆ [Fa) and [Fz) ⊆ [Fb) for some z ∈ B(L).
Then by (2) we have z ≥ a and z ≥ b. Then z = z∗∗ ≥ a� b on B(L). So z ∈ [Fa�b). Hence
[Fz) ⊆ [Fa�b). Then [Fa�b) the infimum of both [Fa) and [Fb) on FB(L).

(6) Since L is a principal S-algebra, then a� b = a ∨ b. So [Fa∨b) = {x ∈ L : x∗∗ ≥ a ∨ b} =

{x ∈ L : x∗∗ ≥ a, b} = {x ∈ L : x∗∗ ≥ a} ∩ {x ∈ L : x∗∗ ≥ b} = [Fa) ∩ [Fb).

Theorem 4.2. Let L be a principal p-algebra, the set FB(L) forms a Boolean algebra on its
own. Moreover, B(L) ∼= FB(L).

Proof. Clearly [F1) = D(L) and [F0) = L are the smallest and the greatest elements of FB(L)

respectively. For every [Fa), [Fb) ∈ FB(L), by Theorem 4.1(3),(4) we get [Fa∧b) = [Fa) ∨ [Fb)

and [Fa�b) = [Fa)∩ [Fb). Then (FB(L),∨,∩, D(L), L) is a bounded lattice. For the distributivity
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of FB(L), let [Fa), [Fb) and [Fc) are three elements of FB(L). Using distributivity of B(L) we
get

[Fa) ∩ ([Fb) ∨ [Fc)) = [Fa) ∩ [Fb∧c)

= [Fa�(b∧c))

= [F(a�b)∧(a�c))

= [Fa�b) ∨ [Fa�c)

= ([Fa) ∩ ([Fb)) ∨ ([Fa) ∩ ([Fc)).

Then FB(L) is a bounded distributive lattice. Define a unary operation − on FB(L) by [Fa) =

[Fa∗). Now

[Fa) ∩ [Fa) = [Fa∗) ∩ [Fa) = [Fa∗�a) = [F1) = D(L),

[Fa) ∨ [Fa) = [Fa∗) ∨ [Fa) = [Fa∗∧a) = [F0) = L.

Then [Fa∗) is the complement of [Fa) in FB(L). Therefore (FB(L),∨,∩,− , D(L), L) is a Boolean
algebra. Define f : B(L) → FB(L) by f(a) = [Fa∗). Now

f(a ∧ b) = [F(a∧b)∗) = [Fa∗�b∗) = [Fa∗) ∩ [Fb∗) = f(a) ∩ f(b),

f(a� b) = [F(a�b)∗) = [Fa∗∧b∗) = [Fa∗) ∨ [Fb∗) = f(a) ∨ f(b),

f(a∗) = [Fa∗∗) = [Fa∗) = f(a)

Obviously, f(0) = D(L) and f(1) = L. Then f is a (0,1)-homomorphism. Let f(a) = f(b), then
[Fa∗) = [Fb∗). Then a∗ = b∗ implies a = a∗∗ = b∗∗ = b. Hence f is an injective homomorphism.
Also f is surjective as for every [Fa) ∈ FB(L), we have [Fa) = [Fa∗∗) = f(a∗). Therefore f is
an isomorphism and B(L) ∼= FB(L).

Lemma 4.3. Let F = [x), x ∈ L be a principal Boolean filter of a principal p-algebra L. Then
we have the following

(1) F ∩B(L) is a principal filter of B(L) generated by x∗∗,

(2) F = [Fx∗∗).

Proof. (1). We prove that [x) ∩ B(L) = [x∗∗). Obviously [x∗∗) ⊆ [x) ∩ B(L). Conversely, let
y ∈ [x) ∩ B(L). Thus y ≥ x and y ∈ B(L), which implies y = y∗∗ ≥ x∗∗. Hence y ∈ [x∗∗) and
[x) ∩B(L) ⊆ [x∗∗). Therefore F ∩B(L) = [x∗∗).

(2) Since [Fx∗∗) = [x∗∗ ∧ dL), [dL) = D(L) ⊆ F = [x) and x = x∗∗ ∧ (x ∨ dL), then

[Fx∗∗) = [x∗∗ ∧ dL)

= [x∗∗ ∧ (x ∨ dL) ∧ dL) as dL ≤ x ∨ dL

= [x ∧ dL)

= [x)

= F.

Therefore F = [Fx∗∗) = [x∗∗ ∧ dL).
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Corollary 4.4. Let L be a finite p-algebra. Then we have

(1) Every Boolean filter can be expressed as [Fa) for some a ∈ B(L),

(2) BF (L) = FB(L).

Now, we can represent any Boolean filter of a principal p-algebra L as a union of certain
elements of FB(L).

Theorem 4.5. Let F be a Boolean filter of a principal p-algebra L. Then F =
⋃

x∈F [Fx∗∗).

Proof. Let x ∈ F . Then x∗∗ ∈ F and x∨dL ∈ D(L) ⊆ F . Thus x = x∗∗∧ (x∨dL) ∈ [x∗∗∧dL) =

[Fx∗∗) ⊆ ⋃
x∈F [Fx∗∗). Then F ⊆ ⋃

x∈F [Fx∗∗). Conversely, let y ∈ ⋃
x∈F [Fx∗∗). Then y ∈ [Fz∗∗)

for some z ∈ F . Hence y∗∗ ≥ z∗∗ ∈ F . Then y∗∗ ∈ F implies y ∈ F as F is Boolean. Therefore
⋃

x∈F [Fx∗∗) ⊆ F .

5 Direct product of Boolean filters

Let L1 and L2 be two p-algebras. Then the direct product L1 × L2 is also a p-algebra, where ∗

is defined on L1 × L2 by (a, b)∗ = (a∗, b∗). Firstly we study the following useful Lemma.

Lemma 5.1. If L1 and L2 be principal p-algebras, then we have the following :

(1) D(L1 × L2) = D(L1)×D(L2),

(2) B(L1 × L2) = B(L1)×B(L2),

(3) L1 × L2 is a principal p-algebra.

Proof. (1). Let (d, e) ∈ D(L1 × L2). Then we get

(d, e) ∈ D(L1 × L2) ⇔ (d, e)∗ = (0, 0)

⇔ (d∗, e∗) = (0, 0)

⇔ d ∈ D(L1) and e ∈ D(L2).

⇔ (d, e) ∈ D(L1)×D(L2).

(2). For any (a, b) ∈ B(L1 × L2) we have

(a, b) ∈ B(L1 × L2) ⇔ (a, b)∗∗ = (a, b)

⇔ (a∗∗, b∗∗) = (a, b)

⇔ a∗∗ = a and b∗∗ = b

⇔ a ∈ B(L1) and b ∈ B(L2)

⇔ (a, b) ∈ B(L1)×B(L2).

(3). Since L1 and L2 be principal p-algebras, then D(L1) = [dL1) and D(L2) = [dL2) for some
dL1 ∈ L1 and dL2 ∈ L2. Thus by (1) we get

D(L1 × L2) = D(L1)×D(L2)

= [dL1)× [dL2)

= [(dL1 , dL2)).
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So D(L1 × L2) is a principal filter of L1 × L2 and (dL1 , dL2) is the smallest dense element of
L1 × L2. Since x = x∗∗ ∧ (x ∨ dL1) for all x ∈ L1 and y = y∗∗ ∧ (y ∨ dL2) for all y ∈ L2, then we
get

(x, y)∗∗ ∧ ((x, y) ∨ (dL1 , dL2)) = (x∗∗, y∗∗) ∧ (x ∨ dL1 , y ∨ dL2)

= (x∗∗ ∧ (x ∨ dL1), y
∗∗ ∧ (y ∨ dL2))

= (x, y).

Consequently L1 × L2 is a principal p-algebra.

Now we study the direct product of Boolean filters of principal p-algebras.

Theorem 5.2. If F1 and F2 are Boolean filters of principal p-algebras L1 and L2 respectively,
then F1 × F2 is a Boolean filter of L1 × L2. Conversely, every Boolean filter F of L1 × L2 can
be expressed as F = F1 × F2 where F1 and F2 are Boolean filters of L1 and L2 respectively.

Proof. Let dL1 , dL2 be the smallest dense elements of L1, L2 respectively. Let F1 and F2 be
Boolean filters of L1 and L2 respectively. Obviously F1 × F2 is a filter of L1 × L2. Since F1

and F2 are Boolean filters of L1 and L2 respectively, we get a ∨ dL1 ∈ F1 for each a ∈ L1 and
b ∨ dL2 ∈ F2 for each b ∈ L2. So we have

(a, b) ∨ (dL1 , dL2) = (a ∨ dL1 , b ∨ dL2) ∈ F1 × F2

Then F1 × F2 is a Boolean filter of L1 × L2. Conversely, let F be a Boolean filter of L1 × L2.
Consider F1 and F2 as follows :

F1 = {x ∈ L1 : (x, 1) ∈ F} and F2 = {y ∈ L2 : (1, y) ∈ F}
Clearly F1 and F2 are filters of L1 and L2 respectively. Now we prove that F1 and F2 are
Boolean filters of L1 and L2 respectively. For each x ∈ L1, (x, 1) ∈ L1×L2. Since F is Boolean,
then (x ∨ dL, 1) = (x, 1) ∨ (dL1 , dL2) ∈ F . Hence x ∨ dL1 ∈ F1. Therefore F1 is a Boolean filter
of L1. Similarly, we get F2 is a Boolean filter of L2. Now we prove that F = F1 × F2. Let
(x, y) ∈ F . Then we have

(x, y) ∈ F ⇒ (x, 1) ∈ F and (1, y) ∈ F

⇒ x ∈ F1 and y ∈ F2

⇒ (x, y) ∈ F1 × F2.

Then F ⊆ F1 × F2. Conversely, let (x, y) ∈ F1 × F2. Now

(x, y) ∈ F1 × F2 ⇒ x ∈ F1 and y ∈ F2

⇒ (x, 1) ∈ F and (1, y) ∈ F

⇒ (x, y) = (x, 1) ∧ (1, y) ∈ F.

Then F1 × F2 ⊆ F . Therefore F1 × F2 = F .

Lemma 5.3. For any two Boolean filters [Fa) and [Fb) of principal p-algebras L1 and L1 re-
spectively, [Fa)× [Fb) = [F(a,b))

International Journal of Mathematics and Computation

22



Proof. From the above Theorem 5.2, [Fa)× [Fb) is a Boolean filter of L1 × L2. Now

(x, y) ∈ [Fa)× [Fb) ⇔ x ∈ [Fa) and y ∈ [Fb)

⇔ x∗∗ ≥ a and y∗∗ ≥ b

⇔ (x, y)∗∗ = (x∗∗, y∗∗) ≥ (a, b)

⇔ (x, y) ∈ [F(a,b)).

Therefore [Fa)× [Fb) = [F(a,b)).

6 Boolean filters and homomorphisms

In this section, some properties of the homomorphic images and the inverse images of
Boolean filters are studied. By a homomorphism on a p-algebra L, we mean a lattice ho-
momorphism h which preserves the pseudocomplementation, that is, (h(x))∗ = h(x∗) for all
x ∈ L.

Theorem 6.1. Let L,L1 be principal p-algebras with smallest dense elements dL, dL1 respec-
tively and h : L → L1 an onto homomorphism. Then

(1) h(dL) = dL1

(2) h([Fa)) = [Fh(a)) for all a ∈ B(L),

(3) h(F ) is a Boolean filter of L1 whenever F is a Boolean filter of L.

Proof. (1). We observe that h(dL) ∈ D(L1) as (h(dL))
∗ = 0. Then dL1 ≤ h(dL). Since h is an

onto homomorphism, then dL1 = h(x) for some x ∈ L. So (h(x))∗∗ = 1. Now

dL1 = h(x)

= h(x∗∗ ∧ (x ∨ dL))

= ((h(x))∗∗ ∧ (h(x) ∨ h(dL))

= h(x) ∨ h(dL) ≥ h(dL).

Therefore h(dL) = dL1 .

(2). Let a ∈ B(L). Let t ∈ h([Fa). Then t = h(x) for some x ∈ ([Fa)). Then x∗∗ ≥ a implies
t∗∗ = h(x∗∗) ≥ h(a). It follows that t ∈ [Fh(a)). Conversely, let y ∈ [Fh(a). Then y∗∗ ≥ h(a).
Hence y∗∗ ≥ (h(a))∗∗ = h(a∗∗) = h(a). Then y ∈ h([Fa)).

(3). Let F is a Boolean filter of L. Clearly h(F ) is a filter of L1. Since F is Boolean, then
x ∨ dL ∈ F for all x ∈ L. Then by (1) we get h(x) ∨ dL1 = h(x) ∨ h(dL) = h(x ∨ dL) ∈ h(F ).
Then h(F ) is a Boolean filter of L1.

Theorem 6.2. Let h : L → L1 be a homomorphism of a principal p-algebra (L;∨,∧,∗ , 0L, 1L)
onto a principal p-algebra (L1;∨,∧,∗ , 0L1 , 1L1). Then FB(L) is homomorphic of FB(L1).
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Proof. Define g : FB(L) → FB(L1) by g([Fa)) = [Fh(a)) for all a ∈ B(L). For every a, b ∈ B(L),
we get

h(a� b) = h(a∗ ∧ b∗)∗) = h(a ∨ b)∗∗

= (h(a ∨ b))∗∗ = (h(a) ∨ h(b))∗∗

= ((h(a))∗ ∧ (h(b))∗)∗ = h(a)� h(b).

Consequently, we get

g([Fa) ∨ [Fb)) = g([Fa∧b))

= [Fh(a∧b))

= [Fh(a)∧h(b))

= [Fh(a)) ∨ [Fh(b))

= g([Fa)) ∨ g([Fb)),

g([Fa) ∩ [Fb)) = g([Fa�b))

= [Fh(a�b))

= [Fh(a)�h(b))

= [Fh(a)) ∩ [Fh(b))

= g([Fa)) ∩ g([Fb)),

g([Fa)) = [Fh(a∗))

= [F(h(a))∗)

= [Fh(a))

= g([Fa)).

Clearly g([F1L) = [F1L1
)) and g(L) = L1. Therefore g is a homomorphism of Boolean algebras

FB(L) and FB(L1).

Theorem 6.3. Let h : L → L1 be a homomorphism of a principal p-algebra L with a smallest
dense element dL into a principal p-algebra L1 with a smallest dense element dL1 . Then we
have the following :

(1) h−1(G) is a Boolean filter of L whenever G is a Boolean filter of L1,

(2) Coker h is a Boolean filter of L whenever h(D(L)) = {1L1}.

Proof. (1). Let G be a Boolean filter of L1. Then h−1(G) is a filter of L. Let x ∈ L. Then
h(x) ∈ L1. Since G is a Boolean filter of L1, then h(x)∨dL1 ∈ G. Then h(x∨dL) = h(x)∨h(dL) ≥
h(x)∨dL1 ∈ G implies h(x∨dL) ∈ G. So x∨dL ∈ h−1(G). Therefore h−1(G) is a Boolean filter
of L.

(2). Obviously Coker h = {x ∈ L : h(x) = 1L1} is a filter of L. For every x ∈ L, x ∨ dL ∈ D(L)

as D(L) is a Boolean filter of L. Hence h(x ∨ dL) = 1L1 by hypothesis. Then x ∨ dL ∈ Coker h.
Therefore Coker h is a Boolean filter of L.
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