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Abstract

A frst-order logic of belief with identity is proposed, primarily to give

an account of possible de re contradictory beliefs, which sometimes occur as

consequences of de dicto non-contradictory beliefs. A model has two sepa-

rate, though interconnected domains: the domain of objects and the domain

of appearances. The satisfaction of atomic formulas is defned by a particu-

lar S -accessibility relation between worlds. Identity is non-classical, and is

conceived as an equivalence relation having the classical identity relation as

a subset. A tableau system with labels, signs, and sufxes is defned, extend-

ing the basic language LQB by quasiformulas (to express the denotations of

predicates). The proposed logical system is paraconsistent since φ∧¬φ does

not “explode” with arbitrary syntactic consequences.

Keywords: appearance, belief, identity, labelled and signed tableau, object, para-

consistent, tableau sufx.

1



1 Introduction

Due to some specifc properties and relations of objects, and due to limitations of a

reasoning agent’s knowledge, a multiplicity of real and possible objects can appear

as fused into one “object” (appearance), and, conversely, one object can appear as

split in many “objects” (appearances).1 In such a context, de re contradiction

in an agent’s belief can arise precisely as a consequence of the agent’s de dicto

non-contradictory belief. Naturally, there are also real and possible objects which

do not appear in an agent’s awareness at all, and about which the agent does

not believe anything at all. In this paper we present a logic of reasoning with

real and possible objects, and real and possible appearances of the objects. The

main distinguishing point with respect to approaches in [17, 18, 16, 15, 9, 8]

(discussed in [14]) is to introduce contradictory de re beliefs, and to allow them

to be consequences of a de dicto non-contradictory belief. We partially revise and

further develop the semantics of [14], and propose a corresponding labelled and

signed tableau system with sufxes.

There are some characteristic technical features of the logic here proposed. 1)

Appearances of objects are modeled by ordered pairs 〈d, k〉, where d is an object

and k an individual constant. The constant k serves as an agent’s “mode” through

which the object is presented and referred to.2 2) To allow contradictory beliefs

we introduce the second accessibility relation, S , on the set of possible worlds

in determining the satisfaction of an atomic formula. That results with the use

of “subatomic” “quasiformulas” in the tableau system. 3) The identity relation is

non-classical, and includes the classical identity relation as a subset.

2 Language and models

The language LQB is a frst-order modal language for a logic of belief. Individual

constants are c, c1, c2, . . . (set C; informally, other small Latin letters will also be

used); x, y, z, x1, . . . are individual variables (set V); Pn, Pn
1
, Pn

2
, . . . (other capital

letters will be used informally), =, and E1 are n-place predicates (set P); there are

connectives¬ and∧, quantifer symbol ∀, abstractor λ, belief operators B1, . . . , Bn,

and parentheses (∨,→, and ∃ are defned in the familiar way). Formulas are

1For the frst case, see, for example, the narrative of the fusion of the two authors of the Prin-

cipia mathematica into one apparent author [17, 18]. The second case is well known, for example,

from Frege’s Phosphorus–Hesperus puzzle [10].
2See [17, 18] for the comparison with the mode of presentation concept.
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Φ
nt1 . . . tn, ¬φ, (φ ∧ ψ), Bi φ, ∀x φ, and (λx.φ)(k) (φ and ψ are formulas, Φn is a

predicate, ti a term, k an individual constant, and (λx.φ) is an abstraction term).

λ-abstraction disambiguates the sense in which an individual constant should be

taken. For instance, in Bi(λx.Px)(c), c is λ-dependent and is taken in the sense in

which i understands c (de dicto); in BiPc, c is taken objectively and independently

of an agent i (de re) (see, e.g., [7]).

We try to keep the basis of the semantics classical as far as possible. To that

end, the interpretation of all descriptive predicates at a world is classical, and

non-classical features of the satisfaction of the formulas are achieved through the

defnition of the satisfaction at a world w by means of the interpretation of pred-

icates not at w, but at worlds S -accessible to w. Only identity is interpreted at a

world non-classically, precisely, as ≅ relation, which is conceived as an extension

of the classical identity relation. Further, we introduce a special domain A of ap-

pearances (beside the classical domain D of objects), but in a way that keeps track

of objects (real and possible) in their appearances (an object d is always a con-

stituent of an appearance). Domains of an agent’s accessible worlds are restricted

to the objects as they appear to the agent (objects in set A). We note that frame

presupposes names (set C) of the language LQB.

Defnition 1 (Frame) FrameF = 〈W,WA,R1, . . . ,Rn, S ,D, A,Q, {≅w}w∈W〉, where

1. W is a non-empty set of worlds (w ∈ W),

2. WA ⊆ W,

3. Ri ⊆ W ×WA (serial, transitive, and euclidean; i is a belief agent),

4. S ⊆ W ×W (refexive),

5. D is a non-empty set of objects,

6. A ⊆ {〈d, k〉 | d ∈ D and k ∈ C} (a set of appearances),

7. Q : W −→ ℘U \ {∅}, where Q(w ∈ WA) ∈ ℘A \ {∅}, and if wS w′ then

Q(w) = Q(w′) (‘U’ abbreviates ‘D ∪ A’),

8. for each w, ≅w ⊆ U × U such that ≅w is an equivalence relation.

In the further text, d will be a member of D, a a member of A, and u a member of

U; also

Dw = Q(w) ∩ D
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Aw = Q(w) ∩ A

Uw = Dw ∪ Aw

Defnition 2 (Model) ModelM = 〈F ,V〉, where

1. V(k) ∈ D, V(k,w) ⊆ {d, 〈d, k〉 | 〈d, k〉 ∈ A} \ {∅},

2. V(Φn,w) ∈ ℘Un, closed under ≅w,

3. V(=,w) = ≅w,

4. V(E1,w) = Q(w)

As we can see, individual constants are sometimes rigid and sometimes non-

rigid, and it will be determined below in which context they are used rigidly and

in which non-rigidly. Non-rigid interpretation treats an individual constant as a

“mode of presentation” of objects. Keeping track of the objects presented is vital

for reasoning from the de dicto to the de re sense of terms.

Defnition 3 (Variable assignment) Variable assignment is a mapping v : V−→

U. Variant of a variable assignment v is a variable assignment v[u/x] that difers

form v at most in assigning u to x.

Defnition 4 (Designation of a term)

1. ~k�
M,w
v = V(k) and ~x�

M,w
v = v(x), where ~t�

M,w
v is the designation of a term

t in a model M (at a world w) for a variable assignment v, and where k is

an individual constant,

2. [u]w = {u
′ | u′ ≅w u}.

3 Satisfaction and consequence

In the defnition of satisfaction below, we separately defne positive, t-, and neg-

ative, f-satisfaction to enable modeling contradictory beliefs. We modalize the

satisfaction of atomic formulas by S -accessibility relation and choose S -necessity

for the satisfaction of atomic formulas about appearances to avoid classical incon-

sistencies of de dicto beliefs. In particular, to avoid classical inconsistencies of

quantifed de dicto beliefs of an agent i, domains of i-accessible worlds are re-

stricted to set A (see Defnition 1). For the satisfaction of atomic formulas about

4



objects S -possibility is chosen. Such a choice of S modalities is motivated by an

intuition that i will have more logical control over i’s de dicto beliefs, than over i’s

de re beliefs.3 Further, in a special case (2b), things are identical at w if their re-

spective ≅-counterparts are each other’s ≅-counterparts in an S -accessible world.

In that way we will obtain a desired consequence that identical thing(s) do not

have to share all their properties.

In the following defnition, Φn is an n-place predicate, excluding = and E.

Defnition 5 (Satisfaction)

1. (a) If ~t1�
M,w
v , . . . , ~tn�

M,w
v are a1 ∈ A, . . . , an ∈ A, respectively, then

M,w |
t

=v Φt1 . . . tn if (∀w′wS w′)〈a1, . . . , an〉 ∈ V(Φ,w′),

M,w |
f

=v Φt1 . . . tn if (∀w′wS w′)〈a1, . . . , an〉 < V(Φ,w′),

(b) if ~t1�
M,w
v , . . . , ~tn�

M,w
v are u1, . . . , un, respectively, and at least one ui ∈

D, then

M,w |
t

=v Φt1 . . . tn if (∃w′wS w′)〈u1, . . . , un〉 ∈ V(Φ,w′),

M,w |
f

=v Φt1 . . . tn if (∃w′wS w′)〈u1, . . . , un〉 < V(Φ,w′),

2. (a) If ~t1�
M,w
v , ~t2�

M,w
v are a1 ∈ A, a2 ∈ A, respectively, then

M,w |
t

=v t1 = t2 if (∀w′wS w′) a1 ≅w′ a2,

M,w |
f

=v t1 = t2 if (∀w′wS w′) a1 6w′ a2,

(b) if ~t1�
M,w
v , ~t2�

M,w
v are u1, u2, respectively, and at least one ui ∈ D, then

M,w |
t

=v t1 = t2 if (∃w′wS w′)(∃u′
1
∈ [u1]w)(∃u′

2
∈ [u2]w) u′

1
≅w′ u′

2
,

M,w |
f

=v t1 = t2 if (∃w′wS w′)(∃u′1 ∈ [u1]w)(∃u′2 ∈ [u2]w) u′1 6w′ u′2,

3. M,w |
t

=v Et if ~t�M,wv ∈ Qw,

M,w |
f

=v Et if ~t�M,wv < Qw,

4. M,w |
t

=v ¬φ ifM,w |
f

=v φ,

M,w |
f

=v ¬φ ifM,w |
t

=v φ,

3The idea of modalizing the satisfaction of formulas is familiar in paraconsistent logic. For

instance, φ ∧ ψ was interpreted by S. Jaśkowski in his discussive logic [12] (see also [13]) as

φ ∧ ^ψ. In J.-Y. Béziau [1, 2] the approach is generalized to a specifc four-valued logic, where

the four values 0−, 0+, 1− and 1+ are conceived as “necessarily false”, “possibly false”, “possibly

true”, and “necessarily true”, respectively.
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5. M,w |
t

=v (φ ∧ ψ) ifM,w |
t

=v φ andM,w |
t

=v ψ,

M,w |
f

=v (φ ∧ ψ) ifM,w |
f

=v φ orM,w |
f

=v ψ,

6. M,w |
t

=v Bi φ if (∀w′wRiw
′)M,w′ |

t

=v φ,

M,w |
f

=v Bi φ if (∃w′wRiw
′)M,w′ |

f

=v φ.

7. M,w |
t

=v ∀x φ if (∀u ∈ Uw)M,w |
t

=v[u/x] φ,

M,w |
f

=v ∀x φ if (∃u ∈ Uw)M,w |
f

=v[u/x] φ.

8. M,w |
t

=v (λx.φ)(k) if (∀u ∈ V(k,w))M,w |
t

=v[u/x] φ,

M,w |
f

=v (λx.φ)(k) if (∃u ∈ V(k,w))M,w |
f

=v[u/x] φ.

The idea of universal quantifcation over objects under the mode of presentation

by a constant k in Defnition 5, case 8, is due to R. Ye [17]. In distinction to the

semantics presented here, the mode of presentation is in [17] agent dependent and

allows empty set of objects.

Since disjunction and conditional are defned in the familiar way, the satisfac-

tion cases for disjunction and conditional amount to the following:

• M,w |
t

=v (φ ∨ ψ) ifM,w |
t

=v φ orM,w |
t

=v ψ,

M,w |
f

=v (φ ∨ ψ) ifM,w |
f

=v φ andM,w |
f

=v ψ,

• M,w |
t

=v (φ→ ψ) ifM,w |
f

=v φ orM,w |
t

=v ψ,

M,w |
f

=v (φ→ ψ) ifM,w |
t

=v φ andM,w |
f

=v ψ.

Defnition 6 (Satisfability) A set Γ of formulas is satisfable if there are M,w

and v such that for each ψ ∈ Γ,M,w |
t

=v ψ.

Defnition 7 (Consequence) Γ |= φ if, ifM,w |
t

=v ψ for each ψ ∈ Γ, thenM,w |
t

=v

φ.

Example 1 A reasoning agent i may perhaps not know that Lewis Carroll is the

same person as Charles Lutwidge Dodgson. Let a corresponding logical name

for ‘Lewis Carroll’ be individual constant ‘c’, and for ‘Charles L. Dodgson’ indi-

vidual constant ‘d’. In the de dicto sense, the agent i distinguishes person c and

person d, and hence, in the de re sense, i believes of the same person not to be

self-identical. Further, the agent i may also think that the person which is Lewis

Carroll for i is not the same person which is Lewis Carroll for an agent j.

Let us defne and picture a modelM where:

V(c,w1) = V(c,w3) = {Carroll, 〈Carroll, c〉},

6



V(d,w1) = V(d,w3) = {Dodgson, 〈Dodgson, d〉},

V(c,w2) = {Carroll, 〈Carroll, c〉},

w1 : 〈Carroll, c〉 6 〈Dodgson, d〉, Dodgson 6 〈Carroll, c〉, Carroll ≅ 〈Dodgson, d〉,

w2 : 〈Carroll, c〉 6 〈Dodgson, d〉,Dodgson 6 〈Carroll, c〉, 〈Carroll, c〉 6 〈Dodgson, c〉,

w3 : 〈Carroll, c〉 6 〈Dodgson, d〉,Carroll ≅ 〈Carroll, c〉,Carroll 6 〈Dodgson, d〉

(as already mentioned, Carroll is classically identical with Dodgson).

In the fgure bellow, full arrows represent i- and j-accessibility, while dashed

arrows represent S -accessibility.

w1 w2

w3

i

j

i j

It can be shown (on the ground of Defnition 5) that all the satisfaction claims 1–5

hold in the modelM pictured above:

M,w1 |
t

= Bic = c, (1)

M,w1 |
t

= Bi(λx.(λy.¬x = y)(d))(c), (2)

M,w1 |
t

= Bi(λx.c = x ∧ ¬c = x)(c), (3)

M,w1 |
t

= Bi¬c = c, (4)

M,w1 |
t

= Bi(λx.B j(λy.¬x = y)(c))(c). (5)

Note that although agent i has classically inconsistent beliefs, there is no non-

classical world inM.
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4 Tableau system

We start from the basis of a paraconsistent signed tableau style like that of [3], and

implement labels (for “worlds”) and sufxes (for “things” satisfying a formula).4

In the rules below in which no tableau sufx is mentioned, the sufx (if there is

any) is the same for each formula. As is familiar, α rules are linear, and β rules are

branching rules. In other cases, it will be annotated whether the rule in question

is a linear or a branching rule.

α α1 α2

m t φ ∧ ψ m t φ m t ψ

m f̄ φ ∧ ψ m f̄ φ m f̄ ψ

m f φ ∨ ψ m f φ m f ψ

m t̄ φ ∨ ψ m t̄ φ m t̄ ψ

m f φ→ ψ m t φ m f ψ

m t̄ φ→ ψ m f̄ φ m t̄ ψ

m t ¬φ m f φ

m f̄ ¬φ m t̄ φ

m f ¬φ m t φ

m t̄ ¬φ m f̄ φ

β β1 β2

m f φ ∧ ψ m f φ m f ψ

m t̄ φ ∧ ψ m t̄ φ m t̄ ψ

m t φ ∨ ψ m t φ m t ψ

m f̄ φ ∨ ψ m f̄ φ m f̄ ψ

m t φ→ ψ m f φ m t ψ

m f̄ φ→ ψ m t̄ φ m f̄ ψ

B B0

m t Biφ n t φ any n : mRn

m f̄ Biφ n f̄ φ any n : mRn

m f Biφ n f φ new n : mRn

m t̄ Biφ n t̄ φ new n : mRn

In the following rules, κ in sufxes is an individual constant (D-term) or a qua-

siterm 〈o, k〉 (A-term, π), where o and k are individual constants. Intuitively, o

refers to an object, and k is a name of the referred object at a label (world). In

a tableau, each free variable x in a formula φ has a corresponding sufx [κ/x]

attached to φ.

γ γ0

m t ∀xφ m t Ex→ φ [κ/x] any κ

m f̄ ∀xφ m f̄ Ex→ φ [κ/x] any κ

m f ∃xφ m f Ex ∧ φ [κ/x] any κ

m t̄ ∃xφ m t̄ Ex ∧ φ [κ/x] any κ

δ δ0

m t ∃xφ m t Ex ∧ φ [κ/x] new κ

m f̄ ∃xφ m f̄ Ex ∧ φ [κ/x] new κ

m f ∀xφ m f Ex→ φ [κ/x] new κ

m t̄ ∀xφ m t̄ Ex→ φ [κ/x] new κ

4Bloesch’s tableau style in [3] is a many-valued tableau accomodated for paraconsistent logic.

For tableaux for fnite many-valued logics see, e.g., [4, 5]. See also [6].
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In the following rules s is t, f, t̄ or t̄.

λ λ1 λ2

m t λx.φ(k) m t φ [〈o, k〉/x] m t φ [o/x] linear rule; o already used for

m s λx. . . . (k), otherwise new o

m f̄ λx.φ(k) m f̄ φ [〈o, k〉/x] m f̄ φ [o/x] linear rule; o already used for

m s λx. . . . (k), otherwise new o

m f λx.φ(k) m f φ [〈o, k〉/x] m f φ [o/x] branching rule; new o

m t̄ λx.φ(k) m t̄ φ [〈o, k〉/x] m t̄ φ [o/x] branching rule; new o

We introduce quasiformulas (not to be confused with “pseudo-formulas” of [17]

and [18]) of the form xΦκ1 . . . κny, xκ1 ≅w κ2y, xnot Φκ1 . . . κny, and xκ1 6w

κ2y. Quasiformulas are used only in decomposition of atomic formulas and other

quasiformulas.

Φ-atom (only with A-terms) Φ-atom0

m t Φx1 . . . xn [π1, . . . , πn/x1, . . . , xn] n xΦπ1 . . . πny any n : mS n

m f̄ Φx1 . . . xn [π1, . . . , πn/x1, . . . , xn] n xΦπ1 . . . πny new n : mS n

m f Φx1 . . . xn [π1, . . . , πn/x1, . . . , xn] n xnotΦπ1 . . . πny any n : mS n

m t̄ Φx1 . . . xn [π1, . . . , πn/x1, . . . , xn] n xnotΦπ1 . . . πny new n : mS n

Φ-atom (with a D-term) Φ-atom0

m t Φt1 . . . tn [κi/ti] n xΦκ1 . . . κi/ti . . . κny new n : mS n

m f̄ Φt1 . . . tn [κi/ti] n xΦκ1 . . . κi/ti . . . κny any n : mS n

m f Φt1 . . . tn [κi/ti] n xnotΦκ1 . . . κi/ti . . . κny new n : mS n

m t̄ Φt1 . . . tn [κi/ti] n xnotΦκ1 . . . κi/ti . . . κny any n : mS n

In the rule above, κ j = t j if t j does not occur in a sufx.

=-atom (only with A-terms) =-atom0

m t x1 = x2 [π1, π2/x1, x2] n xπ1 ≅ π2y any n : mS n

m f̄ x1 = x2 [π1, π2/x1, x2] n xπ1 ≅ π2y new n : mS n

m f x1 = x2 [π1, π2/x1, x2] n xπ1 6 π2y any n : mS n

m t̄ x1 = x2 [π1, π2/x1, x2] n xπ1 6 π2y new n : mS n

=-atom =-atom0 =-atom1 =-atom2

(with a D-term) l i n e a r l y

m t t1 = t2 [κi/ti] m xκ′
1
≅ κ1y m xκ′

2
≅ κ2y n xκ′

1
≅ κ′

2
y new n : mS n, new κ′

j

m f̄ t1 = t2 [κi/ti] m xκ′1 ≅ κ1y m xκ′2 ≅ κ2y n x κ′1 ≅ κ
′
2y any n : mS n

m f t1 = t2 [κi/ti] m xκ′
1
≅ κ1y m xκ′

2
≅ κ2y n x κ′

1
6 κ′

2
y new n : mS n, new κ′

j

m t̄ t1 = t2 [κi/ti] m xκ′1 ≅ κ1y m xκ′2 ≅ κ2y n x κ′1 6 κ
′
2y any n : mS n
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In the rule above, κ j = t j if t j does not occur in a sufx. For new κ′ we chose an

individual constant.

id φ id0

m xκ1 ≅ κy,m xκ2 ≅ κ
′, y, n xκ1 ≅ κ2y m s φ(κ) m s φ(κ′//κ) mS n

where φ is a literal or a quasiformula.

E E0

m t Et [κ/t] m xEκ/ty

m f̄ Et [κ/t] m xEκ/ty

m f Et [κ/t] m xnot Eκ/ty

m t̄ Et [κ/t] m xnot Eκ/ty

In the rule above, κ = t if t does not occur in a sufx.

We close a path (by putting × under the path) if it contains, under the same

label (world), some quasiformula and it’s negation, or a quasiformula π 6 π. A

tableau is closed if it has each path closed, otherwise a tableau is open.

Defnition 8 (Derivability, ⊢) Γ ⊢ φ if a tableau for the labelled signed set m t Γ∪

{m t̄ φ} is closed.

Defnition 9 (Consistency) A set Γ is consistent if there is an open tableau for

the labelled signed set m t Γ.

Example 2 Consistent de dicto beliefs can have a de re self-contradictory conse-

quence. In the following example, let ‘v’ stand for ‘Venus’, ‘p’ for ‘Phosphorus’

and ‘h’ for ‘Hesperus’.

{Bi(λx.(λy.¬x = y)(p))(h), Bi(λx.x = v)(p), Bi(λx.x = v)(h)} ⊢ Bi¬v = v

1 0 t Bi(λx.(λy.¬x = y)(p))(h)

2 0 t Bi(λx.x = v)(p)

3 0 t Bi(λx.x = v)(h)

4 0 t̄ Bi¬v = v neg. cons.

5 1 t̄ ¬v = v 4, t̄ Bi, 0R1

6 1 t (λx.(λy.¬x = y)(p))(h) 1, t Bi

7 1 t (λx.x = v)(p) 2, t Bi
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8 1 t (λx.x = v)(h) 3, t Bi

9 1 t (λy.¬x = y)(p) [〈c, h〉/x] 6, t λ

10 1 t (λy.¬x = y)(p) [c/x] 6, t λ

11 1 t ¬x = y [〈c, h〉, 〈c1, p〉/x, y] 9, t λ

12 1 t ¬x = y [〈c, h〉, c1/x, y] 9, t λ

13 1 t ¬x = y [c, 〈c1, p〉/x, y] 10, t λ

14 1 t ¬x = y [c, c1/x, y] 10, t λ

15 1 t x = v [〈c1, p〉/x] 7, t λ

16 1 t x = v [c1/x] 7, t λ

17 1 t x = v [〈c, h〉/y] 8, t λ

18 1 t x = v [c/y] 8, t λ

19 1 xv2 ≅ 〈c1, p〉y 15, t =-atom

20 1 xv1 ≅ vy 15, t =-atom

21 2 xv2 ≅ v1y 15, t =-atom, 1S2

22 1 xv4 ≅ 〈c, h〉y 17, t =-atom

23 1 xv3 ≅ vy 17, t =-atom

24 3 xv4 ≅ v3y 17, t =-atom, 1S3

25 1 t ¬v = y [〈c1, p〉/y] 11, 22–24 id

26 1 t ¬v = v 25, 19–21 id

27 1 f̄ v = v 5, t̄¬

28 1 f v = v 26, t¬

29 1 xv5 ≅ vy 28, =-atom

30 1 xv6 ≅ vy 28, =-atom

31 2 xv5 6 v6y 28, =-atom

32 2 xv5 ≅ v6y 27, =-atom

×

Example 3 Classically inconsistent beliefs do not explode.

Bi(P1c ∧ ¬P1c) 0 BiP2c

Tableau proof is left as an exercise.

Proposition 1

{φ ∧ ¬φ} ⊢ ψ (only λ-dependent terms occur)

{¬(φ ∨ ¬φ)} ⊢ ψ (only λ-dependent terms occur)

{φ ∧ ¬φ} 0 ψ

{¬(φ ∨ ¬φ)} 0 ψ

11



Proof Each case can be proved in the defned tableau system.

φ ∧ ¬φ does not “explode” with arbitrary syntactic consequences.5 Hence, the

proposed logical system is paraconsistent.

In the following proposition, ‘φ ⊣⊢ ψ’ is short for ‘{φ} ⊢ ψ and {ψ} ⊢ φ’.

Proposition 2

{(λx.φ)(k) ∧ (λx.ψ)(k)} ⊣⊢ (λx.φ ∧ ψ)(k)

{(λx.φ)(k) ∨ (λx.ψ)(k)} ⊣⊢ (λx.φ ∨ ψ)(k)

{(λx.φ)(k)} 0 φ(k/x)

{φ(k/x)} 0 (λx.φ)(k)

{φ(k) ∧ (λx.x = k)(k)} ⊢ (λx.φ(x))(k)

{(λx.φ(x) ∧ x = k)(k)} 0 φ(k/x))

{(λx.(λy.φ(x) ∧ ¬φ(y))(k2))(k1), (λx.(λy.(k1 = x ∧ k1 = y)(k2))(k1)} ⊢

(φ(k1/x) ∧ ¬φ(k1/x))

{Bi(λx.(λy.φ(x) ∧ ¬φ(y))(k2))(k1), k1 = k2} 0 Biψ

{∀x φ ∧ (λx.Ex)(k)} ⊢ (λx.φ)(k)

{(λx.φ ∧ Ex)(k)} 0 ∃xφ

⊢ k = k

{¬k = k} 0 ψ

{(λx.¬x = x)(k)} ⊢ ψ

Proof Each case can be proved in the defned tableau system.

4.1 Soundness and completeness

Let us sketch a soundness and a completeness proofs with some preliminaries.

We call all formulas occurring in tableaux tableau formulas. The set of tableau

formulas includes, beside LQB formulas, also labelled signed formulas with suf-

fxes and labelled quasiformulas. Accordingly, we extend a modelM to a tableau

model MT with a world corresponding to each label of a tableau formula, and

defne VT (〈o, k〉) = 〈VT (o), k〉. The satisfaction by a tableau model MT and v is

merely a reformulation of a satisfaction byM,w and v, where

M
T |=v l t φ[κ/x] ifM,wl |

t

=v[VT (κ)/x] φ,

5Note, for example, that t̄ ¬(Pc ∧ ¬Pc) has a closed tableau, while t Pc ∧ ¬Pc has an open

tableau.
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M
T |=v l t̄ φ[κ/x] ifM,wl 6|

t

=v[VT (κ)/x] φ,

similarly for f and f̄,

and where the satisfaction of labelled quasiformulas is defned in the following

way:

M
T |=v l xΦκ1 . . . κny if 〈VT (κ1), . . . ,VT (κn)〉 ∈ VT (Φ,wl),

M
T |=v l x notΦκ1 . . . κny if 〈VT (κ1), . . . ,VT (κn)〉 < VT (Φ,wl),

M
T |=v l xκ1 ≅ κny if VT (κ1) ≅wl

VT (κ2),

M
T |=v l xκ1 6 κny if VT (κ1) 6wl

VT (κ2).

Defnition 10 (Distributed satisfability of a set Γ of tableau formulas) A set Γ

of tableau formulas is distributively satisfable if there is a tableau modelMT and

a variable assignment v that satisfy each member of Γ.

We call a tableau T (distributively) satisfable if it has a distributively satisfable

path.

4.1.1 Soundness

Let us outline main steps of the soundness proof.

(i) It should be shown, by mathematical induction, that if a tableau T is dis-

tributively satisfable, then, after the application of any tableau rule, the resulting

tableau T ′ remains distributively satisfable. For example, suppose that m t λx.φ(k) ∈

p, where p is a distributively satisfable path of a tableau T . IfMT |=v p, then also

M
T |=v p ∪ {m t φ [〈o, k〉/x],m t φ [o/x]} (with o new to the path or already

used for λ-dependent k in accordance with the rules). This follows from the fact

that, in terms ofM satisfability, ifM,wm |
t

=v λx.φ(k), thenM,wm |
t

=v[〈d,k〉/x] φ and

M,wm |
t

=v[d/x] φ, where d ∈ V(k,wm) and ~o�M,wv = d.

(ii) After that, it should be proved that if a set ∆ of tableau formulas has a

closed tableau, then ∆ is not distributively satisfable.6 The proof is indirect. Sup-

pose that ∆, having a closed tableau, is distributively satisfable. If ∆ is distribu-

tively satisfable, the tableau for ∆ should eventually also be distributively satisf-

able (see (i)). That is impossible, since the conditions under which a tableau for

6For comparison, see Lemma 2 in [3].
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∆ eventually closes make the tableau distributively unsatisfable. Thus ∆, having

a closed tableau, cannot be distributively satisfable.

(iii) In a special case, suppose that φ and each ψ ∈ Γ are LQB formulas, and

that l t Γ ∪ {l t̄ φ} has a closed tableau. Therefore (by (ii)) l t Γ ∪ {l t̄ φ} is not

distributively satisfable. Hence, if MT |=v l t Γ then MT |=v l t φ, and thus, if

M,w |
t

=v Γ thenM,w |
t

=v φ. Therefore, if l t Γ ∪ {l t̄ φ} has a closed tableau, then

Γ |= φ, that is, the soundness theorem holds.

4.1.2 Completeness

We give a sketch of the completeness proof.

(i) A labelled and signed Hintikka set H with sufxes should be defned ac-

cording to the tableau rules. More specifcally, if for an atomic sentence φ, m t φ ∈

H, then an appropriate labelled quasiformula l xφ′y (see the tableau rules for the

appropriate quasiformulas) should also be a member of H. Regarding quasifor-

mulas, it is not the case that for a quasiformula xφy, l xφy ∈ H and l x¬φy ∈ H, or

π 6 π ∈ H. Also, to give another example, if a Hintikka set H contains a signed

formula t Biφ with a label m, then H contains the signed formula tφ for all labels

previously introduced in the tableau from the label m (according to B rules), or for

a new label n if previously no label is introduced from m.

(ii) It should be shown that every open path is a subset of a corresponding

Hintikka set. This follows from the fact (clear from (i)) that in building a Hintikka

set, we add each formula that can be added in accordance with the tableau rules

and, at the same time, we never fulfl the tableau closure conditions.

(iii) By a construction of an appropriate canonical tableau model, it should

be proved that each labelled and signed Hintikka set with sufxes is distributively

satisfable. We now briefy sketch that step of the completeness proof. To simplify

the metalanguage notation, we will write φ(κ) instead of φ(x) [κ/x].

Defnition 11 (Equivalence class) Equivalence class [k] of an individual con-

stant k with respect to a tableau H is the set {k′ | m xk ≅ k′y ∈ H for some m}.

Defnition 12 (Canonical frame) Canonical frameF H for a Hintikka set H is an

n-tuple {W,WA,Ri, . . . ,Rn, S ,D, A,Q, {≅w}w∈W}, where

1. W is a non-empty set of labels of H,

2. WA ⊆ W,

3. Ri ⊆ W ×WA (serial, transitive, and euclidean),
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4. S ⊆ W ×W (serial, refexive),

5. D is a set of equivalence classes of individual constants in tableau LQB

formulas of H and in sufxes of H if there are any such constants, otherwise

D = {[c]},

6. A = {〈[o], k〉 | 〈o, k〉 occurs in a quasiformula or a sufx of H},

7. Q(m) = {[k] | m xEky ∈ T } ∪ {〈[o], k〉 | m xE〈o, k〉y ∈ H},

8. for each m, ≅m = {〈u1, u2〉 | m xκ1 ≅ κ2y ∈ H}, where

ui =

(

〈[o], k〉 if κi = 〈o, k〉

[k] if κi = k.
(6)

Defnition 13 (Canonical model) Canonical modelMH for a Hintikka set H is a

pair 〈F ,V〉, where

1. V(k) = [k], V(k,m) ⊆ {[o], 〈[o], k〉 | 〈[o], k〉 ∈ A}, V(〈o, k〉) = 〈[o], k〉,

2. 〈u1, . . . , un〉 ∈ V(Φn,m) if m xΦκ1 . . . κny ∈ H,

3. V(=,m) = ≅m,

4. V(E,m) = {u | m xEκy ∈ H},

under the condition (6) above.

Now it should be proved that each labelled and signed Hintikka set H with suf-

fxes is distributively satisfed by the canonical modelMH (under a given variable

assignment v, if any). Let us take quasiformulas as an example. Suppose that

m xΦκ1 . . . κny ∈ H. Thus, 〈u1, . . . , un〉 ∈ V(Φn,m) under condition (6) (see Def-

nition 13), and thereforeMH |=v m xΦκ1 . . . κny.

(iv) Finally it follows from (iii) that, if a set ∆ is not distributively satisfable,

then ∆ is not a subset of any Hintikka set. Accordingly, if ∆ is not distributively

satisfable, then ∆ has a closed tableau, since each open path of a tableau is a

subset of a Hintikka set (see (ii)). As a special case, if a set l t Γ ∪ {l t̄ φ} is

distributively unsatisfable (and hence Γ |= φ), then it has a closed tableau (that is,

Γ ⊢ φ), which establishes the completeness theorem.
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