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𝐀𝐛𝐬𝐭𝐫𝐚𝐜𝐭. One of the possible hypotheses about time is to consider any instant of time as fuzzy number, so that 

two instants of time could be overlapped. Historically, some Mathematicians and Philosophers have had 

                    similar ideas like Brouwer and Husserl [5]. 

                    Throughout this article, the impact of this change on Theory of Computation and Complexity Theory are studied.   

                    In order to rebuild Theory of Computation in a more successful and productive approach to solve some major                        

                    problems in Complexity Theory, the present research is done. This novel theory is called here, the fuzzy time theory            

of computation, TC∗.  Here, we show the situation of some major problems in Complexity theory and Quantum            

complexity theory in the new model, and how some major problems would be solved.   

                   𝐊𝐞𝐲𝐰𝐨𝐫𝐝𝐬. P ≠ NP , P = PBB, MA = AM, , PH ⊊ PSPACE , QIP=PSPCE, QMA∗ = MA∗ = AM∗ = QAM∗(=

                  QMA = QAM) ,Fuzzy Time, TC∗, Reducibility, Complexity Theory Problems, Fuzzy time particle interpretation of      

                    quantum mechanics                                     

𝟏. 𝐈𝐧𝐭𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧  

Throughout this article, the author presents the Theory of Computation by 

applying Fuzzy Time.  More specifically, the author tries to rebuild the structure of 

the Theory of computation based on considering time as a fuzzy concept.  

In fact, there are reasons to believe time as a fuzzy concept. More precisely, here, 

given the classical definition of Turing Machine, the concept of Time is changed to 

be Fuzzy. This new theory is called Theory TC∗ and this type of computation 

“Fuzzy time Computation”. We have relatively large number of fundamental 

unsolved problems in Complexity Theory. In the new theory, some of the major 

obstacles and unsolved problems have been solved. It should be noted that in this 

article, the author considers fuzzy number associated to instants of time as a 
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symmetric one. The point is about applying the symmetricity of fuzzy time 

function in the proof of Lemma 3. 

In particular, the new classes of complexity Theory, P∗, NP∗, BPP∗ in the TC∗ are 

defined similar to the definitions of P, NP and BPP as their natural alternative 

definition. Here, firstly we will see, P∗ = BPP∗,  MA∗ = AM∗. Later we have some 

results about P vs NP problem and PH vs PSPACE problem in the new model. 

Finally, we discuss about Quantum Complexity classes. 

Considering instants of time as fuzzy concept has some excuses which we list it as 

following 

1. Brower and Husserl had similar ideas [5]. Also, some physicists introduced 

the operator of time. 

2. There is no reason right now, to prefer Classical time 

To a model of time which fuzzy time function is a narrow function. 

3. By a new interpretation of Quantum Mechanics we are able to compute 

the fuzzy instants of time.[6] 

 

Moreover, there is a possibility to understand experimentally whether time 

Is a fuzzy concept.[7] 

This means this fuzzy time is in harmony with the modern concepts of 

Physics. 

4. Besides all, we have a more easygoing and feasible theory based on this 

hypothesis (TC∗),  as we explain in this article.  

5.  We have a solution for some paradoxes like “Unexpected hanging 

paradox”.[8] 

6. In this paper we will see, even in the case that considering fuzzy time as a 

physical concept doesn’t seem appropriate, this consideration theoretically 

would be useful. Roughly speaking, by applying this technic we are capable 

to solve some problems in TC.  

 

We mention the main theoretical streamline in this article as, considering 

the contrast betweenTC, TC∗ is useful to solve some major questions in the 

field setting of Complexity theory. However, it is possible that physically 

TC∗  would be a better choice. In general, this provides a novel angel and 

approach to start studying theory of Computation. 



Some part of this theory was introduced in [17], [18], [19]. 

 

𝟏. The spaces and model of computation 

 

To give the proof more exactly, first we define Wm. Let  .   

Wm = {𝐶𝑖,𝑡
𝑚
⇒𝐶𝑗,𝑡: 𝐶𝑖,𝑡 & 𝐶𝑗,𝑡 are configurattions for 𝑀𝑡} 

Now, we define ∁⊊ Wm  as follows 

 

∁= {𝐶𝑖,𝑡
𝑚
⇒𝐶𝑗,𝑡: Ci,t & Cj,t are configurattions for Mt and in m steps  

by  transition functtion associatted to Mt , we reach from  Ci,t  to Cj,t} (Classical 

computational world) 

We define ∘ over Wm  

∘∶ Wm ×Wm → Wm 

(𝐶𝑖,𝑡
𝑚
⇒𝐶𝑗,𝑡) ∘ (𝐶𝑗,𝑡

𝑛
⇒𝐶𝑘,𝑡)= (𝐶𝑖,𝑡

𝑚+𝑛
⇒  𝐶𝑘,𝑡) 

 

Furthermore, ∁ induces a directed graph on the space of all configurations, like G⃗⃗ .  

We call the underlying graph of this undirected graph,  G. 

(Remark1. In the case of nondeterministic Turing Machines, we define the 

concepts in the same way.) 

By considering, fuzzy time, we have the possibility of turning back in time. So, any 

path in the graph G, is a path of possible computation, when in our model we 

consider instants of time as fuzzy number. 

In the definition of path here, the nodes could be repeated but the lengths of 

paths are finite. P(G) is the set of all paths of G. 

𝑊FUZZY = {Ci,t
m
⇒Cj,t: 𝑚 ∈ 𝑁, Ci,t & Cj,t belong to a path in P(G)}.   

We call WFUZZY the Fuzzy world. In the fuzzy world, all of these paths are possible. 



Here, any instant of time is a fuzzy number, which its support is 𝑅,  the set of real 

numbers. 

Remark 1. Here, we are able to define the “fuzzy computational model” more 

exactly, in the case that the area under the instant of time is finite.  

Computational-Model= {(𝐶𝑖,𝑡
𝑚
⇒𝐶𝑗,𝑡 , 𝜂(𝐶𝑖,𝑡

𝑚
⇒𝐶𝑗,𝑡)):m ∈

N, Ci,t & Cj,t blong to a path in P(G), η(Ci,t
m
⇒Cj,t) is the probability  

of reching from   Ci,t to Cj,t in m steps}   

𝜂 could be computed by fuzzy function 

Corollary 1. If we consider quantum computers instead of non deterministic 

Turing machines we have the same definitions. It will lead us to a unification of 

these two theories. In the other words, it is easy to see that, by considering Fuzzy 

time-particle Interpretation of quantum Mechanics,  TC∗, TQC and  

TQC∗  are the same theories, and the respected Complexity classes are equal sets. 

In the last chapter, we will show some results by considering this interpretation of 

quantum mechanics. 

 

𝟐. 𝐑𝐞𝐝𝐮𝐜𝐢𝐛𝐢𝐥𝐢𝐭𝐲 

In this section, firstly, we define a quasi-order relation in TC∗ analogous with the 

m-reducibility in TC .  

It should be reminded that a fuzzy time Turing Machine is a Turing Machine which 

works with fuzzy time, as it is defined in the previous section.  

In addition, here, the Turing Machine is considered as a two tuple (M, S). 

Whereas, M is a Turing machine in the usual sense and  S is a polynomial function. 

Meanwhile, M runs in bounded time by  S , equivalently, M(x) in less than S([x])  

steps is computed.  

First, we remind the Classical definition of m-reducibility: 

Y >m X , if there is a polynomial time computable function f such that: 

x ∈ X ↔ f(x) ∈ Y 



The parallel definition in TC∗ is introduced as following 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏:  For α >
1

2
  ,    Y >𝐦

𝛂 X   if there is a polynomial time computable* 

function f such that:  

1. x ∈ X & f(x) ↓ in polynomially bounded time respect to |x| ↔ (f(x) ∈ Y) 

2. Pr (f(x) ↓ in polynomially bounded time respect to |x|) >  α 

A Computable* function f is a function that is computable by a fuzzy time Turing 

machine. 

Here, by bounded time, we mean that for the function f there exists a Polynomial 

function h  such that f(x) ↓ in less than h (length(x))  steps. 

Y >𝐦
𝛂 X can be represented by a 5-tuple,  (Y, X, f, Sf, α), Sf(x) is the number of 

steps that f(x) is computed. The definition is as follows 

Y >𝐦
𝛂 X ↔ (Y, X, f, Sf, α) is an acceptable 5-tuple 

 

One of the major question here is about the independence of the definition from 

the value of α? (α >
1

2
) 

In the first step, to answer the above question, we need the following simple 

lemma.  

𝐋𝐞𝐦𝐦𝐚 𝟏 Let for  1 > α >
1

2
 , (Y, X, f, Sf, α) is an acceptable 5-tuple then for any 

1 > β >
1

2
   there is a computable function g in which (Y, X, g, Sg, β) is an 

acceptable 5-tuple. 

𝐏𝐫𝐨𝐨𝐟. Actually, there is a natural number 𝑘, so that the function g  is equivalent 

to, k  times repeating f , till we reach a solution with probability less than β. It is 

easy to understand that such  k exists.    □ 

Lemma 1 indicates for  1 > α >
1

2
 , the relation  Y >𝐦

𝛂 X  would be independent 

of α.  So, we define Y >𝐦
∗ X  as follows 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐. Y >𝐦
∗ X  if for some α (1 > α >

1

2
),  Y >𝐦

𝛂 X .  



𝐋𝐞𝐦𝐦𝐚 𝟐.  >m
∗   is a quasi-order relation. 

 

𝐏𝐫𝐨𝐨𝐟. X >𝐦
𝜶 Y      implies   ∀

1

2
> ɛ > 0   X >𝐦

𝟏−ɛ Y  (*) 

Y >𝐦
𝜶 Z      implies    ∀

1

2
> ɛ > 0   Y >𝐦

𝟏−ɛ Z  (**) 

 From (*), (**),   we have ∀ 
1

2
> ɛ > 0     X >𝐦

(𝟏−ɛ)2
Y  (***).   □ 

 

𝐋𝐞𝐦𝐦𝐚 𝟑.  Y >m X  implies  Y >𝐦
∗ X  . 

 

𝐏𝐫𝐨𝐨𝐟. …  

𝐑𝐞𝐦𝐚𝐫𝐤 𝟐.  Using lemma 3, suppose we have a computation by Turing Machine 

(M, Sf) and the input x in classical time and (M, Sf)(x) ↓. If we change the classical 

time to the symmetric fuzzy time, the probability of reaching to the final state is 

more than  
1

2
.   As a conclusion, if we consider the computation   (M, k Sf)(x) ↓, 

the probability of reaching to the final state is more than 1 −
1

2𝑘
  . 

𝟐. 𝟐  𝐏∗, 𝐍𝐏∗, 𝐍𝐏∗ −𝐇𝐚𝐫𝐝,𝐍𝐏∗ − 𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞  

One of the main questions throughout this article is, how to redefine the most 

important classes of Complexity Theory in the new theory?  As a first attempt, let 

we try to define P∗as follows: 

P∗ is the class of all problems that can be determined by a Fuzzy Turing Machine 

(M, S).  

But what exactly do we mean by determined? Since it is possible that we do not 

reach to the final state, we should consider the possibility associated with  x ϵ p   

for any  pϵP∗  when x  belongs to  p, and the possibility associated with x ∉

p when 𝑥 belongs to pc. Hence, by the above consideration, we are able to modify 

the definition of P∗, as follows 



𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟑. P∗ is a class of problems such that, for any pϵP∗ and the 
probability α, we have a polynomial Qα,p and an associated algorithm Aα,p to 

solve p  by probability α such that Qα,p  is upper bound of the computation time.  

Equivalently, for any pϵP∗ (p  as a language) and probability α we have an 
associated algorithm Bα,p and a polynomial Qα,p  as an upper bound of  the 

computation time. 
xϵp → By probability α , Bα,p = 1   

x ∉  p  → By probability  α, Bα,p = 0   

 
This is similar to the definition of the class  BPP. Equivalently, by considering time 
as a Fuzzy concept we have BPP∗.  
 
By the above considerations, it is easy to see: 
 
𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏.  P∗ = BPP∗. 
 
The next natural question in TC∗ is the situation of the problem  P vs NP, more 

exactly P∗ vs NP∗. Firstly, we are going to prove the following proposition about 

random generators. 

𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧𝟏. By considering time as a fuzzy concept, random Generators exist. 

𝐏𝐫𝐨𝐨𝐟. … 
□   

Now, let we consider the following definition of NP problems. 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟒 The Complexity class 𝐍𝐏 is the set of decision problems like D such 

that there is a deterministic polynomial time Turing machine MD and polynomials  

pD, qD in order that for every input x  with length x′ ( l(x)=x′) 

1. x belongs to D implies there exists string z  with length qD(x
′) such that   

for all string y with length pD(x
′),  P r(MD(x, y, z) = 1) = 1)  

2. x does not belong to D  implies for all string z  with length  qD(x
′) such that 

for all string y with length pD(x
′) P r(MD(x, y, z) = 0) = 1 (The definition is 

Quoted in [4]) 

By considering the above definition and by fuzzifying time we have the definition 

of NP∗. 



We define NP∗--hard, NP∗-Complete likewise in below 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟓  X is NP∗-hard if for any  Y ∈ NP∗,   X >𝒎
∗ Y.   

 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟔  X is NP∗-Complete if X is NP∗-hard and X ∈ NP∗. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐 SAT  is NP∗-Complete.  

𝐏𝐫𝐨𝐨𝐟. SAT belongs to NP, hence SAT ∈ NP∗, by definition. The analogues proof 

of Cook-Levin’s theorem works here. More exactly, by employing the reduction 

associated with the reduction function f  in Cook-Levin theorem with this 

difference that time is fuzzy, we have the analogous function f ∗in the new proof, 

also here, we consider  >𝒎
∗   instead of m -reducibility. Lemma 3 guarantees the 

proof of the theorem.   □ 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦𝟑. P∗ ≠ NP∗ implies  P ≠ NP . 

𝐏𝐫𝐨𝐨𝐟.  To prove  P ≠ NP , we apply Theorem 2 and lemma 3. 

Suppose P = NP and we remind that SAT is a NP-Complete problem. Hence, 

there is an algorithm A  which solves SAT in Polynomial time. 

 Considering Fuzzy time, A also solves SAT  in polynomial time, hence  SAT 

belongs to P∗. SAT is NP∗-Complete, so P∗ = NP∗, A contradiction. Consequently, 

P ≠ NP.   □ 

𝐋𝐞𝐦𝐦𝐚 𝟒. SAT ∉ P implies SAT ∉ P∗, unless P = NP. 

𝐏𝐫𝐨𝐨𝐟. SAT is NP∗-Complete. Suppose SAT ∉ P . If SAT ∈ P∗ then P∗ = NP∗. In 

brief, P ≠ NP implies P∗ = NP∗, which contradicts Theorem 4.    □ 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒.  P ≠ NP implies P∗ ≠ NP∗. 

𝐏𝐫𝐨𝐨𝐟. Suppose P ≠ NP. By above lemma, P ≠ NP implies SAT ∉ P∗. But 

SAT ∈ NP∗, so P∗ ≠ NP∗.    □  

 

Chapter3. 𝐌𝐀∗, 𝐀𝐌∗ 

 



In the previous chapter, by defining the concepts of P, BPP  in the new 

framework, we define the new classes P∗, BPP∗. It is shown that the new 

classes P∗, BPP∗  are both equal to each other. In contrast, what is the alternative 

definition for the NP  class in this new framework? To illustrate NP  problems in 

the Theory of Algorithm, it is required to define a new class for it. Possibly MA  is 

the best choice in probabilistic classes [1], [4] (introduced by Laszlo Babai, Shafi 

Goldwasser, Micheal Sipser). 

Indeed, the MA  complexity class is known as an alternative for NP problems in 

probabilistic classes, we also have a theorem states [2], [3] 

P = BPP → MA = NP 

The last point, besides P∗ = BPP∗ confirms our choice. So, let we define the 

concept of NP problems in fuzzy time by applying and similar to the definition of 

MA. On the other hand in the previous chapter we defined NP∗, as the second 

way to define an alternative definition for NP in TC∗. It is easy to see, these two 

ways of defining a parallel concept for NP in TC∗, leads us to the equivalent 

definitions. 

Here, we mention the complexity class Merlin-Arthur MA,  in Two-sided version 

definition[4]. 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟕. The Complexity class 𝐌𝐀 is a set of decision problems like D  such 

that there are  

deterministic polynomial time Turing machine MD and polynomials  pD, qD in 

order that for every input x  with length x′  (l(x)=x′) 

1.  x belongs to D  implies there exists string z  with length qD(x
′) such that for 

all string y with length pD(x
′) Pr (MD(x, y, z) = 1) ≥

2
3⁄ )  

2. x does not belong to D  implies for all string z  with length  qD(x
′) such that 

for all string y  with length pD(x
′) Pr (MD(x, y, z) = 0) ≥ ⅔ (The definition is 

Quoted in [4]) 

Likewise, we remind the complexity class Arthur-Merlin AM in Two-sided version 

definition [4]. 



𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟖. The Complexity class 𝐀𝐌 is a set of decision problems like D  such 

that there are deterministic polynomial time Turing machine MD and polynomials  

pD, qD in order that for every input x  with length x′  (l(x)=x′) 

1.  x belongs to D  implies there exists string z  with length qD(x
′) such that for 

all string y with length pD(x
′) Pr (MD(x, y, z) = 1) ≥

2
3⁄ )  

2.  x dose not belong to D  implies for all string z z with length  qD(x
′) such 

that Pr (for all string y  with length pD(x
′),MD(x, y, z) = 0) ≥ ⅔ (The 

definition is Quoted in [4]) 

  

By considering time as a fuzzy concept, we define MA∗. AM∗ is defined similarly, 

by considering two sided definition of  AM in above. 

The list of new possible classes which we study here, is  

P∗, NP∗, BPP∗,MA∗ AM∗and  AM∗. 

Instead of P = NP problem and in parallel to it, we have the following problems 

BPP∗ = MA∗ 

BPP∗ = AM∗ 

MA∗ = AM∗  

Theorems 3&4 shed a light on the above problems. 

It is easy to see: 

1. P∗ = BPP∗  (Theorem 1) 

2. NP∗ = MA∗  (Considering certificate definition of  NP)    

It is notable to remind, by proposition 1, we have random generators in the new 

Theory. So, the pseudo-random generators exist too. In addition, we have P∗ =

BPP∗ (Theorem 1). In this theory the third major conclusion is about the classes  

MA∗, AM∗. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟓.  MA∗ = AM∗.  

𝐏𝐫𝐨𝐨𝐟. MA is the nondeterministic version of BPP, AM is the probabilistic version 

of NP.    



So, clearly AM∗ = NP∗and MA∗ is the nondeterministic version of BPP∗. 

By the way, P∗ = BPP∗. Consequently, MA∗ is the nondeterministic version of P∗. 

By definition, MA∗ = NP∗. In sum,  AM∗ = MA∗ = NP∗.   □ 

Moreover, by above we have 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟔.  The following statements are equivalent 

1. P ≠ NP 
2. P∗ ≠ NP∗  
3. BPP∗ ≠ MA∗(= AM∗) 

 

𝐏𝐫𝐨𝐨𝐟. By Theorems 2, 3, 4, 5. □ 

𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧 𝟏. Throughout this Chapter, it is shown that by considering time as a 

fuzzy concept, we have random generators. Under this condition,  TC∗ as a new 

theory in the field setting of computation is introduced. Hereafter, in the new 

theory, some problems in parallel to some of the famous problems in Complexity 

Theory are solved. In brief, P∗ = BPP∗, MA∗ = AM∗.   

𝟓. 𝐂𝐨𝐦𝐩𝐥𝐞𝐱𝐢𝐭𝐲 𝐂𝐥𝐚𝐬𝐬𝐞𝐬, 𝐓𝐂 + 𝐂𝐎𝐍(𝐓𝐂∗)Ͱ𝐏 ≠ 𝐍𝐏, 𝐏 = 𝐁𝐏𝐏 

In this section first we present some definitions mostly based on the concepts 

introduced in the first section, in the second step we define some complexity 

classes, in the third step we give the proof of the above claims. 

Now we define  R(Mt)  as the set of possible computational worlds for  Mt.  

In section 1, we define WFUZZY, Computational Model, here we continue to 

introduce the definitions related to the possible worlds associated to fuzzy time. 

  Let R(Mt) = { Wi,t}i∈I , which the following four conditions hold 

1. Wi,t ⊂ WFUZZY  

2. ∀m(Cl,t
m
⇒Cj,t   ∈ Wi,t)  implies there is  a path between Ci,t &Cj,t in WFUZZY 

3. Cl,t
m
⇒Cj,t   ∈ Wi,t &Cl,t

m
⇒Ck,t   ∈ Wi,t   implies k = j 

4. Wi,t is closed by ∘ . 



 

 Examples: 

1. {C0,t
m
⇒C0,t:m ∈ N} ∈ R(Mt),  void world. 

2. Cl,t
m
⇒Cj,t   ∈ Wc,t  iff Cl,t

m
⇒Cj,t in classical time in Turing machine Mt. Wc,t is the 

classical world associated to Mt. 

2. In the case of Non determinism, we do not consider the third condition in 

above. 

Now, we define S = {( wi,t)t∈N:  Wi,t ∈ R(Mt)}, and we recall it the possible  

worlds of computation. We give here two members of S as examples. 

1. Void world of computation. V ∈ S  is Void world of computation by definition if 

any component of 𝑉 is a void world. 

2. Classical world of computation. Wclassical ∈ S  is classical world by definition, if 

any component of V is a classical world. 

 

 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟗.   The problem X is solved by Wk,t in polynomial time means, for 

some polynomial function p and in less than p(⃓a⃓) steps we have either 1 as 

output if a belongs to X or we have 0 as output if a does not belong to X. 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏𝟎.   The problem X is solved_1 by Wk,t in polynomial time means, for 

some polynomial function p and in less than p(⃓a⃓) steps, 

 if a belongs to X we have either 1 as output  

with  a probability greater  than or equal 2 3⁄  

or if a does not belong to X 

we have 0 as output with probability less than or equal 1 3 ⁄ . 

 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏𝟏. For  Wk ∈ S,    X ∈ (P,Wk)  or  X  is a (P,Wk) problem if X is 

solved by Wk,t in polynomial time, which Wk,t is a component of Wk. 

 



𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏𝟐. For  Wk ∈ S,    X ∈ (BPP,Wk)  or  X  is a (BPP,Wk) problem if X is 

solved_1, by Wk,t in polynomial time, which Wk,t is a component of Wk. 

 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏𝟑.  X ∈ (NP,Wk),  if for some polynomial function Q there is a set 

Y = {(𝑥, 𝑎): 𝑥 ∈ 𝑋, ⃓a⃓ is less than  Q(⃓x⃓)}, such that Y ∈ (P,Wk). 

 

𝐑𝐞𝐦𝐚𝐫𝐤 𝟑. In the case Wk = Wclassical, it is easy to see that, the above definition 

is equivalent to the following definition 

 

 𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏𝟒.    X ∈ (NP,Wclassical), if X is solvable by non deterministic Turing 

machine in polynomial time. 

 

Actually, X ∈ (NP,Wclassical) if and only if X ∈ NP and X ∈ (P,Wc) iff X ∈ P. 

 

𝐏𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝟐. X ∈ (P,Wclassical) iff X ∈ P. 

𝐏𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝟑. X ∈ (BPP,Wclassical) iff X ∈ BPP. 

𝐏𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝟒. X ∈ (NP,Wclassical) iff X ∈ NP. 

𝐏𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝟓.   SAT ∈ (P,Wclassical) then P = NP. 

 

The concepts  m− reucibility  and (NP,Wclassicl) − compelte is defined similar 

to the classical case. 

 

𝐏𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝟔. 𝑋 ∈ (NP,Wclassical) − complete iff  X ∈ NP − compelete. 

 

The concepts like seed and pseudorandom generator are defined analogous with 

the classical definition. 



 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟐. If pseudo random generator exists, (P,Wclassical) ≠ (NP,Wclassical), 

(i.e  P ≠ NP ). 

 

𝐏𝐫𝐨𝐨𝐟. If P = NP we are able to guess the seeds non deterministically, so pseudo 

random generator does not exist. □ 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟑. If pseudo random generator exists, (P,Wclassical) =

(BPP,Wclassical). 

 

𝐏𝐫𝐨𝐨𝐟. In above, X ∈ (BPP,Wclassical) iff X ∈ BPP. 

Wclassical  is similar to the classical world of computation, nevertheless time is a 

fuzzy concept. Due to fuzziness of time in this model of computational world, we 

have random generator, consequently (P,Wclassial) ≠ (NP,Wclassical) , 

(P,Wclassical) = (BPP,Wclassical) . □ 

By the above proposition we have the following corollary. 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟒. 𝐏 ≠ 𝐍𝐏. 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟓. 𝐏 = 𝐁𝐏𝐏. 

𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧 𝟐. In the above proof, our presumption is the existence of  a model 

for TC∗. So we have, TC + CON(TC∗)ͰP ≠ NP, P = BPP  . 

Therefore, we have   P ≠ NP   so we have   P∗ ≠ NP∗,   P∗ =  BPP∗ [17], [2] under 

the same assumption. 

𝐆𝐞𝐧𝐞𝐫𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝟏.  In above, for some specific formulas 𝜑, (here  P ≠

NP  and P = BPP),  

 TC + Existence of random generatorͰ 𝜑     implies 

TC + CON(TC∗)Ͱ 𝜑.  

In the first type of generalization, we try to show the type of sentences has the 

above property. 

Firstly, we modify slightly our definitions, we used 



𝐶𝑖,𝑡
𝑚
⇒𝐶𝑗,𝑡 

As, possibility of reaching from on configuration to another in 𝑚 steps. Now we 

write a  similar and more complete form of this definition by 

𝐶𝑖,𝑡(< 𝑥𝑖,𝑡 >)
𝑚
⇒𝐶𝑗,𝑡(< 𝑦𝑗,𝑡 >) 

𝑥𝑖,𝑡 , 𝑦𝑗,𝑡  are two vectors which shows the data on the strip of Turing Machine, in 

configurations 𝐶𝑖,𝑡 , 𝐶𝑗,𝑡 . 

Indeed, we define the usual Complexity classes in four groups, as following 

1. Computably numerable set, Computable set 

2. P,NP,… . 

3. Probability Classes. 

4. Interactive proofs 

We should enrich the language little by little to capture the concepts in the 

above four levels. Hence, we create the languages 𝛴1, 𝛴2, 𝛴3, 𝛴4, associated 

to these four levels. 

 

1. 𝛴1:Computably enumerable set, Computable set 

𝑥 ∈ 𝐿 → ∃𝑚 𝐶𝑖,𝑡(< 𝑥𝑖,𝑡 >)
𝑚
⇒𝐶𝑗,𝑡(< 𝑦𝑗,𝑡 >)& (𝑥𝑖,𝑡

= 𝑥)&(𝐶𝑖,𝑡(< 𝑥𝑖,𝑡 >) 𝑖𝑠 𝑎 start configuration)&( 𝐶𝑗,𝑡(< 𝑦𝑗,𝑡
>) is a final configurattion)&(< 𝑦𝑗,𝑡 >= 1) 

𝑥 ∉ 𝐿 → ∃𝑚 𝐶𝑖,𝑡(< 𝑥𝑖,𝑡 >)
𝑚
⇒𝐶𝑗,𝑡(< 𝑦𝑗,𝑡 >)& (𝑥𝑖,𝑡

= 𝑥)&(𝐶𝑖,𝑡(< 𝑥𝑖,𝑡 >) is 𝑎 start configuration)&( 𝐶𝑗,𝑡(< 𝑦𝑗,𝑡
>) is a final configurattion)& (< 𝑦𝑗,𝑡 >= 0) 

We need three relations, start configuration, final configuration,  

𝐶𝑖,𝑡(< 𝑥𝑖,𝑡 >)
𝑚
⇒𝐶𝑗,𝑡(< 𝑦𝑗,𝑡 >)  in our language. 

It shapes first type of languages. 

 

1. 𝛴2:P,NP,… . 



For P we are able to add a new quantifier bounded one…∃𝑚 < 𝑝(|𝑥|), so 

we need quantifiers like 

For NP,… 𝐶𝑖,𝑡(< 𝑥𝑖,𝑡 >)
𝑚
⇒𝐶𝑗,𝑡(< 𝑦𝑗,𝑡 >), we should add existential 

quantifiers on configurations. In general, … 

 

 

 

2. 𝛴3:Probability Classes. For each formula, Ψ we add Pr (Ψ) > ⍺  , Pr (Ψ) <

⍺  to the set of formulas. 

3. 𝛴4:Interactive proofs. Quantifiers on machines and  

Quntifiers on V, P and sentences like V ↔ P.  

To check the truth of the following  

TC + Existence of random generatorͰ 𝜑     implies 

TC + CON(TC∗)Ͱ 𝜑.  

We should consider the language which 𝜑 is defined in it. 

… 

… 

𝐆𝐞𝐧𝐞𝐫𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝟐. 

Here, we try to answer the following question 

Do the above theorems and conclusions remain true if we consider oracle Turing 

machines? 

 

 The major problem in this discussion, is the existence of random generator by 

considering oracle Turing machines. More exactly, 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏𝟓. X-random generator is an oracle Turing machine with oracle X, 

which feeds by random seeds we have normal distribution as output. 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏𝟔. A random generator is independent of oracle X, if it is a X-random 

generator. 



A random generator is independent of oracle, if it is a X-random generator for any 

X. 

(Random generator independent of oracle A). 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟕. If there exists random generator independent of oracle X,   PX ≠

NPX. 

𝐏𝐫𝐨𝐨𝐟. Analogues to the above proof (relative version of it). □ 

Corollary 6. If 𝑋 ∈ Pspace − Complete, we have no X-random generator. (As a 

theory in TC). 

We use this result in the next chapter. 

 

𝟔. Polynomial Hierarchy  

In this chapter, we try to generalize the previous results to the classes of 

polynomial hierarchy. Firstly,  PSPACE∗ is defined similar to   P∗. In the next step,   
  
Σn
∗
, Πn

∗ 

  
Σn
∗
− Compelete Πn

∗ − Compelete,  are defined similar to 

  NP∗,    Co − NP∗,   NP∗ − Compelete,   Co − NP∗ − Compelete. 

 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏𝟕. PSPACE∗ is a class of problems such that, for any pϵPSPACE∗ 
and the probability α, we have a polynomial Qα,p and an associated algorithm 

Aα,p to solve p  by probability α such that Qα,p  is upper bound of the computation 

space.  
Equivalently, for any pϵPSPACE∗ (p  as a language) and probability α we have an 
associated algorithm Bα,p and a polynomial Qα,p  as an upper bound of  the 

computation space. 
xϵp → By probability α , Bα,p = 1   

x ∉  p  → By probability  α, Bα,p = 0   

 
𝐓𝐡𝐞𝐨𝐫𝐞𝐦  𝟖. PSPACE∗ = NSPACE∗. 
𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟗. PSPACE∗ ⊂ NSPACE. 



𝐏𝐫𝐨𝐨𝐟.  Let        𝑿 ∈ PSPACE∗, so there is a fuzzy deterministic Turing Machine 
which solve this problem by using finite memory and decision takes place in 
bounded polynomial time.  Equivalently, there exists a deterministic Turing 
Machine which its transitive closure solves this problem by using finite memory 
decision takes place  , in bounded  polynomial time. The transitive closure of this 
deterministic Turing Machine is a non-deterministic Turing Machine. Hence, 𝑿 ∈
PSPACE∗. □ 
Analogous proof, shows NSPACE∗ ⊂ NSPACE.  

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏𝟖. Transitive closure of a deterministic Turing Machine with 

transition function δ, is transitive closure of the following relation ≿ 

𝐶2  ≻  𝐶1  if 𝛿(𝐶1) = 𝐶2 among configurations of this Turing Machine. 

Similarly, we have the following definition 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏𝟗. Transitive closure of a deterministic Turing Machine with 

transition function δ, is transitive closure of the following relation  

𝐶2  ≿  𝐶1  if 𝐶2 ∈ 𝛿(𝐶1) among configurations of this Turing Machine. 

 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏𝟎. NSPACE∗ ⊂ NSPACE. 
 
𝐏𝐫𝐨𝐨𝐟.  Let        𝑿 ∈ PSPACE∗, so there is a fuzzy non-deterministic Turing 
Machine which solve this problem by using finite memory and decides, in 
bounded  polynomial time.  Equivalently, there exists a non-deterministic Turing 
Machine which its transitive closure solve this problem by using finite memory 
decides  , in bounded  polynomial time. The transitive closure of this non-
deterministic Turing Machine is a non-deterministic Turing Machine, again. 
Hence, 𝑿 ∈ NPSPACE∗. □ 
Corollary 7. PSPACE ⊂ PSPACE∗ ⊂ NSPACE∗ ⊂ NSPACE, by savitch theorem we 

have, PSPACE = PSPACE∗ = NSPACE∗ = NSPACE. 

 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐𝟎 .  𝑿 ∈ PSPACE∗ − Compelete , if  

1. X ∈ PSPACE∗. 



2. ∀Y ∈ PSPACE∗   X >𝐦
∗ Y 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏𝟏 . Every PSPACE − Compelete  problem is a PSPACE∗ − Compelete   

problem. (Page 7) 

𝐏𝐫𝐨𝐨𝐟.  Remind that,  Y >m X  implies  Y >𝐦
∗ X . □ 

In below, we generalize the concepts and definitions in the previous chapter, first 

we define PH, PH∗. 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐𝟏. 

Σ0
P = ∆0

𝑃  = Π0
𝑃 = P  

∆𝑖+1
𝑃 = PΣ𝑖

P
 

Σ𝑖+1
P = NPΣ𝑖

P
 ,  

Π𝑖+1
𝑃 = Co − NPΣ𝑖

P
 

PH = ⋃∆k
p

 

PΣ𝑖
P

  , NPΣ𝑖
P

 , Co − NPΣ𝑖
P

 . 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐𝟐. 

Σ0
P,∗ = ∆0

𝑃,∗  = Π0
𝑃,∗ =P∗                 

∆𝑖+1
𝑃,∗ = PΣ𝑖

P,∗ 

Σ𝑖+1
P,∗ = NPΣ𝑖

P,∗ ,  

Π𝑖+1
𝑃,∗ = Co − NPΣ𝑖

P,∗ 

PH∗ = ⋃∆k
p

. 

𝐃𝐞𝐟𝐢𝐧𝐢𝐢𝐨𝐧 𝟐𝟑. satn = {𝜱: ∃X1∀X2∃X3…AXi  𝜱 = 𝟏}, Aϵ{∃, ∀}  such that 

X1, X2 , X3… , Xi is a partition of variables of 𝜱. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏𝟐. The existence of Random generator independent of oracle sati+1 , 

implies Σ𝑖+1
P ≠ ∆𝑖+1

𝑃 . 

𝐏𝐫𝐨𝐨𝐟 .     Similar to the case i = 0, when we feed the generator algorithm with 

oracle sati+1  by the random seeds we have  stream of random numbers. By 

choosing Non-deterministically (by using  sati+1 oracle-non deterministic Turing 

machine) the seeds, we have all the given strings. Equivalently, the generator is in 

Σ𝑖+1
P . 



If  Σ𝑖+1
P = ∆𝑖+1

𝑃 , the generator algorithm is in ∆𝑖+1
𝑃 , so the generator is not 

pseudorandom. □ 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐𝟒. We call the existence of Random generator independent of 

oracle 𝐗,    𝐄𝐗. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏𝟑 . Σ𝑖+1
P = ∆𝑖+1

𝑃  iff  Σ𝑖+1
P,∗ = ∆𝑖+1

𝑃,∗ .  

This is the result of Thorem 16 & 17 in below. 

 

 

By considering the above definition and by fuzzifying time we defined  NP∗. 

We define Σ𝑖
P,∗ --hard, Σ𝑖

P,∗ -Complete likewise in below 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐𝟓  X is Σ𝑖
P,∗ --hard if for any  Y ∈ Σ𝑖

P,∗ --hard,   X >𝒎
∗ Y.   

 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐𝟔 X is Σ𝑖
P,∗  -Complete if X is Σ𝑖

P,∗ --hard and X ∈ Σ𝑖
P,∗ . 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏𝟒 SATi  is Σ𝑖
P -Complete.  

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏𝟓 SATi  is Σ𝑖
P,∗  -Complete.  

𝐏𝐫𝐨𝐨𝐟. SATi belongs to Σ𝑖
P, hence SATi ∈ Σ𝑖

P,∗ , by definition. The analogus 

proof of Cook-Levin’s theorem works here. More exactly, by employing the 

reduction associated with the above reduction function h in the above theorem, 

with this difference that time is fuzzy, we have the analogous function h∗in the 

new proof, also here, we consider  >𝒎
∗   instead of m -reducibility. Lemma 3 

guarantees the proof of the theorem.   □         

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏𝟔.   Σ𝑖+1
P,∗ ≠ ∆𝑖+1

P,∗   implies    Σ𝑖+1
P ≠ ∆𝑖+1

𝑃 . 

𝐏𝐫𝐨𝐨𝐟.  To prove  Σ𝑖+1
P ≠ ∆𝑖+1

𝑃 , we apply Theorem 2 and lemma 3. 



Suppose Σ𝑖+1
P = ∆𝑖+1

𝑃 and we remind that SAT𝑖+1 is a Σ𝑖+1
P -Complete problem. 

Hence, there is oracle Turing Machine ASAT𝑖  which solves SAT𝑖+1in Polynomial 

time. 

 Considering Fuzzy time, ASAT𝑖also solves SAT𝑖+1 in polynomial time, 

hence SAT𝑖+1  belongs to ∆𝑖+1
P,∗ .   SAT𝑖+1 is  Σ𝑖+1

P -Complete, so Σ𝑖+1
P,∗ = ∆𝑖+1

P,∗ , a 

contradiction. Consequently,   Σ𝑖+1
P ≠ ∆𝑖+1

𝑃  .  □ 

 

𝐋𝐞𝐦𝐦𝐚 𝟓.   SAT𝑖+1 ∉ ∆𝑖+1
𝑃         implies SAT𝑖+1 ∉ ∆𝑖+1

𝑃,∗ , unless  Σ𝑖+1
P = ∆𝑖+1

𝑃  . 

𝐏𝐫𝐨𝐨𝐟.  SAT𝑖+1 is  Σ𝑖+1
P,∗ -Complete. Suppose SAT𝑖+1 ∉ ∆𝑖+1

𝑃 . If  SAT𝑖+1 ∈ ∆𝑖+1
𝑃,∗  then 

Σ𝑖+1
P,∗ = ∆𝑖+1

𝑃,∗ . In brief, Σ𝑖+1
P ≠ ∆𝑖+1

𝑃   implies Σ𝑖+1
P,∗ = ∆𝑖+1

𝑃,∗ , which contradicts last 

theorem. □ 

   

Theorem 17. Σ𝑖+1
P ≠ ∆𝑖+1

𝑃    implies   Σ𝑖+1
P,∗ ≠ ∆𝑖+1

P,∗ . 

𝐏𝐫𝐨𝐨𝐟. Suppose Σ𝑖+1
P ≠ ∆𝑖+1

𝑃 . By above lemma, Σ𝑖+1
P ≠ ∆𝑖+1

𝑃  implies SAT𝑖+1 ∉

∆𝑖+1
𝑃,∗ . But  SAT𝑖+1 ∈ Σ𝑖+1

P,∗  , so Σ𝑖+1
P,∗ ≠ ∆𝑖+1

P,∗ . □ 

Now, we have our major result in this section 



𝐑𝐞𝐦𝐚𝐫𝐤 𝟒. Analogues to the previous chapter we have, TC+CON(TC∗) + ∀i ∈

N ESAT𝑖ͰΣ𝑖+1
P ≠ ∆𝑖+1

𝑃  .  So, under this assumption  PH does not collapse. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏𝟖.  𝐓𝐂 + 𝐂𝐎𝐍(𝐓𝐂∗) + ∀i ∈ N 𝐄SAT𝑖ͰPH
∗ ⊊ NSPACE∗. 

𝐏𝐫𝐨𝐨𝐟 . Easy by above. 

𝐂𝐨𝐧𝐣𝐞𝐜𝐭𝐮𝐫𝐞 . For any i ∈ N, there exists Random generator independent of oracle 

SAT𝑖 ,    𝐄SAT𝑖. 

Discussion. Intuitively, the following hypothesis seems true, 

“The random generator, made by fuzzy time is independent of oracle X ∈PH”.  



The author has no proof for that, but this hypothesis and above theorems 

concludes PH∗& PH do not collapse. We call the above hypothesis ftrg-hypothesis 

(fuzzy time random generator hypothesis). Under this hypothesis we have 

P ⊊ NP ⊊ PH  and P ⊊ NP ⊊ PSPACE   

(P∗ ⊊ NP∗ ⊊ PH∗ and P∗ ⊊ NP∗ ⊊ PSPACE∗). 

So, PH ⊊ PSPACE  a parallel proof shows, PH∗ ⊊ PSPACE∗. 

To do more exactly, we  show, there exist PSPACE∗ − Compelete, Σn
∗ −

Compelete, Πn
∗ − Compelete problems. Actually, it is easy to prove them by 

theorems in [2] 

𝐏𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝟕. X ∈ PSPACE − Compelete  then  X ∈ PSPACE∗ −

Compelete. 

𝐏𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝟖. X ∈ Σn − Compelete (Πn − Compelete) then X ∈ Σn
∗ −

Compelete (Πn
∗ − Compelete). 

𝐑𝐞𝐦𝐚𝐫𝐤 𝟓., At first glance, the above conclusion seems to be theorems in TC but 

actually,  we need CON(  TC∗) and existence of a model for TC∗ to prove it. It is 

noticeable that, our language is not first order. More exactly, we have 

3. TC +  CON(  TC∗) + ftrgͰP ≠ NP, P ⊊ NP ⊊ PH  ⊊ PSPACE  

The second type of conclusions, needs   TC∗ as premises too, 

        2. TC +  CON(  TC∗) +   TC∗ +ftrg   Ͱ  P∗ ≠ NP∗, P∗ ⊊ NP∗ ⊊ PH∗ ⊊

PSPACE∗    

In above, by  CON(T) we mean theory T is consistent and has a model. 

 As a corollary,  TC +  CON(  TC∗) +   TC∗ + ftrg  deduces graph isomorphism is 

not a NP-Complete problem. 

 

Quantum Complexity Classes 

Here, we consider Fuzzy time particle interpretation of quantum mechanics [6], 

[7], [8] as a true theory and the basis for theory of Quantum Computation (we call 

this hypothesis f -hypothesis). Based on this hypothesis and novel interpretation, 



time is considered as a fuzzy concept. Under the above considerations, we have 

the following results, immediately by definition  

1. BQP = BQP∗, BQP∗ = BPP∗ = P∗. 

2. QIP = QIP∗.  

3. QMA∗ = MA∗ = AM∗ = QAM∗(= QMA = QAM) (By employing theorem ( 

MA∗ = AM∗) ). 

 

Results of 2. We have QIP = PSPACE [9], [10](The proof should be checked 

again in the new interpretation, unless f hypothesis considered  a true 

hypothesis). By considering above, we have PSPACE = PSPACE∗. As a result 

we have, IP = IP∗. 

Results of 3. Since   MA ⊂ QCMA ⊂ QMA, we have MA∗ ⊂ QCMA∗ ⊂ QMA∗. 

By 3, we have,  MA∗ = QCMA∗ = QMA∗. 

Results of 1&3.  By TC +  CON(  TC∗) we have   P∗ ≠ NP∗(= MA∗ =

QCMA∗ = QMA∗). As an important result, BQP ≠ QMA(= QAM = QCMA). 

The above results are based on a Physical assumption, means different 

interpretations of quantum Mechanics give the same classes of computational 

Complexity. It is valuable trying to find some more exact Mathematical proofs. 

To complete the above to have a Mathematical proof, we should prove and check 

the proofs of the below claims in the new interpretation: 

QIP = PSPACE 

MA ⊂ QCMA ⊂ QMA 

 

If the above results are being refuted our Physical assumption would be in 

danger! It seems unlikely. 

Note. Seemingly in the proof of  QIP = PSPACE [9], [10] we employ superposition 

of the states in quantum mechanics and if we show how superposition of the 

states is depicted in this new interpretation, we have a similar proof as it exists in 

the article. 

The explanation would be as following 



In any fuzzy instant of time, we have a linear combination of different states. This 

instant can be depicted as function and the x axis of graph of this function, is 

abstract time (similar to classical time). In any point of x-axis  the system is in one 

of the states, so the system in this fuzzy instant of time is a combination of states. 

We face  a new question again: How we find the associated  state to  a point 

(abstract time) in x-axis for any fuzzy instant of time? 

Although this question is a plausible question for our model, nevertheless it is not 

a physical question, since in this theory, abstract time is not a Physical concept. 

Refrences 

1. L.Babai “TRADING Group Theory for Randomness”, STOC’85: Proceedings of the seventeenth 

annual ACM symposium on Theory of Computing,  ACM, pp.421-429, 1985 

2. O.Goldreich, In a world of P=BPP 

3. O.Goldreich, Studies in Complexity and Cryptography: Miscellanea on the interplay       

     between Randomness and Computation  , Vol 6650 of Lecture Notes in Computer     

     Science, Springer 2011, P 43. 

4. S.Goldwasser; M.Sipser “Private coins versus public coins in interactive proof     
 systems”, STOC’86: Proceedings of the eighteenth annual ACM symposium on    Theory of 

Computing, ACM, PP.59-68, 1986 

5. Van Aten M, On Brouwer, Wadsworth Philosopher’s Series, 2004  
6. F.Didehvar, Computing Fuzzy Time, 
7. F.Didehvar, …checkable experimentally … 
8. F.Didehvar, ….Fuzzy time a solution for unexpected hanging Paradox, … 
9. Rahil Jain, Zhengfeng Ji, Sarvagya Upadyay, John Watrus, QIP=PSPACE, arxiv: 0907.4737, 27 
July 2009 
10. Rahil Jain, Zhengfeng Ji, Sarvagya Upadyay, John Watrus, QIP=PSPACE, Journal of the ACM, 
Volume 58, Issue 6, NO:30, pp 1-27 
 
11. L. Blum,  F.Cucker, M.Shub, S. Smale, Complexity and Real Computation, Spinger, 1998 
 
12.L. Blum, M.Shub, S. Smale, “On a Theory of Computation and Complexity  over the real 
numbers: NP-Comleness, Recursive Functions and Universal Machines, 
Bull.Amer.Mth.Soc.(N.S.) 21 (1): 1-46 (July 1989). 
  
13. B.Poizat, Les petit cailloux. Une approach modele-theorique de l’Algorithmie , Nur al-Mantiq 
wal-Ma’rifah, no.3.Ale’as, Lyon 1995, 2 pp. 
Under changing Physical rules and models, Aranson’s work 



14. S.Aaranson, Guest Column: NP-Complness problem and physical reality ACM Sigact News, 
36(1), 30-52, 2005 
15.  S.Aaranson, Bavarian. M, Gueltrini. G, Compuaabiliy theory of closed time like curves, arXiv 
preprint arXiv: 1609.05507, 2016 
16. S.Aaranson, J.Wattrous, Closed timelike curves make quantum and classical computing 
equivalent, Proceedings of the Royal Society: Mathematical, Physical and Engineering Sciences, 
465, 631-647, 2012.(?) 
17. F. Didehvar, Theory of Fuzzy Time Computation(TC*), Philpapers, ssrn2023 

18. F. Didehvar, Theory of Fuzzy Time Computation (2) ,      (TC + CON(TC∗)ͰP ≠ NP)      

F.Didehvar, Philpapers, ssrn2023 

19. F. Didehvar, Theory of Fuzzy Time Computation (3) ,      (TC + CON(TC∗)ͰP ≠ NP)      

F.Didehvar, Philpapers, ssrn2023 

 

 

 


