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Abstract

This article addresses computational procedures that are no longer constrained by
human modes of representation and considers how these procedures could be
philosophically understood in terms of ‘algorithmic thought’. Research in deep learn-
ing is its case study. This artificial intelligence (Al) technique operates in computa-
tional ways that are often opaque. Such a black-box character demands rethinking
the abstractive operations of deep learning. The article does so by entering debates
about explainability in Al and assessing how technoscience and technoculture tackle
the possibility to ‘re-present’ the algorithmic procedures of feature extraction and
feature learning to the human mind. The article thus mobilises the notion of
incommensurability (originally developed in the philosophy of science) to address
explainability as a communicational and representational issue, which challenges
phenomenological and existential modes of comparison between human and
algorithmic ‘thinking’ operations.
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Beyond Human Representation

The success of the Google-owned artificial intelligence (AI) company
DeepMind and its computer program AlphaGo is well known. In
March 2016, AlphaGo defeated the 18-time world champion Lee Sedol
at Go, an ancient, complex game that involves moving black and white
stones on a board to control territory. The victory was widely reported
by news outlets, with commentators drawing parallels with the famous
1997 chess match between the grandmaster Garry Kasparov and the
IBM supercomputer Deep Blue. The performance of DeepMind’s
AlphaGo, however, is considered more striking than that of its IBM
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predecessor, as the board game Go involves many more possible moves
than chess. Go also requires strategic skills that are more intuitive than
those useful in a chess game, and which are therefore less mechanisable.!
In this respect, AlphaGo’s victory also made headlines because it demon-
strated the potential of the type of Al technology that DeepMind cham-
pions: machine learning. This expression denotes computing techniques
that provide computer programs with the ability to improve over time
with minimal human intervention when exposed to large amounts of
data. The same programs subsequently apply this ‘learning’ to make
data-driven decisions.

While AlphaGo’s success is well known, the story of DeepMind’s 2017
cognate program AlphaGo Zero is less familiar to the general public.
AlphaGo learned to play Go by being exposed to training data derived
from millions of moves of past players. AlphaGo Zero, in contrast, was
not given data from games played by humans or machines but was
trained by playing against itself, starting from random moves and know-
ing nothing about the game of Go. This feat of solid and stable reinforce-
ment learning amazed the Al community, which welcomed AlphaGo
Zero as a significant achievement.” DeepMind proposed a self-taught
Al program that can train itself from scratch, being de facto ‘no
longer constrained by the limits of human knowledge’, as DeepMind
put it (see Hassabis and Silver, 2017). Whereas AlphaGo took months
to learn how to play, AlphaGo Zero took just a few days, less computing
power and a streamlined architecture to master the game, quickly reach-
ing levels of ‘superhuman performance’ (Silver et al., 2017: 354).

The ability of a program to self-train without the input of human data
is a key step towards achieving the holy grail of Al research: artificial
general intelligence. This is the capacity of a machine to perform a
breadth of cognitive tasks like that of a person. Recognising this,
DeepMind is keen ‘to make some real progress on some real problems’
(Hassabis, quoted in Gibney, 2017) and extend its success to areas with
practical applications (e.g. material design, genomics and drug discov-
ery). Central to this possibility is acknowledging that being ‘no longer
constrained by the limits of human knowledge’ means that AlphaGo
Zero won not by out-reading humans but ‘by seeing patterns and
shapes more deeply’, as Andy Okun — the president of the American
Go Association — observed (quoted in Sample, 2017). In other words,
AlphaGo Zero succeeded not because it behaved like a human player but
because it played differently from a human. This condition is particularly
interesting from both philosophical and sociocultural perspectives: in my
view, cases such as AlphaGo Zero allow us to say that contemporary
developments in cognitive computing are departing from what, in a pre-
vious work, I called the simulative paradigm, which has been looming
over Al research since Alan Turing’s proposition of an ‘imitation game’
(Turing, 1950) to test the cognitive capabilities of an artificial system.
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In that work, I claimed that we should conceive of ‘automated modes of
thought in such a way as to supersede the hope that machines might
replicate human cognitive faculties, and to thereby acknowledge a form
of onto-epistemological autonomy in automated ‘‘thinking” processes’
(Fazi, 2019a: 813). I thus argued for the possibility of considering the
algorithmic modes of thought of computing machines as ‘dramatically
alien to human thought’ (Fazi, 2019a: 813). This article continues
developing that line of argumentation and focuses on algorithmic
modes of cognition, thus maintaining a philosophical commitment to
ontological and epistemological questions about the nature of thinking
in the 21st century. More specifically, I here consider algorithmic thought
(what it might be and might do) by engaging with some theoretical impli-
cations of a computer program being ‘no longer constrained by the limits
of human knowledge’, as DeepMind claimed AlphaGo Zero to be. I do
not simply repeat what the Al industry says about itself and its products,
however; I instead critically address these claims to assess their philo-
sophical consequences by interpreting this declared freedom from human
knowledge as a form of autonomy from human modes of abstraction and
by relating these issues to questions about representation.’

This article thus continues to develop my theorisation of algorithmic
thought by addressing the contemporary expansion of automated modes
of abstraction that operate via what computer science calls representation
learning. As the computer scientist Yoshua Bengio has put it, the central
principle of machine-learning methodologies is ‘the automated discovery
of abstraction’ (2013: 3). ‘Representation learning’, LeCun, Bengio and
Hinton explain, ‘is a set of methods that allows a machine to be fed with
raw data to automatically discover the representations needed for detec-
tion or classification’ (2015: 436). In this article, I focus on precisely this
aspect of current developments in Al technologies: how the extraction
and organisation of ‘discriminative information from the data’ (Bengio,
2013: 2) that these technologies perform is specific to their computational
character and how it consequently transcends or is independent of
human access. I thus consider the 21st-century development of compu-
tational procedures for which, at present, no adequate human cognitive
representations exist and for which, significantly, human cognitive rep-
resentations are also unnecessary.

Black Boxes of Decision-Making

Research in machine learning is at the forefront of the agenda of Al and
data science. As an umbrella term, ‘machine learning’ denotes not a
single computational technique but a plethora of often quite different
tools and approaches to cognitive computing. These approaches have
been grouped together under this label because they all involve algo-
rithms that can ‘learn from experience’ insofar as they can change their
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operations to better fit the requirements of their tasks. These require-
ments are specified in the data that these algorithms must handle.
‘Machine learning automates automation itself” (Domingos, 2015:
9-10), for ‘computers can learn programs that people can’t write’
(Domingos, 2015: 6). Machine learning thus involves ‘a change in pro-
gramming practice’ as well as in ‘the programmability of machines’
(Mackenzie, 2018: 21). This condition has been described as a ‘quiet
revolution’ (Alpaydin, 2016: ix), as a new season after a long and
harsh winter in Al research, and as a computational renaissance preci-
pitated by a novel form of Al that in fact draws from old cybernetic
ideas.*

Since there are many machine-learning techniques and many devices
that successfully implement them, it is important to clarify that deep
learning is the approach followed by both AlphaGo and AlphaGo
Zero, and the method that Google’s DeepMind echoes in its own
name. Deep learning is itself a remarkably multifaceted technique. To
simplify, an artificial neural-network system relies on layers of artificial
neurons to process information. These layers of artificial neurons are
connected and influence each other in a complex web of interacting
units, somewhat like biological neurons are understood to do in a bio-
logical brain. A lower layer of neurons performs a computation and
transmits this result to the layer above, enriching the final outcome of
the layer at the top. What is obtained in each layer is a new representa-
tion, ‘which can be used as input for deeper layers’ (Bengio, 2013: 4).
A neural network is said to learn, then, because it can tweak its calcula-
tions and modify its interactions by tuning parameters via activation and
back-propagation among layers until the desired output (i.e. the desired
final representation) is produced. The network, however, is called deep if
its structure encompasses intermediary ‘hidden’ layers between the input
and the output.’ The architecture of a deep-learning system differs from
that of a standard artificial neural network precisely because of the pres-
ence of these multiple non-linear hidden layers.

Deep techniques are often discussed, as they promise to accelerate the
computational automation of today and fuel the digital transformations
of tomorrow. Although artificial neural networks have been around for
decades (they are a core technology of connectionism, a biologically
inspired approach to Al that emerged in the 1980s), it is only in the
past decade, thanks to the volume, velocity and variety (see Beyer and
Laney, 2012) of Big Data and the increase in computational power, that
Al research and industry have begun to capitalise on artificial neural
networks’ potential. Computational problems that the AI community
thought could not be tackled for many years — such as recognising
speech and other intricate patterns in high-dimensional data — are now
being significantly improved. Beyond reports on its promising results
(and the hype about its achievements) that have appeared both in
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specialised literature and the mainstream media, deep learning has also
caught popular attention in a less flattering light. Because of how a deep
neural network operates, relying on hidden neural layers sandwiched
between the first layer of neurons (the input layer) and the last layer
(the output layer), deep-learning techniques are often opaque or illegible
even to the programmers that originally set them up. While ‘different
machine learning models provide different levels of interpretability with
regard to how they reach a specific decision’, it is thus commented that
deep neural networks ‘are possibly the least interpretable’ (Kelleher,
2019: 245). In this sense, deep-learning programs are said to be black
boxes: it is clear that they work but often is not equally clear how or why.

In computing and engineering, the expression ‘black box’ is borrowed
from cybernetics and used to describe an object or a system that is viewed
uniquely in terms of its inputs and outputs, and whose internal working
therefore remains concealed. When approaching a black box, one is
interested only in stimuli and responses; one considers what goes in
and what comes out of the black box, not its inner components or oper-
ations. While some computer and data scientists might take issue with the
popular claim that deep-learning systems are black boxes,® there remains
the fact that, once a deep neural network is trained (or self-trained, as in
the case of AlphaGo Zero), it can be extremely difficult to explain why it
gives a particular response to some data inputs and how a result has been
calculated. The strength of a deep neural network lies in its capacity to
find non-linear patterns in large datasets and improve this extraction
through iterative interactions. The other side of the coin, however, is
that the automated learning choices of a deep neural network are not
yet fully understood by programmers. The knowledge generated in
these models remains, in part, implicit due to the non-linear nature
of deep learning, its compressed information, and the distributed char-
acter of the network’s representations, which rely on the many config-
urations of its large sets of wvariables. Such a complex, layered
architecture entails difficulty in analytically comprehending what
nodes and layers have learned and how they have interacted to trans-
form a representation at one level into another representation at a
higher, more abstract step. Moreover, interpretability is not a standard
feature of deep learning also because of the difficulty of producing a
satisfactory mathematical theory as a foundation for these architec-
tures. Interestingly, what makes deep techniques powerful also often
makes their theoretical underpinning tentative. Progress comprehending
these computational activities is achieved by trial and error, and oper-
ations are often rationalised retrospectively. To put this otherwise,
‘many algorithms using artificial neural networks are understood only
at a heuristic level, where [scientists] empirically know that certain
training protocols employing large data sets will result in excellent per-
formance’ (Lin et al., 2017: 1223).”
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The trope of the black box is a recurring one in the sociology of science
and in science and technology studies. Famously, Bruno Latour (1987)
described parts of science that have been accepted and are no longer
controversial as black boxes. Science, for Latour, can become a black
box when its inner workings are no longer open for scrutiny or debate,
when consensus has been reached about certain results, when the success
of a theory or a method obscures how scientific and technical work
operates, and when a hypothesis is settled as a matter of fact. So, para-
doxically, ‘the more science and technology succeed, the more opaque
and obscure they become’ (Latour, 1999: 304). Always within the diverse
domain of the sociology of knowledge, social constructivist positions —
such as the social construction of technology (or SCOT) — stress the need
to ‘open the black box’ to recognise the interpretive flexibility of an
artefact while also crediting ‘users as agents of technological change’
(Kline and Pinch, 1999: 113). Opening the black box thus involves coun-
teracting the closure mechanisms that ‘play a part in bringing about both
scientific agreement and the stabilization of an artefact’ (Pinch and
Bijker, 1984: 425).

Considering deep neural networks, concerns about Al as a black-box
technology in part recall these earlier debates in science studies yet also
transcend them. The black-box character of deep-learning techniques is,
first of all, a technical condition. Of course, these techniques are part of
the contemporary world, and their predictions, classification and cluster-
ing impact the everyday lives of millions of people; with respect to this
impact, a social constructivist perspective proves useful to explain the
concurrent yet multidirectional involvements of relevant social groups
and the values and interests that inform their participation. However,
if opening the black box means asking ‘how technology is made’ — to
paraphrase the title of a famous essay in social constructivist technology
studies by Bijker (2010) — then, while doing so, we cannot avoid address-
ing the ontological and epistemological specificities of that same technol-
ogy.® In the case of deep learning (and machine learning, more generally),
my proposition is that we should not overlook the computational and
increasingly autonomous character of these technologies.

Insofar as they are computational, these are calculative techniques that
involve quantifying and systematising the real world through discrete
functions. Above all, since they are computational, deep-learning
methods involve decision-making. In a computational context, decision-
making is the mechanised process that results in the selection of a
particular result or output among possible alternatives. This decisional
capacity of computational systems is inscribed in the definition of an
algorithmic procedure: a step-by-step ‘effective’ method to address a
problem that can be posed as a yes-or-no question of input values
(Turing, 1936). In addition, however, it is crucial to consider how deep
learning algorithms are also increasingly autonomous artificial actors
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(see Fazi, 2019b), requiring little engineering by hand. In these learned
(not designed) systems, transparency is a matter of accountability vis-a-
vis their automated and quasi-autonomous decision-making capacities,
which have been transferred from humans to the Al system. Thus, while
all technologies are black boxes to an extent (even a door handle can be
approached as one because knowledge of its inner working is not neces-
sary to open a door), the consequences of the black-box character of deep
learning are different because, in this case, it is agency itself (that is, the
capacity of the technological system to operate upon its environment)
that is opaque.

The decision-making of quasi-autonomous artificial agents powered
by deep learning affects millions of people every day. The range of deci-
sions covered by deep learning is vast. It pertains to mechanisms of
classification, clustering, ranking and pattern-finding, which are
employed, for instance, in credit card fraud detection, spam filters,
search engines, market segmentation, social media advertising, insurance
and credit scoring, healthcare management, transport and logistics, loan
qualification and mobile communication. These and other operations
were often determined by humans in the past; today, the human user
rarely has a concrete sense of the reason or mechanism of certain results
or what inputs they follow. The task left to the social scientist, cultural
theorist, philosopher, legal scholar and critical theorist is asking what
would count as ‘cracking open’ these Al black boxes responsible for so
much contemporary decision-making — particularly now that society has
entered an era of computational applications whose success is measured
by the capacity of computational agents to act on their own. Although
involving various arenas of public and academic discussion, this question
has been most explicitly developed within the interdisciplinary scholarly
debate about the politics and governance of algorithms (see, for instance,
Amoore, 2020; Ananny and Crawford, 2018; Beer, 2018; Benjamin, 2019;
Noble, 2018; O’Neil, 2016; Pasquale, 2015). It is impossible to review
these rich discussions in full here: suffice it to say, however, that there is
consensus on the fact that automated cognitive agents processing increas-
ingly vaster amounts of data will play ever more significant roles in
regulating and directing our lives. What academia and the general
public alike are asking for is transparency regarding how security, gov-
ernment, media, retail, finance, science and industry employ Al on a
daily basis, often to influence human action. Explainability is a key
word for present and future algorithmic cultures, raising equally
unique social and ethical challenges.

A Different Kind of Abstraction

From the perspective of this article’s engagement with computational
operations supposedly beyond human knowledge, both the notion of
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and debate about explainable AI (XAl) are significant and relevant, as
they call for the opaque powers of Al to be leashed in the realm of
observation so that the mysteries of machine learning eventually surface.
I am not referring here to the visual form of machine learning (i.e. to how
data and data patterns can be made visible thanks to specialised graphics
showing something about how a machine-learning algorithm’s output
relates to its inputs — see, for instance, how this is discussed in
Mackenzie, 2015). Rather, I am gesturing towards the more figurative
sense in which technoscience and technoculture are addressing the pos-
sibility to present (or re-present) algorithmic operations to the human
mind and thus make the abstractive operations of artificial cognitive
agents (and their internal representations) somehow available to and
comprehensible within the epistemic landscape of human cognitive
representation.

Interestingly, in her sociocultural study of machine-learning algo-
rithms, the information scholar Jenna Burrell distinguished between
three types of opacity: (1) opacity as corporate or state secrecy (i.e. algo-
rithms as proprietary, their lack of transparency a form of institutional
protection to maintain trade secrets and competitive advantage); (2) opa-
city as technical illiteracy (i.e. writing and reading code as highly tech-
nical skills that require specialised knowledge and are thus inaccessible to
most people); and (3) opacity as an inherent characteristic of machine-
learning techniques — that is, ‘opacity that stems from the mismatch
between mathematical optimization in high-dimensionality characteristic
of machine learning and the demands of human-scale reasoning and
styles of semantic interpretation’ (2016: 2). The debate on explainability
in Al concerns all three types of opacity, but the last one, which pertains
to specific techniques used in machine learning, is the most conceptually
challenging. This is a form of opacity that, in the case of deep-learning
systems, thrives upon the complexity of their high-dimensional domains
— a complexity for which a machine might build a model but a human
most likely could not hand-engineer one. Technically speaking, the crux
of the problem of explainability in deep learning lies in artificial neural
networks not returning clear representations of their inner workings to
programmers. Deep neural networks lack model interpretability, so when
considering why a machine made a particular decision or one prediction
instead of another, we remain ignorant at worst and agnostic at best.
Returning, for instance, to the case of DeepMind and its AlphaGo
machines, to understand how and why AlphaGo or AlphaGo Zero
chose a particular move instead of another, the justification given by
the program may consist of a rendition of the network’s weighted con-
nections and how these pass their outcomes to the next layer in the neural
network. Of course, this might not signify much to a human user, for the
calculation the neural network carries out cannot be easily performed by
a human mind. Even if this performance were possible, however, it might
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be objected that merely rendering the calculation would hardly count as a
meaningful form of understanding.'

This issue links to another open question about when and why an
explanation might be considered useful and successful or not. I discussed
carlier how establishing a theoretical ground for deep learning could help
programmers interpret the choices a deep neural network makes and thus
validate its behaviour. Here, however, it should be added that, alongside
explorations of deep learning’s mathematical foundations, the growing
field of XAI focuses on the taxonomies of desiderata and of methods for
interpreting Al systems. Research in XAl often explicitly looks for prag-
matic approaches to human-readable explanations that can meet the
expectations of end-users, whether they are medical doctors and patients
in an automated diagnosis scenario or banks and their customers agree-
ing on a mortgage assessment. Questions about the nature and charac-
teristics of a successful explanation are thus also answered by considering
the social dimension of interpretability, and they must confront the fact
that, when attempting to produce knowledge about a deep-learning sys-
tem’s input-output relationship and the aggregate behaviour of its deci-
sion structure, ‘we may not even have the words to express the concepts
that some parts of the model represent’ (Spreeuwenberg, 2019: 32).

In this respect, deep learning may be changing the epistemic possibi-
lities of justification and explanation, effectively reshaping how science
imparts information and knowledge. My claim, however, is that deep
learning is changing the meaning, scope and use of abstractions as
well. To expand on this point, it is useful to distinguish between the
modus operandi of the traditional statistics community and the
machine-learning community, which the statistician Leo Breiman
(2001) elaborates on in a much-cited paper. Breiman speaks of ‘two cul-
tures’ to explain this distinction: on the one hand, traditional statistics
assumes that data models are the best way to solve problems; on the
other, scientists working with machine learning believe that algorithmic
models can do better. Breiman’s paper attempted to show that the data
models of statistics are not applicable to a wide range of problems, so
statisticians should allow a wider variety of tools to be employed in their
discipline. Breiman himself is a pioneering scholar who helped bridge the
gap between computer science and statistics, writing and working when
machine-learning techniques were still underexplored in statistical
science.

In what follows, rather than lingering on Breiman’s advocacy for
machine learning, I focus on how his paper addressed black boxes.
From a scientific perspective, Breiman argued, nature is a black box:
the challenge is to extract information on how nature associates input
variables to output variables and to produce predictions about these
input-output relations. Data are what scientists handle to consider pre-
cisely these tasks, and models are what scientists use to draw conclusions
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from data to produce these descriptions. The relationship between data
and models, however, is different in statistics and computer science.
Breiman explained that, traditionally, the purpose of statistics is to pro-
duce an understandable picture of the relationship between the input
variables and the end results in the phenomenon or situation observed.
Of course, nature is overwhelmingly complex and rich with variables;
statistics hopes to achieve, at best, accurate representational approxima-
tions, in which a data model is as close as possible to represent, and thus
explain, the black boxes of nature. The development of algorithmic meth-
ods of statistical analysis, however, involved doing things differently. The
black box of nature remains an unknown whose underlying workings are
not the target of scientific enquiry. The aim of algorithmic models is not
to find the ‘true’ data-generating mechanism but to use an algorithm to
account for that mechanism as well as possible. In this sense, computer
science is less concerned with explanation than with predictive accuracy,
and modelling is treated as a problem of function optimisation. ‘The goal
is not interpretability, but accurate information’ (Breiman, 2001: 201).
Breiman’s argument, of course, is not the only reconstruction of the
field of machine-learning research. However, drawing from Breiman’s
account, one can begin to explain how and why, thanks to the contem-
porary availability of high computing power and of vast amounts of
data, previously undetected or underrated differences between explan-
ation and prediction have moved to the fore of scientific practices,
such as statistics."" Moreover, the difference between explanation and
prediction highlighted in Breiman’s paper also speaks about what
abstraction is — or can become — in algorithmic modelling. Following
Breiman, we could say that statisticians want interpretable approxima-
tions of what they hypothesise happening in the elusive black boxes of
nature. In this sense, they use data to abstract away a model.'” In fact,
according to Breiman, statistics ends up focusing more on the model than
on the problem or the data themselves. Pushing Breiman’s comments
further, we could also argue that abstractive procedures work differently
in algorithmic modelling, which seems to acknowledge that human
abstraction might never be a particularly accurate predictor. Rather
than description, then, construction is the epistemic tool of choice: instead
of reducing a black box to fit a simpler model, the algorithmic modelling
of machine learning constructs and stands as another black box, thus
freeing abstraction from its reductionist role as a means of simplification
and description. Abstractive operations of classification and generalisa-
tion have overcome the boundaries of the human mind and are per-
formed via the weights of digital triggers in artificial neural networks.
Algorithmic modelling, consequently, is not a means of interpreting but
rather constructing new, complex worlds in equally new, complex com-
putational ways. In her book on models and simulations, the philosopher
Margaret Morrison observed that scientific inquiry ‘involves
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reconstructing or recasting nature in a specific form and investigating
how it behaves or might behave under certain circumstances.’
‘Although we can use mathematics to do this,” Morrison continued,
‘the notion of “reconstruction” can also be instantiated in other ways’
(2015: 2). The operational black boxes of machine learning also seem to
be one of these other ways, according to which epistemological recon-
struction assumes a life of its own via algorithmic models that do not aim
to represent and thus do not wish to explain.

Incommensurability

Possibly due to much scientific research in deep learning focusing (quite
successfully) on computer vision, metaphors or analogies that refer to the
sense of sight are frequently used to describe the operations of deep
neural networks. So, for instance, it is often said that these artificial
cognitive agents ‘see’ visual inputs differently.’® In light of what I have
discussed so far, however, I claim that deep learning not only involves a
distinctive type of sensibility (i.e. a different capacity to receive data
inputs) but also concerns a specifically computational relation with the
intelligible (i.e. with what is apprehensible only through forms of abstrac-
tive activity).

To exemplify this claim, let us consider machine learning’s increasing
ability to recognise human handwriting. This is something notoriously
hard to perform computationally and for which more traditional pro-
gramming techniques do not work well because it is difficult to prefigure
and then encode an instruction that would formally describe such a task.
In other words, relatively simple, immediate human intuitions of how to
identify shapes are not easily expressed in computational terms. With
deep learning, however, the situation changes.'* Let us assume that we
want a program to recosgnise a handwritten digit, such as zero. In the case
of supervised learning,"” thousands of scans of handwritten zeros are fed
to the machine as training examples. The program then learns to recog-
nise the digit, not how a human might (e.g. determining that a zero
resembles a vertical oval), but by mechanically detecting complex pat-
terns of darker and lighter pixels expressed as matrices of numbers. This
is arguably a different form of perception (or of input reception), and
ground-breaking research on how a computational system can elaborate
visual information that humans cannot even receive or perceive is being
developed in the field of computer vision.'® The point here, however, is
that beyond physical data reception, we are also witnessing a specific
form of abstractive capacity — one akin to an automated mode of
conceptualisation, that is, an automated mode of forming internal
representations meant to generalise while abstracting from observed
facts or phenomena. In the case of deep learning, the possibility of con-
cept formation must be understood vis-a-vis the machine’s automated
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feature extraction from raw data. ‘Features’ are the properties and char-
acteristics of data that the system learns to distinguish and organise in
order to recognise patterns, make predictions and classify tasks: deep
neural networks are algorithms for classification from features, and
deep learning is largely feature learning.

None of this implies that feature learning and conceptualisation are
identical. I am addressing the two operations together, however, insofar
as I am considering the possibility of algorithmic thought and how
abstraction qua generalisation is a key operation in the respective
‘thinking’ structures of both humans and machines.'” The key point is
that these abstractive operations remain specific to the onto-epistemolo-
gical grounds of humans, on the one hand, and machines, on the other —
thus informing human modes of thought as well as algorithmic ones.
For instance, returning to the case of the algorithmic recognition of
handwritten zeros, the deep-learning model identifies and constructs rep-
resentations that are more relevant than those that any human program-
mer could have identified and given to the machine. In fact, these are
representations that a human would have not (and could have not)
abstracted in the first place. The way the program extracts and organises
information in terms of features and then generalises this information
to form the desired ‘concept’ — or, in computational terms, the
desired output representation of zero — is thus entirely and exclusively
computational.'®

We therefore must be careful when addressing how a human receives
and elaborates stimuli or information, on the one hand, and how, on the
other, a computing machine might also be said to do the same.
It is important to talk here of incommensurability between the
abstractive choices of humans and those of computing machines.
‘Incommensurability’ is the right word because the two cannot be mea-
sured against each other or compared by a common standard.
Considering such an incommensurable dimension is particularly relevant
in the context of debates about XAl because it allows us to highlight how
explainability is a representational problem that pertains to communica-
tion. For abstractions to be successfully represented and thus expressed
and shared, a common experience between the communicator and the
receiver of the communication must be in place. Of course, this is not
possible in the case of human-machine interactions, for no common phe-
nomenological or existential ground exists between human abstractions
and those of a computational agent. The specificity of computational
abstraction and its suitability as the grounds of studying algorithmic
thought are thus not claims strictly about cognitive science, as they do
not emphasise the cognitive similarities and differences between abstrac-
tions by humans and machines. Rather, I stress the difficulty of compar-
ing human and machine abstractive operations when ontological grounds
shift and epistemic possibilities consequently vary. Acknowledging an
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incommensurability between how humans and machines build models
involves recognising this ontological and epistemological disparity
between how humans and computational agents make decisions.
Inevitably, this discrepancy is mirrored in how such decisions might be
respectively recounted or represented by humans and artificial algorith-
mic agents.

Originating in ancient Greek mathematics, the notion of incommen-
surability denotes the absence of a common unit of measurement
between two magnitudes. The development of this concept drove the
distinction between geometry and arithmetic and is also central to
the study of the ratios of numbers. Outside mathematics, however, the
notion of incommensurability is used to denote that for which no shared
nomenclature or shared ground for evaluation exists. In this sense,
incommensurability is a key concept in 20th-century philosophy of sci-
ence. Turning to this disciplinary context, in 1962 the philosophers of
science Thomas Kuhn and Paul Feyerabend independently (but equally
influentially) argued that successive scientific theories (with their asso-
ciated concepts, methods and worldviews) are incommensurable.'” For
Feyerabend (1962), incommensurability was a semantic issue which he
addressed to challenge conceptual conservatism in science and the
approach to explanation, reduction and scientific advancement employed
by logical positivism. In Kuhn’s historical philosophy of science, too,
incommensurability was a problem of language; for Kuhn (1962) as
well, and to quote Michael Polanyi (whose philosophical work on the
practice of science influenced both Kuhn and Feyerabend), scientists
from diverse schools of thought and periods in time ‘think differently,
speak a different language, live in a different world’ (Polanyi, 1958: 151).
Beyond semantics, however, incommensurability was also a methodo-
logical and perceptual issue and a problem in taxonomy for Kuhn. He
described as incommensurable the stark contrast between theoretical
frameworks for which not only nomenclatures do not overlap but also
for which no shared perceptions, methods or classifications exist.

In the philosophy of science, the notion of incommensurability is con-
troversial; its meaning and usefulness are often contested, and discus-
sions on this topic are never fully resolved.?® I do not chronicle these
discussions and their consequences here. Nonetheless, it is valuable to
consider how the incommensurable has been introduced and addressed in
that philosophical context and tradition of thought: this is because those
debates help us situate incommensurability conceptually and, most
importantly, because both Kuhn and Feyerabend proposed the concept
while assessing the epistemic possibilities of scientific explanation.
Precisely in relation to explanation, then, the notion of incommensur-
ability confirms that explainability — in Al research as elsewhere — is a
representational and communicational issue. Obviously, language plays a
central role in this. Perhaps, to an extent, humans are bound to relate to



68 Theory, Culture & Society 38(7-8)

what they cannot represent or communicate with metaphors and analo-
gies from their own experiences. So, for instance, we say that a comput-
ing machine ‘sees’, ‘listens’ or ‘thinks’, just as we say that an aeroplane
‘flies’ despite our awareness that an aircraft and a bird take flight in
profoundly different ways.?! In this respect, however, the challenge for
both the philosophical and sociocultural studies of computational auto-
mation is to find or found the epistemological means to theorise, as well
as possible, the incommensurable orders of intelligibility and sensibility
that automated computational agents produce. Inevitably, the notion of
incommensurability to be developed must transcend that proposed in the
history of the philosophy of science: the long-term goal is not to apply
Kuhn’s or Feyerabend’s respective understandings of the incommensur-
able to computational media and computational culture but to develop a
radical version of the concept to address the specificities of human and
algorithmic modes of abstraction.

‘Upon Opening the Black Box’

To address this challenge, deep learning offers a particularly relevant case
study. In the words of Yoshua Bengio, deep-learning research focuses on
‘learning algorithms that discover multiple levels of distributed represen-
tations, with higher levels representing more abstract concepts’ (2013: 1).
‘A deep learning algorithm’, Bengio continues, ‘is a particular kind of
representation learning procedure that discovers multiple levels of repre-
sentation, with higher-level features representing more abstract aspects of
the data’ (2013: 2, emphasis in original). While much of computer pro-
gramming has historically consisted in making human abstraction sig-
nificant and operative within the instrumental remit of algorithmic
machines, with deep learning we face the opposite case: the abstractions
and consequent instructions the machine gives itself now require inter-
pretation for them to be significant and operative for humans. The modes
of organisation, categorisation and classification that belong to the
abstractive operations of these computational cognitive agents are
indeed incommensurable. Maintaining a theoretical focus on the nature
and possibilities of abstraction as the balance moves between autonomy
and automation within Al thus involves acknowledging and working
with the prospect of modes of abstracting that might arise within calcu-
lation but also surpass the boundaries of human cognitive representation.
In the example of recognising human handwriting, the ‘autonomy of
automation’ (Fazi, 2019b: 94) regarding abstractive operations is demon-
strated by a deep learning system producing internal representations
independently from the phenomenological or experiential ground of
the human programmer. Returning to this article’s opening example of
AlphaGo Zero, such an autonomy is doubled: not only the outputs but
also the training inputs are somewhat independent from human
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knowledge. DeepMind’s description of AlphaGo Zero as a form of
superhuman intelligence is thus misleading; it would be more appropri-
ate, from the point of view of incommensurability, to speak of non-human
or inhuman intelligence (and the term ‘intelligence’ itself should also be
problematised according to comparative epistemology).

Deep learning demonstrates that, when thinking and talking of com-
putational cognitive agents, our theoretical efforts should attempt to
move from strictly phenomenological analyses and existential qualifica-
tions (i.e. from efforts to address objects and situations as they appear to
or are understood by human consciousness and through categories of
human life and experience) towards more speculative modes of investi-
gation. Adopting a speculative mode of investigation, we should address
the critical prospect of understanding what explanation and interpret-
ation might be in the formalising space of computation. Key to this
speculative effort in relation to the study of computational automation
is the possibility of constructing a theory of knowledge specific to com-
putational artificial agents — a theory that can be advanced only by
assessing the ontological and epistemological possibilities of machines.
This theory would be valuable not only within the remit of digital studies
but also for philosophical investigations of the relation between abstrac-
tion and experience and, consequently, the relation between rationality
and the world. The following valuable programmatic point can then be
drawn from the incommensurability debate in the philosophy of science.
Both Kuhn’s and Feyerabend’s understandings of incommensurability
have been accused of denying the possibility of progress and truth in
science and thus implying irrationality.?> This accusation, however,
was rebutted by both scholars: claims about incommensurability do
not imply that comparison is not possible but that it is much more dif-
ficult than the logical positivism and logical empiricism of the time
assumed it was. Both Kuhn and Feyerabend made the notion of the
incommensurable a powerful weapon in their post-positivist arsenals,
and they used it to challenge evaluation and explanation based on abso-
lute universal criteria or a neutral observation language.

Although differences certainly exist between the contexts and the aims
of that debate — which pertained to the possibility of theory comparison —
and the present study on deep learning and explainability, I propose that
we can also mobilise the concept of incommensurability to problematise
the 21st-century (implicit or explicit) positivist approaches to computa-
tional culture and society via data science.” Doing so does not imply
relativism but, in fact, quite the opposite: I am arguing for the need to
be loyal to the specificities of humans and machines in our comparisons.
Similarly, we should not take for granted the fact that, when dealing with
computing machines’ abstractions that transcend the epistemic bound-
aries of human cognitive representation, we are working with models
that are, at this time, both within and beyond logos. In other words, these
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models are logical because they are computational and thus based on the
possibility of a formal, logico-mathematical account of calculation; how-
ever, in a different sense, they are also a-logical because they are, at pre-
sent, inexpressible or unrepresentable by humans (where ‘logos’,
according to its ancient Greek etymology, not only means ‘reason’ or
‘proportion’ but also ‘word’, ‘discourse’, ‘speech’, and derives from the
verb légo, ‘to count’, ‘to tell’, ‘to speak’). Focusing on the notion of incom-
mensurability, then, allows us to emphasise the paradoxical condition of
logico-mathematical abstraction in computation, which despite being a
key tool for human attempts to organise and make sense of reality, today
also surpasses that human-centric instrumental horizon with its Al imple-
mentations. For these Al-native models to be held rationally accountable,
we should first ask whose and what rationality we are discussing. This
question is radically open and acknowledges that a comparison between
kinds and modes of thought is, to an extent, necessary to study Al’s
‘thinking’ procedures. The use of terms such as ‘thinking’ and ‘intelli-
gence’ (which originated in human epistemology) does not contradict
my argument; rather, their use confirms the inevitability of a comparison,
although a comparison that will always be incomplete and partial because
humans, as observers and interpreters, can only offer epistemic represen-
tations that have been shaped within their own ontological domain.

In this respect, it must be highlighted that incommensurability is a
translation failure: on the one hand, a satisfactory translation between
incommensurable entities is difficult or even impossible; on the other, a
‘translation failure’ also signals the limits of approaching explainable Al
by searching for the quality or propriety of being translatable. It is
important to stress this vis-a-vis current issues in the contemporary
quest for fair, accountable, transparent Al precisely because that quest
appears to be predicated on research that understands interpretability in
terms of translation. It is thus also useful to consider how Kuhn (2000b)
attributed the equation between translation and interpretation to the
analytic tradition of philosophy. This equation was, in his opinion, mis-
leading: incommensurability does not mean that a theoretical term, for
instance, cannot be interpreted (that is, be made intelligible); rather, it
means that it cannot be translated, as it has no equivalent in another
theoretical language.

Returning to debates in and on XAl such an equation between inter-
pretation and translation can be observed in research that promotes the
advancement of future XAI systems by developing new techniques able
to produce interpretable models of machine-learning operations; these
models, in turn, are paired with interfaces to advance useful human-
machine translations, thus generating meaningful explanatory dialogues
for end users. Interpretability via human-machine translation is, for
instance, the explicit goal of the Defense Advanced Research Project
Agency’s (DARPA) XAI initiative, which — recognising explainability
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as a real issue for the computational systems of today and tomorrow —
aims to develop human-centric perspectives in the design of artificial
cognitive agents.* The challenge, for DARPA and other parties involved
in the quest for interpretability in AL> is to achieve understanding with-
out compromising the predictive power and overall learning performance
of the computational system. To do so, DARPA’s XAl initiative encom-
passes various projects ranging from the design of entirely new kinds of
deep neural networks comprising smaller and hence more easily under-
stood modules to the borrowing of insights from the psychology of
human expertise and decision-making.

What observations can be advanced about DARPA’s XAl in relation
to the issue of incommensurability? First, consistent with similar tech-
noscientific attempts, DARPA’s quest for XAl aims to bring what is
beyond human knowledge back into the domain of human cognitive
representation. Second, the goal of DARPA’s XAI project is to find
meaningful representations of the machine’s own abstractions, even
though these representations might be only useful or valuable to
human actors and not, strictly speaking, necessary for the operativity
of machine agency itself. Noticeably, there is not yet an obvious way
of designing an artificial computational system that can explain itself, just
as there is no consensus on what that explanation should look like — that
is, what such an explanation should aim to represent. Third, then, the
following question must be answered: would giving enough speculative
credit and attention to the incommensurable operations of artificial cog-
nitive systems be enough to produce such a shared account of a useful,
successful explanation?

This question constitutes my conclusion; I leave it open to future
research on the topic, which would have to further problematise the
possibility of explanation in Al precisely because the opportunity of
direct human-machine translations for artificial cognitive systems that
are de facto beyond human representation can be questioned via the
notion of incommensurability. In a famous polemical essay, Langdon
Winner (1993) criticised imperatives of ‘opening the black box’ being
obeyed, in his opinion, by the social construction of technology.
Winner noted that, ‘upon opening the black box’, the risk was of ‘finding
it empty’. In a parallel yet distinct sense, we can borrow Winner’s famous
expression to consider now whether contemporary XAI’s imperatives of
opening the black box are running a similar risk. If there is indeed such a
risk, it is less of finding the black box empty than of realising that there is
nothing to translate or to render precisely because the possibility of
human representation never existed in the first place.

ORCID iD
M. Beatrice Fazi (¢} https://orcid.org/0000-0001-7183-8095



72

Theory, Culture & Society 38(7-8)

Notes

1.

In Gilles Deleuze and Felix Guattari’s 4 Thousand Plateaus, the two board
games are compared philosophically. ‘Chess’, Deleuze and Guattari wrote, ‘is
a game of State’; its pieces ‘have an internal nature and intrinsic properties
from which their movements, situations, and confrontations derive.” The
pieces in Go, in contrast, are ‘pellets, disks, simple arithmetic units, and
only have an anonymous, collective, third-person function’; they have ‘no
intrinsic proprieties, only situational ones’ (2004: 389).

Alpaydin explains that reinforcement learning ‘is also known as learning with
a critic. The agent takes a sequence of actions and receives a reward/penalty
only at the very end, with no feedback during the intermediate actions. Using
this limited information, the agent should learn to generate the actions to
maximize the reward in later trials’ (2016: 180).

. T use the term ‘representation’ not despite but because of debates about its

crisis in science, art and philosophy (for an overview of some of these dis-
cussions, see Noth, 2003). I do so to point to a renewed engagement with
questions about the possibility (or impossibility) of representing. Moreover,
I am speaking of representation because it ‘lies at the heart of the debate
between the logic-inspired and the neural-network-inspired paradigms for
cognition’ (LeCun et al., 2015: 441).

The first model of an artificial neuron was published by Warren McCulloch
and Walter Pitts (1943), while the first general definition of machine learning
was made by Arthur Samuel (1959). In 1957, Frank Rosenblatt (1962) devel-
oped the perceptron, an electronic device that implemented a simplified model
of a biological neuron for pattern recognition. For an account of the devel-
opment of deep learning, see Schmidhuber (2015).

. In 1986, David Rumelhart, Geoffrey Hinton and Ronald Williams presented

experimental evidence of the usefulness of the hidden dimension of artificial
neural networks’ back-propagation algorithms. In the journal Nature, they
wrote: “We describe a new learning procedure, back-propagation, for net-
works of neurone-like units. The procedure repeatedly adjusts the weights
of the connections in the network so as to minimize a measure of the differ-
ence between the actual output vector of the net and the desired output
vector. As a result of the weight adjustments, internal “hidden” units
which are not part of the input or output come to represent important fea-
tures of the task domain, and the regularities in the task are captured by the
interactions of these units. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as the percep-
tron-convergence procedure’ (1986: 533; see also LeCun et al., 1998D).

For instance, parts of computer and data science stress that, at present, deep
neural networks are often embedded within more traditional software, the
main algorithmic architecture and strategy of which are known; it is also
emphasised that the performance of deep learning can be at least partially
understood at a theoretical level precisely because of this composite character
of contemporary machine-learning systems. The AlphaGo Zero case itself
exemplifies this point insofar as the deep-learning element of the program
focuses on calculating two central functions of the system (the expert policy
and the value approximation function). See Silver et al. (2017).



Fazi

73

7.

10.

11.
12.

13.

14.

15.

16.
17.

18.

Whether deep learning needs a mathematical foundation is still debated; it is
generally agreed, however, that mathematical justifications for deep learn-
ing’s success remain elusive. New paradigms of mathematical reasoning are
thus sought as well as new modes of analysis (see, for instance, the work of
Sanjeev Arora at Princeton University).

. In arguing this, I diverge from Bijker’s claim (2010) that the technical and

political question ‘How to make technology?’ can be answered by bracketing
the philosophical question ‘What is technology?’

The concept of agency is not antithetical to that of automation: something
automated, such as a computational process, can have agency if we take the
term to mean the capacity to produce a particular effect and understand
automation as not synonymous with automatism.

Understanding and explanation are key concepts in epistemology and cen-
tral topics in debates about scientific knowledge. Some views take under-
standing to be a psychological process involving the cognitive ability to
explain; other positions instead argue that understanding is not necessarily
explanatory (see Khalifa, 2017).

For explanatory and predictive modelling in statistics, see Shmueli (2010).
I am here hinting to the etymological origin of the term ‘abstraction’, which
lies in the Latin verb abstrahere, meaning ‘to draw away’.

This is true for the technoscientific literature on the topic but also for
technocultural engagements in the field of media and software studies.
Adrian Mackenzie and Anna Munster (2019), for example, have proposed
the notion of ‘platform seeing’ to describe the computational operationali-
sation of a new mode of observing.

LeCun, Bottou, Bengio and Haffner (1998a) presented one of the most
influential cases for the introduction of neural networks to recognise hand-
written characters.

In supervised learning, algorithms process labelled datasets; while the inner
relations of these data might be unknown, the needed output is known: ‘the
goal is to learn a function that maps from a set of input attributes for an
instance to an accurate estimate of the missing value for the target attribute
of the same instance’ (Kelleher, 2019: 255). In unsupervised learning,
instead, there is no target attribute or predefined output. ‘The aim...is to
find the regularities of the input’ (Alpaydin, 2016: 111). The neural network
attempts to find structure in the data by extracting useful features and
analysing them.

See, for instance, research by Torralba and Freeman (2014).

In Geirhos et al. (2018), both human intelligence and machine intelligence
are described as grounded in the power of generalisation that belongs
equally to biological and artificial neural networks. In cognitive psychology,
generalisation is understood as the basis of the process of learning from
experience. In the literature on deep learning, generalisation is addressed
in terms of the capacity of a model to learn from given data and then apply
that information to other data.

Deep learning’s artificial neurons respond to simple shapes and then more
complex structures until they can address highly abstract concepts. Alpaydin
explained that ‘starting from the raw input, each hidden layer combines the
values in its preceding layer and learns more complicated functions of the
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19.

20.

21.

22.

23.
24,

25.

input. ... Successive layers correspond to more abstract representations until
we get to the final layer where the inputs are learned in terms of the most
abstract concepts’ (2016: 104). ‘In deep learning,” Alpaydin continued, ‘the
idea is to learn feature levels of increasing abstraction with minimum human
contribution ... because in most applications, we do not know what struc-
ture there is in the input, especially as we go up, and the corresponding
concepts become “hidden.” ... It is this extraction of hidden dependencies,
or patterns, or regularities from data that allows abstraction and learning
general descriptions’ (2016: 106).

In this article, I can only briefly mention some differences between Kuhn’s
and Feyerabend’s positions, which should not be conflated. The use and
meaning of the concept of incommensurability also continued to evolve
throughout both Kuhn’s and Feyerabend’s scholarship.

For an overview of ‘the incommensurability thesis’, see Sankey (1994, 1997).
Issues of scientific change and theory comparison are also addressed in
Soler, Sankey and Hoyningen-Huene (2008).

‘The quest for “‘artificial flight” succeeded when the Wright brothers and
others stopped imitating birds and started...learning about aerodynamics’
(Russell and Norvig, 2010: 3).

‘My critics respond to my views on this subject with charges of irrationality,
relativism, and the defense of mob rule. These are all labels which I categor-
ically reject, even when they are used in my defense by Feyerabend. To say
that, in matters of theory choice, the force of logic and observation cannot
in principle be compelling is neither to discard logic and observation nor to
suggest that they are not good reasons for favoring one theory over another’
(Kuhn, 2000a: 126).

I have discussed data science’s positivist inclinations in Fazi (2017).

The Defense Advanced Research Projects Agency (DARPA) is the US
Department of Defense’s body responsible for research and development
projects in technology and science for use by the military.

From a legislative perspective, it can be mentioned how the European Union
(EU) has declared that EU citizens can challenge legal (or equally signifi-
cant) decisions made by algorithms and appeal for human intervention and
interpretation. This piece of legislation is part of the General Data
Protection Regulation (GDPR) that went into effect in May 2018 and
sketches the contours of a ‘right to explanation’.
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