Acknowledgments

There are many people who have helped in this project. Right from the volume’s inception, series editor Libby Potter was a constant source of insightful advice and moral support. Ingrid van Laarhoven at Springer was always ready to answer yet another question as soon as it was asked. A large number of anonymous reviewers were also indispensable in making this volume what it is. The introduction benefited immensely from Phyllis Rooney’s careful reading. Undergraduate research assistant Stephanie Joyce assisted with formatting and compiling at crucial moments. I especially would like to thank Lorraine Code, Carla Fehr, Phyllis Rooney, and Ilya Shem for their friendship, encouragement and help with this project.
Chapter 7
What Is in It for Me? The Benefits of Diversity in Scientific Communities

Carla Fehr

Abstract 1 investigate the reciprocal relationship between social accounts of knowledge production and efforts to increase the representation of women and some minorities in the academy. In particular, I consider the extent to which feminist social epistemologies such as Helen Longino’s critical contextual empiricism can be employed to argue that it is in researchers’ epistemic interest to take active steps to increase gender diversity. As it stands, critical contextual empiricism does not provide enough resources to succeed at this task. However, considering this view through an employment equity lens highlights areas where such theories need to be further developed. I argue that views such as Longino’s ought to attend to nuances of community structure and cultural features that inhibit critical social interactions, if we are to maximize the epistemic as well as the ethical improvements associated with a social approach to knowing. These developments advance these epistemic theories for their own sake. They also help develop these theories into a tool that can be used by those calling for increased diversity in the academy.

Keywords Feminist philosophy of science • Social epistemology • Implicit bias • Employment equity • Workplace environment issues

7.1 What Is in It for Me?

A while ago I gave a lecture to science faculty members and university administrators regarding the underrepresentation of women and minorities in science, technology, engineering and mathematics (STEM) fields.1 After my talk, an administrator, with

1 In this paper I am primarily focusing on gender diversity. By doing so it is not my intention to minimize the epistemological and ethical concerns relating to the underrepresentation of members of other marginalized groups.
An Example of Diversity Promotes Excellence: Theories

A possible example is the diversity that allows a community to learn and grow. The more diverse a community is, the more it can learn from different perspectives and experiences. This can lead to innovative solutions and ideas that might not have been possible if the community was homogenous.

In order to answer the question of why diversity is important, let's consider the example of a scientific community. When a community is diverse, it can bring together different perspectives and ideas, leading to new discoveries and breakthroughs. For instance, a group of researchers from various backgrounds might approach a problem in different ways, leading to innovative solutions.

One prominent theory is that diversity promotes innovation by increasing the probability of generating new ideas. This is because diversity brings together different minds, each with their own unique perspective and experience. When these perspectives are combined, they can lead to new and creative ideas.

Another theory is that diversity enhances decision-making by reducing groupthink. In a diverse community, different viewpoints are brought to the table, which can lead to more well-rounded and informed decisions.

In conclusion, diversity promotes excellence in various ways, whether it be in scientific research, business, or any other field.

See also references for further reading.
‘every member of the community be regarded as capable of contributing to its constructive and critical dialogue’ (2002, 132). ‘The social position or economic power of an individual or group in a community ought not determine who or what perspectives are taken seriously in that community’ (2002, 131). The epistemological goal of tempered equality is to expose hypotheses to the widest range of critical scrutiny. Longino presents epistemic communities with a challenge:

Thus a community must not only treat its acknowledged members as equally capable of providing persuasive and decisive reasons and must do more than be open to the expression of multiple points of view; it must also take active steps to ensure that alternative points of view are developed enough to be a source of criticism and new perspectives. Not only must potentially dissenting voices not be discounted; they must be cultivated (2002, 132).

There are many examples where the addition of women, with varying degrees of implicit or explicit feminist perspectives, have had a positive impact on our understanding of science, on the practice of science and on the products of scientific work. This can be seen in the critiques offered by feminist science studies scholars who are also working scientists. These critiques often involve revealing and questioning the role of gendered assumptions in the development of research questions, application of theories, choice of research methods and experimental design. The Biology and Gender Study Group (1989) describes feminist work as a control for gender influences. Examples include assumptions of female passivity and male activity that have structured investigations of prenatal development of sex differences (Birke 1986), the study of the mechanisms of fertilization (Martin 1991), the roles of hormones in the development of behavioral sex differences (Birke 1986; Longino and Doell 1983; Longino 1990) and the contributions of males and females to human evolution (Hubbard 1982; Hrdy 1986). Patricia Gowaty writes of her own research in evolutionary ecology, mating systems and sexual conflict. Feminism made the experimental designs better. Being self-conscious about my gender has made my experiment better than they might otherwise be, because I resist a variety of controls that others might also use, and would not doubt use, if they were more aware of their own biases. (2003, 917)

Donna Haraway’s book Primate Visions (1989) documents the impact the incorporation of feminist women in research communities had on the study of primate behavior and animal behavior more generally. For example, primatologist Jeanne Altmann, instigated a quiet but powerful methodological revolution. In one of the most cited papers in the study of animal behavior, ‘Observational study of behavior: Sampling methods’ (1974), Altmann evaluated a range of sampling methods and in doing so developed a method, focal-animal sampling, that both undermined much previous research generating sexist accounts of leadership and control, and enabled research on topics such as mothering. Although Altmann reports that her location as a woman, a feminist and a mother were influential in her work, she did not write in an explicitly political way about these topics (Haraway 1989). The ‘Sampling Methods’ paper did not refer to gender at all, but rather to an analysis of the kinds of sampling that allow for good science. Focal animal sampling provides an effective method for studying the social behavior of female primates. This method has become an important approach in research about non-gendered as well as gendered phenomena. Altmann’s methodological study had an impact on the practice of science that went beyond research on topics directly related to gender.

In Evelyn Fox Keller’s (1983) biography of Barbara McClintock and in her subsequent book, Reflections on Gender and Science (1985), she reveals that McClintock was not conducting research on a gendered topic and did not identify as a feminist. However, Keller argues that the social experiences that came along with being a girl and woman affected her psychology in a way that made it possible for her to develop the close relationship with her study organisms that facilitated her Nobel Prize winning work on transposition. The addition of women, with varying degrees of feminist commitment, to scientific communities can uncover gendered assumptions, provide new or alternative methodologies and engage alternative perspectives that have bearing on research that relates to sex and gender and even research that does not.

Although there is a long list of cases where the addition of women to research communities allowed those communities to produce different and better science, the kinds of generalizations that one can draw from this list are not clear. It would be nice to be able use these examples of women making a difference in the practice of science, in conjunction with diversity promotes excellence theories, to argue that academic STEM departments ought to hire a diversity of candidates. It would be nice to be able to argue that departments ought to embrace hiring practices that increase diversity because the research produced by the department and its members will be improved. It will be more objective or better justified. Members of that community will have a better chance of spotting their assumptions, will have access to a wider range of methods, and will have access to those with a broader range of attitudes towards their work, if they are a member of a department where they can interact with people who are different from themselves. One cannot know beforehand what kinds of differences will be salient and so it is a good idea to nurture diversity in academic departments.

However, significant work needs to be done before we can make these nice arguments. First, members of academic departments can gain at least some of the benefits that arise out of diversity without hiring more women or minorities because they can ‘free ride’ off diversity that is present in other communities both inside and outside of the academy. In order to sort out the epistemic benefits of diversity to departments, I will develop an account of the kinds of communities of which scholar can be members, the interactions among those communities and the effects of status differences among community members. Second, in order for departments to gain maximal epistemic benefits from increasing diversity, they need cultures that enable women and minorities to effectively develop and express dissenting views. In order to assess the importance of these cultural changes, I will explore the relationship between social position and theoretical perspective. While Longino exhorts members of communities to grant each other’s dissent uptake and to grant each other equality
of intellectual authority, I will argue that it will take substantial cultural changes in order to meet these desiderata with regard to women scientists.

7.3 Epistemic Communities, Diversity Free Riders and Diversity Development

In order to assess the benefits that can arise from being a member of a diverse epistemic community we need a more detailed account of community structures and relations than the one Longino offers. Longino discusses communities in terms of groups of people who engage in critical interactions regarding their scholarship: a community is constructed in terms of who interacts with whom. When she discusses ideal communities she describes them as having public venues for critical interactions and some shared evaluative standards (Longino 1990, 2002). Lynn Hankinson Nelson offers a similar, yet thicker, definition of an epistemic community as a group that "constructs and shares knowledge and standards of evidence" (1993, 124). Nelson goes on to write,

[Epistemological communities are multiple, historically contingent, and dynamic: they have fuzzy, often overlapping boundaries; they evolve, dissolve, and reconstitute; and they have a variety of purposes and projects which may include (as in the case of science communities) but frequently do not include (as a priority) the production of knowledge. (125)]

That communities are multiple and dynamic and that they have overlapping boundaries has implications for the distribution of the benefits of epistemic diversity. Longino exhibits communities to "cultivate potentially dissenting voices," but communities are multiple and it is reasonable to consider which communities need to do this work in order for researchers to reap the benefits of diversity. I will argue that it is possible for a particular community to reap the epistemic benefits of diversity that Longino illustrates without cultivating dissenting voices. It becomes important to spell out what cultivating dissenting voices means. If one holds an inclusive sense of community as simply being those with whom one interacts, then developing dissenting voices in a community can simply mean engaging in social interactions with people who have different social locations or theoretical perspectives than one's own. However, developing dissenting voices could also mean nurturing those

Solomon and Richardson (2005) and Solomon (2006) also argue that Longino's conception of ideal epistemic communities is problematic. Solomon and Richardson argue that we lack historical and contemporary cases of scientific practice that meet these ideals; as a result we lack evidence that following them will lead to better science. Solomon (2006) argues that group deliberative processes can be influenced by biasing mechanisms associated with groupthink that are transparent to members of groups and that her aggregative procedures lead to better epistemic outcomes than rational deliberative procedures such as Longino's. However, see Wyllie (2006) for arguments that Solomon's aggregative procedures as well as Longino's deliberative procedures are subject to implicit cognitive errors associated with gender schemas. I argue that views such as Longino's ought to attend to issues of community dynamics and cultural features that inhibit critical social interactions, if we are to maximize the epistemic as well as the ethical improvements associated with a social approach to knowing.

7.3.1 Formal and Informal Communities

Faculty members are associated with numerous, overlapping, formal and informal epistemic communities. This distinction between formal and informal communities will often be a matter of degree and will depend on context. In this paper I am focusing on scientific or academic institutions. In this context a formal community is one that is institutionally recognized and conducts the kinds of activities acknowledged as contributions to the professional advancement of a faculty member. Membership in this sort of formal community is likely something that one could list on their vita. Formal communities can include academic departments (where members can be students, post doctoral researchers or faculty), committees or professional organizations. Departments are formal communities and are important because they are the primary place where scholars are paid for their epistemic labor. It is primarily departments that hire scholars to do scholarly work. While there is lots of scholarly work that happens outside of formal communities, workers could likely do more and better work if they were compensated for that labor by a formal community. Informal communities can include professional networks of scholars at one's own institution or at other institutions. They can include networks of people outside of one's narrowly defined field but whose perspectives nonetheless influence one's research. They can also include networks of people who are not academics at all. Informal communities can be important sources of alternative perspectives and scholarly as well as personal support. One can gain the epistemic benefits that Longino describes by developing diversity in an informal community and without having to increase diversity in their formal communities, for example their departments, in order to gain these benefits.

7.3.2 Status – Marginal and Central Positions Within a Community

One can be a relatively marginal or central member of a formal or informal community or hold a perspective that is relatively marginal or central in terms of being valued by one's community. Longino's criteria of equality of intellectual authority is designed to ensure that the dissent arising from those who have little power or
7.4 Making Use of Diversity

Making use of existing diversity involves using people with theoretical perspectives and social locations from different walks of life on scientific communities, thus gaining insights and developing new strategies. Diversity in formal communities is a resource for scientific progress.

Diversity in informal communities is an important resource. Diversity in formal communities, if it is to be effective, must be actively developed and maintained in order to ensure its full potential.

7.3.3 Diversity Free Riding

Diversity free riding is a type of free-riding behavior that occurs when individuals in a community fail to contribute to the development of diverse perspectives and ideas. This behavior can be harmful to the growth of diversity within a community, as it can lead to a stagnation in progress and a lack of innovation.

The impact of free riding on a diversity worker is a concern that must not be underestimated. Diversity workers must ensure that they provide a supportive environment for free riding to occur, but also monitor and discourage it when necessary.
Diversity promotes excellence in science and allows people to make use of diversity in ways that are consistent with the leaky diversity pipeline model. However, this approach may not be effective in all contexts, and the benefits of diversity may be limited in some cases. In certain situations, diversity may not lead to improved outcomes, and this can have negative consequences for the professional development of underrepresented groups. This can create a self-reinforcing cycle of exclusion, where diversity initiatives fail to achieve their intended goals.

One way to address this issue is to ensure that diversity initiatives are not just focused on increasing the number of underrepresented groups, but also on creating an inclusive environment that values and leverages diversity. This can be achieved by developing strategies that promote equity and inclusion, and by fostering a culture of respect and understanding.

Moreover, diversity initiatives should be evaluated and measured to ensure that they are effective in achieving their intended goals. This can be done by collecting and analyzing data on diversity outcomes, and by using this information to make informed decisions about future initiatives.

In conclusion, while diversity is an important goal, it is not enough on its own. Diversity initiatives must be accompanied by strategies that promote equity and inclusion, and that are evaluated and measured to ensure their effectiveness. Only then can we truly achieve a diverse and inclusive scientific community.
Recall that a diversity free ride is one who makes use of the fact that someone else is working to increase the diversity of any formal community or the real representation of women in science at elite institutions. The reality is that diversity matters. Diversity is a key ingredient for the success of all institutions, both in the workplace and in society. The impact of diversity on innovation, creativity, and productivity is well documented. The benefits of diversity extend beyond the workplace to include improved decision-making, enhanced problem-solving, and increased innovation.

Before women can be fully included in the pipeline, they must be provided with the support and tools they need to succeed. Women who are already in the pipeline need to be provided with the same opportunities as their male counterparts. This is not only a matter of fairness, but it is also a matter of necessity. Women who are not provided with the same opportunities as their male counterparts are less likely to succeed and less likely to remain in the pipeline.

In summary, diversity is a key component of any institution's success. It is a key ingredient for the success of all institutions, both in the workplace and in society. The impact of diversity on innovation, creativity, and productivity is well documented. The benefits of diversity extend beyond the workplace to include improved decision-making, enhanced problem-solving, and increased innovation. Therefore, it is important that we continue to work towards increasing diversity in all institutions.
connected. Hiring to promote diversity may be primarily a service to one’s profession, because one is increasing the pool of potential diversity workers, not only for one’s own use, but also for the use of members of other communities. One benefit from being a member of a profession in which other departments also perform this service thereby increasing the pool of diversity workers with whom one could engage. Considering the administrator’s question makes clear the need for diversity promotes excellence theories to attend to the details of community structure.

In the next section of this paper I will explore the ways that the chilly climate impacts the epistemic benefits that a community or member of a community can accrue from diversity. Maximizing the epistemic benefits that can arise from diversity involves developing cultures that support diversity workers with alternative social locations and alternative theoretical perspectives.

7.4 Situational and Epistemic Diversity

In the previous section of this paper I referred to diversity workers as providing diversity in terms of their social locations or their theoretical perspectives, and I referred to diversity development work as a wide range of activities which include changes in hiring practices and cultures. In this section and the next one I will briefly unpack these different senses of diversity and diversity development work because each has bearing on the ways that communities, formal and informal, can cultivate and make best use of diversity. The epistemic benefits that can accrue from creating diverse communities arise not out of the inclusion of more women and minorities per se, but because of the different background assumptions and theoretical perspectives that these people may bring to critical discussions in virtue of their social location. This can be clarified by distinguishing between situational diversity and epistemic diversity. A community is situationally diverse when its membership consists of individuals with different social and material locations (gender, race, class, sexuality, etc.).5 The failure of scientific communities to be situationally diverse is most often couched as an ethical problem. In terms of employment equity, these ethical issues come down to a matter of fairness. The relative lack of women and minorities in the academy is not the result of their lack of ability, commitment or drive, but because of institutional, social and psychological factors that function to exclude them (Wylie et al. 2007).

A community is epistemically diverse when it includes members who hold a range of different background assumptions, and theoretical and methodological perspectives. The failure of scientific communities to be epistemologically diverse is most often couched as a cognitive problem. It is a cognitive problem because all of the background assumptions that researchers use to determine the connection between theory and evidence do not announce themselves. Those assumptions can be brought to light through critical interactions with people who are aware of these assumptions or who hold different assumptions. The value of epistemic diversity can be realized in ways other than just making evidential relations explicit. Alternative perspectives can be fruitful in terms of providing alternative questions to ask, theories to test and methods with which to generate data. The relationship between situational and epistemic diversity reveals, what has been pointed out by feminist epistemologists, that our cognitive problems and ethical problems are often intertwined (Code 1991). The examples of women, with varying degrees of feminist engagement, such as Jeanne Altman, Barbara McClintock, Ruth Hubbard, Sarah Hedy and Ruth Bleier, demonstrate that situational diversity can have a significant impact on epistemic diversity, and that the epistemic diversity generated out of situational diversity with respect to gender can extend beyond investigations related to gender. One woman scientist interviewed by Sue Rossor reports that her social situation positively impacts her science:

In the computer science discipline in which I work, respect is conferred upon those who possess knowledge obtained primarily through countless hours investigating the nuances of hardware and operating systems. To many in my peer group, this is a relaxing hobby and way of life. Though I learn these nuances as I need them for my research, outside of my work I read literature, am deeply interested in social issues and am committed to being involved in my child’s life. I see this alternate experience base as an asset to my field. As Robin Pke of C language fame recently said, “Narrowness of experience leads to narrowness of imagination.” (2004, xiii.)

Even though there are many cases where situational diversity has led to epistemic diversity, this does not mean that situational diversity necessarily results in epistemic diversity, nor that it always should do so. For example, one can imagine a woman, thoroughly professionalized in a traditional discipline, who uses traditional methods and a widely accepted theoretical approach to study a topic that may or may not be related to gender. A woman may not and need not bring any epistemic diversity, gendered or otherwise, to a community. Whether or not she brings epistemic diversity to a community can be influenced by a wide range of factors. Women as well as men can be curious about a wide range of topics and engaged by a wide range of approaches. Women as well as men are subjected to long apprenticeship-like training in central methods and approaches in their disciplines.

In summary, increasing situational diversity can and has led to increases in epistemic diversity, but it is not necessary that it do so. In the next section I will look at cultural factors that can block epistemic diversity from arising out of situational diversity with respect to gender. If communities are to glean maximal epistemic benefit from increasing situational diversity (e.g., departments hiring more women) it is important to discover and remove these cultural constraints.

7.5 From Ineffective to Effective Epistemic Diversity

When considering constraints that can block epistemic diversity from arising out of situational diversity, it is useful to point out a continuum between effective and ineffective epistemic diversity. Effective epistemic diversity describes a community

*5 address situational and epistemic diversity in Fehr (2007).
much less likely to attract the kinds of opportunities and resources they desire. The challenges women face, including the need to balance work and family responsibilities, can also affect their progress and success.

7.4.1 Women Can Face Challenges in Developing Distinct Identities

Research in the social sciences reveals that women’s professional accomplishments are often undervalued relative to men’s (Valian, 1999). We can see this pattern in several studies that document gender bias in the evaluation of women’s work. For example, a study by Sapienza et al. (1999) found that women were more likely to be overlooked when their work was not as clearly defined or when it was perceived as less important. Additionally, women are often held to higher standards than men in terms of appearance and behavior, which can lead to negative stereotypes and biases.

Research also shows that women face challenges in developing distinct identities, which can be particularly challenging in the sciences. Women often feel pressure to conform to gender stereotypes, which can limit their ability to pursue their own interests and goals. For example, women in science may feel pressure to be more nurturing and less competitive, which can affect their ability to succeed in the field.

7.4.2 Challenges in Developing Distinct Identities

Women face challenges in developing distinct identities that are shaped by their gender, race, and other factors. These challenges can be particularly difficult in the sciences, where gender stereotypes and biases can limit women’s opportunities and success. Women may feel pressure to conform to gender stereotypes, which can affect their ability to pursue their own interests and goals. Additionally, women may face challenges in developing a sense of self that is independent of their gender roles, which can be particularly challenging in the sciences, where gender stereotypes and biases can limit women’s opportunities and success.
women's work and further develop Longino's views. There are both ethical as well as epistemological reasons to work toward ameliorating these issues.

7.5.2 Lack of Social Interactions Required for Women to Offer Dissent – Isolation

One well documented barrier to the retention and advancement of women STEM faculty is isolation and exclusion from networking opportunities. Much of the research on this topic focuses on women lacking knowledge of norms and practices required for tenure and promotion because they are excluded from professional networks. However, if we consider critical social interactions among members of a community as an epistemic desideratum, the isolation and exclusion of women becomes an epistemic issue. A formal community may be situationally diverse and epistemically diverse, but if women are systematically excluded from social interactions within that community, the functioning epistemic community may be an informal community from which women tend to be excluded. It is difficult to measure the impact of factors such as isolation because the vast majority of the data on this topic come from women who have persisted in academic careers. But even among those who persist and win national level competitive grants, isolation is still a factor. In Sue Rosser's study of women who received NSF POWRE grants, she found that in 2000, 30.5% of respondents cited problems with low numbers of women, isolation and lack of camaraderie/mentoring, and 21.9% report challenges gaining credibility/respectability from peers and administrators (Rosser 2004, Table 6, p. 36). One of Rosser's respondents wrote, 'The biggest challenge that women face in planning a career in science is not being taken seriously. Often women have to go further, work harder and accomplish more in order to be recognized' (Rosser 2004, p. 40). Similarly, one respondent to the American Institute of Physics survey wrote, 'The main thing I've felt discouraged is so often you are just made to feel like you shouldn't be there. You have to work twice as hard, do twice as much just to be considered half as qualified.' (Ivie and Goo 2006, p. 11).

One way that isolation functions is that some women report trouble establishing collaborations with men. In Sonnett and Holton's (1996) study of women and men who won prestigious postdoctoral awards they found that when collaborating with men, women were more often treated as subordinates rather than as equal or senior research partners. Along similar lines, a woman from the American Institute of Physics study wrote, 'Interaction with colleagues has been the most difficult. I have often felt that I am ignored or discounted when I attempt to initiate collaborations with men.' (Ivie and Goo 2006, p. 11). This comment speaks to a wider issue as well as intellectual isolation.

Women can also be isolated in terms of their choice of research areas. Of the highly promising scientists that Sonnett and Holton studied, 40% of women and only 15.7% of men reported that their gender influences their choice of research topics. Sonnett and Holton report that women tend to adopt a niche approach; they tend to create their own pockets of research expertise. Several women report adopting this strategy to avoid taking part in a highly competitive culture in which researchers are racing with one another to solve a particular problem. Whether this choice is the result of women adaptively avoiding a hostile and aggressive work environment or it is simply a benign difference of research styles, this result, in combination with challenges that women report doing collaborative work, paints a picture of women being excluded from social interactions relevant to research as well as social interactions relevant to gaining knowledge regarding professional advancement. Reports of being an outsider or not feeling like a full member of professional communities are common. Mary Frank Fox writes that this has a wide range of impacts on women's careers.

Research on isolation and exclusion demonstrates that the effectiveness of diversity promotes excellence theories requires structural and cultural changes in the academy.

7.5.3 Forces That Inhibit Women from Developing Dissenting Views

Women are often solo or minority members of scientific communities and are relative newcomers to many contemporary professionalized academic disciplines. Women also tend to be in marginal positions within the academy. The increases of women scientists in the academy can be seen primarily in low-ranking institutions and at low academic ranks, and women are more likely than men to hold non-tenure track positions (West and Curtis 2006; NAS 2007). These low numbers and marginality can impact the way women conduct their research.

Sonnett and Holton's survey data show that 34.8% of women and 9.9% of men thought their gender plays a role in the methods they use (1996). That one third of elite women scientists report that their gender influences their methodology might be initially suggestive of epistemic diversity. However, in the interviews respondents rarely reported that they used 'feminine methods,' or even methods different from those used by men. Interviewees rather report differences in the application of traditional methods in terms of using a greater degree of caution, carefulness, attention to detail and perfectionism. Sonnett and Holton write that, Rather than being iconoclasts, women tended to uphold to a particularly high degree the traditional methodological standards of science, such as carefulness, replicability and connection
are undervalued. As a result, they are not in a position to contribute as much effective epistemic diversity to a community as they might otherwise be. Free riding might be common but it is not an optimal strategy. Although people can gain some epistemic benefits from free riding, in the long run they can likely gain greater epistemic benefits from doing diversity development work.

Longino’s theory needs to be developed in a way that blocks this nominal interpretation of her work. Doing so is consistent with a richer sense of developing diversity and taking seriously her calls for members of communities to give dissent uptake and to treat each other with equality of intellectual authority. It is not easy work because, among other things, it involves addressing cultural issues. In many contemporary communities, women’s voices are not given uptake and women are not treated with equality of intellectual authority. A richer sense of cultivating dissenting voices includes developing cultures that nurture epistemic diversity workers, both in their ability to explore and develop dissenting perspectives and in the social relations they share with other members of their communities.

I am interested in answering the ‘what is it for me?’ question for two reasons. First, the underrepresentation of women and some minorities among STEM faculty, and in the academy more generally, is highly problematic, especially in light of social science research showing that this underrepresentation is not due to lack of the ability or drive to succeed in academic careers. It is apparent that those motivated to improve this situation need access to a wide range of arguments. Although diversity promotes excellence theories, such as Longino’s critical contextual empiricism, are not designed to specifically address these employment inequities, they do provide an interesting avenue for addressing these problems. Second, focusing on the ‘what is it for me?’ question provides an opportunity to explore ways that diversity promotes excellence theories can be developed both for their own sake and also to guide the activities of scientists seeking to improve their craft.

Acknowledgments I am grateful to Heidi Greenfield for generous help with various drafts of this paper and for unfurrowing professional and personal support. Thanks also to Sharon Bird, Sandra Galen, Margaret Hofmenger, Katie Planiscic, Anastasia Prokes, Diane Price-Heres, Dave Sobelma, Kau Padgett Wolff, Brad Wray, Alison Wylie and audiences in the philosophy departments at Duke University, Iowa State University and the University of Wisconsin-Madison. This material is based upon work supported by the National Science Foundation under Grant No. 0530281. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

References

7.6 Conclusions
In this paper I identify several ways that diversity promotes excellence theories such as Longino’s critical contextual empiricism, as they currently stand, fail to support arguments for increasing gender diversity in the academy. While increasing employment equity may not be the primary aim of these epistemological approaches, I argue that diversity promotes excellence theories can be further developed in ways that provide resources for epistemologists and activists alike.

One of the challenges I point out concerns the free rider problem. Developing an account of formal and informal communities and of power differences among members of communities reveals that one can nominally follow Longino’s advice to cultivate diversity simply by engaging in social interactions with a person who holds a different epistemic position from one’s own and without increasing the overall diversity in the academy. Focusing on this issue using employment inequities as a lens shows that a diversity promotes excellence theory can be consistent with the exploitation of members of marginalized groups and with inequitable employment patterns in the academy. This can provide a misleading answer to the ‘what is it for me?’ question, because it seems to show that one can reap the benefits of epistemic diversity without employing women, or members of other underrepresented groups, and in fact without even rewarding them for their epistemic diversity work. This is not to say that one cannot benefit from including members of underrepresented groups within one’s own department, just that one can find those epistemic benefits elsewhere. But, free riding off marginal members of communities is consistent with and contributes to a culture in which those who are in marginal social positions...