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Abstract

We make preliminary investigations into the model theory of DeMor-

gan logics, attempting to make a case for the worth of such investigations

before tackling the plight of particular mathematical theorems in these

logics. We demonstrate that  Loś’ Theorem holds with respect to these

logics and make some remarks about standard model-theoretic proper-

ties in such contexts. More concretely, as a case study we examine the

fate of Cantor’s theorem that the theory of dense linear orderings with-

out endpoints (DLO−−) is ℵ0-categorical and show that the taking of ul-

traproducts commutes with respect to previously established methods of

constructing nonclassical structures, namely, Graham Priest’s Collapsing

Lemma and J. Michael Dunn’s Theorem in 3-Valued Logic.

Semantics for DeMorgan Logic

We may suppose that the fundamental component to a logic λ is the relation

λ that holds between sets of formulae and sets of formulae, indicating that the

latter is derivable from the former. As each logic λ that we will be invoking

is sound and complete, we may consider the relation
λ

associated with each λ

and define it semantically. In so doing, we will sufficiently define the logic itself.

The logics upon which we herein focus are the classical predicate calculus

CL, the paraconsistent (inconsistency-tolerant) logics LP and RM, the para-

complete (incompleteness-tolerant) logics K and  L, and the paraconsistent

and paracomplete logic FDE. For a discussion of these logics’ origins and philo-

sophical motivation, we refer the reader to [8]. These logics may be thought of

as, to extend the nomenclature of [2], DeMorgan logics, insofar as for each logic

λ in this class the DeMorgan Laws hold. This motivates our referencing the
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class of the aforementioned logics as Dem. Formally, the following conditions

hold in each λ ∈ Dem:

¬(ϕ ∧ ψ)
λ
¬ϕ ∨ ¬ψ, and

¬(ϕ ∨ ψ)
λ
¬ϕ ∧ ¬ψ,

where
λ

represents interderivability with respect to logic λ. It is our task

in this précis to provide an account of the relation
λ

for the logics in Dem. We

begin by making syntactic considerations.

Definition 1. A signature is an ordered set σ = (C,F,R, σ′) of sets of symbols

C,F,R and a function σ′ : F∪R → N mapping function and relation symbols to

their intended arity. In this paper, we include the identity symbol as a member

of R for any signature σ.

Each signature determines a language, Lσ, built up recursively. First, a set

of terms may be constructed by the following procedure:

• All variables x, y, ... and constants c ∈ C are terms.

• For n > 0, if each ti of n-tuple ~t is a term and σ′(f) = n for an f ∈ F,

then f(~t) is a term.

With the terms recursively defined, we may construct Lσ:

Definition 2. A language Lσ is the smallest set such that for all n > 0, n-tuple

of terms ~t, and all R ∈ R such that σ′(R) = n, R(~t) ∈ Lσ and closed under the

following:

• If ϕ ∈ Lσ, then ¬ϕ ∈ Lσ.

• If ϕ, ψ ∈ Lσ, then (ϕ ◦ ψ) ∈ Lσ, where ◦ ∈ {∨,∧,→}.

• If ϕ ∈ Lσ and x is a variable, then Qxϕ ∈ Lσ, where Q ∈ {∀, ∃}.

We now give a characterization of each
λ

. Following [3], we’ll provide for

each logic a) a Hasse diagram Hλ taking as nodes a set Sλ of truth values, b)

definitions of the connectives and quantifiers with respect to the Hasse diagram,

c) a set ∇λ ⊂ Sλ of designated values, and d) a function v : L → Sλ mapping

formulae to truth values.
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Let SCL = {T,F}, SLP = SRM
= {T,B,F}, S L

= SK = {T,N,F}, and

SFDE = {T,N,B,F}. We consider the following Hasse diagram H in Figure 1.

Let each Hλ = H ↾ Sλ represent an ordering on the truth values associated

with λ. On each of these lattices, let ⊔ denote join and ⊓ denote meet.

T

B N

F

Figure 1: Hasse Diagram H

We may now give definitions for the connectives and quantifiers by means

of their associated truth functions fλ
◦

: Sλ → Sλ.

• For all λ ∈ Dem, fλ
¬

(T) = F and fλ
¬

(F) = T

• For λ ∈ {RM, LP,FDE}, fλ
¬

(B) = B

• For λ ∈ {K,  L,FDE}, fλ
¬

(N) = N

• For all λ ∈ Dem, fλ
∨

(x, y) = x⊔y, where ⊔ is defined on Hλ and x, y ∈ Sλ.

• For all λ ∈ Dem, fλ
∧

(x, y) = x⊓y, where ⊓ is defined on Hλ and x, y ∈ Sλ.

• For λ ∈ {CL,K, LP,FDE}, fλ
→

(x, y) = fλ
∨

(fλ
¬

(x), y), where x, y ∈ Sλ.

• For λ ∈ { L,RM}, we consult the truth tables in Figure 2.

f
 L
→ T N F f

RM
→ T B F

T T N F T T F F

N T T N B T B F

F T T T F T T T

Figure 2: Truth tables for f  L
→

and f
RM
→

Finally, we give sets of designated values ∇λ for each λ ∈ Dem. These are

the truth values that intuitively imply that the evaluated formula holds. Let
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∇CL = ∇K = ∇ L
= {T}, ∇RM

= ∇LP = ∇FDE = {T,B}. It can be checked

that in each case ∇λ ⊂ Sλ.

For all λ, we call a function vλ : L → Sλ a λ-interpretation if it satisfies

the following conditions:

Definition 3. ϕ
λ
ψ iff for every λ-interpretation v, if v(ϕ) ∈ ∇λ then v(ψ) ∈

∇λ

From here, we can introduce structures and truth in a model. A structure

gives an interpretation to a signature.

Definition 4. A structure is an ordered set A = (A,CA,FA,RA+,RA−), where

A is a universe of elements, CA ⊆ A is a set of interpretations of constants,

FA is a set of interpretations of function symbols, and RA+ and RA− are,

respectively, sets of positive and negative interpretations of relation symbols. By

the definition of signature, the symbol = is a member of R, and we define =A+

as {(x, x) : x ∈ A}, i.e., equality has the intended, positive interpretation.

Any closed term t then has an interpretation tA in A.

• If t = c for some c ∈ C, then tA = cA

• If t = f(~s) for some n-ary f ∈ F and n-tuple of closed terms ~s, then

tA = fA(sA0 , ..., s
A
n−1)

In order to ensure that in discussing some structure or other, it is capable of

determining a λ-interpretation, we introduce the notion of permissibility with

respect to a logic λ. A structure A is consistent if for all n-ary R (including

equality), RA+ ∩ RA− = ∅ (inconsistent otherwise), and complete if for all

R (including equality), RA+ ∪ RA− = An (incomplete otherwise). The class

of consistent, complete structures is permissible for all λ ∈ Dem, the class of

inconsistent structures is permissible for LP, RM, and FDE, and the class of

incomplete structures is permissible for K,  L, and FDE.

Finally, in order to give an accurate account of the quantifiers and talk about

an element or tuple of elements satisfying a formula, we introduce the following:

Definition 5. The named counterpart of a structure A, hereafter (A, A), is the

structure gotten from A by adding a constant a for each element a ∈ A.
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Each structure permissible with respect to a logic λ then gives an interpre-

tation of the language. For an atomic formula R(~t) (including identities of the

form s = t) and a structure A permissible with respect to λ,

• uAλ (R(~t)) =































T if ~tA ∈ RA+ and ~tA /∈ RA−

F if ~tA /∈ RA+ and ~tA ∈ RA−

B if ~tA ∈ RA+ and ~tA ∈ RA−

N if ~tA /∈ RA+ and ~tA /∈ RA−

It is easy to check that if a structure is permissible with respect to λ, the

semantic constraints will ensure that no atoms will be given a truth value not

a member of Sλ.

Using the evaluations of atoms as a basis, uAλ can be recursively defined

according to the following conditions:

• uAλ (¬ϕ) = fλ
¬

(uAλ (ϕ))

• uAλ (ϕ ∨ ψ) = fλ
∨

(uAλ (ϕ), uAλ (ψ))

• uAλ (ϕ ∧ ψ) = fλ
∧

(uAλ (ϕ), uAλ (ψ))

• uAλ (ϕ→ ψ) = fλ
→

(uAλ (ϕ), uAλ (ψ))

• uAλ (∀xϕ(x)) = glb{u
(A,A)
λ (ϕ(a)) : a ∈ A}

• uAλ (∃xϕ(x)) = lub{u
(A,A)
λ (ϕ(a)) : a ∈ A}

We now are equipped to provide a definition of truth in a model.

Definition 6. For a structure A permissible with respect to a logic λ ∈ Dem,

A
λ
ϕ iff uAλ (ϕ) ∈ ∇λ

This leads immediately to a definition of consequence between sets of for-

mulae for each λ ∈ Dem by claiming that Γ
λ

∆ iff for every structure A
λ

Γ,

A
λ

∆. Furthermore, given structure A, we can speak of an n-tuple ~a ∈ An

satisfying an n-ary formula ϕ in logic λ by the condition that A
λ
ϕ(~a) iff

(A, A)
λ
ϕ(~a).

Granted the above definition, we may also note the following equivalences

between the claim that A
λ
ϕ and natural language:
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A
λ
ϕ ∨ ψ iff A

λ
ϕ or A

λ
ψ

A
λ
ϕ ∧ ψ iff A

λ
ϕ and A

λ
ψ

A
λ
∀xϕ(x) iff for all a ∈ A, A

λ
ϕ(a)

A
λ
∃xϕ(x) iff for some a ∈ A, A

λ
ϕ(a)

This connection can be easily confirmed by glancing at the truth functions

for the connectives and quantifiers, but will enable us to argue about model-

theoretic properties in plain language in the following.1

Given a definition of truth in a model, we may generalize some typical model-

theoretic definitions that will come into play in the following.

Definition 7. The theory Thλ(A) of a structure A with respect to a logic λ is the

set of sentences true in A with respect to λ. Formally, Thλ(A) = {ϕ : A
λ
ϕ}.

We define a notion of isomorphism that holds for all DeMorgan logics.

Definition 8. Two structures A,B are isomorphic (A ∼= B) iff there is a one-

to-one correspondence h such that for all constant symbols c, cB = h(cA), for

all function symbols f , fB(h(~aA)) = h(fA(~aA)), and for all relation symbols

~aA ∈ RA+ iff h(~aA) ∈ RB+ and ~aA ∈ RA− iff h(~aA) ∈ RB−.

Such a generalization of isomorphism should be intuitively correct; for one,

that A ∼= B implies that A ≡ B, i.e., that Thλ(A) = Thλ(B). Furthermore, we

easily see that ∼= is an equivalence relation on structures. With these definitions

in hand, we proceed to some more concrete observations.

Generalizing  Loś’ Theorem to the Case of Dem

We define a product structure
∏

i∈I Ai in the following manner: First, the el-

ements aΠA ∈
∏

i∈I Ai are those functions taking arguments i from I and

returning as value an element from Ai. Tuples of such elements ~a of arity

m are to be thought of as a sequence of such functions (a0, ..., am−1) so that

~a(i) = (a0(i), ..., am−1(i)). Constants cΠA denote the element a ∈
∏

i∈I Ai such

that cAi = a(i) for all i ∈ I. Function symbols are interpreted as f(~a)ΠA = bΠA

1That the semantics for the logics herein considered translate so swiftly to natural language
constitutes prima facie evidence that they withstand the scrutiny of e.g., Quine’s maxim that
a “change of logic” is a “change of subject” in [9].
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such that Ai λ
b(i) = fAi(~a(i)) for all i ∈ I. Relation symbols R are inter-

preted as having both extension and anti-extension; for a tuple ~a ∈
∏

i∈I Ai, we

say that
∏

i∈I Ai λ
R(~a) iff ~a(i) ∈ RAi+ for all i ∈ I.

We define the reduced product of
∏

i∈I Ai modulo a filter U ⊂ ℘(I), which

we hereafter call A♮,2 in the following manner: We first define an equivalence

relation ∼U by dictating that any two elements a, b ∈
∏

i∈I Ai are equivalent

modulo ∼U iff {i : Ai λ
a(i) = b(i)} ∈ U . The universe

∏

i∈I Ai/U thus

comprises equivalence classes {b : a ∼U b} = [a]. Constants of this structure c

are interpreted as cA♮ = a ∈ A♮ such that {i : Ai λ
cAi = a(i)} ∈ U . Relation

symbols R, including =3, are interpreted, again, as having both extension and

anti-extension. n-ary relation symbol R and an n-tuple ~a ∈ (A♮)n, A♮
λ
R(~a)

iff {i : ~a(i) ∈ RAi+} ∈ U , or, alternately, iff {i : Ai λ
R(~a)} ∈ U . For the

same R and ~a, A♮
λ

¬R(~a) iff {i : Ai λ
¬R(~a)} ∈ U , to include equational

sentences of the form ¬(a = b).

 Loś’ Theorem in the classical case is the theorem that for any family of

structures {Ai}, indexed by set I, and ultrafilter U ⊂ ℘(I), the following holds

for all sentences ϕ:

∏

i∈I Ai/U
CL

ϕ iff
{

i : Ai
CL

ϕ
}

∈ U

 Loś’ Theorem is useful classically, as controlling the properties of the ultra-

product in many cases reduces to a careful selection of the ultrafilter. In the

case of the logics of Dem, the typical methods of constructing new models have

the limitation of only either ensuring that some class of formulae are satisfied

or preventing some class of formulae from being satisfied. The theorem in this

context carries the benefit of not only determining which formulae are found

in Thλ(A♮), but also determining which formulae are not in the theory. The

present task, then, is to demonstrate that the theorem extends to the logics

currently in question.

Theorem 1. For any class of structures {Ai} permissible with respect to a logic

λ ∈ Dem, index I, and ultrafilter U ⊂ ℘(I),
∏

i∈I Ai/U λ
ϕ iff {i : Ai λ

ϕ} ∈

U for formulae ϕ that contain no occurrences of the symbol →

Proof. A brief sketch: taking the literals as basis step, we proceed inductively by

first showing the result holds for connectives ∨ and ∧ and then demonstrating

2The “chromatic” notation for ultraproducts is borrowed from [11], though we will not
retain its particular algebraic purpose.

3Though, of course, = is privileged in its positive extension.
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its holding in the case of the quantifiers. We then provide an argument for the

theorem holding for ¬ by cases, in essence, running through the negations of

formulae of these forms. We then merely define → by means of the previous

connectives for the logics FDE,K, LP, and CL. As the truth function associated

with the connective → is not definable in terms of these connectives in the case

of  L or RM, we’ll have to treat these logics separately.

Call {i : Ai λ
ϕ} the Boolean extension of ϕ (hereafter ‖ϕ‖) and assume

that ‖ϕ‖ ∈ U and ‖ψ‖ ∈ U . Then by the finite intersection property, or fip,

‖ϕ‖∩‖ψ‖ ∈ U . A cursory glance at Figure 1 reveals that ‖ϕ‖∩‖ψ‖ = ‖ϕ∧ψ‖,

and so ‖ϕ∧ψ‖ ∈ U . Similarly, assume that ‖ϕ∧ψ‖ ∈ U ; both ‖ϕ∧ψ‖ ⊆ ‖ϕ‖

and ‖ϕ ∧ ψ‖ ⊆ ‖ψ‖ hold. Since U is closed under supersets, it follows that

‖ϕ‖ ∈ U and ‖ψ‖ ∈ U . Supposing that  Loś’ Theorem holds for ϕ and ψ, then

we may see that A♮
λ
ϕ∧ψ iff A♮

λ
ϕ and A♮

λ
ψ iff ‖ϕ‖ ∈ U and ‖ψ‖ ∈ U

iff ‖ϕ ∧ ψ‖ ∈ U .

Now we demonstrate that this holds for disjunction as well. Assume that

either ‖ϕ‖ ∈ U or ‖ψ‖ ∈ U . We know that ‖ϕ‖ ⊆ ‖ϕ‖ ∪ ‖ψ‖ and ‖ψ‖ ⊆

‖ϕ‖ ∪ ‖ψ‖, so as U is closed under supersets in either case ‖ϕ‖ ∪ ‖ψ‖ ∈ U .

Finally, ‖ϕ‖ ∪ ‖ψ‖ = ‖ϕ ∨ ψ‖ so the latter is also a member of the ultrafilter.

Now, assume that ‖ϕ ∨ ψ‖ ∈ U ; this is equivalent to the hypothesis that

‖ϕ‖ ∪ ‖ψ‖ ∈ U . Now, either ‖ϕ‖ ∈ U or ‖ϕ‖ /∈ U . If the former holds,

we’ve established that ‖ϕ ∨ ψ‖ ∈ U implies that ‖ϕ‖ ∈ U . If the latter holds,

then by maximality of U , I r ‖ϕ‖ ∈ U . By the finite intersection property

and the hypothesis, then, (‖ϕ‖∪‖ψ‖)∩ (I r ‖ϕ‖ ∈ U ), which, by distributivity,

entails that (‖ϕ‖∩(I r ‖ϕ‖)) ∪ (‖ψ‖∩(I r ‖ϕ‖)) ∈ U , which is equivalent to

‖ψ‖∩(I r ‖ϕ‖) ∈ U . Of course, ‖ψ‖∩(I r ‖ϕ‖) ⊆ ‖ψ‖ and by the upwards

closure of U , ‖ψ‖ ∈ U . Hence, if ‖ϕ ∨ ψ‖ ∈ U , then either ‖ϕ‖ ∈ U or

‖ψ‖ ∈ U . Again, if we assume  Loś’ Theorem holds for ϕ and ψ, then it follows

that A♮
λ
ϕ∨ψ iff A♮

λ
ϕ or A♮

λ
ψ iff ‖ϕ‖ ∈ U or ‖ψ‖ ∈ U iff ‖ϕ∨ψ‖ ∈ U .

Suppose that ‖∃xϕ(x)‖ ∈ U . Then for each j ∈ ‖∃xϕ(x)‖, Aj λ
ϕ(aAj )

for some element aAj ∈ Aj . Let b ∈
∏

Ai be such that b ↾ ‖∃xϕ(x)‖ maps i

to a witness of ϕ in Ai, and allow the value to be arbitrary otherwise. Then

‖∃xϕ(x)‖ = ‖ϕ(b(i))‖, and hence the latter is likewise in U . Likewise, if, for

some b′ ∈
∏

Ai, ‖ϕ(b′(i))‖ ∈ U , we note that as at any i such that Ai λ
ϕ(b′(i))

it follows that Ai λ
∃xϕ(x) and hence ‖∃xϕ(x)‖ ⊆ ‖ϕ(b′(i))‖, ensuring that

the latter, by upwards closure of U is likewise in the ultrafilter. Again, if the
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theorem holds for ϕ(x), then A♮
λ

∃xϕ(x) iff there is an b ∈ A♮ such that

A♮
λ
ϕ(b) iff ‖ϕ(b(i))‖ ∈ U iff ‖∃xϕ(x)‖ ∈ U . An analogous argument

provides the result for universally quantified formulae.

Finally, we look at negation by an argument by cases. For a formula ¬ϕ, ϕ

is either a negation, a conjunction, a disjunction, or a quantified formula. In

the former case, if ϕ = ¬ψ for some ψ, then we note that B
λ
¬¬ψ iff B

λ
ψ.

Hence ‖¬¬ψ‖ ∈ U iff ‖ψ‖ ∈ U . Thus A♮
λ
¬¬ψ iff A♮

λ
ψ iff ‖ψ‖ ∈ U iff

‖¬¬ψ‖ ∈ U .

In the cases of connectives ∨, ∧, we appeal to the fact that DeMorgan’s

Laws hold in each λ ∈ Dem. Thus, assuming that the theorem holds for all

subformulae and their negations, ‖¬(ϕ ∨ ψ)‖ = ‖¬ϕ ∧ ¬ψ‖. So A♮
λ
¬(ϕ ∨ ψ)

iff A♮
λ
¬ϕ∧¬ψ iff ‖¬ϕ∧¬ψ‖ ∈ U iff ‖¬(ϕ∨ψ)‖ ∈ U . Analogous reasoning

gives us the result for formulae ¬(ϕ ∧ ψ).

Finally, we look at the case of quantified formulae. We note that quantifier

interchange is valid in all λ ∈ Dem, and assuming the result for all formu-

lae of lesser complexity, we note that A♮
λ

¬∃xϕ(x) iff A♮
λ

∀x¬ϕ(x) iff

‖∀x¬ϕ(x)‖ ∈ U iff ‖¬∃xϕ(x)‖ ∈ U . A similar argument secures the result for

negated universal quantifiers as well.

This establishes that  Loś’ Theorem holds for the →-free fragments of the

logics in Dem.

Theorem 2. For any class of structures {Ai} permissible with respect to the

logic, index I, and ultrafilter U ⊂ ℘(I),
∏

i∈I Ai/U
FDE,LP,K,CL

ϕ iff {i : Ai
FDE,LP,K,CL

ϕ} ∈ U for arbitrary ϕ

Proof. In the case of FDE, LP, and K (as well as CL), B
FDE,LP,K,CL

ϕ→ ψ iff

B
FDE,LP,K,CL

¬ϕ∨ψ, and so  Loś’ Theorem can be demonstrated for formulae

of this form by definition.

The converse of  Lós’ Theorem states that for a reduced product A♮, A♮ 6
λ
ϕ

iff ‖ϕ‖ /∈ U , which we recall is in general a different claim than that A♮
λ
¬ϕ

iff ‖¬ϕ‖ ∈ U . This means that for a truth-functional connective in virtue of

its truth functionality  Lós’ Theorem may yet be established. If we can define

the truth function associated with a connective inductively in terms of
λ

and

6
λ

, then we can inductively prove  Lós’ Theorem. We focus first on  L.

Theorem 3. For any class of structures {Ai} permissible with respect to  L,

index I, and ultrafilter U ⊂ ℘(I),
∏

i∈I Ai/U
 L
ϕ iff {i : Ai

 L
ϕ} ∈ U
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Proof. Note that given a structure A,

A
 L
ϕ→ ψ iff a) A

 L
¬ϕ, or

b) A
 L
ψ, or

c) A 6
 L
ϕ, A 6

 L
¬ϕ, A 6

 L
ψ, and A 6

 L
¬ψ.

We first translate into the context of an ultraproduct by examining ‖ϕ→ ψ‖,

the set of indices of structures Ai such that the sentence holds in Ai. We note

that {i : Ai 6
 L
ϕ} = I r {i : Ai

 L
ϕ}, and may translate conditions a)-c).

More precisely, the translation of the above point is that i ∈ ‖ϕ → ψ‖ iff

i ∈ ‖¬ϕ‖ ∪ ‖ψ‖ ∪ (I r (‖ϕ‖ ∪ ‖¬ϕ‖ ∪ ‖ψ‖ ∪ ‖¬ψ‖)), and so these sets are equal.

Left-to-right, suppose that  Loś’ Theorem has been shown to hold for all

subformulae of ϕ → ψ and their negations and that A♮
 L

ϕ → ψ. Then at

least one of conditions a)-c) holds of A♮. Suppose that condition a) holds; then,

ex hypothesi, A♮
 L

¬ϕ implies that ‖¬ϕ‖ ∈ U . We note that ‖¬ϕ‖ ∈ U ⊆

‖ϕ→ ψ‖, and as U is closed under supersets, ‖ϕ→ ψ‖ ∈ U as well. Analogous

reasoning gives a similar result for condition b). Finally, we consider the case in

which condition c) holds; in this case, we may appeal to the contrapositive form

of the theorem and the hypothesis. A♮ 6
 L
ϕ implies that ‖ϕ‖ /∈ U , A♮ 6

 L
¬ϕ

implies that ‖¬ϕ‖ /∈ U , and so forth. Since U is maximal, this implies that

I r ‖ϕ‖ ∈ U , I r ‖¬ϕ‖ ∈ U , I r ‖ψ‖ ∈ U , and I r ‖¬ψ‖ ∈ U , and by

DeMorgan’s laws, this implies that Ir (‖ϕ‖∪‖¬ϕ‖∪‖ψ‖∪‖¬ψ‖) ∈ U . Again,

though, this set has been observed to be a subset of ‖ϕ→ ψ‖, and by upwards

closure we deduce that ‖ϕ → ψ‖ ∈ U . As cases a)-c) exhaust the conditions

under which ϕ → ψ is true in A♮, we’ve demonstrated the left-to-right half of

the theorem.

Right-to-left, suppose that ‖ϕ → ψ‖ ∈ U and that the theorem has been

shown to hold for subformulae and their negations. Note again that ‖ϕ →

ψ‖ = ‖¬ϕ‖ ∪ ‖ψ‖ ∪ (I r (‖ϕ‖ ∪ ‖¬ϕ‖ ∪ ‖ψ‖ ∪ ‖¬ψ‖)). As U is maximal, if an

element is equal to a finite union of sets, then at least one of these sets is also

an element of U ; hence, the hypothesis yields the result that either ‖¬ϕ‖ ∈ U ,

‖ψ‖ ∈ U , or (I r (‖ϕ‖ ∪ ‖¬ϕ‖ ∪ ‖ψ‖ ∪ ‖¬ψ‖)) ∈ U . In the first two cases,

 Loś’ Theorem ensures that either A♮
 L

¬ϕ or A♮
 L

ψ, respectively. Both

cases, of course, ensure that A♮
 L

ϕ → ψ. In the latter case, we note that

this is equivalent to stating that ‖ϕ‖ /∈ U and ‖¬ϕ‖ /∈ U and ‖ψ‖ /∈ U and

‖¬ψ‖ /∈ U . Appealing once more to the holding of the contraposition of  Loś’
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Theorem to subformulae of ϕ→ ψ and their negations, we see that this implies

that A♮ 6
 L
ϕ and A♮ 6

 L
¬ϕ and A♮ 6

 L
ψ and A♮ 6

 L
¬ψ, satisfying condition

c), which is sufficient to establish that A♮
 L
ϕ→ ψ.

Finally, in the additional case for negation, note that A♮
 L

¬(ϕ → ψ) iff

A♮
 L
ϕ and A♮

 L
¬ψ, i.e., ‖¬(ϕ → ψ)‖ = ‖ϕ‖ ∩ ‖¬ψ‖. Thus, assuming that

 Loś’ Theorem holds for all formulae of lesser complexity, A♮
 L

¬(ϕ → ψ) iff

A♮
 L

ϕ and A♮
 L

¬ψ iff ‖ϕ‖ ∈ U and ‖¬ψ‖ ∈ U . As U has the fip and

is maximal, this is equivalent to stating that ‖ϕ‖ ∩ ‖¬ψ‖ ∈ U , which we’ve

established is equivalent to stating that ‖¬(ϕ → ψ)‖ ∈ U . This completes the

cases for negation, and hence the induction for  Loś’ Theorem for  L.

Theorem 4. For any class of structures {Ai} permissible with respect to RM3,

index I, and ultrafilter U ⊂ ℘(I),
∏

i∈I Ai/U
RM

ϕ iff {i : Ai
RM

ϕ} ∈ U

Proof. We make the following observations about the interpretation of the log-

ical connective → in RM3:

A
RM

ϕ→ ψ iff a) A 6
RM

ϕ, or

b) A 6
RM

¬ψ, or

c) A
RM

ϕ, A
RM

¬ϕ, A
RM

ψ, and A
RM

¬ψ.

Translating, this implies that i ∈ ‖ϕ→ ψ‖ iff i ∈ (I r ‖ϕ‖) ∪ (I r ‖¬ψ‖)∪

(‖ϕ‖ ∩ ‖¬ϕ‖ ∩ ‖ψ‖ ∩ ‖¬ψ‖).

Left-to-right, we assume that the theorem has been established for formulae

of lesser complexity and that A♮
RM

ϕ → ψ. Then at least one of conditions

a)-c) hold. In the cases of a) and b), ex hypothesi, ‖ϕ‖ /∈ U or ‖¬ψ‖ /∈ U ,

respectively, and by maximality, I r ‖ϕ‖ ∈ U or I r ‖¬ψ‖ ∈ U . Both these

sets are subsets of ‖ϕ → ψ‖, and hence ‖ϕ → ψ‖ ∈ U by upwards closure. In

case c), ϕ and ψ are both true and false in A♮, which tells us that ‖ϕ‖, ‖¬ϕ‖,

‖ψ‖, ‖¬ψ‖ are all members of U . By the fip, their intersection is also in U ,

and as this is a subset of ‖ϕ → ψ‖, by upwards closure, so too is it a member

of U . Right-to-left follows a similar adaptation of the  L case.

For the case of negation, note that A♮
RM

¬(ϕ → ψ) iff A♮
RM

ϕ and

A♮ 6
RM

ψ. Supposing that the theorem holds for subformulae and their nega-

tions, we infer that A♮
RM

¬(ϕ → ψ) iff A♮
RM

ϕ and A♮ 6
RM

ψ, iff, in

turn, ‖ϕ‖∩ (Ir‖ψ‖) ∈ U . But this set is equivalent to ‖¬(ϕ→ ψ)‖, and hence

12



the foregoing is equivalent to the claim that that the Boolean extension of the

formula is in U . Thus the case of → and its negation are covered, completing

the induction.

As an application, we may use  Loś’ Theorem the demonstrate that in any of

these logics, the model-theoretic properties of inconsistency and incompleteness

are general first-order, i.e., the class of inconsistent structures is not axioma-

tizable in a first-order language. In a finite signature, of course, inconsistency

is first-order; for finitely many relation symbols Pi (indexed by a finite set I),

the sentence σ =
∨

i∈I ∃~xi(Pi(~xi) ∧ ¬Pi(~xi)), where ~xi and Pi are of identical

arity, A
LP

σ iff A is inconsistent. When moving to a signature of cardinality

κ ≥ ℵ0, however, such a σ is not well-formed, as it will have κ-many disjuncts.

This does not, however, tell that no such σ exists; such a sentence for each sig-

nature may indeed exist, though it would be a consequence of such a property.

 Loś’ Theorem, however, speaks against the existence of any such sentence, or

set of sentences.

Theorem 5. The structural property of being inconsistent in an infinite sig-

nature is not general first-order, i.e., there is no sentence σ that axiomatizes

the class of inconsistent structures, nor is there an infinite set of sentences that

does so.

Proof. We may take a family of inconsistent structures {Ai : i ∈ κ} with infinite

signature σ = (A, {Pj : j ∈ κ}) with A = {a} such that the extension of Pj

in a model Ai is PAi+
j = {aAi} if i = j and PAi+

j = ∅ otherwise, and the

anti-extension Pj in a model Ai is PAi−

j = {aAi} for all i, j.

Now it is immediate that each structure is inconsistent; in general, Ai

FDE,LP,RM
∃x(Pix ∧ ¬Pix). Suppose that there exists a first-order sentence σ 

that axiomatizes the class of inconsistent structures. Just as in the canonical

proof that the property of a field’s having finite characteristic is not first-order,

one can make use of  Lós’ Theorem to demonstrate that σ is not general first-

order. We first consider the reduced product A♮ =
∏

i∈κ Ai/U , where U is

nonprincipal. Noting that
∏

ı∈κAi is a singleton, it follows that the domain

A♮ = {λi.aAi}, i.e., the function mapping each index i to the element a ∈ Ai.

It is clear that this structure is first-order consistent. Consider the diagram:

for no relation symbol Pj are both PA♮

j and ¬PA♮

j satisfied. By  Lós’ Theorem,

A♮
FDE,LP,RM

Pj(λi.a
Ai) iff ‖Pj(λi.a

Ai(i))‖ ∈ U . But for any candidate Pj ,

13



the set of structures that make true this formula is either empty or a singleton;

both are precluded from inclusion in U . Thus although ‖¬Pj(a(i))‖ is always κ,

and hence a member of U , a contradiction between two atomic formulae is true

at only a singleton in the power set. Furthermore, any inconsistent formula ϕ

constructed from such contradictions is finite in length, and as such ‖ϕ‖ is finite

and hence not contained in U . As the theory is determined by the diagram,

that the diagram is consistent ensures that the theory of the structure is a)

classical and b) non-trivial.

That the theory is first-order consistent means that
∏

Ai/U 6
FDE,LP,RM

σ .

But by hypothesis, all Ai
FDE,LP,RM

σ , which  Lós’ Theorem tells us is impos-

sible.

Analogous reasoning over a similarly artificial set of incomplete structures

yields that there is no first order sentence σInc that holds of all structures with

incomplete theories.

Theorem 6. The structural property of being incomplete in an infinite signature

is not general first-order, i.e., there is no sentence σInc that axiomatizes the class

of incomplete structures, nor is there an infinite set of sentences that does so.

Proof. Consider the family {Bi : i ∈ ω} such that PBi+
j = ∅ for all i, j and

PBi−

j = ∅ if i = j and PBi−

j = {bBi} otherwise. By slightly amending the

argument, it follows that B♮ 6
FDE,K, L

σInc and hence the property of a struc-

ture’s having a complete theory is not first-order.

As a further result, we may apply a simple, model-theoretic proof of com-

pactness for the logics λ ∈ Dem, due to Malcev, desirable as no reference to

syntax is required. We refer the reader to the elegant presentation of Malcev’s

proof in [10] and note that the proof immediately applies to all λ ∈ Dem without

any generalization.

We can now move on to see how more entrenched mathematical theorems

fare in the context of Dem.

Categoricity and Cantor’s Theorem

We in this section wish to explore the general case of Cantor’s Theorem and

make some notes about categoricity with respect to logics in Dem.

14



Theorem 7. For any language L , every set of L -sentences (to include L

itself) has an LP-model (alternately, RM-model, FDE-model).

Proof. Consider a structure in the signature of L , AL , in which AL is a

singleton {a} and for all c, cA
L

= a, for all f , fAL

(~a) = a and for all R,

RAL + = RAL
− = AL . We proceed by induction on complexity of formulae

that AL

LP,RM,FDE
L .

We use as the base case literals- equational formulae, atoms, and their

negations- and immediately see that all literals in L are true in AL (as well

as false). The values of all constants and all functions denote a, and both

AL

LP,RM,FDE
a = a and AL

LP,RM,FDE
a 6= a; hence, all equational formulae

are both true and false. Similarly, for any term t, AL

LP,RM,FDE
R(t) and

AL

LP,RM,FDE
¬R(t), and so all literals are both true and false.

For connectives, if ϕ, ψ are both true and false, then by consulting Figures 1

and 2 we see that ¬ϕ, ϕ∨ψ, ϕ∧ψ, and ϕ→ ψ are likewise both true and false.

Similarly, appealing to the interpretation of the quantifiers, if ϕ(~a) is both true

and false, then ∀~xϕ(~x) and ∃~xϕ(~x) are both true and false as well.

This procedure exhausts L and hence we reason that AL

LP,RM,FDE
L .

By compactness, the foregoing gives the result that every set of sentences has

a model in these logics. This does not say, of course, that every set of sentences

has a model in which all and only those sentences is true.4 AL is a peculiar

beast:

Theorem 8. For a language L , AL is up to isomorphism the unique model of

L .

Proof. We consider first the universe AL . Since AL

LP,RM,FDE
∀x, y[x = y],

then by the truth conditions for equational formulae we see that AL is a sin-

gleton. Hence the only function from one model of L to another is one-to-one.

Interpretations of constants and the value of any argument of the interpretation

4Note that this result preempts the typical proof of the upwards Löwenheim-Skolem Theo-
rem. Given a structure A, typically, one merely adds κ-many formulae of the form ci 6= cj for
every i, j ∈ κ to the theory Th(A). By compactness, this has a model, and by the inclusion
of the set {ci 6= cj : i, j ∈ κ}, it will have a model of cardinality greater than or equal to
κ. One then uses the downward theorem to establish the existence of a model of cardinality
κ. The problem is obvious; while classically, that A′

CL
{ci 6= cj : i, j ∈ κ} implies that

A′ 6
CL

ci = cj for all i, j ∈ κ, ensuring that |A′| > κ. But in FDE, RM, and LP, such an

inference is unwarranted; that A′

LP,RM,FDE
{ci 6= cj : i, j ∈ κ} ∪ {ci = cj : i, j ∈ κ} is

possible while |A′| � κ.
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of function symbols must be that element of the domain, and as all n-ary rela-

tions are both true and false of that element (or the n-tuple of that element),

their extensions and anti-extensions will be identical.

We can look at these results to examine the plight of Cantor’s Theorem that

DLO−− is ℵ0-categorical. [3] provides an explicit construction that demonstrates

that the result does not hold for RM3 and Priest’s Collapsing Lemma may be

appealed to in order to provide an explicit construction for which Cantor fails

in LP (and hence FDE as well). As we’ll require the Collapsing Lemma shortly,

we’ll briefly give an example of the applicability in the case of Cantor.

Given a consistent structure A, we may define a congruence relation ∼ on

A such that for any n-ary fA and ~a,~b ∈ An, if ~a ∼ ~b, then fA(~a) ∼ fA(~b).

We then partition A into A∼, consisting of the classes [a] = {b ∈ A : b ∼ a}

and define interpretations of constants and function symbols in the follow-

ing way: cA
∼

= [a] such that cA ∈ [a] and fA∼

([a0], ..., [an]) = [an+1] iff

for some b0 ∈ [a0], ..., bn+1 ∈ [an+1], fA(b0, ..., bn) = bn+1. Furthermore,

we may interpret each m-ary relation symbols R so that for its extension,

([a0], ..., [am]) ∈ RA∼+ iff for some b0 ∈ [a0], ..., bm ∈ [am], b0, ..., bm ∈ RA+,

and for its anti-extension, ([a0], ..., [am]) ∈ RA∼

− iff for some b0 ∈ [a0], ..., bm ∈

[am], b0, ..., bm ∈ RA−. Collecting these interpretations together, we define

A∼ = (A∼,CA∼

,FA∼

, RA∼+,RA∼

−) and call it the collapse of A modulo ∼.

Theorem 9. Collapsing Lemma ThLP(A∼) ⊇ ThCL(A)

Proof. We refer the reader to [5].

Corollary 1. The classical theory DLO−− is not ℵ0-categorical with respect to

the class of LP-structures, nor is it categorical in any cardinality.

Proof. We take the classical model of DLO−− and produce two structures, Q∼1

and Q∼2 such that |Q∼1 | = |Q∼2 | = ℵ0 and Q∼1 ,Q∼2

LP
DLO−− but Q∼1 ≇

Q∼2 .

Consider the classical set of linearly ordered rationals (Q, <). Consider two

intervals defined by parameters (a, b), (c, d) ⊂ Q such that Q
CL

b <Q c. We

then define two equivalence relations, ∼1 and ∼2 such that for e, f ∈ Q, e ∼1 f

iff e = f or e, f ∈ (a, b), and e ∼2 f iff e ∼1 f or e, f ∈ (c, d). We then consider

the collapsed structures Q∼1 and Q∼2 . As both are gotten through congruence

relations on a countable structure, they are at most countably infinite, and as
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[b, c] is a proper subset of each, they are at least countably infinite. Furthermore,

by the Collapsing Lemma, each structure makes true ThCL((Q, <)), and hence

they both model DLO−−.

Now suppose that there is an isomorphism h : Q∼2 ∼= Q∼1 . We note that

(a, b)∼2 and (c, d)∼2 each are single, discrete elements in the former- i.e., there

are no elements between a∼2 , (a, b)∼2 , and b∼2 , and likewise for (c, d)∼2 - and

that the image of h under each would likewise have to pick out a discrete element

in the latter. But there is only one such point in Q∼1 that each could be mapped

to, and hence h((a, b)∼2) = h((c, d)∼2) = (a, b)∼1 . But as h is bijective, this

would imply that Q∼2

LP
(a, b)∼2 = (c, d)∼2 , which in fact fails.

As DLO−− is not classically κ-categorical for any uncountable κ, the classical

witnesses of the failure of categoricity in each such cardinality, as they are

permissible for LP, serve to generalize this result for uncountable cardinalities

in LP.

We can also examine the fate of Cantor’s theorem in the logics K and  L.

We first establish a result about categoricity of classical theories with respect

to these logics.

Theorem 10. If some theory T classically is categorical in some cardinal κ and

has no finite models, then it is κ-categorical in both K and  L.

Proof. Consider such a T . By the  Loś-Tarski test, it is a complete theory,

so for every model of T A, n-ary relation symbol R, and n-tuple ~a ∈ An,

~a ∈ RA+ ∪ RA−. It follows that the only K and  L models of T are the

classical, consistent ones. But ex hypothesi, T was classically κ-categorical, and

so any two such structures of cardinality κ will be isomorphic.

From this, we may observe the following:

Corollary 2. The classical theory DLO−− is ℵ0-categorical with respect to the

class of K- and  L-structures.

Proof. Immediate from the theorem.

Some Commutative Properties of Ultrapowers

We now outline a failed strategy to weigh in on an open problem as of [6] and

left open by [4]- whether every countably infinite LP-model of PA is the collapse
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of a consistent model of arithmetic, or an elementary substructure thereof. A

negative answer to this problem was initially the target, motivating the inves-

tigation of  Loś’ Theorem. The strategy is modestly outlined; the structures it

generates may be interesting, even if they do not solve the problem. We then

go into more detail about why the strategy fails, as its failure is due to model

theoretic theorems interesting in their own right.

[5] introduces inconsistent, finite models of arithmetic, with which we shall

here concern ourselves. The so-called “cycle” models make true all sentences

of Peano Arithmetic PA, though, of course, it may likewise make the negations

of some sentences ϕ ∈ PA as well. These models are gotten by the Collapsing

Lemma, generated by means of congruence relations ∼n,p for natural numbers

n, p. We partition the set N, the universe of the structure (N, SN,+N,×N, <N+

, <N−), modulo ∼n,p by claiming that for a, b ∈ N, a ∼n,p b iff both a, b < n

and a = b or both a, b ≥ n and a ≡p b. We shall hereafter refer to the structure

N∼
n,p

as An
p for some n, p, as the general composition of these structures is

bipartite: an initial segment of (consistent) elements of length n, followed by a

single cycle of period p.

We briefly describe a structure
∏

i∈ω An
i /U , where U is a non-principal

ultrafilter on ℘(ω). Such a structure looks like a single “tag-end” of length n,

extended by an ω∗-block on one end and an ω-block on the other. Beyond the

limits of each end of this block lies an undifferentiated “sea” of further ζ-blocks

of nonstandard elements; these blocks are not meaningfully orderable, as any

element of any particular block is both greater than and less than the elements

of every other block. It is most convenient to think of such as structure as a

densely ordered cycle of c-many ζ-blocks, but these blocks may just as well be

interwoven amongst each other, or stacked atop one another, or worse.

The conjecture forwarded in earlier drafts of this paper was that ultraprod-

ucts of such structures could be generated that were not the collapse of any

classical model of PA. It is not clear that for any element a in a classical non-

standard model ∗N that such a
∏

i∈ω An
i /U is the collapse of ∗N modulo ∼1,a.

But this isn’t to say that there is no such collapse; Theorem 11 shows that there

is always such a collapse, albeit not a simple one.

Theorem 11. For any collection of collapsed LP-models {A∼i

i } indexed by

a set I and an ultrafilter U ⊂ ℘(I), there exists a collapse ∼I such that
∏

i∈I A
∼i

i /U ∼= (
∏

i∈I Ai/U )∼I , that is, collapsing and taking ultrapowers com-
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mute.

Proof. We continue to denote
∏

i∈I A
∼i

i /U by A♮, while denoting
∏

i∈I Ai/U

by A♭ and (
∏

i∈I Ai/U )∼I by A♭∼. A few remarks about notation: when helpful,

a subscript will be placed by an element a, e.g., a∼U
, to reinforce that a is an

equivalence class modulo that relation. More often than not, the domain from

which the element is drawn will provide the context and such subscripts will be

suppressed. Furthermore, our abbreviations for the ultraproducts omit mention

of the ultrafilter whence they are constructed. It is important to bear in mind

that U is taken to be common to all structures; by this we can transport facts

about one into the other. Finally, when dealing with an n-tuple of elements, we

use ~a ∈ ~b to mean that for all j < n, a(j) ∈ b(j).

We define ∼I by claiming that for two a, b ∈ A♭, a ∼I b if for some a′ ∈ a

and b′ ∈ b, ‖a′(i) ∼i b
′(i)‖ ∈ U . We must first demonstrate that this is an

equivalence relation. To demonstrate reflexivity, we note that ex hypothesi, ∼i

is a congruence relation for all i ∈ I. This being the case, ‖a′(i) ∼i a
′(i)‖ = I

and is hence a member of U for any a. To demonstrate transitivity, we suppose

that a ∼I b and b ∼I c, and hence that for some a′ ∈ a, b′ ∈ b, and c′ ∈ c

both ‖a′(i) ∼i b
′‖ ∈ U and ‖b′(i) ∼i c

′(i)‖ ∈ U . Since ∼i is assumed to

be transitive, at every i in the intersection of these sets a′(i) ∼i c
′(i) holds.

Hence ‖a′(i) ∼i b
′‖ ∩ ‖b′(i) ∼i c

′(i)‖ ⊆ ‖a′(i) ∼i c
′(i)‖. By the fip, ‖a′(i) ∼i

b′‖ ∩ ‖b′(i) ∼i c
′(i)‖ ∈ U , and by upwards closure of U , ‖a′(i) ∼i c

′(i)‖ ∈ U ,

and thus a ∼I c. Finally, to demonstrate symmetry, we merely note that as all

∼i are symmetric, ‖a′(i) ∼i b
′(i)‖ = ‖b′(i) ∼i a

′(i)‖, and hence a ∼I b implies

b ∼I a.

More tricky is that ∼I is a congruence relation, i.e., that if for an n-ary

function symbol f and n-tuples ~a,~b ∈ (A♭)n, ~a ∼I
~b implies fA♭

(~a) ∼I f
A♭

(~b).

By assumption for all j < n ‖aj(i) ∼ bj(i)‖ ∈ U . By the finiteness of n and

the fip, ∩j<n‖aj(i) ∼ bj(i)‖ ∈ U as well. Since all ∼i are congruence relations,

∩j<n‖aj(i) ∼ bj(i)‖ ⊆ ‖fAi(~a(i)) ∼i f
Ai(~b(i))‖, and by upwards closure, the

latter is a member of U . But fA♭

(~a) = {c : ‖fAi(~a(i)) = c‖ ∈ U }, similarly

for fA♭

(~b), and so this is just to say that a representative from each class are

equivalent modulo ∼i at almost all i’s, i.e., fA♭

(~a) ∼I f
A♭

(~b).

We submit as candidate isomorphism the function h that maps a ∈ A♮ to

the b∼I ∈ A♭∼ such that there exists a b∼U ∈ b∼I , a b′ ∈ b∼U and an a′ ∈ a∼U

such that ‖b′(i) ∈ a′(i)‖ ∈ U .
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To prove injectivity of h, suppose that h(a) = h(b). Then there is an a′ ∈ a

and a b′ ∈ b and element c ∈
∏

i∈I Ai such that ‖c(i) ∈ a′(i)‖ ∈ U and

‖c(i) ∈ b′(i)‖ ∈ U . This implies that ‖c(i) ∈ a′(i)‖ ∩ ‖c(i) ∈ b′(i)‖ ∈ U , and

hence that a′(i) and b′(i) share a member at almost all indices. We recognize

that a′(i) and b′(i) denote equivalence classes modulo ∼i and so reason that

‖a′(i) = b′(i)‖ ∈ U . This, of course, implies that a = b.

To demonstrate surjectivity of h, consider an arbitrary a ∈ A♭∼, an arbitrary

a′ ∈ a, and an arbitary a′′ ∈ a′. At each index, a′′(i) picks out an element a′′(i) ∈

Ai, and there is an equivalence class b′(i) ∈ A∼i

i of which a′′(i) is a member.

Furthermore, consider the function b′ mapping each i to the equivalence class

b′(i) ∋ a′′(i) for all i. b′ ∈
∏

i∈I A
∼i

i and, as ∼U partitions this domain, is thus

a member of some b ∈ A♮. The selection of b ensures that h(b) = a, and as a was

chosen arbitrarily, this implies surjectivity of h. By the foregoing, we conclude

that h is bijective.

We want to show that h is not only a bijection, but is an isomorphism.

We begin with constants. In order to examine cA
♭∼

, we first note that cA
♭

=

{a ∈
∏

i∈I Ai : ‖a(i) = cAi‖ ∈ U }. So cA
♭∼

= {b ∈ A♭ : b ∼I cA
♭

}, or,

alternately, {b ∈ A♭ : ∃b′ ∈ b s.t. ‖b′(i) ∼i c
Ai(i)‖ ∈ U }. Consider cA

♮

=

{a ∈
∏

i∈I A
∼i

i : ‖a(i) = cA
∼i
i ‖ ∈ U }; we define h(cA

♮

) = {b ∈ A♭ : ∃b′ ∈ b s.t.

‖b′(i) ∈ cA
∼i
i (i)‖ ∈ U }. We recognize, however, cA

∼i
i (i) as the class of elements

of Ai collapsed modulo ∼i, and reason that b′(i) ∈ cA
∼i
i (i) iff b′(i) ∼i c

Ai(i).

So {b ∈ A♭ : ∃b′ ∈ b s.t. ‖b′(i) ∼i c
Ai(i)‖ ∈ U } = {b ∈ A♭ : ∃b′ ∈ b s.t.

‖b′(i) ∈ cA
∼i
i (i)‖ ∈ U }, i.e., cA

♭∼

= h(cA
♮

).

Next, for an n-ary function symbol f and n-tuple ~a ∈ (A♮)n, we must demon-

strate that fA♭∼

(h(~a)) = h(fA♮

(~a)). Consider h(~a). h maps this n-tuple to the

equivalence class {~b ∈ (A♭)n : ∃~b′ ∈ ~b s.t. ∀j < n ‖b′j(i) ∈ aj(i)‖ ∈ U }. We may

then ask what the extension of fA♭∼

(h(~a)) is; to that we answer that we may

choose a representative ~c ∈ h(~a) and consider that fA♭∼

(h(~a)) will be equal

to the class of all d ∈ A♭ such that d ∼I fA♭

(~c), or {d ∈ A♭ : ∃d′ ∈ d s.t.

‖d′(i) ∼i f
Ai(~a)(i)‖ ∈ U }. Of course, since ∼i is a congruence relation for

all i, d′(i) ∼i f
Ai(~a)(i) iff d′(i) ∈ fA

∼i
i (~a)(i), and so we may rewrite this as

{d ∈ A♭ : ∃d′ ∈ d s.t. ‖d′(i) ∈ fA
∼i
i (~a)(i)‖ ∈ U }. Now we may finally turn

our attention towards h(fA♮

(~a)) and note that this is the very same set. As

fA♮

(~a) is the set of all elements of
∏

i∈I A
∼i

i that are almost everywhere equal

to fA
∼i
i (~a)(i), h(fA♮

(~a)) is the set of elements of A♭ such that they are almost
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everywhere a member of this element. Thus h(fA♮

(~a)) = {d ∈ A♭ : ∃d′ ∈ d s.t.

‖d′(i) ∈ fA
∼i
i (~a)(i)‖ ∈ U } = fA♭∼

(h(~a)), and we establish identity.

Finally, we simply demonstrate that for any n-ary literal R or ¬R, that an

n-tuple ~a ∈ RA♮+ iff h(~a) ∈ RA♭∼+ (alternately, ~a ∈ RA♮
− iff h(~a) ∈ RA♭∼

−).

For left-to-right, suppose that ~a ∈ RA♮+; this implies that ‖~a(i) ∈ RA
∼i+

i ‖ ∈ U .

Now ~a(i) ∈ RA
∼i+

i iff there exists a ~a′(i) ∈ ~a(i) such that ~a′ ∈ RAi+, and hence

this is equivalent to stating that ‖~a′(i) ∈ RAi+‖ ∈ U . This in turn implies

that for the equivalence class ~a′
∼U

∋ ~a′, ~a′
∼U

∈ RA
♭+, and in turn that for a

~a′
∼I

∋ ~a′
∼U

, ~a′
∼I

∈ RA♭∼+. But we immediately may recognize ~a′
∼I

= h(~a).

Right-to-left, we suppose that h(~a) ∈ RA
♭∼+. h(~a) is the class of all elements

of ~a′ ∈ RA♭+ such that there exists an ~a′′ ∈ ~a′ such that ‖~a′′(i) ∈ ~a(i)‖ ∈ U .

Ex hypothesi, we know that ~a′ ∈ RA♭+ and hence that ‖~a′′ ∈ RAi+‖ ∈ U . So

at almost all Ai, ~a
′′(i) ∈ RAi+. But at each such i, we have a collapsed model

modulo ∼i, and we reason that ~a(i) ∋ ~a′′ and ~a(i) ∈ RA
∼i
i + at each such i.

Hence ‖~a(i) ∈ RA
∼i
i +‖ ∈ U , and we conclude that ~a ∈ RA♮+. The above proof

obviously applies in the case of the anti-extension of R as well.

Given the definition of ∼I and h, we conclude that h is an isomorphism.

Corollary 3. For any ultraproduct of collapsed models of arithmetic A♮, there

exists a classical nonstandard model of arithmetic ∗N and a collapsing relation

∼ such that A♮ ∼= (∗N)∼.

Proof. Immediate from the theorem.

Such a result can be had for other methods of constructing nonclassical mod-

els more general than collapsing. In [1], J. Michael Dunn offers a technique for

the construction of 3-valued structures from consistent structures. His presen-

tation formally differs from ours, and we in a sense bifurcate his result into an

LP case and a K case.5

Taking a pair of consistent structures A,A′ and a surjective, operation-

preserving homomorphism h : A → A′, we define the inconsistent structure

determined by h, 3̃A, by 3̃A = A′ = {h(a) : a ∈ A}, c3̃A = h(cA), f 3̃A(~b) =

5Dunn doesn’t use these names; he mentions the “ Lukasiewicz logic” but only presents the
matrices for negation and conjunction with a third truth value neuter (N). Dunn states that
this can be either read as “both true and false” or “neither true nor false”; the interpretation
is, of course, central in our presentation. The result thus splits, with the former applying in
LP and the latter applying to K.
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h(fA(~a)), where a0 ∈ h−1[b0], ..., an−1 ∈ h−1[bn−1], and for n-ary R3̃A+ =

{(b0, ..., bn−1) ∈ Bn : ∃b′0 ∈ h−1[b0], ..., b′n−1 ∈ h−1[bn−1], (b′0, ..., b
′

n−1) ∈ RA+}

andR3̃A− = {(b0, ..., bn−1) ∈ Bn : ∃b′0 ∈ h−1[b0], ..., b′n−1 ∈ h−1[bn−1], (b′0, ..., b
′

n−1) ∈

RA−}.

Given the identical homomorphism, we generate an incomplete structure 3̌A

by retaining the universe and interpretations of constants and function symbols

while defining an n-ary R3̌A+ = {(b0, ..., bn−1) ∈ Bn : ∀b′0 ∈ h−1[b0], ..., b′n−1 ∈

h−1[bn−1], (b′0, ..., b
′

n−1) ∈ RA+} and R3̌A− = {(b0, ..., bn−1) ∈ Bn : ∀b′0 ∈

h−1[b0], ..., b′n−1 ∈ h−1[bn−1], (b′0, ..., b
′

n−1) ∈ RA−}. The intuition is that in

the LP interpretation, 3̃A makes true R of some element b iff of something in

its preimage under h is R true in A; in the K interpretation, R is true of b in

3̌A iff R is true of everything in its preimage under h.

Dunn offers a preservation theorem with respect to such constructions, which

we split as follows:

Theorem 12. (Dunn for LP) For a structure 3̃A determined by an operational,

surjective homomorphism h : A → A′, A
CL

ϕ(~a) only if 3̃A
LP

ϕ(h(~a)).

Proof. We refer the reader to [1].

Theorem 13. (Dunn for K) For a structure 3̌A determined by an operational,

surjective homomorphism h : A → A′, 3̌A
K

ϕ(h(~a)) only if A
CL

ϕ(~a).

Proof. We refer the reader to [1].

Referring to alternately 3̃A or 3̌A as 3A when the permissibility of the struc-

ture is irrelevant, we offer the following:

Theorem 14. For an index I and a class of either inconsistent or incomplete

structures {3Ai} such that each is determined by a function hi : Ai → Bi,

and an ultraproduct (3A)♮ =
∏

i∈I 3Ai/U , there exists a function h : A♮ → B♮

such that the structure determined by this function, 3(A♮) = 3(
∏

i∈I Ai/U ), is

identical to (3A)♮, i.e., (3A)♮ = 3(A♮).

Proof. We offer as candidate operational homomorphism h : A♮ → B♮ the

function h(a) = {b′ ∈
∏

i∈I Bi : ∀a′ ∈ a, ‖b′(i) = hi(a
′

i(i))‖ ∈ U }. We must

show that h is surjective and operation-preserving. First, for an arbitrary b ∈ B♮

and a member b′ ∈ b, as ex hypothesi all hi are surjective, there exists some

a′i ∈ Ai such that hi(a
′

i) = b′i for all i. Let a be an equivalence class of elements
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of
∏

i∈I Ai equivalent to a′ : i 7→ ai modulo U . As all a′′ ∈ a are equal to a′ at

almost all indices, ‖hi(a
′′

i ) = b′i‖ ∈ U , and as for all b′′ ∈ b, b′′ is equal to b′ at

almost all indices ‖hi(a
′

i) = b′′i ‖ ∈ U . We quickly see that the condition holds

for any a′′ ∈ a, b′′ ∈ b, and thus there exists a preimage of b under h.

h is also an operational homomorphism. We now must establish that

h(fA♮

(a0, ..., an−1)) = fB♮

(h(a0), ..., h(an−1)). First, we expand the former

to see that it is {b′ ∈
∏

i∈I Bi : ‖b′(i) = hi(f
A♮

(a0, ..., an−1)(i))‖ ∈ U }. But

this is just the set {b′ ∈
∏

i∈I Bi : ‖b′(i) = hi(f
Ai(a0(i), ..., an−1(i)))‖ ∈ U }, as

A♮ and B♮ are reduced modulo the same filter. We may expand the latter as

{b′ ∈
∏

i∈I Bi : ‖b′(i) = fB
♮

(h(a0(i)), ..., hi(an−1(i)))(i)‖ ∈ U }, or by similar

reasoning, {b′ ∈
∏

i∈I Bi : ‖b′(i) = fBi(hi(a0(i)), ..., hi(an−1(i)))‖ ∈ U }. But

ex hypothesi, for all i, hi preserves operations, so hi(f
Ai(a0(i), ..., an−1(i))) =

fBi(hi(a0(i)), ..., hi(an−1(i))) at each i. Thus the two sets are identical.

The foregoing establishes that h is a surjective, operational homomorphism

and thus determines a structure 3(A♮). We now observe that (3A)♮ = 3(A♮).

By the manner of construction due to Dunn, 3Ai = Bi, and hence (3A)♮ is
∏

i∈I Bi reduced modulo U . By the equivalent construction of 3(A♮), we note

that 3(A♮) = B♮, which is just
∏

i∈I Bi reduced modulo U .

This isn’t, of course, enough; we must ensure that idB♮ also preserves in-

terpretations. First, for a constant c, we ensure that c(3A)♮ = c3(A
♮). Now,

c(3A)♮ = {b ∈
∏

i∈I 3Ai : ‖b(i) = c3Ai‖ ∈ U }. Noticing that c3Ai picks

out the b′ ∈ Bi such that b′ = hi(c
Ai), we rewrite this as {b ∈

∏

i∈I 3Ai :

‖b(i) = hi(c
Ai)‖ ∈ U }. As for all i ∈ I, 3Ai = Bi, we further rewrite this

as {b ∈
∏

i∈I Bi : ‖b(i) = hi(c
Ai )‖ ∈ U }. Since c3(A

♮) = h(cA
♮

), this is

the set {b ∈
∏

i∈I Bi : ∀a ∈ cA
♮

, ‖b(i) = a(i)‖ ∈ U }. Now an a ∈ cA
♮

iff

‖a(i) = hi(c
Ai )‖ ∈ U , and so we may rewrite this element as {b ∈

∏

i∈I Bi :

‖b(i) = hi(c
Ai)‖ ∈ U }, which establishes identity.

Furthermore, we must demonstrate that f (3A)♮(~b) = f3(A♮)(~b). Fix ~a ∈ A♮

such that ∃~a′ ∈ ~a,~b′ ∈ ~b such that ‖a′0 ∈ h−1[b0], ..., a′n−1 ∈ h−1[bn−1]‖ ∈

U . We immediately may expand f (3A)♮(~b) as the set of b′ such that b′(i) is

almost everywhere equal to f3Ai(~b(i)), or {b′ ∈
∏

i∈I Bi : ‖b′(i) = f3Ai(~b(i))‖ ∈

U }. Now at all i ∈ I, f3Ai(~b(i)) = hi(f
Ai(~a′(i))), so we rephrase this as

{b′ ∈
∏

i∈I Bi : ‖b′(i) = hi(f
Ai(~a′(i)))‖ ∈ U }. But by selection of a′ and the

definition of h, ‖b′(i) = hi(f
Ai(~a′(i)))‖ ∈ U iff ‖b′(i) = h(fA♮

(~a)(i))‖ ∈ U ,

so we rewrite this as {b′ ∈
∏

i∈I Bi : ‖b′(i) = h(fA♮

(~a))(i)‖ ∈ U }. Since every
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member of h(fA♮

(~a)) is equal to every other almost everywhere, we recognize

this as h(fA♮

(~a)), which is equal to f3(A♮)(~b). Thus the two are equal.

To demonstrate identity between the structures, we must treat the inter-

pretation of relation symbols. We now split the cases of the inconsistent and

incomplete structures determined by h.

In the LP case, an element (b0, ..., bn−1) ∈ R(3̃A)♮+ iff {i : (b0(i), ..., bn−1(i))

∈ R3̃Ai+} ∈ U . This holds iff {i : ∃a′0(i) ∈ h−1
i [b0(i)], ..., a

′

n−1(i) ∈ h−1
i [bn−1(i)]

s.t. (a′0(i), ..., a′n−1(i)) ∈ RAi+} ∈ U , which is equivalent to stating that {a′′ ∈
∏

i∈I Ai : a′0 = a′′0 ∧ ... ∧ a′n−1 = a′′n−1} ∈ RA♮+. This, finally, is equivalent

to claiming that there exists ~a ∈ A♮ such that h(~a) = ~b and ~a ∈ RA
♮+, which

is equivalent to stating that ~b ∈ R3̃(A♮)+. Analogous reasoning establishes the

result for the anti-extension of R.

More easily, for K-structures so determined, ~b ∈ R(3̌A)♮+ is again those

~b′(∈
∏

i∈I Bi)
n such that {i : (b′0(i), ..., b′n−1(i)) ∈ R3̌Ai+} ∈ U . This will

hold iff every ~a′ ∈ (
∏

i∈I Ai)
n such that a′0 ∈ h−1[b′0], ..., a′n−1 ∈ h−1[b′n−1] is a

member of RAi+. This implies that all ~a ∈ A♮ such that ~a′ ∈ ~a are members of

RA♮+. But the set of such ~a is h−1[~b], and so ~b ∈ R3̌(A♮). The argument for the

anti-extension is again identical.

Given that the structures 3(A♮) and (3A)♮ are determined by the extensions

of their respective interpretations of symbols, we may conclude that the two are

identical.

Concluding Remarks

From this point, I hope that we’ve gotten generalizations of a few fundamental

techniques, and seen some applications suggesting that mathematics set upon

a DeMorgan-logical landscape is something that warrants study. A few, con-

cluding notes concerning future directions of such a study might be in order to

further stress its worth.

One motivation may be made apparent by an analogy with the reverse math-

ematics program. Reverse mathematics, rather than investigating what pre-set-

theoretic mathematical fruits are gotten given particular set-theoretic assump-

tions, works backwards, attempting to reveal what set-theoretic assumptions

(e.g., comprehension axiomata) are necessary and sufficient in order to secure
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those fruits. Inasmuch as particular mathematical theorems hold for certain

DeMorgan logics and fail for others, we may hope that an analogous investiga-

tion may be made in determining what logical properties are necessary to secure

particular mathematical theorems. It is, e.g., my suspicion that logics interme-

diate between, e.g., LP and CL could be generated to mark with precision those

points at which particular theorems hold or fail, by adding additional inference

rules. For example, by adding the schemata ϕ,¬ϕ ψ, where ϕ is, e.g., of

some bounded complexity, to LP would produce such an intermediate logic that

could potentially provide, say, an account of how much inconsistency a partic-

ular theorem can “handle.” Certainly there are such “intermediate points.”

To wit, regarding Cantor’s Theorem, in the minimally inconsistent logic LPm

introduced in [7], since the structure (Q, <) is trivially the minimally inconsis-

tent model of DLO−− of cardinality ℵ0, the theorem holds in LPm. Hence, the

theorem fails at some intermediate point between LP and LPm. The question

of where it fails in this spectrum is the question of how much logical apparatus-

what sort of logical presuppositions- are requisite in order to secure the result.

Just as we cannot, e.g., prove  Loś’ Theorem without the axiom of choice, there

is some logical assumption made classically that underwrites Cantor. If one may

discover the precise location in this spectrum of logics at which some theorem

fails this constitutes evidence that there is a correlation between, perhaps, some

structural rule of that logic and the success or failure of that theorem.

It also may be hoped that transfer properties between the class of structures

of a nonclassical logic and the class of classical structures could be established.

Such transfer properties have the potential to provide facts about classical math-

ematical theories. Just, for instance, as the fruits of non-standard analysis may

be applied to standard analysis without the theorist accepting the accompany-

ing ontology, so might we hope that transfer principles could very well provide

useful, classical results.

Finally, [3] suggests a “special case hypothesis” that classical mathematics is

a special case of a broader swarth of mathematics. This, it seems, goes beyond

hypothesis to being a truism. The structures we herein describe are there, and

in virtue of being describable, deserve study. We can play the pragmatist and

outline strategies to entice the working mathematician, but the truth is that

DeMorgan logics have a model theory- surreal and curious as it may be- and

its existence alone is sufficient to warrant its study. Even if one is inclined to
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think of it as teratology, monstrosities yet fall under the purview of the science

as a whole. Regardless, the above introduces the use of ultraproducts as a

viable method of constructing nonclassical models and establishes their “nice”

properties with respect to previously established techniques for constructing

models in these logics. Motivations aside, this provides another tool in the

nonclassical logician’s armamentarium.
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