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1. We recommend the acronym EaGlHiVe, pronounced “eagle hive”.

Abstract

We introduce a family of rules for adjusting one’s credences in re-
sponse to learning the credences of others. These rules have a number
of desirable features. 1. They yield the posterior credences that would
result from updating by standard Bayesian conditionalization on one’s
peers’ reported credences if one’s likelihood function takes a particu-
lar simple form. 2. In the simplest form, they are symmetric among the
agents in the group. 3. They map neatly onto the familiar Condorcet
voting results. 4. They preserve shared agreement about independence
in a wide range of cases. 5. They commute with conditionalization and
with multiple peer updates. Importantly, these rules have a surprising
property that we call synergy — peer testimony of credences can pro-
vide mutually supporting evidence raising an individual’s credence
higher than any peer’s initial prior report. At first, this may seem to be
a strike against them. We argue, however, that synergy is actually a de-
sirable feature and the failure of other updating rules to yield synergy
is a strike against them.

1. Introduction

How should you rationally respond when you discover that others
hold beliefs that are either similar to or different from your own? The
answer depends upon, among other things, your judgment about the
reliability of those others when it comes to topics like the one at hand.
Let us suppose that you consider these others to be epistemically respon-
sible; you believe that they have formed their opinions in a reasonable
way on the basis of evidence and reasoning that probably differs from
your own. We will call such people your epistemic peers.?

To make our question more precise, suppose that P has a credence
function P, representing P’s probabilistic degrees of belief. (As a gen-

2. We take this term from Kelly (2005), who attributes it to Gutting (1982).
However, our notion of an epistemic peer is somewhat different from, and
weaker than, that commonly employed in the literature on the epistemology of
disagreement. See section 2.3 below for more discussion.
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eral convention, we will use uppercase Roman letters to represent epis-
temic peers, and upper case Italic letters to represent their correspond-
ing credence functions.) Let A be some proposition in which P has
an initial credence P(A) = p. P then meets Q, R, S,..., whom she
regards as epistemic peers with respect to A,3 and learns of their cre-
dences Q(A) = q,R(A) = r,.... How should P revise her credence
in A to arrive at a new credence P*(A) = p*? More generally, P
might begin with a credence distributed over the members of a par-
tition {Aq,..
learn how Q, R, S,.. . distribute their credences over these possibilities.

., Ax} of exclusive and exhaustive possibilities, and then

Again, how should P revise her credences?

We will call this the problem of updating on the credences of others, or
just updating for short. This problem is closely related to, but also im-
portantly different from, several other problems that have received con-
siderable attention: the problem of responding to testimony, the prob-
lem of judgment aggregation or opinion pooling, and the problem of
disagreement and higher-order evidence.

One answer to the problem of updating is the Bayesian one: the cre-
dences of others are evidence, and when one gets evidence, one ought
to update one’s own credences by conditionalizing on that evidence.
Conditionalizing takes into account one’s views on the reliability of
others because this information is encoded in one’s prior likelihoods.
Consider the simplest case with one binary (yes-no) proposition A,
and two epistemic peers. If P(A) is P’s prior probability for A, then
upon learning that Q(A) = g, P should update to

PT(A) = P(A|Q(A) = 9.
Pt (A) is P’s posterior probability for A.

We take Bayesian conditionalization to be normatively correct for
epistemic agents that already have the requisite conditional degrees

3. We allow that one might be a peer with respect to some propositions but
not others.
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of belief. However, conditionalization imposes unrealistic cognitive de-
mands on agents. An agent must have opinions not only about possible
states of the world, but also about the possible opinions of any peer she
might meet.

The complexity of conditionalization has led a number of authors
to seek simple heuristics that agents can use to produce reasonable,
if not perfect, answers to the problem of updating. Perhaps the most
straightforward — and widely discussed — shortcut rule is linear aver-
aging.4 In the simplest case, where there are two peers, P and Q, who
have prior credences P(A) = p and Q(A) = g, this rule states that,
upon learning each other’s credence in A, the two agents should come
to have a credence in A given by

PH(4) = Q*(4) = P21,
This rule has the virtue of being computationally undemanding. Also,
it is readily generalizable to updates on the credences of multiple peers
and to allow for the agents’ initial credences to be assigned unequal
weights in the determination of a posterior credence.

Nonetheless, linear averaging has a number of well-known draw-
backs. It almost never preserves judgments of probabilistic indepen-
dence. It does not commute with conditionalization. Nor is it commu-
tative or associative with respect to updates on multiple peers: one’s
final credence will depend upon the order in which one updates on
one’s peers’ opinions. We will discuss these problems in more detail in
Section 4.

We will argue that linear averaging has another important short-
coming. The agents’ post-update credences can never be more extreme
than the most extreme of the agents’ initial credences: in the two-
agent case described above, the agents’ post-update credences must

4. For recent discussions, see e.g., Jehle and Fitelson 2009; Kelly 2010; Cohen
2013; Elga 2007; Christensen 2009; Christensen 2011; Steele 2012; de Ridder
2014; Bradley 2015; Romeijn 2015; and Staffel 2015.
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lie within the interval [p, q]. This rules out the possibility of what we
shall call “synergy”: that is, of the agents’ credences providing mutu-
ally supporting evidence that raises their posterior credences higher
than either of their initial credences. As we will show in Section 6,
there are cases in which synergistic responses appear to be rational.

For these reasons, we take it to be worthwhile to seek an alternative
“shortcut” rule that, while still being less computationally demanding
than conditionalization, shares a greater range of the desirable features
that conditionalization has than does linear averaging. For one thing,
such a rule would seem likely to help us better predict and explain
the behavior of otherwise rational agents operating under the sorts of
constraints that prevent conditionalization.

With a view to this, we introduce and defend a multiplicative rule
that we call Upco, short for ‘updating on the credences of others’. In
the simplest case, described above, where there are two peers, P and
Q, who have credences for the propositions A and —A, Upco implies
that both should update to

PH(A) = QF(A) Ll

- . T
pitA-p)d—q) (Upeol)

(The above formula is labelled Upco' to indicate that it is a special case
of our rule Upco.) In the fully general case, where peers P, Q, R,.. . have
credences over the partition {A1, ..., A}, with P(A;) = p;, Q(Ai) = qi,
etc., our rule becomes:

P+(A1‘) _ piqiti - - -

i (Upco)

Upco, like linear averaging, is computationally undemanding.
Nonetheless, it has several key advantages over linear averaging.

Firstly, although the agents’ likelihoods are not invoked in this for-
mula, it is equivalent to conditionalization when the likelihood ratios
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of the agents take a particular simple form (Section 7 and Section 8).
We will thus say (Section 7.1) that our rule mimics these likelihoods
(or, more precisely, that it mimics the result of conditionalization for
a Bayesian agent who has these likelihoods), even though it does not
require the agent to have these numbers available to them to plug into
the formula. In fact, we'll see (Section 7 and Section 8) that Upco is com-
patible with many different likelihoods and thus might be expected to
yield reasonable results even for agents whose likelihood function is
not fully specifiable.

A second advantage of Upco is that, when agents update in accor-
dance with this rule, the agents” post-update credences do not lie in
the [p, q] interval where it is not reasonable for them to do so (see Sec-
tion 6). Thirdly, as we shall show in Section 9, updates in accordance
with this rule commute with conditionalization (Section 9.3) and are
commutative and associative with updates upon the credences of mul-
tiple peers. Finally, updating in accordance with Upco preserves shared
agreement about independence in a wide range of cases (Section 9.2).

Upco is intended as a heuristic; we do not claim that it yields rea-
sonable results in all cases: only conditionalization does that. Nor do
we claim that Upco is normative for agents that do not have the where-
withal to use conditionalization. As we shall see in Section 10, there
are cases in which the simple likelihood function that we will use to
motivate Upco is implausible. However, in that section, we show that
there are some generalizations of Upco that accommodate a range of
such cases. Updating according to these generalized rules places more
demands upon an agent, but the rules are still not as demanding as
conditionalization. In Section 10 we will argue that another key advan-
tage of Upco over (weighted) linear averaging is its heuristic value: it
is suggestive of a greater range of generalizations, which allows one to
handle a greater range of cases.

2. Related Problems

The problem of updating on the credences of others, which is our focus, is
closely related to three other problems, which we will call the problems
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of testimony, aggregation, and disagreement. In this section, we briefly sur-
vey these problems, and highlight their differences from the problem
of updating.

2.1 Testimony

The problem of testimony concerns how one should respond to the
reports of partially reliable witnesses. For instance, suppose that m
witnesses testify that proposition A is true, while n witnesses testify
that A is false. If we have some kind of probabilistic measure of how
reliable each witness is, what should be our credence for A? A closely
related problem concerns jury deliberations. Suppose that there are
m + n jurors, with m > n, and each juror has a certain probability of
reaching a correct verdict. If at least m jurors must agree in order to
reach a verdict, what is the probability that the jury as a whole will
reach the correct verdict? The jury problem is usually formulated as a
problem about the objective probability that a jury will reach the correct
verdict, rather than how an agent should revise her beliefs in light of
the jury’s vote.

There is a very long history of work on probabilistic accounts of
testimony. Questions about how a jury should use probability theory
to reach a verdict go back at least to Leibniz, and the late 18th and early
19th centuries in particular are filled with numerous Bayesian analyses
of testimony — much of it driven by Hume’s widely read Of Miracles
(originally Book X of An Enquiry Concerning Human Understanding —
Hume [1748] — and later published separately). Condorcet produced
his famous jury theorem in 1785. For a good historical survey, see Zabell
(1988).

The problem of testimony assumes that witnesses report full be-
liefs rather than credences. That is, each witness reports his belief that
A is true or A is false. In many cases, we assume that the witness has
some given probabilistic reliability p. We could then try to link the tes-
timony problem to the updating problem by mapping the witnesses’
report that A is true onto a credence of p for A, and 1 —p for —A. (A
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separate issue is what we mean by saying that a witness has a reliabil-
ity of p. For example, does it mean that P(A|witness reports A) = p,
or P(witness reports A|A) = p, or something else? And what if the
probabilities are different for A and —A?) This will generate reason-
able results in many cases, but in general, a person’s degree of belief
in A is not the same as their reliability if they testify that A.

In addition, the more general case of the problem of updating,
< Art,
does not have any obvious analog in the problem of testimony. There

where one’s peers report their credences over a partition {Aj, ..

has been some work on generalizing the problem of testimony to in-
clude cases where witnesses have different reliabilities and where there
are numerous possible answers to a question, rather than just testi-
mony that A is true or A is false (see Van Cleve [2011] for an overview
of some of these attempts). But all such attempts still rely on a number
of simplifying assumptions and do not get at the heart of the subjec-
tive nature of the problem of updating. The logic of the testimony of
full beliefs is the wrong place to start if one hopes to understand the
general case of updating.

2.2 Aggregation

The problem of aggregation (sometimes called the problem of opinion
aggqregation or opinion pooling) involves a group of agents who have
credences in some proposition A, or over a range of propositions. The
goal is to find an appropriate way to represent the opinion of the group
as a whole. Perhaps the group has to decide whether to take a certain
investment opportunity (as in Russell et al. 2015).

There are two important differences between the aggregation prob-
lem and the updating problem. The first is that the aggregation prob-
lem concerns how best to represent the collective opinion of the group.
It does not presuppose that any one member is rationally required to
revise her credences in light of the credences of the others in the group.

Second, a common stipulation in the aggregation problem is that
the group be in a state of “dialectical equilibrium” (Lehrer and Wag-
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ner 1981, 19; Genest and Zidek 1986, 125) or “reflective equilibrium”
(Steele 2012, 984). Practicing statisticians might understand this idea in
behavioral terms. The agents meet, explain the reasons behind their cre-
dences, and revise their own credences. Equilibrium is reached when
no agent wishes to revise her credences further (regardless of whether
she ought to further revise her credences).

The updating problem arises earlier in the process. One encounters
others whom one regards as epistemic peers, and whose credences
may differ from one’s own. One then might revise one’s own credences.
This revision constitutes the dynamics by which equilibrium is reached.
The updating problem comprises the question of how these dynamics
are rationally constrained.>

2.3 Disagreement
The problem of epistemic disagreement has received a great deal of
attention recently. This problem concerns how one should respond to
disagreement with an epistemic peer over some proposition A. Cru-
cially, however, the notion of peerhood that is employed in this litera-
ture is much stronger than ours. Typically, it assumes that your peer
has precisely the same evidence regarding A that you do, and that
you regard your peer as equally competent with respect to the subject
matter of A.

Some authors address the problem of disagreement in full beliefs:
I believe that A, while my peer believes that —A. See for example
Kelly (2005), Feldman (2006), Lackey (2010), and van Wietmarschen
(2013). Others, such as Jehle and Fitelson (2009), Wagner (2011), and
Steele (2012), frame the notion of disagreement in terms of credences
as, sometimes, do Elga (2007), Kelly (2010), de Ridder (2014), and Chris-
tensen (2011, 2010, 2009, 2007).

Many of the responses to the problem of disagreement have fallen
into one of two camps. Defenders of steadfast responses, e.g., Kelly

5. This distinction is essentially the same as Bradley’s distinction between “de-
liberation” and “aggregation” (Bradley 2007).
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(2005, 2010), claim that it is reasonable to retain your original belief
or credence in the face of disagreement. Others, such as Elga (2010)
and Christensen (2007, 2011), advocate conciliatory responses to peer
disagreement, in which you revise your belief or credence to accom-
modate your peer’s opinion. One form of the conciliatory approach is
the Equal Weight View, which advocates giving your peer’s opinion the
same weight as your own. We will discuss the Equal Weight View in
more detail in Section 5 below. We will add, at least as logical possibil-
ities, deferential views, in which you defer to the opinion of your peer
(see, e.g., Joyce 2007).

The problem of disagreement is closely connected to the problem
of how to respond to higher-order evidence (Christensen 2010). Higher-
order evidence for a proposition A concerns your evaluation of the
evidence for or against A. For instance, if someone shows you that
you have systematically underestimated the probability of propositions
like A in the past, this might cause you to adjust your credence in A
upward. If your peer has the same evidence for A that you do, but
nonetheless assigns a different credence to A, should you take this as
evidence that you have misevaluated the evidence for A? ©

We are skeptical about the prospects of clearly unpacking the stipu-
lation that epistemic peers share the same evidence. For example, sup-
pose that P and Q are chicken-sexers. According to philosophical lore,
chicken-sexers learn to distinguish male from female chicks fairly re-
liably by being shown a large number of each. However, the chicken-
sexers cannot explain why one chick looks male or female, they do not
consciously apply any criteria in reaching their judgments, and they
cannot communicate to others what to look for.” P and Q look at a
chick, and P’s credence that it is male is .7, while Q’s credence is .9.
Do they share the same evidence? They both have access to the same

6. Here we have benefited from helpful discussion with Paulina Sliwa and
Leon Leontyev.

7. Philosophical lore is not entirely accurate, as there are several methods for
distinguishing the sexes of chicks, although ambiguous cases can still occur.
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sensory information. But, for all they know, they are each respond-
ing to different sensory cues. In this case, does it even make sense to
decompose P’s credence into evidence and response to evidence (and
likewise for Q)?

In any event, in our treatment of the updating problem, we do
not assume that the epistemic peers share the same evidence.® In Sec-
tion 10.2 we show how our update rule may be modified to reflect
shared background knowledge among the peers.

Another respect in which the updating problem differs from the
problem of disagreement is that we do not assume that the epistemic
peers actually disagree, in the sense of assigning different credences
to some proposition(s). As we shall see, the case of peer agreement
actually turns out to be more interesting and complicated than might
be expected.

2.4 Updating
The problems of updating, testimony, aggregation, and disagreement
are different enough that there is no guarantee that a good solution
to one will be a good solution to the others. At the same time, the
problems are similar enough to borrow concepts and terminology from
each other. For example, it is clear enough what a steadfast or deferential
solution to the problem of updating would be, even though these terms
are imported from the literature on disagreement.

It remains possible that one might solve one of these problems by
means of a solution to another. For example, there are at least two
attempts to solve the problem of aggregation by means of a solution

8. Dietrich (2010) discusses the importance of distinguishing between the
cases when the peers have the same information and when they have differ-
ent information in the context of the aggregation problem. He says that in the
case where they have the same information, they have symmetric information,
and when they have different information, they have asymmetric information.
We think that this terminology is misleading, however. For example, one might
use the same terminology to distinguish cases where each peer has informa-
tion the other lacks (symmetric) from cases where one peer has strictly more
information than the other (asymmetric).
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to the problem of updating. Lehrer and Wagner (1981) propose that
the peers first update on each other’s credences, and then iterate the
updating process until a consensus is reached. The consensus then
represents the aggregated opinion of the group.? Another approach
to the aggregation problem, dubbed supra-Bayesianism by Keeney and
Raiffa (1976), has its origins in the work of Winkler (1968) and Morris
(1974, 1977). The proposal is to represent the aggregate opinion of a
group by supposing that the members inform a hypothetical decision-
maker (the supra-Bayesian) of their opinions.

While we claim only to offer a useful heuristic for addressing the
problem of updating, we encourage those working on these other prob-
lems to make use of our ideas.

With these important clarifications in mind, we are now ready to
describe some existing answers to the updating problem, before pro-
ceeding to propose our own, novel answer.

3. Bayesian Conditionalization

A familiar rule for revising one’s beliefs in the light of new evidence
is Bayesian conditionalization. If P(A) is P’s initial credence in A, and
she then learns that proposition E is true (and nothing else), her new
credence would become P*(A) = P(A|E). P(A) is P’s prior probability
for A, and P*(A) = P(AJE) is her posterior probability.

A natural suggestion, then, is that when P learns that Q’s credence
in A is Q(A) = g, she treats the proposition Q(A) = g as evidence and
updates by conditionalization. Thus her new credence will be P*(A) =
P(A|Q(A) = g). By Bayes” Theorem:

P(Q(A) = qlA) - P(A)
P(Q(A) = q|A) - P(A) + P(Q(A) = q|=A) - P(=A)

PT(A) =

P(Q(A) =q|A) and P(Q(A) = g|—A) are P’s likelihoods for Q(A) = g. It
is often helpful to express Bayes’ theorem in the form of an odds ratio:

9. For criticisms of this proposal, see Loewer and Laddaga (1985, 86), Martini
et al. (2013), and Elga (2010).
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P*(A)

_ P(A)  PQA) =4l4)
Pt(=A)  P(=A) P(Q(A) =q|-A)

The odds-ratio form of Bayes’ Theorem shows how your posteriors
depend on your priors multiplied by the likelihood ratio.

As others have noted,’ however, while conditioning in this way
may be the normative standard, it would still be of great benefit to
look for further, simpler formulas. In the first place, conditionalizing
is computationally complicated, and this difficulty explodes when we
have multiple propositions and/or the credences of multiple agents are
involved. For example, suppose that P has credences over the algebra
generated by the propositions A, —A, B, —B. In this case, there are four
basic possibilities. To fully specify P’s credence function, we need to
specify her credence in three of these possibilities. Now suppose that
P has one peer, Q, who has credences for the same propositions. For
simplicity, suppose that Q’s credences must be multiples of .25. There
are 35 possible credence functions for Q. For P to have credences for A
and B, and also over Q’s various possible credences, P needs to have
credences over an algebra with 140 elementary possibilities. And if P
has two peers whose credences come in multiples of .1, then we have
over 300,000 elementary possibilities. We quickly face a combinatorial
explosion.

Worse, in real cases with real agents, it is doubtful we even have the
requisite likelihoods.™ For instance, suppose that you have just been
introduced to someone who is a professor at the University of Helsinki
or the University of Sydney (whichever is farther from you). In light
of this person’s position, you decide to treat her as an epistemic peer
with respect to some proposition under discussion. Since you literally
just met this person, there is no way that you could have prior degrees

10. See, e.g., Genest and Schervish (1985); Dawid et al. (1995, 310-311); Steele
(2012, 986—987); Bradley (2015); and Romeijn (2015).

11. See, e.g. Genest and Schervish (1985, 1198-1200, 1205); Loewer and Laddaga
(1985, 87); Dawid et al. (1995, 311); Bradley (2015); Romeijn (2015).
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of belief about this person’s credences. So a shortcut rule that is com-
putationally tractable, easy to understand, and easy to generalize and
modify is desirable.

4. Linear Averaging

One very simple heuristic that has received considerable attention is
linear averaging. Suppose that P1, Py, ... P, are peers with respect to
proposition A. Then, when they learn each other’s credences, they
could each update to the average of the group:

Pi(A)+ Py (A) +...
n

Pf(A) = P} (A) = ... = PF(A) = Pu(4)

Jehle and Fitelson (2009, 284) call this rule Straight Averaging.

A common generalization of the Straight Averaging rule is one that
allows weighted averaging with non-equal weights. A weighted linear
averaging rule states that

where wy, ..., and wy, respectively represent the weights of respect P

assigns to herself and to each of her n — 1 peers, and where > w; = 1.
)
If each w; is 1/n, this yields the Straight Averaging rule. 1

The weighted linear average was proposed as a solution to the prob-
lem of aggregation by Stone (1961). Others, such as DeGroot (1974),
Lehrer and Wagner (1981), and Genest and Schervish (1985), adapted
the linear averaging rule to the problem of updating.’*

12. For recent discussions, see e.g., Jehle and Fitelson 2009; Kelly 2010; Cohen
2013; Elga 2007; Christensen 2009; Christensen 2011; Steele 2012; de Ridder
2014; Bradley 2015; and Romeijn 2015.
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One advantage of the linear averaging strategy, besides its simplic-
ity, is that it provides a natural framework for articulating the differ-
ent positions that have been defended in response to the problem of
disagreement. An epistemic agent P is being steadfast if she assigns
herself a weight close to one; she is being conciliatory if she assigns
her peers substantial positive weights; and she is being deferential if
she assigns herself a weight close to zero. The natural way to cash
out the Equal Weight View, in this framework, would be in terms of
the Straight Averaging rule, where each peer receives equal weight. As
we will argue in the next section, however, it would be a mistake to
conclude that this is the only way to cash out the Equal Weight View.

Unfortunately, linear averaging suffers from a number of well-
known drawbacks. The first is that it is neither commutative nor as-
sociative, as we illustrate with the following example:

Example 4.1. Suppose that peers P, Q, and R have credences in A of .3,.5,
and .8 respectively, and that P updates on the opinion of her peers by the
Straight Averaging rule. If P meets Q first, she averages .3 and .5 to get
4. Then, when P meets R, she averages .4 with .8 to get a final value of .6.
However, if she first meets R, she averages .3 and .8 to get .55. Then, when
she meets Q, she averages .55 with .5 to get final value of .525. Finally, if she
meets both peers at once, and averages the three numbers together, she gets a
new credence .533.

This result is undesirable; thus, the defender of linear averaging has
to say something more about the case of multiple peers. Cohen (2013),
for example, proposes that

...as I encounter new peers, I should revise by continually av-
eraging over all of them. So regardless of the order in which I
encounter them, I will end up with the same credence. (Cohen
2013, 116)

It is far from clear exactly what this proposal amounts to. At the very
least, this would seem to require that for every proposition in which
I have a credence, I keep track of how many peers have had input
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into my credence for that proposition. Gardiner (2014, 92-93) raises
worries about the possibility of adequately addressing this issue, as
well as offering compelling arguments against a number of alternative
responses that the linear averager might give.

A second problem with linear averaging is that it is not always com-
patible with conditionalization. That is, if P updates on the opinions of
her peers by taking a weighted average of the group’s credences, it is
not always possible to find likelihoods for P such that conditionaliza-
tion using those likelihoods yields the same result as averaging. Dawid
et al. (1995) and Bradley (2015) discuss the problems that arise in the
specific case where a peer is perfectly deferential. But the incompati-
bility of linear averaging with conditionalization also follows from the
failure of linear averaging to be commutative and associative. Bayesian
conditionalization is commutative and associative. If we view condi-
tionalization as the normative standard, then compatibility with condi-
tionalization seems like a straightforward desideratum of any heuristic.
Lasonen-Aarnio (2013) argues that compatibility is impossible, unless
one makes restrictive and implausible assumptions about the agent’s
prior credences.

Third, linear averaging does not preserve judgments of indepen-
dence. That is, if P and Q both judge propositions A and B to be inde-
pendent, and P7 is a linear average of P and Q, then A and B will not
be independent in P+ except in rare cases (e.g. when P and Q are iden-
tical, or where the averaging rule used assigns one of the peers zero
weight).” This is closely related to Simpson’s Paradox. We illustrate
this property with the following example:

Example 4.2. Two coins are about to be flipped, so that the algebra of propo-
sitions under consideration is HH, HT, TH, TT, and their disjunctions. Let
P have credences indicating a credence 1/3 of each coin coming up heads, and
independence of the flips. Thus, P(HH) = 1/9, P(HT) = P(TH) = 2/9,
and P(TT) = 4/9. Similarly, let Q have credences indicating a credence

13. See, e.g. Laddaga (1977) and Loewer and Laddaga (1985, 89—90).
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2/3 of each coin coming up heads, and independence of the flips. Thus,
Q(HH) = 4/9, Q(HT) = Q(TH) = 2/9, and Q(TT) = 1/9. P up-
dates using Straight Averaging, so PY(HH) = PY(TT) = 5/18 and
PY(HT) = P™(TH) = 2/9 = 4/18. This distribution doesn't treat the
two flips as independent, but instead treats them as slightly correlated —
for independent flips, the probability of HT would have to be in between the
probabilities of HH and TT.

Wagner (1985) responds to a similar coin flipping case from Loewer
and Laddaga (1985) by saying that “obviously” the correct thing to do
is to first average the biases of the individual coin tosses, and then cal-
culate the probabilities of various sequences of tosses on the assump-
tion that the tosses are independent. We agree that there are some
cases where this is the obvious thing to do. But how the formal appa-
ratus of linear averaging can achieve this is entirely mysterious. Other
than saying “When you get the wrong answer, don’t do it”, we don’t
think that Wagner can say much else here. Wagner (2011) shows how,
if we wanted to, we could preserve the independence of any fixed fi-
nite family of countable partitions. This move seems rather ad hoc. Of
course one can preserve specific independences if one specifically sets
out to do so. But what we want is a general rule that we can follow
where it simply falls out of the rule that certain kinds of agreed-upon
independences are preserved.

A fourth problem with linear averaging is that it does not commute
with conditionalization.™ If P meets Q, updates her credence in A on
the basis of QQ’s credence, and then learns E and conditionalizes, she
will arrive at a different credence for A than if she performed the op-
erations in the reverse order. We can illustrate this property using the
previous example of the coin. If P learns that the outcome of the first
coin toss was heads and conditionalizes, her credence for the second
coin coming up heads will remain 1/3. She then meets Q, whose cre-
dence for heads on the second toss is 2/3 (regardless of whether or

14. See, e.g. Loewer and Laddaga (1985, 88); Jehle and Fitelson (2009, 285-287);
Wilson (2010, 323ff); and Russell et al. (2015).
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not he also learned the outcome of the first toss). Using Straight Av-
eraging, P’s new credence for heads on the second toss will be 1/2.
On the other hand, suppose she first meets Q and updates on the ba-
sis of Q’s credence. Then (as shown above) her new credences will be
P*(HH) = P*(TT) = 5/18 and P* (HT) = P*(TH) = 2/9 = 4/18. Now,
if she learns that the first coin landed heads and she conditionalizes,
her new credence for heads on the second toss will be 5/9.

In Section 6, we will discover yet another drawback of linear aver-
aging. A number of these properties are subjects of various impossibil-
ity theorems; we will return to these issues in Section g below. In the
meantime, however, we have provided ample motivation to search for
an alternative shortcut rule for updating.

5. The Equal Weight View

One mainstream view in the disagreement literature is known as the
Equal Weight View or EWV (Elga 2007). The informal idea behind the
EWYV is that, in cases of disagreement with an epistemic peer, one
should treat one’s own judgment as exactly on a par with that of one’s
peer. This view is motivated by the very strong sense of peerhood that
is invoked in the disagreement literature.

As we noted in Section 4, linear averaging provides a natural way
to formulate the EWV. The EWV corresponds to Straight Averaging, i.e.
linear averaging with equal weights. Indeed, the EWV has often been
taken to be synonymous with Straight Averaging. For example, Kelly
(2010) and Cohen (2013) simply define the EWV in this way, while Elga
(2007, 484, 486n) assumes that the EWV implies that, in the case of a dis-
agreement with a peer, one ought to move (halfway) “in the direction”
of one’s peer’s view."> Likewise, in their paper “What is the ‘Equal
Weight View’?”, Jehle and Fitelson (2009) answer the titular question
by examining (only) the linear averaging rule with equal weights and
some minor variants thereof.

15. Wilson (2010) adduces further evidence that Elga takes EWV to entail (lin-
ear) “averaging” (with equal weights).
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By contrast, we take the essence of the EWV to be the condition
Russell et al. (2015) call anonymity.*® This condition states that the rule
for updating one’s credences be a function only of the credences them-
selves, without regard to which credence belongs to which peer. For
example, if P(A) = p and Q(A) = g, then a rule satisfying anonymity
would return the same value for P*(A) as it would if P(A) = g and
Q(A) = p. Straight Averaging exhibits this symmetry, but it is certainly
not the only rule to do so. Our rule, which is described in Section 7
below, satisfies anonymity and thus respects the intuition that we take
to underlie defenses of the EWV.

6. Synergy

We will say that P; responds synergistically to learning the initial cre-
dences of her epistemic peers Py, ..., and P, if her new credence lies
outside of the interval [min{P;(A)}, max{P;(A)}]. Linear averaging will
never produce synergy so long as all of the weights are between zero
and one.'7 While synergy might seem, at first, like an undesirable fea-
ture of an updating rule, we will argue in this section that it is in fact
a desirable feature at least in some cases.

Christensen (2009) describes a case where synergy seems war-

ranted:

Suppose, for example, that I am a doctor determining what
dosage of a drug to give my patient. I'm initially inclined to

16. See also Moss (2011) and Lasonen-Aarnio (2013) for different ways of cash-
ing out EWV. Moss proposes that the problem of disagreement could be han-
dled by maximizing the average epistemic utility of the agents. Then, EWV
would amount to the proposal that each agent’s epistemic utility receive equal
weight. Lasonen-Aarnio proposes a framework in which an agent’s own cre-
dences are not transparent to herself. Then, she learns both her own credences
and those of a peer. In this framework, Lasonen-Aarnio understands the EWV
to entail that the agent is as certain that her peer’s credence is “correct” as that
her own credence is “correct”. She leaves it open-ended what it would be for a
credence to be “correct” in the relevant sense.

17. Genest and Schervish (1985), e.g., explore linear averaging rules where the
weights are not so constrained.
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be very confident in my conclusion, but knowing my own falli-
bility in calculation, I pull back a bit, say, to 0.97. I also decide
to ask my equally qualified colleague for an independent opin-
ion. I do so in the conciliatory spirit of using her reasoning as a
check on my own. Now suppose I find out that she has arrived
— presumably in a way that also takes into account her fallibility
— at 0.96 credence in the same dosage. Here, it seems that the ra-
tional thing to do is for me to increase my confidence that this is
the correct dosage, not decrease it as difference-splitting would
require. But this is not inconsistent with giving equal weight to
my colleague’s opinion .. .. (p. 759; a similar example is given in
Christensen 2011, 3n)

We agree with Christensen that in this case one ought to increase one’s
confidence in one’s conclusion. This example is just one of a very large
number in which a synergistic response is rational. Such a response
will be rational in any case in which, despite the fact that one’s cre-
dence in A differs from those of one’s peers, the different credences
nevertheless represent a kind of agreement about whether the evidence
favors A or —A. In some cases of disagreement, the credences of one’s
peers are evidence against one’s view; here, they are evidence for it.
Loewer and Laddaga (1985, 86) note the rational possibility of syn-
ergistic responses to learning the credences of one’s peers. Dietrich
(2010) argues that if the members of a group do not all share the same
information, then aggregating the group’s opinion should sometimes
produce synergy.

Here is a second example of synergy. Even critics of the EWV agree
that perceptual judgments can provide powerful motivations for EWV
(compare Kelly 2010, 150-152). A standard example is that in which
you and your peer view the same horse race; you believe that Horse A
is the winner, but then discover that your peer believes Horse B is the
winner. It seems that this discovery should make you less confident
that Horse A won — perhaps even abandoning your belief that it did.
However, suppose that after viewing the race but before conferring,
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you each have a credence of .8 that Horse A was the winner. In such
a case, it seems clear that each of you should become even more con-
fident that Horse A was indeed the winner. Linear averaging cannot
deliver this verdict.

We may support these intuitions with some elementary considera-
tions from confirmation theory. Suppose that you think your peer is
somewhat reliable in judging the outcomes of horse races. Specifically,
suppose that you think your peer is more likely to report a credence
of .8 for A’s victory if A in fact won than if A lost. That is, suppose
that your credence P in your peer’s credence Q satisfies the inequality
P(Q(A) = 8|A) > P(Q(A) = .8|]—A). Then, the proposition Q(A) = .8
confirms A for you, and if you conditionalize on this proposition, your
credence in A will go up. This is true regardless of your prior credence
in A. In particular, even if you have credence P(A) = .8, your credence
in A will go up when you learn that Q(A) = .8.

We also note that synergy is a familiar feature of solutions to the
problem of testimony. Even if each witness has a fixed probability p < 1
of being correct, if enough independent witnesses testify to the truth
of A, the probability that A is true can be made arbitrarliy close to one.

Having defended the general principle that a rational updating rule
should allow for the possibility of synergy, we will now introduce our
update rule, which prescribes synergy in the above cases.

7. The Upco Rule

In this section, we introduce our proposed update rule, Upco, in the
special case where an agent updates on a peer’s credence on an al-
gebra generated by the propositions A, —A, first for the case of two
peers, and then for multiple peers. In Section 8, we generalize to up-
dates on credences over more complex algebras. The versions of the
rule described initially will be appropriate to apply in the case of
agents with completely independent evidence, who are each equally
reliable in their response to this evidence. In Section 10, we will sug-
gest ways to apply the rule (with some modifications) to other cases
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as well, including many of the traditional cases considered for peer
disagreement.

7.1 Two Peers

To introduce our update rule, let us consider in more detail how an
ideal Bayesian agent would respond to learning the initial credences of
her epistemic peers. Specifically, suppose that this agent P has initial
credence P(A) = p in proposition A. P has a peer, Q, whose opinion she
accords some weight. This peer has credence Q(A) = q. How should P
revise her credence in light of learning her peer’s opinion about A?

A correct Bayesian analysis would suggest that P conditionalize on
Q(A) = g. Assuming that P has likelihoods of the form P(Q(A) = g|A)
and P(Q(A) = g|—A), she can use them to update by a simple applica-
tion of Bayes’ theorem. As mentioned above, P’s posterior probability
will be:

P(Q(A) =4lA)-p

PT(A) = . Post
= poa) = qia). p+ PQA) —g-A) - (1—p) T
An equivalent formulation in terms of the odds ratio is:
+ _

PH(=A) ~ 1-p P(Q(A) =q[-A)

Our proposed rule, Upco, is designed to give the same result as
Bayesian conditionalization when P’s likelihoods — her beliefs about
what credences Q will have, conditional on A and —A — take a partic-
ular, simple form.

Suppose that P believes that Q is reliable. This means that P thinks
that Q is more likely to report higher credences in A when A is true,
and more likely to report lower credences in A when A is false. One
very simple way to implement this idea would be for P’s likelihoods
for Q’s credences to be linear in Q’s credences. Specifically:
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P(Q(A) = q|A) o q;
P(Q(A) = g[—A) c1—¢.

There are several ways in which P’s likelihoods could have this form.
We will first consider the discrete case.

Example 7.1. Suppose that P knows that Q will report his credence rounded
off to the nearest tenth. Her likelihoods are as follows:

P(Q(A) = 1|A) = 1/55;
P(Q(A) = 2|A) = 2/55;
P(Q(A) = 9|A) = 9/55;
P(Q(A) = 1]A) = 10/55;

(The denominator 55 is chosen because 0 +1+ 2+ ---+9+ 10 = 55.) This
likelihood has the form of a step function, and is depicted graphically in Fig-
ure 1. Analogously, suppose that P’s likelihoods, conditional on —A, take the
form of a decreasing step function:

P(Q(A) = 0|-A) = 10/55;

P(Q(A) = 1]-A) = 9/55
P(Q(A) = 2|-A) = 8/55;
P(Q(A) = 9]-A) = 1/55;
P(Q(A) =1]-A) =0;
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Figure 1: P’s credences about Q’s credences in A take the form of an
increasing step function.

Now, when P learns that Qs credence in A is q, we can plug these likelihoods
into Odds to get:

Pt(A)  p q

= . ¥
Pr-A) " T-p i-g (Upco*)

Letting Or(X) =gef %, this formula simplifies to: Op+ (A) = Op(A) -
OQ(A). That is, P’s posterior odds ratio is just the product of P’s prior odds
ratio with Q’s prior odds ratio.

We can also plug these likelihoods into Post to get the corresponding pos-
terior probability:

P+(A)_ Pq

- . T
pit(-pd—q) (Upeol)
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Figure 2: P’s credences about Q’s credences in A are governed by a
linear density function.

This, at last, is our proposed Upco rule. More precisely, it is a special
case of our Upco rule, as indicated by the dagger in the label Upco'.
LIpccfr is the formula for the case in which there are two peers, P and Q,
who have credences on the simple algebra generated by A, —A. While
conditionalization is computationally demanding, Upco' is extremely
simple and can be easily computed. Upcot is our updating rule ex-
pressed in terms of odds ratios. The two formulations are equivalent.

In Example 7.1, we assumed that P’s likelihood was discrete. That
is, P assigned positive probability only to finitely many values of Q’s
credences. Although not essential for motivating Upco, let us now con-
sider the case where P’s likelihoods are continuous.
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Example 7.2. Suppose that P’s likelihoods for Q’s credences conditional on
A are governed by the density function f,, where fa(q) = 2q. This means
that:

q2
P(q1 < Q(A) < q2|A) = ) fa(q)dq

This is illustrated in Figure 2. The density function f, is represented by the
diagonal line. The probability P(q1 < Q(A) < q2]A) is represented by the
shaded region — i.e. by the region under the diagonal line representing the
function f(q), and between the values q1 and qy of q. In the particular case
where f4(q) = 2q, integration will yield a value of g5 — q3.

Assume, analogously, that P’s credences conditional on —A are governed
by the density f_4 = 2(1 —q).

Now suppose P learns that Q’s credence in A is q. Technically, P can’t
conditionalize on the proposition Q(A) = q, since this proposition has prob-
ability o. (Since Q could have any real-valued credence between o and 1, the
probability of his having any specific real-valued credence q is zero.) There are
a couple of possible fixes available. One would be to suppose that P conditions
on Qs credence being in some small interval (q —€,q + €). A second would
be to expand the usual rule of updating by conditionalization by allowing P to

use the ratio of the density functions f]}/f[(i;) in place of the ratio of likelihoods

%ﬂ% when calculating her new odds ratio. In fact, if we calculate the
posterior using the first method, and then take the limit as € goes to o, we will

get the same result as the second method. The result is that P will multiply

her odds ratio by %, and her new credence will be that implied by Upco©,

namely P+ (A) = 7]0%(1_”2)(1_‘1).

In fact, many different likelihoods will yield the Upco' rule. As be-
fore, suppose that P’s credences about Q’s credences in A, conditional
on A and —A, are governed by the density functions f4 and f_ 4, re-
spectively. Let them have the following forms:
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fa(q) = cqh(q),
f-a(q) = c(1—q)h(q),

where & is any strictly positive function on the interval [0, 1], and ¢ is
a normalization constant ensuring that the total probability adds up
to 1. Then conditionalizing on Q(A) = g will yield the same result as
Upco'. (When calculating the odds ratio, the function /(q) will cancel,
as will the constant c.) For example, instead of thinking that Q is likely
to report higher credences in A when A is true, P might believe that
Q is very likely to be circumspect, and report a credence close to .5.
This would be reflected by choosing a function h(g) that is sharply
peaked at g = .5. As long as P still believes that departures from .5 in
the positive direction are more probable than similar departures from
.5 in the negative direction when A is true, and vice versa when —A
is true, and her credences for these departures are in the appropriate
ratio, then she will replicate the results of Upcof.™®

We will introduce a quasi-technical term and say that Upcol mim-
ics likelihood functions of this form. (Equivalently, Upco’ mimics a
rational agent who has likelihoods of this form, and it mimics condi-
tionalization using these likelihoods.)

Upco' tells P how to update her credences in A and —A when she
learns of Q’s credence in A (and by inference, in —A as well). But P
may well have credences in further propositions, besides A and —A.
How should P incorporate her new credences P*(A) and P*(—A) into
her overall credence function? The most natural suggestion is that P
should revise the rest of her credences by Jeffrey conditionalizing on her
new credences for A and —A." Thus, if B is an arbitrary proposition to
which P assigns a credence, Pt (B) = P(B|A)P*(A) + P(B|—=A)Pt(-A).

18. Thanks to David James Barnett for extremely helpful discussion about the
issues discussed in this paragraph.
19. This proposal is made, e.g., by Wagner (2011).
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While this particular proposal is not central to the update rule, it will
be relevant to discussions in sections 9.3 and 10.9.

To our knowledge, the formula Upco! first appeared in an article
by George Boole in 1857 on the problem of testimony (Boole 1952).
It is also a special case of different multiplicative rules that have been
defended by Morris (1974, 1977), Bordley (1982), Dietrich (2010), and
Russell et al. (2015) in the context of the aggregation problem.>°

With our rule in hand, we can now note some simple properties
that it possesses. These can be exhibited (and justified) with reference
to a few clear, simple cases.

Example 7.3. Christensen’s doctor case. p = .97 and q = .96. Thus, accord-

ing to Upco' the doctors should update to p* = % ~ .998.

This shows that Upco® exhibits synergy. Our posterior credence is ex-
tremely high in this case because it is extremely unlikely that both
doctors have misjudged the situation so badly. That our rule allows
for synergy is especially clear when we formulate things in terms of
odds ratio Upco*. The odds ratio corresponding to a probability of .97
is approximately 32, and the odds ratio corresponding to a probability
of .96 is exactly 24, so the rule tells us that the posterior odds ratio
should be about 32 x 24 = 768. And in fact, as long as both odds ra-
tios are above 1 (meaning that the probabilities are above .5), it is clear
that the posterior odds ratio (and thus the posterior probability) will
be higher than either prior.>*

Example 7.4. My friend and I are never sure whether Montevideo is the
capital of Uruguay or Paraguay. I have credence of .6 that it is Uruguay. My
friend also has confidence .6 that it is Uruguay.

20. See also (Genest and Schervish 1985, 1210) and (Dawid et al. 1995, 281).
21. For results analogous to synergy when multiplicative rules are applied to
the aggregation problem, see Morris (1974, 1239-1240), Morris (1977, 692), and
Bordley (1982, 1142-1145).
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Upco' says that we should update and move to a credence of ~ .69. In
odds ratio form, our prior odds ratios are both 3/2, so the posterior odds ratio
is 9/4, implying a probability of 9/13.

When the two initial credences are the same, as in the last example, any
form of averaging tells us to stay put as if the other person’s report is
no evidence at all. In discussing necessary conditions on good aggre-
gation rules, Lehrer and Wagner (1983) say “A restriction which comes
immediately to mind is that F [the amalgamation function] ought to
respect a consensus on the probabilities assigned to any atomic propo-
sition.” By this they mean that the credence pair (x, x) ought to result
in agents remaining at credence x.*> We do not think that this is a
good rule for updating, since it means that you can never treat your
peer’s agreement as a form of evidence. Our view allows one to treat
the other agent’s credence as additional evidence, even if it happens to
be numerically the same as one’s own initial credence. Our rule does
imply three special cases of preservation of the first agent’s credences
at (0,y) (fory < 1), (x,.5), and (1,y) (for y > 0).?3 But cases of the
form (x,x), where x # 0,.5, or 1, exhibit synergy. Of course, according
to Upco', the peers will have identical post-update credences, but the
posterior credences that they share will be different from either of their
priors. We think it is clear in these simple cases that our rule intuitively
does better than linear averaging.

Example 7.5. P’s credence in Ais P(A) = p, and Qs is Q(A) =q=1—p.
Upco' yields P+(A) = % = 5. Due to the symmetry of the
peers’ opinions toward A and —A, they end up with credences of .5 in each

proposition.

22. Here and throughout the paper “credence pair (x,y)” means that one agent
has a credence of x while a second agent has a credence of y in the same
proposition.

23. Compare Morris (1974, 1239-1240) and Bordley (1982, 1142-1145) for the
analogous result in multiplicative judgment aggregation. Since our rule ex-
hibits a built-in symmetry between agents, the second agent’s credence will
likewise be preserved at (x,0) (for x < 1), (.5,y), and (x,1) (for x > 0).
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In this special case, our rule happens to exactly agree with the rule of
linear averaging. In fact, any rule that is symmetric among the peers
P and Q (satisfying what Russell et al. (2015) call anonymity), and in
the propositions A and —A (satisfying what Russell et al. [2015] call
neutrality), will have this result. Since these symmetric cases make up
a large proportion of the examples considered by other philosophers,
we think that they have misled people about the general case and, in
particular, into thinking that the EWV should be formalized by linear
averaging (with equal weights). Discussions of binary belief cases of
disagreement between peers tend to focus on cases where your peer
is “equally confident” in A as you are in —A. (For examples, see Elga
[2007], Christensen [2007], and Kelly [2010, 122].)

Example 7.6. P has a credence in A of P(A) = p, and Q has credence

. 5
Q(A) = .5. Then Upco' yields P+ (A) = m =p.

If one of the agents has an odds ratio of 1 (and thus a credence of
.5), then the posterior is identical to the prior of the other agent. Upco'
mimics a likelihood in which a peer’s having a credence of .5 is equally
likely whether the proposition is true or false. Thus, a credence of .5 in
A provides no evidence for or against A. For this reason, we will say
that .5 is a break-even point. (In Section 10, we give a generalization of
Upco that allows for other break-even points.)**

Example 7.7. P has a credence in A of .4, and Q has a credence of .9. Then

' 4)(9
Upco' yields P+ (A) = W ~ .86.

In this example, P moves almost all the way to Q’s point of view, while
Q changes very little.

While Upco' adheres to the EWV in the sense of satisfying
anonymity, it produces very different results depending upon the cre-
dences of the peers P and Q. In some cases, it will lead to P moving
halfway toward Q’s credence; in others it will lead to P’s deferring to

24. See also Morris (1974, 1239-1240), Morris (1977, 692), and Bordley (1982,
1142-1144).
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Q’s credence; in yet others, it will lead to P steadfastly holding on to
her original credence; and there will also be cases that produce synergy,
where P moves past Q’s original credence.

7.2 Multiple Peers

The rule Upco' generalizes quite straightforwardly to interactions with
more than one peer. Suppose that there are n peers, Py, Py,..., P, with
P;(A) = p; for all i. Then the natural generalization of Upco' is:

pip2---Pn

Pt(A) = . u *
B = ot G- —p) A P

Or equivalently:
Op+ (A) = Op,(A) - Op,(A) ... Op, (A). (Upco*)

The star indicates that this is still a special case of our most general
rule, since we are still assuming that the credences of the peers are on
a simple algebra generated by the propositions A, —A. Upco* gives the
credence that would result from P; conditionalizing on the credences
of Py,..., Py, if her likelihood function has two features. First, for each
i, her credence that P; reports a credence of p;, conditional on A being
true, is proportional to p;. That is, P;’s likelihood function for each of
her peers has the same linear form discussed above.?> Second, her cre-
dences for different peers are independent, conditional on A and —A.
Thus, conditional on A being true, P;’s credence that P; and P]- will
report credences in A of p; and p; is proportional to p;p;. Note that,
on this assumption, P1’s credences for P; and P; will not be uncondi-
tionally independent. If P; reports a high credence for A, that provides
evidence that A is true, which in turn makes it more likely that P]- will
report a high credence for A.

25. As noted in the previous section, Upco® will also be consistent with condi-
tionalization using a range of different likelihoods as well. That holds true of
Upco* too.
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We will illustrate some of the properties of Upco* by means of ex-
ample. The first example involves peers with the same credences as in
Example 4.1 above:

Example 7.8. Peers P, Q, and R have credences in A of .3, .5, and .8, respec-
tively. P meets Q, updates on his credence, then meets R, and updates on hers.
After meeting Q, P will have credence P+ (A) = % = .3. This is
an example of the phenomenon we saw in example 7.6. Then, upon meeting
R, P will have credence PT*(A) = % ~ .63. But suppose that
P had met R first. Then she would first have P+ (A) = % ~ .63.
And upon meeting Q, her credence will remain unchanged (as we saw in 7.6).
Thus P’s final credence does not depend upon the order in which she meets
her peers. Readers can also verify that P will arrive at the same credence if she

updates by Upco* on both peers at once.

This property holds in general. Unlike linear averaging, Upco* doesn’t
depend on the order in which one responds to the credence of peers.
On the odds ratio form of our rule, Upco*, one updates upon meeting
each peer by multiplying one’s current odds ratio by the odds ratio
of that peer. The fact that multiplication is commutative means that it
doesn’t matter in what order one updates in light of one’s peers, and
the fact that multiplication is associative means that it doesn’t matter
if one updates in light of two peers at once or in sequence.
Upco* also permits another kind of sequential updating.

Example 7.9. Peers P, Q, and R have credences in A of .8,.6, and .6,
respectively. Q meets R and updates his credence using Upco*, so that
Q1 (A) ~ .69. Then P meets Q, and updates using Upco*. P’s new credence
P+ (A) will be .9. This is the same credence that would have resulted had P
updated on the original credences of Q and R.

In this example, P still gets the benefit of learning from R’s opinion,
since R’s opinion is reflected in Q7. However, if P meets Q and R
after they have updated on each other’s opinion, and uses Upco*, she
will have a new credence of PT(A) ~ .95. This is the same credence
that would result from meeting four peers with credences of .6 for A.
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Since R’s original opinion is now reflected in Q’s new opinion, and
vice versa, the original credences of Q and R are being double-counted.
Upco* is designed to mimic a likelihood in which the credences of Q
and R are independent conditional on A and —A. That is not reasonable
in this case, where Q and R have synchronized their credences. We will
return to this problem in section 10.6 below.

Example 7.10. There are m + n peers. m have a credence in A of p,
while the other n have a credence of 1 — p. Then, when the peers update

on each other’s credences, they will arrive at a new credence of PT(A) =
Pm(l—]!?)” _ pm—n

prA=p)t+A=p)"p"  pr(l-p)™ . i

m — n. Moreover, the result will often be synergistic. For example, if p > .5,

—. This depends only on the difference

and m —n > 1, the final credence will be higher than p.

This result is similar to the famous “Condorcet Jury Theorem”. If there
is a jury of individuals that have imperfect but positive reliability on
some proposition, then the result of a majority vote is more reliable
than any of the individual jurors. In our framework, if each agent has
a reliability of p > .5, then we can represent them all as having cre-
dence either p or (1 — p) in the proposition. That is, we can represent a
juror who votes for A as an epistemic peer with a credence in A equal
to p; and we can represent a juror who votes against A as a peer with
credence 1 — p. If m of them claim that the proposition is true, and n of
them claim that it is false, then the posterior odds ratio will be O™~"
where O = p/(1 — p). The final degree of confidence we should have
depends on the difference between the number of jurors that vote for
or against the proposition, and will generally be substantially higher
than the confidence of any individual juror. People often find this re-
sult counterintuitive. For example, suppose that each individual juror
is 80% reliable. Then, if ten jurors unanimously judge that A is true,
the probability of A is the same as if 1,010 jurors judged that A is true,
and 1,000 judged that it is false. This result is normatively correct (on
the assumption that the jurors are independent), although many peo-
ple would (without calculating) judge A to be more probable in the
first case. Linear averaging cannot capture the results of the Condorcet
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theorem. On linear averaging, the posterior will depend on the ratio
between the number that vote for and against, and will generally be
substantially lower than the maximum confidence to be found among
the individual jurors.

Note that the Upco* rule will break down if the p;’s include both 1’s
and o’s (we will get a posterior credence of 0/0).2° However, the likeli-
hood that is mimicked by our rule says this happens with probability
zero.”7 Suppose, however, that some number of peers have credences
of €, and others have credences of 1 — €, where € is small. Taking limits
as € goes to o, we see that an equal number of 0’s and 1’s will cancel
out, but if one is in excess of the other, then it will dominate. In this
regard, our formula works like Condorcet’s: six 1’s and five o’s will
give the same result as a single 1.

8. Updating on Credences over Partitions

The rule as we have proposed it so far is useful when the question un-
der discussion involves only a single proposition and its negation. But
this is importantly limited. Imagine that you have no idea when Bob’s
birthday is. Your own credence is (roughly) 1/365 for each possible day.
Alice then tells you that it is either April 8th or April gth — she has cre-
dence .5 in each. If you just focus on whether or not it is April 8th and
apply Upco', you will get P* (April8) = (1/365)5‘15,6%?%2145/)365)(5) = 1/365,
which is clearly the wrong answer. You have treated Alice’s report as if

it contained no useful information. Even worse, it is not clear this pro-
cedure is even coherent. Focusing on a different proposition — such as
whether Bob’s birthday is December 25th — leads to an incompatible
result. Upco! and Upco* are partition-dependent rules.

26. For the analogous result when a multiplicative rule is applied to the aggre-
gation problem, see Bordley (1982, 1145).

27. Since peer P; has a likelihood density for the credences of her peers, she
assigns probability zero to to her peers reporting any specific credence. But the
case described in the text has probability zero in a stronger sense: the density
itself will be zero.
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In the present section, we show how to properly extend these rules
to credences over a partition {A, Ay, ..
{A, —A}.

Suppose

., Ay} instead of a binary choice

that we have a partition of n propositions

{A1,Ay,..., A¢}. P has probabilities pi,p2,...,pr while her peers
have q1,92,...,9x 71,72, ..., 7% etc. The natural generalization of our

rule is:

P+(A1‘) _ piqiti - . -

T a— (Upco)
i1 pjdjr -

Since this (at last!) is the fully general version of our rule, the name
Upco appears unadorned.

When there are many propositions involved, there is an odds ratio
for each given pair. The rule says that the odds ratio between any two
elements of the partition after the update is the product of the odds
ratios each peer had between those two elements of the partition before
the update. That is:

P*(A)

=~ A _Pi 40T
P*(A))

g

The general version of Upco mimics the result of conditionalization
with likelihoods similar to those we have encountered before, although
a bit more complicated. Suppose that P’s likelihoods for each peer’s
credence, conditional on A;, are governed by a density f; having the
following form:

k!qi, ifql+...+qk=1

0, otherwise.

fi(qi, - qx) =
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Suppose also that P takes the credences of her peers to be independent,
conditional on each A;. Then, the result of updating by conditional-
ization on the credences of her peers will be the same as the result
of computing using Upco. Note that f; yields a joint likelihood for a
complete credence distribution for a given peer, rather than a separate
likelihood for the peer’s credence in each proposition.

Upco will be consistent with conditionalization on other likelihoods
as well. It suffices if P’s likelihoods are governed by densities of the
form:

CQhQ(ql,...,qk)qi, if g1+...+4q = 1

( 17y k) =
fitq i 0, otherwise;

where h is a strictly positive function that may vary for different peers,
but not for different members of the partition, and cq is a normaliza-
tion constant. 2

We will now illustrate some of the properties of Upco.

Example 8.1. We have a partition with three propositions { A1, Ay, As}. Peer
P has probabilities (.5,.3,.2) while Q has probabilities (.4,.3,.3). Then the
result of updating will be approximately (.57, .26,.17).

28. This form of likelihood is applicable in cases where the likelihood of the
other person’s credences has a particular sort of symmetry. As a toy example
where this might fail, consider a case where two peers are both calculating the
amount they owe on splitting the bill at a restaurant. Let A, be the hypothesis
that they owe $n. This form of likelihood means that the first agent thinks that a
credence function for Q with q43 = .01, 444 = .05, 9385 = .9, 4386 = .05 is equally
likely whether Agq or Asgg is true. An important part of the argument of Vavova
(2014) involves noticing that we should find this set of credences incredibly
implausible if A4y is true, but not so implausible if Azgg is true. Thus, it is likely
that our proposal makes more sense in cases where the partition doesn’t exhibit
this sort of asymmetry — an agent is no more likely to concentrate her credence
on one false hypothesis than another, perhaps because each hypothesis differs
from others in similar ways. This may be a useful approximation in cases where
we can assume that the range of hypotheses is just between A4 and Ays, but
is probably not a good approximation in cases like the one described.
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This example illustrates that synergy still arises. In fact, it can often
be even more pronounced than in the case of binary propositions. If
the peers involved agree about which element of the partition has the
highest probability, then this element of the partition will have an even
higher probability after the update than before. Even if all agents have
credence less than .5 in a proposition, it can still go up in credence for
each agent.

Example 8.2. P and Q have credences over the partition {A1, Ay, ..., Ax}. Q
assigns each member of the partition a credence of 1/k. Then when P updates
on Q’s credences, her own credences will remain unchanged.

One should be careful to note that, while credence 1/k for each ele-
ment of a partition of k elements is the break-even distribution, it does
not follow that 1/k is a break-even credence for one element of the par-
tition taken individually. In the case of a partition with > 2 elements,
there is no such thing as a break-even credence for one element. Rather
break-even credences are really distributions over the whole partition.
It is possible for every peer to have probability 1/k in one element of
the partition and the updated group probability to be either higher or
lower than this value, as the next two examples illustrate.

Example 8.3. P and Q have credences over the three-element partition
{A1, Ay, As}. P has credences (1/2,1/3,1/6), and Q has credences (1/6,1/3,1/2).
After the update, the credences are proportional to (1/12,1/9,1/12), which makes
them (.3, .4,.3) — the second proposition had credence 1/3 for both agents, but
afterwards it has gone up.

Example 8.4. P and Q both have credences (1/2,1/3,1/6) over the parti-
tion {Ay, Ap, As}. Then when they update, the posterior is proportional to
(1/4,1/9,1/36), which gives approximately (.64,.29,.07). In this case, the
shared value of 1/3 has gone down to .29.

These illustrations also show that Upco is partition-dependent. In both
8.3 and 8.4, the peers had exactly the same credences over the parti-
tion {Aj, —As}, namely (1/3,2/3). Thus, if P were to update on Q’s
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credences on the partition {A;, —Aj}, she would get the same result
in both 8.3 and 8.4. However, as we have seen, when P updates on
Q’s credences over the finer partition {A1, Ay, Az}, she gets a differ-
ent result in the two examples. We will discuss the phenomenon of
partition-dependence in greater detail in Sections 9.1 and 10.9.

Example 8.5. P and Q have credences over the partition {A1, ..., Ax}. How-
ever, Q is befuddled, and his credences q1,...,qy do not sum to one. (Tech-
nically, then, they are not credences, but merely “weights” or “degrees of
belief”. We will ignore this terminological nicety here.) Nonetheless, we can
apply Upco directly to P's and Q's credences, so that P (A;) = #.
P will be a probability function. Moreover, P will be the same prol]J;bil]itjy
function we would have ended up with had we first normalized Q’s credences

and then updated.

The fact that we can combine unnormalized weights in this way will
prove useful in many of the modifications we will consider in Section
10.

We will discuss some more features and modifications of Upco in
the remaining sections of the paper.

9. Other Properties of Updating Rules

In this section, we aim to compare Upco to linear averaging by exam-
ining more general properties that update rules might have.

9.1 The Context-Free Assumption

As before, let P(A) and Q(A) be the credences that P and Q initially
assign to A, and let PT(A) and Q1 (A) be the credences that P and
Q assign to A after updating on each other’s credences (and nothing
more). One principle that has been proposed for rules for combining
the credences of different agents is that there should be some function
f such that for all P,Q, and A, PT(A) = f(P(A), Q(A)). That is, the
resulting credence in a given proposition should depend only on the
credences that those two agents have in that proposition, regardless of
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which proposition, A, is involved, or what credences either of the two
agents has in various other propositions. Versions of this assumption
have been called “irrelevance of alternatives” (Jehle and Fitelson 2009),
“the strong setwise function property” (McConway 1981), “strong label
neutrality” (Wagner 1982), and the “context-free assumption” (Bordley
and Wolff 1981). We'll abbreviate the latter phrase, calling this principle
CFA.

Upco satisfies CFA in the special case of a two-element partition
into A and —A: the same formula is applied to the credences in A
and the credences in —A. But CFA is relatively trivial in this case. In
the case of a partition with more than two members {A;, ..., A}, Upco
satisfies a weaker condition that Russell et al. (2015) call neutrality. This
condition says that permuting the order of the A;s doesn’t change the
way in which the rule is applied. Specifically, it says that if we apply
the same permutation to the credences of each peer and then use Upco,
we get the same result as if we first use Upco and then permute the
resulting credences.

As we saw in Section 8, however, our rule doesn’t obey CFA in
general. In fact, it violates CFA in two different ways. Suppose P and
Q have credences over the partition {Aj,..., Ax}. Then the updated
credence in A; will not just depend upon P(A;) and Q(A1), but will
depend upon the distribution of the credences over the other members
of the partition. Second, the formula in Upco applies only to the mem-
bers of the partition, and not to other propositions such as A; v Aj.
In fact, McConway (1981) and Wagner (1982) independently proved
that weighted linear averages are the only possible rules for combin-
ing two probability functions into a single probability function that
satisfy CFA.

However, we think that this is not a problem for our rule. CFA is far
too strong. For a clear counterexample to it, imagine a pair of examples
where you and your peer witness a horse race with three horses, A, B,
and C. In Case 1, both you and your peer have P(A) = P(B) = P(C) =
1/3. After learning each other’s credences, neither of you should make
any changes, and so you both remain at (1/3, 1/3, 1/3). In Case 2, you
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and your peer have independent, strong evidence in favor of horse B
winning at the expense of horse C. You both assign P(A) = 1/3, P(B) =
2/3 —¢€,P(C) = ¢, for some small e. Here, intuitively, we should see
some synergistic effects, and both you and your peer should increase
your confidence that horse B was the winner. If € is small enough,
then the only way to do that is at the expense of horse A. Our rule
happens to recommend that you each end up at credences proportional
to (1/9,[2/3 — €]?, €2) or approximately (.2,.8,0), but any plausible rule
will have to decrease the posterior credence in A. In both cases we had
each agent’s prior probability in A equal to 1/3. But, in the first case,
their credences in A stay the same; in the second case, they both went
down. This was entirely appropriate. Thus CFA is a bad principle.

9.2 Preservation of Independence

A second principle that has been considered for updating rules is
the preservation of independence PI. The basic version, debated (for
instance) in Laddaga (1977) and Lehrer and Wagner (1983), says:
For any A, B, if, for all i, P;(A A B) = P;j(A) - Pi(B), then, for all i,
P (A A B) = PF(A)- P (B). (Note that PI is relevant only when up-
dating beliefs over partitions of more than two elements, since in an
algebra generated by A, —A, no propositions other than the tautol-
ogy or the contradiction can be independent of anything.) A stronger
requirement, proposed by Jehle and Fitelson (2009), says: For any
A,B,C, if, for all i, Pi(A A B|C) = P;(A|C) - P;(B|C), then, for all i,
P (A A B|C) = P*(A|C) - P (B|C). This is the preservation of condi-
tional independence (PCI) (from which (PI) is derived by letting C be
the tautology).

We noted in Section 4 above that linear averaging does not satisfy
PI, except in rare cases. Lehrer and Wagner (1983) respond by claiming
that PI is too strong a principle to accept. In particular, they show that
it, together with zero preservation (the principle that if both agents
have credence o then the updated credence will also be 0) and CFA, en-
tail that an update rule must be dictatorial. That is, the final credences

VOL. 16, NO. 11 (JUNE, 2016)



EASWARAN, FENTON-GLYNN, HITCHCOCK, AND VELASCO

are always equal to the credences of one of the initial agents. Indeed,
it is impossible to satisfy PCI together with CFA. For a survey of many
such results, see Genest and Zidek (1986). Of course, since CFA is too
strong, these arguments against PI/PCI may not be good ones.

As the next example illustrates, Upco preserves independence in
many cases where linear averaging doesn't.

Example 9.1. Let us return to the coin-flipping case of Example 4.2. Two
coins will be tossed. P has a credence 1/3 of each coin coming up heads,
and takes the flips to be independent. Thus, P(HH) = 1/9, P(HT) =
P(TH) = 2/9, and P(TT) = 4/9. Q has a credence 2/3 for heads on
each flip, and also takes them to be independent. Thus, Q(HH) = 4/9,
Q(HT) = Q(TH) = 2/9, and Q(TT) = 1/9. If P updates using Upco,
her new credence for each of the four propositions — HH, HT, TH, and TT
— will be proportional to the products of the initial probabilities the individ-
ual agents have for them. In this case, these products are all equal to 4/81,
so PY(HH) = PY(HT) = PY(TH) = PT(TT) = 1/4. P’s new credences
continue to exhibit independence for the two flips.

This is not just a coincidence due to the symmetrical numbers, as
the next theorem shows.

Theorem 9.2. Consider two partitions {A1, ..., Ax} and {By,..., B}, and
the joint partition generated by conjunctions A; A Bj. Let P and Q be
two agents who each think the two partitions are independent, so that
P(A; A Bj) = P(A;) - P(Bj) and Q(A; » Bj) = Q(A;) - Q(B)) for all i,j.
Then combining the probability functions over the joint partition using Upco
gives a probability function such that the two partitions are still independent.
That is, P* (A; A Bj) = P*(A;) - P*(B)).

Proof. Let P(A; A Bj) = pij and Q(A; A B)) = gj;, and let S =
>t 27:1 pij9ij- Then our rule says P*(A; A Bj) = %. Let P(A;) =
pix and P(Bj) = p4j, and similarly let Q(A;) = gix and Q(Bj) = g,
Then the assumption of independence of the two partitions for P and
for Q means that p;j = pixpsj and qij = qisqx;.

Thus, P*(A; A Bj) = M Summing the conjuncts,
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we see that Pt(A;) = Pzl 27:1 Pxjdxj and P*(B;) =
% Yitq Pixqiv- Multiplying, we see that P*(A;) - P*(B;) =
%% S Pisis Z?:1 P«jqxj- But the last two sums can be mul-
tiplied out to give 3"y 37 pisPujfisxj = 21 21 pijqij = S- Thus,
we get P+(A1') . P+(Bj) _ Pi*sqi* *]‘SW*/‘S _ Pi*Qi*sp*jQ*j _ P“‘(Ai A
B)). O

Thus, when there are two partitions that are agreed upon as being in-
dependent by two agents, this independence will be preserved when
the agents update over the joint partition generated by these two parti-
tions. This is important for many cases like the coin flip example. For
instance, this is often the situation when we are considering the rolls of
two dice, or when we are considering two questions, such as ‘What is
the capital of Uruguay?’ and ‘Which country will win the FIFA World
Cup in 2018?" For each agent individually, the answer to one question
is unrelated to the answer to the other question; this should hold for
the updated credence as well.

However, our rule doesn’t preserve independence of individual
pairs of propositions in general. For instance, we can have two par-
titions, A, —A and By, By, B3. If two agents both think that A is inde-
pendent of Bj, but one thinks that A is positively correlated with B,
while the other thinks that A is positively correlated with Bj, then
the result of combining the probability functions will be a distribu-
tion on which A is correlated (perhaps positively or negatively) with
B;. Lehrer and Wagner (1983), Genest and Wagner (1987), and Wagner
(1985, 2011) argue that these cases are ones in which it is not advan-
tageous to preserve independence, since the independence here is, in
a sense, accidental. However, while Wagner uses these cases as moti-
vation to give up any sort of general preservation of independence,
we think that there is good reason to preserve independence at least
in cases involving full partitions. Full preservation of independence
would be too much, but linear averaging preserves too little. And im-
portantly, our rule preserves independence in cases where it ought to
do so without the sort of ad hoc maneuvers that Wagner appeals to.
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We should also note that the preservation of independence is
partition-relative. For example, suppose that we have three partitions
{A1,..., Ax}, {B1,..., B}, and {Cq,...,Cs}. Peers P and Q both think
that the A’s are independent of the B’s. Then, as we have seen, if they
update on each other’s credences over the partition generated by the
A’s and the B’s, the A’s and B’s will remain independent in the re-
vised probability distribution. However, if they update on each other’s
credences over the partition generated by all three original partitions,
A’s, B’s, and C’s, the revised probability may not preserve the inde-
pendence of the A’s and B’s. This can happen if the C’s are correlated
with both the A’s and the B’s in each peer’s credences. (This is consis-
tent with the A’s and B’s being independent. It can happen, for exam-
ple, if the A’s and B’s are independent causes of the C’s.) Synergistic
effects may increase the probabilities of some of the C’s, and this will
create a correlation between the A’s and the B’s.

9.3 Relationships with Conditionalization

Some other proposed principles for combining probability functions
involve the relation between a rule proposed for doing so and the stan-
dard Bayesian rule of update by conditionalization. Since any rule for
updating on learning another agent’s credences is an update rule, it is
natural to ask under what circumstances the proposed rule agrees or
disagrees with conditionalization. It is also natural to ask how the rule
interacts with conditionalization on other pieces of evidence.

As we have seen, Upco is specifically designed to yield the same
result as conditionalization on the credences of one’s peers, if one’s
likelihoods have a particular form. By contrast, we saw in Section 4 that
linear averaging is not compatible with conditionalization in general.

We also would like to see how an update rule interacts with condi-
tionalization. A natural thought is that updating on the credences of
one’s peers should commute with conditionalization. That is, it should
not matter whether one first updates on the credences of one’s peers
and then conditionalizes on some proposition, or whether one first con-
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ditionalizes and then updates on the credences of the peers. As we saw
in Section 4, linear averaging does not commute with conditionaliza-
tion. But does Upco commute with conditionalization?

The answer, essentially, is ‘yes’. But the details take some care to
state. Suppose that we have peers P, Q, R, . ... The peers have credences
over the partition {A4, ..., A}, and also for the proposition E. Consider
the following three procedures:

1. P updates on her peers’ credences over the partition {Aq,..., Ac}.
Then she learns E and conditionalizes on it.

2. P learns E and conditionalizes, but her peers do not. P then learns
her peers’ credences over {Aj, ..., Ax} and updates according Upco.

3. P learns E and conditionalizes, and so do all of her peers. P then
learns her peers’ posterior credences over {Aj, ..., A} and updates

according to Upco.

When we ask whether Upco commutes with conditionalization, we
might be asking whether procedures 1 and 2 yield the same outcome,
or we might be asking whether procedures 1 and 3 yield the same
outcome. The answers need not be the same. Most authors have under-
stood commutativity to mean that procedures 1 and 3 (or their analogs
for other updating rules) are the same. The requirement that an updat-
ing rule commute with conditionalization in this sense has been called
external Bayesianism (see, e.g., McConway 1981, Dietrich 2010, and Rus-
sell et al. 2015.) But the equivalence of 1 and 2 seems like a perfectly
sensible thing to mean by the commutativity of conditionalization and
Upco.?d
Now we need to consider two separate cases:

* The proposition E is equivalent to some disjunction of the A;’s;
¢ E is not equivalent to such a disjunction.

29. Dietrich 2010 calls the equivalence of procedures 2 and 3 internal Bayesian-
ism.
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”

In the first case, the proposition E can be expressed in the “language
of the partition {Ay,..., Ax}. One particularly simple case of this sort
occurs when the partition is of the form {AE, A—E,—AE,—A—E}.
When E is equivalent to a disjunction of A;’s, Upco commutes with
conditionalization in both senses described above. That is, procedures
1, 2, and 3 all yield the same result. Intuitively, this is because once any-
one learns E, they completely eliminate the A; that are incompatible
with it, and don’t change anything else about their distribution. Then,
when the products are taken in Upco, the elements of the partition
that are incompatible with E will receive a new weight of zero. Thus,
it doesn’t matter whether one person or many learn E. On the other
hand, if E is not equivalent to some disjunction of the A;’s, then Upco
will commute with conditionalization in the sense that procedures 1
and 2 yield the same result, but not in the sense that 1 and 3 yield
.conditionalize
Ay} will reflect
their prior evidence as well as their beliefs about how E is correlated

the same result. Intuitively, this is because once Q, R, ..
on E, their new credences over the partition {4;,...,

with each member of the partition, so procedure 3 will count each
of these correlations as additional evidence. However, in procedures
1 and 2, this information does not get incorporated into P’s credence
. Agd-

We now provide proofs of these results.

over {Aq, ..

Theorem 9.3. Suppose that peers P, Q, R, ... have credences over the par-
tition {Ay, ..., Ax}. Suppose also that the proposition E is a disjunction of
Aj’s. Then procedures 1, 2, and 3 above all yield the same outcome.

Proof. Let A; be any element in the partition that is being updated on,
let P’s initial credence in A; be P(A;) = p;, Q’s initial credence in A;
be Q(A;) = g;, and so on for the other peers. Define pj, 4;, and so on
analogously. Since E is a disjunction of elements in the partition, either
Aj; entails E or it is incompatible with E. If it is incompatible with E,
then on all three procedures, it ends up with probability o. Whenever P
conditionalizes on E, her credence in A; will go to zero. Now suppose
A; and A are both compatible with E. Then, A; and A; must both
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entail E. In this case, conditionalizing on E will not affect the ratio of

the probabilities of A; and A]-. For example, if P conditionalizes on E,

. P(A; P(A;|E
we will have PEA]% = PEAjl‘Ei.

This is true for P’s credences regardless
of whether she has updated on the credences of her peers, and it is
true for her peers’ credences as well.

Now consider how the ratio of peers” credences in A; and A; will
evolve in each of the procedures described above. On procedure 1,
P+updates on the credences of her peers first, so the ratio becomes
PT(A) Pigiti-

(4] = W Then, when P conditionalizes on E, this ratio will

remain unchanged.

On procedure 2, P first conditionalizes on E, which leaves the ra-
tio unchanged. Then, she will update on the credences of her peers,
yielding a ratio of Z‘Z‘Y'

On procedure 3, all of the peers update on E, which leaves the ratio
of their credences unchanged. Then, when P updates on the posterior

Vi

credence of her peers, the ratio will again be 1170
I A A

But P’s final credence over the partition {A1, ..., Ay} is entirely de-
termined by the ratios of her credences in the members of the partition
that get non-zero probability. So P’s credence over the partition will be
the same in all three procedures. Specifically, her ﬁna(ls credence for an
p qiti-..
k

iqiti
d; is a function that takes the value 1 if A; is Compz{tlfal]e ]V\]Hjth E,or0

arbitrary member of the partition A; is PT(A;) = , where

0therw1se. O

This proof generalizes straightforwardly to the following corollary:

Corollary 9.4. Suppose that peers P, Q, R, ..
tion {Aq, ..., Ag}. Suppose also that the proposition E is a disjunction of A;’s.
Suppose that some of P’s peers learn E and conditionalize, while others do not.

. have credences over the parti-

P then updates on the credences of some of her peers. Then P learns E and
conditionalizes. Finally, P updates on the credences of her remaining peers.
P’s final credences over the partition {A1, ..., Ax} will be the same as if she

had followed any of procedures 1 through 3, namely P+ (A;) = %
j=1CjFjj%
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Theorem 9.5. Suppose that peers P, Q, R, ... have credences over the parti-
tion {A1, ..., Ay}, and also for the proposition E, which is not a disjunction
of A;’s. Then procedures 1 and 2 above yield the same outcome, but procedure
3 need not.

Proof. As with the previous proof, it suffices to consider the ratio of
P’s credences in arbitrary elements of the partition A;, and A;. Let P,
Q, vi, Pjs i Gji- - - be defined as above. Let p§ be the likelihood P(E|A;),
and likewise for p;-, q;,q;-,.... In the case where E is a disjunction of
partition elements, these likelihoods are all 0 or 1, but in the present
case, they need not be.

On procedure 1, P learns her peers initial credences and updates,
p (A) _ Piqiti---
P+ (A ) piq;r;-

algebra defined by the partition, P now needs to update her credence

giving her credence P*. Thus . Since E is not in the

in E by Jeffrey conditionalizing with her new credences over the par-
tition, {P*(A1),..., P (Ay)}. Call her new credence P**. Note that
Jeffrey conditionalization will leave the conditional probability of E
on each member of the partition unchanged, hence P**(E|A;) = p,
and likewise for other members of the partition. Now P learns E, and

conditionalizes, giving her a final credence of Pfi"4! By the odds for-
meﬂl( i) P++( )Pz _ P piqiti--- . Note that
sznal(A) P++(A) r = / r

P’s likelihoods p; and p appear in 'this formula, but fhe likelihoods of

mulation of Bayes’ theorem

the other peers do not.

On procedure 2, P learns E and conditionalizes, giving her a new
Pt (A)
PT(4))

credence P*. By the odds formulaiton of Bayes’ theorem

P(AE) _ P,
P(AIE) ™ pip;

tion, and updates using Upco. This gives her a final credence of P/,

. Then P learns the credences of her peers over the parti-

(Since we are not interested in her credences in any further proposi-
tions, we do not need to ]effrey conditionalize.) Thus we will have

final +
me,(A) = DA _ p PiTi This is the same result as for proce-
(A) Pt (A )’7]] p]qu]j
dure 1.

On procedure 3, P learns E and conditionalizes, giving her a new

PT(4) _ pp’/ as before. Moreover, Q, R,...

= also
Pt (4)) pjp;

credence P*, with
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learn E and conditionalize Q will have a new credence QF, with
A
8 +EA’; = Z’Z‘ and analogously for the other peers. P now updates
J1j

on the new credences of her peers, leadlng to her final credence P/l

final W

Upco tells us that me;( D _ PPl q,q, i)
(4) pipia;airt:

of applying the other two procedures since it contains the product of

. This differs from the results

the ratios 4; /qj, ri /rj, .... Since these ratios need not be one or zero, P’s
final credences will typically be different in this case. O

One special case is where all of the peers have the same likelihoods p/.

T?er} the result of following procedure 3 will be to magnify the ratio
P mna (A )
pfinal (A; )
This suggests that the evrdence E is being doubly (or rather n-tuply)

by a factor of (p! /p )"~1 (where n is the number of peers).

counted. This shows the way that our rule implicitly assumes that the
evidence of the different agents is independent. In Section 10 we will
suggest a modification of Upco to handle this kind of case of shared
evidence, either by focusing just on the additional evidence that each
peer provides, or by focusing on a level at which the peers provide
independent interpretations of the evidence.

There has been some tendency in the literature to formulate condi-
tions such as independence-preservation and commutation with con-
ditionalization, and treat them in an all-or-nothing fashion. In the
case of independence-preservation, impossibility theorems have led re-
searchers to give up on satisfying the condition altogether. What the
foregoing discussion shows is that it may still be possible to formulate
restricted versions of these conditions and find simple, plausible rules
that satisfy them.

10. Modifications to Upco

Upco mimics Bayesian conditionalization when the likelihoods take
very specific forms. In the case of an algebra generated by the propo-
sitions A, —A, Upco mimics likelihoods in which P’s credence that Q
will report a credence in A of g, conditional on A, is linearly propor-
tional to q. That is, P(Q(A) = g|A) is governed by the density function
f(q) = 2g. In the more general case where we have k exclusive and ex-
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haustive propositions Ay, ..., Ay, Upco mimics likelihoods conditional
<, qK) =k!q]',f01‘[]1 +...+qc=1

(and zero otherwise). (As we noted in Section 7.1 and Section 8, Upco is

on A; governed by the density f(q1, ..

compatible with many other likelihoods as well.) This means that Upco
can be expected to yield reasonable results in cases where it would be
reasonable to have likelihoods approximately like these (even if P does
not in fact have precise likelihoods). In many cases, however, there are
reasons to think that it would be unreasonable to have these likeli-
hoods. In this section, we consider a variety of such cases, and suggest
some modifications to Upco.

The introduction of such modifications will inevitably involve trade-
offs. The motivation for introducing heuristic rules like Upco (and rival
rules like linear averaging) is that such rules are much simpler than
conditionalizing. By introducing modifications to Upco, we allow it to
give reasonable answers in a wider range of cases. But at the same
time, we sacrifice some of the simplicity that made Upco attractive to
begin with. The modifications will be more complex in at least two re-
spects. First, the formulas themselves will be more complicated. More
importantly, however, these modifications do not allow one to mechan-
ically plug in the credences of one’s peers and crank out a number;
they require judgment about whether to employ a modified version
of Upco, and if so, which one. They also require the agent to supply
further parameters. Nonetheless, these modified versions of Upco are
still a great deal simpler than full-blown conditionalization. In partic-
ular, they don’t require the agent to have complete likelihoods. Rather,
they require the agent to have parameters that can be thought of as
partial specifications of a likelihood function. For example, many of
the modifications merely require the agent to provide a “break-even”
point.

We do not assume that there is a uniquely correct trade-off between
simplicity and flexibility. We offer the original Upco rule, and the mod-
ifications described in the present section, as distinct options that make
different trade-offs.

The general motivation for most of these alternatives is the same.
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One way to think of the original rule is that there is a “default” uniform
distribution over the elements of the partition, and that each agent
has independent, reliable evidence that they then want to combine.
The strength of each agent’s evidence is measured by the likelihood
ratio, and the strength of the combined evidence is just the product
of these ratios. For the first two modifications that we will consider,
the change is that the “default” distribution is taken to be something
other than the uniform distribution, either because one expects that the
other agent started from a different default, or because the other agent
shares some of one’s own initial evidence. For the third modification,
the change is that the other agent is taken to have evidence that is a
superset of one’s own. We then consider updating when the peers are
experts (or anti-experts), and finally, we examine cases of estimating
chances and cases of higher-order evidence where certain synergistic
effects of Upco would seem inappropriate.

10.1  Optimistic Peers

Suppose that P and Q are fans of the Los Angeles Clippers basketball
team, and they are wondering whether they will win tonight’s game.
P wants to adjust her credence in this outcome, A, by considering Q’s
credence. However, P thinks that Q is over-optimistic and likely to have
an unsuitably high credence.

According to Upco® and Upco*, a credence in A of .5 is the “break-
even” point. That is, if an epistemic peer reports a credence greater
than .5 for A, that is taken to be evidence in favor of A; if she reports
a credence less than .5, that is taken to be evidence against A; and a
credence of .5 provides no evidence one way or the other. (In the case
of a partition with k members, a uniform distribution that assigns a
credence of 1/k to each possibility serves as the “break-even” point.)

A natural way to accommodate an optimistic peer would be to
shift the break-even point upwards. For example, P might shift the
break-even point for Q to .6. This means that if Q reports a credence
of .6, P would take this to provide no evidence for or against A.
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More generally, she might take the break-even point to be some
value ¢'. A simple way to do this is to weight each term in the likeli-
hood ratio by the inverse of the respective break-even point.3° That is:

P(Q(A) = q|4)
P(Q(A) = q|—A)

q1—¢q")

1-q)9

(a/9")

1=/ -q)

This ratio takes the value 1 when g = g — i.e. when Q’s credence is at
the break-even point 4. Suppose Q reports a credence in A of 4. Then
conditionalization will yield a revised credence for P of:

pa(l—4q’)
pgl—gq")+ 1 -p)1—-q)

Pt (A) =

This is just the result of accommodating a third peer who reports cre-
dence Q'(A) = 1—¢'. That is, P can counteract the effects of an op-
timistic peer by adding a fictitious peer who is suitably pessimistic.
Equivalently, it is the result of accommodating a third peer with non-
normalized credences Q(A) = 1/g and Q(—A) = 1/(1 — g). This latter
formula will be useful when we generalize to the case of a partition.
More generally, if P’s break-even points for peers Q, R, ..., are ¢, 7, ...,

30. As usual, there are many different likelihood densities that yield this like-
lihood ratio. One pair of densities that works assigns P(Q(A) = g|A) the den-
sity f(q) = (n+ 1)g"; while the likelihood P(Q(A) = g|—A) has the density
g(@) = n(n+D[g"=D — g"]; where n = q’/(1 — ¢'). This can be found by im-
posing the constraints that (i) f(q)/g(q) has the appropriate ratio, (ii) that f(q)
has the form f(q) = mq", and (iii) {; f(9) = §3 g(q) = 1, and then solving for
n. A second pair results from applying the same pair of formulas, reversing
A and —A, and reversing q’ and (1 — g’). As is often the case, the likelihood
ratios are much simpler than the likelihoods themselves. Thanks to Hendrik
Rommeswinkel for helpful discussion on this topic.
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respectively, Upco* will be modified by adding fictitious peers with cre-
dences (1—-¢'),(1—7),....

In the case of a partition {A;, ..
even distribution for Q to be {q’l, ..
peers R, S,..., Upco can be modified to:

., Ax}, if P wants to make the break-
., 4}, and analogously for the other

(piqiti ... /qiri...)
P+ Al' = L1 .
(47) Zj(qu]-rj .. ./q}r]’. ce)

This is equivalent to adding peers with (non-normalized) credences
{1/q1, ... Vg, {1)r}, ..., 1}

Note that this revised formula violates the neutrality condi-
tion of Russell et al. (2015). PT(A) will not just be a function of
P(A),Q(A),R(A),..., but it will also depend on A. For example, in
the case of a binary proposition A, and two epistemic peers P and Q,
if P takes the break-even point for Q’s credence to be different from .5,
the formula for P™(A) will be different from the formula for PT(-A).
If the break-even point is .6, a report of Q(A) = .6 will leave P’s cre-
dence unchanged, while a report of Q(—A) = .6 will cause P to revise
her credence in —A upward.

But because it behaves as though we are adding peers with cre-
dences related to the break-even points, things like preservation of in-
dependence will still hold in cases where all peers and the break-even
points have the feature (e.g. initial agreement on the independence of
two propositions).

10.2  Common Background Knowledge

Suppose that epistemic peers P, Q, and R live in Southern California,
and they are planning a day at the beach next Saturday. They are inter-
ested in whether it will be sunny that day. They share the background
knowledge that it is almost always sunny in Southern California. Let’s
say that, in the absence of any specific knowledge about Saturday’s

VOL. 16, NO. 11 (JUNE, 2016)



EASWARAN, FENTON-GLYNN, HITCHCOCK, AND VELASCO

weather (such as from a weather report), they would each have a cre-
dence of .8 in the proposition that it will be sunny (since it is sunny
80% of the time). Thus, if Q and R reported credences of .8, P would
take this to provide no new evidence about the prospects for sunshine,
and her credence would remain unchanged. That is, P takes the break-
even point to be .8. In this example, P shifts the break-even point up-
ward, not because she thinks Q and R are over-optimistic, but because
the nature of the proposition together with shared background knowl-
edge make .8 the default probability. Now, if Q and R report credences
of g and r, P will revise her credence to:

(pqr/-8%)

+ A) =
PrA) - p)d -1 —n/2)

(pqr/-8%) +

par .
pgr +16(1 —p)(1 —q)(1 —7)

This formula will be symmetric for P, Q, and R, so long as they share

the same background knowledge, and hence all take the break-even
point to be the same.

Generalizing to the case where n peers share background knowl-
edge about a partition {A4;,..
distribution of {d, ..

., A}, reflected in a default probability
., dy}, the formula will be:

(i Gistis -, ) /A"
(n—1)"
Zj PjrqjrTjre-- /d].

PT(A)) =

This formula will be appropriate in any situation of the following sort:
The peers come together, share information, and reach a consensus that
the appropriate credence distribution is Prob(A;) = d;. Then they each
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go off and independently collect evidence. They return, and exchange
information about their new credences. The new evidence collected
will be reflected in differences between their new credences and the
earlier consensus credence. Our treatment of this kind of case echoes
the treatment of Dietrich (2010).

Recall that at the end of Section 9 we discussed the following kind
, Ax},
as well as for proposition E, which is not equivalent to a disjunction

of case: Peers P, Q, and R have credences over a partition {A1, ...

of the A;’s. The peers all have the same conditional credences for E
given each member of the partition. That is, P(E|A;) = Q(E|A;) =
R(E|A) -+ =
date upon learning each other’s new credences over the partition

pi. The peers all conditionalize on E, and then up-

{A1,..., A¢}. It was suggested there that the result seemed to over-
weight the evidence E, counting it n times instead of once (where n
is the number of peers). Speciﬁcall};,_ i‘lc seemed that after updating on
P mna (AZ)
pfinal ( Aj)
of (p; /p;)”*l. The present proposal can correct for this magnification

each other’s credences, the ratio was magnified by a factor
by letting the (normalized) likelihoods {pj, ..., p;} play the role of the
default distribution {dy, ..., dy}. This is just the distribution that would
result from updating the uniform distribution {1/k, ..., 1/k} by condi-
tionalization on E, with the likelihoods given.

10.3 Structured Partitions

Suppose that {A, B} is a partition, so that B =def —A. Then, as we have
seen, Upco takes the break-even distribution to be the one that assigns
each possibility a probability of .5. Now suppose that we subdivide A
into A1 and Aj, yielding a new partition {A1, Ay, B}. Then, Upco will
take the break-even distribution over this new partition to be the one
that assigns each of these possibilities a probability of 1/3. When A is
subdivided, the default probability for A changes from 1/2 to 2/3, and
the default probability for B changes from 1/2 to 1/3. This is another
way in which our Upco rule is partition-dependent. Given the way in
which the partition {A, Ay, B} was constructed, by subdividing one
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element of a binary partition, it might be more natural to modify Upco
by using a break-even distribution that assigns the cells probabilities
of 1/4,1/4, and 1/2, respectively. The strategy for modifying the break-
even distribution described in the previous sections can be used to do
this.

The issues here are closely connected to familiar worries about the
Principle of Indifference, which is at the heart of the classical interpreta-
tion of probability.3" We do not offer here any solution to these long-
standing problems. However, Upco is easily modified to accommodate
the preferred solution in any specific case.

10.4 Expert Peers
We have been exploring cases where P takes the break-even point to
take different values. One special case is where P takes her own cre-
dence to be the break-even point. That is, if peer Q reports a credence
for A that is higher than P’s, P treats this as evidence for A; if Q reports
a credence for A that is lower than P’s, P treats this as evidence against
A; and if Q’s credence is the same as P’s, that is evidence neither for A
nor against A.

Now, when P learns that Q(A) = g, and applies Upco! with p as
the break-even point, she gets:

p(a/p) 4
(a/p)+ 1 -p)A-q)/1-p)

In this case, P regards Q as an expert. That is, the modified ver-

+A=
PT(A) ;

sion of Upco' mimics a likelihood for which conditionalization yields
P(A|Q(A) = q) = q. This is the standard definition of what it is for
P to regard Q as an expert (with respect to A.) The philosophical lit-
erature on rational credences contains two well-known examples of
expert principles. David Lewis’s Principal Principle (Lewis 1980) says
that (in the absence of inadmissible information) one should treat ob-
jective chance as an expert. Conditional on the chance of A being g,

31. See for example Salmon (1967, pp. 65-68) and Zabell (2016) for discussion.
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one should set one’s credence in A to g. Bas van Fraassen’s Reflection
Principle (van Fraassen 1984) says that we should treat our future cre-
dences as experts. Conditional upon my coming to have credence g in
A, I should set my current credence in A to 4.

This generalizes to the case of a partition {41, ..., Ay} where P takes
her own credence distribution as the break-even distribution:

PH(A,) = piqi/pi)  _ .
A =S pitaim 1

As we saw with the original version of Upco, if P begins with a cre-
dence of .5 in a binary proposition A, or a credence of 1/k for each
element of a partition {Ajy,..., Ay}, she will defer to the credence of
her epistemic peer. If P has different initial credences, we can get the
same deferential behavior by setting the break-even point to those cre-
dences.

This formula will be appropriate in the following kind of case: P
and Q meet and share information. They arrive at a consensus about
the appropriate credence for A (or for a partition). Then Q goes off and
collects additional evidence, while P stays home, learning nothing new
about A. Q returns and reports her new credence. Since Q has strictly
more information than P (Q isn’t a forgetful type, and P knows this), P
adopts Q’s new credence as her own.

Note that when P regards Q as an expert, it is a bit misleading to
refer to Q as an epistemic peer, since P regards Q’s opinion as wholly
preferable to her own. Nonetheless, we will continue to use the word
‘peer’ in a technical sense, meaning someone whose credences P ac-
cords some weight.

Note also that, in the case where P learns the credence of one expert,
Q, the updating rule does not yield synergistic effects. This is obvious:
since P adopts the credence of Q, her credence will never be higher
than Q’s.

Suppose, however, that P has multiple epistemic peers Qy,..., and

VOL. 16, NO. 11 (JUNE, 2016)



EASWARAN, FENTON-GLYNN, HITCHCOCK, AND VELASCO

Qy, all of whom she regards as experts.3> When she learns of their
credences in a binary proposition A, she will revise her credence to:33

Pt (A) =

p(q1/p) - -- (Gn/P) B
p@@1/p)---@n/p) + 1 =p) (1 —q1)/Q=p))... (1 —qn)/(1 —p))

- qu/p" Y
Ji--gn/p D + (1 —g1)...(1=gqn)/(1 = p)*=D

In this case, there can still be synergistic effects. Suppose, for example,
that P’s credence in A is .7, while both Q; and Q, report a credence of
.8. Then P’s new credence will be:

827

827+ 22/3 =%

PT(A) =
We may think of this case in the following way: P, Q;, and Q; meet
and share information. They reach a consensus that the appropriate
credence in A is .7. Then Q; and Q; go out and independently collect
additional evidence, while P stays home. Q; and Q, return, and each
reports that they have collected evidence that confirms A. After hear-
ing from both Q; and Q,, P now has more evidence in favor of A than
either Q; or Q, had prior to returning.

32. This case is discussed by Dawid et al. (1995) and Bradley (2015). In this case,
the linear averaging strategy is incompatible with Bayesian conditionalization
if all experts are given positive weights. Bradley takes this result to be a reason
to reject linear averaging.

33. This formula is very similar to the multiplicative rule offered by Bordley
(1982, 1137), where P plays the role of the “decision-maker”, and Q; through
Qy the “experts” whom P polls. Bordley’s formula also includes exponential
weights for each of the experts.
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10.5 Anti-experts3t

Suppose that P regards Q as an anti-expert with regard to proposition
A. That is, P regards Q’s confidence in the truth of A as reason to doubt
A, and vice-versa. (Most of us know of political pundits3> and movie
critics whom we regard as anti-experts in this way.) The natural way to
accommodate this would be to reverse the role of g and 1 — g in Upco'.
Thus:

p(1—q)

+ _
Fra) = pl—q)+ (1 —p)y’

In the case where P and Q have credences over the partition
{A1,..., Ar} and P regards Q as an anti-expert, the formula will be

PJr Ai _ pi/‘]i )
W)= 5 b

If we want to include different break-even points for an anti-expert,
we need to invert our normal rule for incorporating break-even points.
That is, if the break-even distribution for anti-expert Q on partition

{A1,..., A} is {q],.. .,q;(}, the rule would be
Piqi/qi

PH(A;) = LT

(41) 2 pid;/q

The ratios g;/q; are inverted throughout this formula.

34. Thanks to Mark Colyvan for comments that led to this section.
35. Thanks to Rush Limbaugh for this suggestion.
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10.6 Weighting

A number of authors have dealt with relative expertise by assigning
different weights to different peers (see, e.g. Joyce [2007] and Bradley
[2015]). Linear averaging rules are easily adapted to allow for assign-
ing different weights to the peers (sometimes called “degrees of re-
spect”). If the peers are Py,..., P, and they receive weights wy, ..., wy,

with wy + - - - + w,; = 1, we have

Pt (A) = Y wiPj(A).
j

Since Upco is a multiplicative rule, the natural analog would be to
use weights as exponents. That is, if peers Py,..., P, have weights

w1, ..., Wy, we can modify Upco* to:

w1y Wy w

|2 L

P (A) =
(b Py pn A+ (L= p1)@ (1= p2)P2... (1= py)en

w1

P1

This formula returns a probability regardless of the values of
w1, ..., Wy they don’t need to sum to 1, and the formula does not
need to be normalized.3°

In the case of updating on a partition, we can generalize to add
weights in the obvious way:

() Wy

PH(A) = St
Zj P1j Paj « -« Pj

36. This is clear when we note that the calculation for P(—A) simply reverses
p and 1 — p in the formula. This leaves the denominator unchanged, but turns
the numerator into the other half of the denominator. Thus the values of P(A)
and P(—A) must add up to 1.

PHILOSOPHERS  IMPRINT

_30_

Updating on the Credences of Others

If we raise p; to the power of 2, we are treating P;’s report that
P;(A) = p; as equivalent to the report of two independent peers with
weight 1 reporting that credence. It means that our formula is mim-
icking conditionalization using a density function for P; (P;(A) = p;|A)
that has the form f(p) = 3p®. In general, the higher the exponent we
assign to peer P;, the more sensitive we regard P; as being to the truth
of A. If w; is large, we take even small departures from .5 to provide
strong evidence that A is true.

It is clear that an agent should assign her own exponent to be
wy = 1. Otherwise, she would interpret her own report as additional
evidence for A, so that when combining with herself, her new credence
would be different from her original. That is obviously undesirable.

Our rule for adding weights does have one curious effect, however.
If we assign a weight to a peer that is greater than 1, it means that we
think that she is undervaluing her own evidence. For instance, suppose
that there are two peers, P and Q. P assigns to Q a weight of 2, mean-
ing that she thinks Q’s report is worth the reports of two “normal”
independent peers. Suppose that P has a credence in A of .5. Then Q
reports that his credence is .8. P’s new credence will be

~ .94.

So while P respects Q, and even assigns his opinion more weight than
she does her own, she thinks that Q’s evidence for A merits a cre-
dence in A of .94, rather than the credence of .8 that Q himself assigns.
We leave it as an open question whether it is possible to incorporate
weights in a way that doesn’t have this feature.

When updating using Upco the extent to which my credence will
move toward that of my peer doesn’t depend only on the weighting
that I assign to my peer; it also depends on my own original credence.
As mentioned above, if I begin with P(A) = .5, and assign my peer a
weight of 1, equal to my own, then I will completely adopt the credence
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of any peer that I combine with. The less opinionated I am to begin
with, the more easily I adopt the credences of my peers. This is so
even if I assign them weights no higher than my own.

It would also seem natural to use weights when I do not regard my
peers as being completely independent.3” For instance, suppose that I
think that the opinions of my five peers are partially dependent (even
conditional upon the truth or falsity of the proposition in question), so
that their opinions really are equivalent to those of three fully indepen-
dent peers. I might reflect this by assigning each of them a weight of
3/5. The general question of how to deal with peer update when we
think there are correlations between one’s peers, or indeed between
oneself and one’s peers, cannot be dealt with here. We can note that
our opinions about these correlations will be reflected in our likelihood
functions, and so updating by conditionalization is still the correct nor-
mative standard. However, whether there are any simple formulas or
appropriate calculational shortcuts is an open question that awaits fur-
ther work.

Example 10.1. Let us return to the case described in Example 7.9. P, Q, and
R have credences in A of .8, .6, and .6, respectively. Q and R meet, and update
using Upco, arriving at new credences of Q*(A) = Rt (A) = .69. We saw
that if P now updates using Upco on both QF and R, she will have a new
credence of P (A) ~ .95. This is the same credence that would result from
updating on four peers with credences of .6.

In this example, the credences of Q and R are not independent. In fact,
they are perfectly coordinated. Thus, the combined opinions of Q and R should
carry the weight of only one independent peer. We can correct by assigning
each of them a weight of 1/2:

37. In the context of his multiplicative approach to the aggregation problem,
Bordley (1982, 1142) introduces weights into his formula to reflect not just how
reliable the agents’ opinions are, but also how correlated their opinions are
(conditional upon the truth of the proposition in question). Compare also Mor-
ris (1974, 1239—1240) and Morris (1977, 682, 687).
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1 P(A)[QT(A)]%[RWA)]% 1 1
P(A)[Q* (A)]2 [R* (A4)]2 +P(—A)[Q+(—A)]2 [R+ (—A)] 2

PH(A) =

The result is PT(A) = .9, which is the same credence that would result from
updating on two independent peers with a credence of .6.

10.7 Chancy Events
Suppose P and Q jointly draw a coin from an urn. They both know that
the urn contains some coins that are fair, and others that are biased 2-
to-1 in favor of heads. They don’t know the exact composition of the
urn, and each one has independent evidence informing her credences
for drawing a fair or biased coin. The coin they draw will be flipped at
noon tomorrow. Let H be the proposition that this coin lands heads.
Now it seems reasonable that P and Q will have credences in H
between 1/2 and 2/3. Suppose that they both have credence .6 in H. If
we apply Upco' to their credences in H, we will get:

62

P (H) = .62.—&- 42

~ .69

But it seems unreasonable for P to update her credence in H to .69 after
learning Q’s credence. After all, she knows that the bias of the coin is
at most 2/3.

What has gone wrong? Upco' mimics conditionalization with a like-
lihood in which P(Q(A) = g|A) is proportional to ¢. In this example, a
linear likelihood for Q’s credence in H would not be reasonable. Even
if the coin does land heads when it is flipped tomorrow, P would not
expect Q to report a credence for this event that is greater than 2/3.
Analogously, even if the coin does land tails, P would not expect Q to
report a credence of less than 1/2.

In this case, it seems much more reasonable for P to regard Q’s cre-
dence in H as resulting from a weighted average of two propositions:
that the coin is fair (F) and that the coin is biased 2-to-1 in favor of
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heads (B). That is:3®

Q(H) = Q(H|B)Q(B) + Q(H|F)Q(F)
— 2/3Q(B) + 1/2Q(F)

Since Q reports a credence Q(H) = .6, P can infer that Q’s credence
in B is .6. Now it seems much more reasonable for P to have linear
likelihoods for Q’s credence in B than in H. Thus we apply Upco® to
P’s and Q’s credences in B. Since P also has P(B) = .6, this yields
Pt (B) ~ .69 and P*(F) ~ .31. We may now use these to calculate a
credence for H:

PT(H) =2/3P*(B) +1/2P™ (F) ~ .63.

There are still synergistic effects, but they are less dramatic. In particu-
lar, they do not take us above 2/3. Adding further peers with credence
.6 will drive us toward the maximum of 2/3, but not past it.

In general, when P thinks that her peers’ credences in proposition
A result from their credences in hypotheses about the chance of A, it
may be more natural to apply Upco to the hypotheses about the chance
of A, rather than to A itself.

10.8 Higher-Order Evidence

We think that a similar approach may be appropriate in cases involving
higher-order evidence. Adapting an example from Christensen 2007, sup-
pose P and Q are meteorologists with access to current weather data
provided by the National Oceanic and Atmospheric Administration,
the National Weather Service, etc., and have learned to apply both cal-
culations and judgments of similarity to figure out what the data say
about rain tomorrow. Because the models and data are quite complex,

38. Substituting 2/3 for Q(H|B) and 1/2 for Q(H|F) assumes that Q satisfies
the Principal Principle and that Q has no inadmissible information. See Lewis
(1980) for the classic statement of these ideas.
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neither P nor Q is completely confident about how strongly the evi-
dence supports belief in rain. But given their imperfect confidence in
their evaluation of the evidence, P comes to have degree of belief .55
in rain while Q comes to have degree of belief .45 in rain.

One way to think about disagreements like this is to try to use the
strategy of the previous section and to think of the case as one where
the disagreement is generated by different degrees of belief about the
chances of rain. But the way Christensen thinks about the case, the
issue involves disagreement about how the shared evidence bears on
the proposition that rain will occur. Nonetheless, we think that the
formal treatment will be similar.

Let X be the evidence, and assume that one’s degree of belief
is given by a kind of estimation of the evidential probability. Eviden-
tial probability functions as an expert, in the sense described above
in Section 10.4. That is, the peers’ credences are guided by their be-
liefs about about the evidential probabilities in the same sort of way
that their credences can be guided by their beliefs about chances
through the Principal Principle. Let E(R|X) be the evidential probabil-
ity of rain given the shared evidence, so that degrees of belief satisfy
P(R) = > x-P(E(R|X) = x).39

Then, one way for the peers to arrive at their credences P(R) = .55
and Q(R) = 45 is if P(E(R|X) = .6) = .75 and P(E(R|X) = .4) = .25,
while Q(E(R|X) = .6) = .25 and Q(E(R|X) = .4) = .75. This would
be natural if each meteorologist is equally good, and each is certain
that the evidence is such as to support rain to degree .6 or .4, and is
75% confident that she would evaluate the evidence correctly in this
situation.

Once the two meteorologists realize that they have come to differ-
ent interpretations of the evidence, how should they react? Just as the
coin flippers above think that each other’s credences are sensitive to
the evidence they have about the urn rather than being sensitive to the

39. However, see (Lasonen-Aarnio 2013, Section 2) for criticism of this way of
conceiving of evidential probability.
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actual outcome of the coin, it is natural for the meteorologists to think
that their judgments about the evidential bearing of X on rain are sen-
sitive to the actual evidential bearing of X on rain, and not sensitive to
rain itself. Although their evidence about rain is not independent, their
higher-order evidence about the evidential probability of rain is, in a
sense, independent. Thus, it is natural to apply Upco to the partition
into E(R|X) = .6 and E(R|X) = 4, and not to any partition involving
rain.

In this particular case, the end result is the same — because their
credences in the two hypotheses about the evidential bearing of X on
R are equal and opposite, they should update to

PT(E(R|X) = .6) = PY(E(R|X) = 4) = QT (E(R|X) = .6)
= QT (E(RIX) = 4)
=5,

and thus both end up with degree of belief .5 in rain, as Christensen
suggests.

However, because their judgments are only imperfect evidence
about the bearing of the first-order evidence, related cases can end up
quite differently. If P and Q both had degree of belief .55 in rain, and
both were initially 75% confident that they interpreted the evidence
correctly, then we would have:

(3/4)*

P*(E(R|X) = .6) = Q" (E(R|X) = .6) = (3/4)2+ (1/4)2 ~

9,

and thus would end up with degree of belief .58 in rain. There is some
synergy from their agreement in the assessment of evidence, but it
does not get as high as applying Upco' directly to their degrees of

belief in rain, which would yield #52452 ~ .599.

PHILOSOPHERS  IMPRINT

_33_

Updating on the Credences of Others

If P is in fact a perfect judge of the evidence, while Q is quite imper-
fect, the credences of .55 and .45 in rain could come from P(E(R|X) =
55) = 1 while Q(E(R|X) = .55) = 1/3 and Q(E(R|X) = 4) = 2/3. In
this case, Q’s initial confidence in a lower evidential probability for
rain is entirely swamped by P’s certainty in a higher evidential proba-
bility for rain. This would give rise to a sort of steadfastness for P and
complete deference for Q. (If P and Q disagree in their estimation of
how reliable each other are as judges of the evidence, we could further
apply some of the techniques from Section 10.1.)

In more realistic cases where agents are uncertain of the evidential
probability, agents will distribute their credence over a range of possi-
ble values rather than just two, and the interplay of synergy and dis-
agreement will be more complex. But in many of these cases, it makes
sense to work with some version of Upco over the partition by par-
ticular values of evidential probability, rather than the partition over
first-order propositions.

However, the special case of evidence that should be completely
definitive deserves special comment. Consider Christensen’s example
of splitting the check:

Suppose that five of us go out to dinner. It’s time to pay the
check, so the question we're interested in is how much we each
owe. We can all see the bill total clearly, we all agree to give a 20
percent tip, and we further agree to split the whole cost evenly.
...I do the math in my head and become highly confident that
our shares are $43 each. Meanwhile, my friend does the math in
her head and becomes highly confident that our shares are $45
each. How should I react, upon learning of her belief? (Chris-
tensen 2007, 193)

In this case, it seems natural to think that the available evidence either
logically guarantees that our shares are $43, or logically guarantees
that our shares are $45, or logically guarantees that they are some
other value. Furthermore, we are all certain that the evidence logi-
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cally guarantees that the shares are a given value iff the shares actually
do have that value. Thus, the partition by particular values of eviden-
tial probability will be coextensive with the partition over first-order
propositions. Applying Upco to the evidential partition and then prop-
agating the values to the first-order propositions will give the same
results as applying Upco directly to the first-order partition. This is
interesting, because in this case the peers share all of the relevant ev-
idence. Nonetheless, Upco yields the intuitively correct result. This is
because the peers still act independently, in the sense that each peer
has the same probability of committing a mathematical error, whether
the other peers do so or not. Thus, it is safe to treat independent evalu-
ation of shared, completely definitive evidence the same as one would
treat disagreement at the first-order level with completely independent
evidence.

10.9 Partition-dependence

The examples of the previous two sections illustrate once again the
partition-dependence of Upco. In Section 10.7, we had two partitions
{H, T} and {F, B}, and when P updates her credences on the basis of
Q’s credence, we get a different result depending upon whether she
applies Upco to Q’s credences over the first partition or the second.
Readers may verify that applying Upco to Q’s credence on the joint
partition {HF, HB, TF, TB} yields yet a different result. (In this case,
P’s new credence in heads would be approximately .71, which again
seems unreasonable given the structure of the problem.) In Section
10.8, we saw that applying Upco to evidential probabilities can lead to
yet another different result. How can we know which procedure to use
in a particular case?

- Ak}
o Aim, }, yield-
Aty Axty e+ Agmy 3o P ohas cre-

In general, suppose that we have a “coarse” partition {Aq, ..
and that each A; can be further partitioned into {A;, ..
ing a “fine” partition {Ayy,..
dences over the fine partition, and learns Q’s credences over the fine
partition, from which she can easily infer Q’s credences over the coarse
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partition. Now P can apply Upco to Q’s credences over the fine parti-
tion, or she can apply it to Q’s credences over the coarse partition (and
update the rest of her credences by Jeffrey conditionalization, as dis-
cussed in Section 7.1). These two procedures will (typically) produce
different results, so which should she do?4°

One way to think about partition-dependence is to recall that Upco
mimics specific likelihoods. The likelihoods that Upco mimics when it
is applied to the fine partition are not compatible with the likelihoods
that it mimics when it is applied to the coarse partition. So one way to
address the question of which partition to apply Upco is to think about
which likelihoods it would be better to mimic. We will here present
one sufficient condition for preferring the coarse partition to the fine
partition.

The examples of the previous two sections provide clues. Recall
that there were two hypotheses about the bias of the coin: the coin
was either fair (F) or biased (B). If P had explicit likelihoods for Q’s
credences, it would be reasonable for her likelihoods to satisfy the fol-
lowing conditions:

P(Q(X)|FH) = P(Q(X)[FT)
P(Q(X)|BH)

P(QX)[F);
P(Q(X)[BT) = P(Q(X)|B);

where X is any proposition about the bias of the coin and/or the out-
come of the toss. That is, given the bias of the coin, P thinks that Q is
equally likely to have any given credence, regardless of the eventual
outcome of the toss. Put another way, the bias of the coin screens off
Q’s credences from the outcome of the toss. These credences would be
reasonable because Q does not have any information about the result
of the coin toss besides her information about the bias of the coin.4*

40. We would like to thank Julia Staffel and Peter Vranas especially for pressing
this worry upon us.

41. We might derive these conditions by assuming P believes Q obeys the Prin-
cipal Principle and has no inadmissible information. See Lewis (1980).
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In the more general case, where we have a coarse partition
{Aq,.. Aty Arl e
can formulate an analogous condition. Let § = (g1, -

., Ax} and a fine partition {A11, .. -/Akmk}/ we
s Gkm,» abbrevi-
ate the conjunction of propositions of the form Q(A4;;) = g;;. That is, §

fully specifies Q’s credences over the fine partition. Then suppose:

P(f|Ayj) = P@IA) = ¢i(d) (CoarsE)
for all § and i,j. This says that P’s credence that Q will have cre-
dence 7 is the same, regardless of which member of the subpartition
{Ai1,--+, Aim;} is true. This reflects the idea that P thinks that Q’s
credence is sensitive only to which member of the coarse partition
{A1,..., Ay} is true, and not to which member of the fine partition is
true. COARSE is inconsistent with the likelihoods that are mimicked by
applying Upco to the fine partition, for those require that:

P@Ay) _ qi
P@lAn)  qu’
which will be different from 1 whenever g;; # g;;. By contrast, COARSE

requires that % always be equal to one. This shows that when

P’s credences satisfy COARSE it would be inappropriate to update by
applying Upco to the fine partition.

Next we show that when P’s credences satisfy CoARsE, and P learns
Q’s credences, it does not matter whether P updates her credence in
each member of the fine partition by conditionalizing on Q’s credences,
or whether she first updates her credence in each member of the coarse
partition by conditionalizing on Q’s credences and then updates her
credences over the fine partition by Jeffrey conditionalizating with her
new credences on the coarse partition.

Theorem 10.2. Let {A1,..., A} be a partition, the “coarse partition”, and

let {A11,.- ., Avtmysre -0 Aktre ooy Akmk }, the “fine partition”, be a refinement

.....
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and P(Ajj) = pjj for all i,]. Suppose that P’s credences satisfy COARSE, and
then she learns that Q’s credences over the fine partition are given by g. Then
the following two procedures yield the same result: 1) P updates her credence
in each member of the fine partition A;j by conditionalizing on g; 2) P updates
her credence in each member of the coarse partition A; by conditionalizing on
q, and then updates her credence in each member of the fine partition A;; by
Jeffrey conditionalizing using her new credences in the coarse partition.

Proof. Let A;j be an arbitrary member of the fine partition. Following
procedure (1):

PT(Ajj) = P(A|q)

pij - ¢i(@)

P(@)

Now, following procedure (2), we first compute P’s new credences over

(PROCEDURE 1)

the coarse partition:

P (A;) = P(Ail7)

Then we compute P’s new credences over the fine partition by Jeffrey
conditionalizing with the new probabilities over the coarse partition:
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PT(Ajj) = P(Aj|A;) - PT(A;)

Pij o+
= D0 pr(A,
D (Ai)

—

Pij pi-ci(d)

pi  P(q)

_ Pij-ci@

P(q)

Thus the two procedures yield the same result. O

(PROCEDURE 2)

What Theorem 10.2 shows is that when P’s credences satisfy
CoARsE, she loses no information by updating on Q’s credences over
the coarse partition, rather than over the fine partition. Moreover, we
saw that COARSE is incompatible with the likelihoods mimicked by ap-
plying Upco to the fine partition. Thus, if P’s credences satisfy COARSE,
it would be more appropriate for P to update by applying Upco to the
coarse partition, rather than the fine partition.

Of course, we would like to be able to use Upco or one of its variants
even when an agent does not have explicit likelihoods. Nonetheless,
COARSE gives us some sense of the types of situation where it is appro-
priate to update on a coarse partition. If P thinks that Q’s credences
are sensitive only to which member of the coarse partition is true, that
Q would tend to have similar credences regardless of which sub-cell of
a member of the coarse partition is true, that Q has information about
the fine partition only in virtue of having information about the coarse
partition, etc., then P should update on Q’s credences over the coarse
partition.

Example 10.3. P is hiking in the wilderness with Hilary Putnam. They
see an odd-shaped tree in the distance, and begin to debate what kind of
tree it is. They both read in a guide book that the trees in this region are
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beeches, elms, firs, and spruces. P’s credences in these four possibilities are
6,.1,.1, and .2, respectively; while Putnam’s credences are .3,.3,.3, and .1.
However, P recalls Putnam saying that he does not know the difference be-
tween beeches and elms (Putnam 1975). Given his arboreal ignorance, P rea-
sons that Putnam is unlikely to know the difference between firs and spruces.
But surely even Putnam knows the difference between a deciduous tree and
a conifer4* Hence, P decides to update using their credences over the parti-
tion {deciduous(=4.s beech or elm), coniferous(=4,s fir or spruce)}. P’s
credences over this partition are .7 and .3 (respectively), and Putnam’s are .6
and .4. Applying Upco, she arrives at new credences of .78 and .22 over the
coarse partition. Then she Jeffrey conditionalizes over this partition. Her final
credences are .67 for beech, .11 for elm, .07 for fir, and .15 for spruce. 43

10.10 Combinations

Of course, it is possible to combine the various modifications discussed
in this section. We may have a collection of peers, some of whom
are anti-experts, all of whom have different weights and break-even
points, reasoning about higher-order evidence about the chances of

some event.

11. Conclusion

Many rules that have been proposed for updating one’s credences
upon learning the credences of others lack the important property of
synergy. We have motivated this property both by intuitive considera-
tion of cases and by showing that Bayesian updating supports it. Since
Bayesian updating will often be computationally complex, it is desir-
able to have a short-cut rule. The rule that we have proposed, which
exhibits synergy, is a special case of conditionalization for particular
likelihoods, which suggests that our rule is at least sometimes the
right response to learning the credences of others. We have gone on
to consider generalizations of our rule that may help motivate it as a

42. Although a larch would probably stump him.
43. This example is similar in structure to one that Julia Staffel presented to us.
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response to the updating problem even when one doesn’t have these
particular likelihoods.

Our rule has various advantages over the most commonly proposed
alternatives, which all involve taking some sort of (weighted) average
of one’s own and one’s peers’ credences. The first advantage is pre-
cisely that it agrees with conditionalization in a clear class of cases
(namely where one’s likelihoods take a particular form), and that it
yields synergy precisely where conditionalization does in this class of
cases (and where synergy is intuitively plausible). Averaging rules can-
not yield synergy. Second, our rule exhibits a plausible flexibility when
it comes to conciliatoriness and steadfastness. For example, it will rec-
ommend steadfastness when one’s peers’ credences are simply equal
to the uninformative “break-even” credences (reflecting indifference
or a lack of evidence on their part), while it recommends conciliation
(in the sense of adjusting one’s credences in light of one’s peers’ cre-
dences) when one’s peers have evidence that one lacks. Averaging rules
are clunkier in this regard: flexible recommendations can be achieved
only by re-weighting one’s peers’ credences on a case-by-case basis.
Thirdly, our rule commutes with conditionalization upon non-peer ev-
idence, and is also insensitive to the timing and the order in which one
updates on one’s peers’ credences. By contrast, averaging doesn’t com-
mute with conditionalization and is sensitive to the order in which one
meets one’s peers. This leads averaging proposals to deliver implausi-
ble results. Fourth, our rule preserves independence in cases where it
is plausible to do so, but not in cases in which it isn’t. Averaging al-
most never preserves independence, even in cases where preservation
of independence is plausible. Finally, averaging obeys the Context-Free
Assumption, despite the fact that there are clear counterexamples to
CFA. Our rule steers clear of these counterexamples.
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