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Abstract

A construction principle for natural deduction sys-
tems for arbitrary finitely-many-valued first order log-
ics is exhibited. These systems are systematically ob-
tained from sequent calculi, which in turn can be au-
tomatically extracted from the truth tables of the log-
ics under consideration. Soundness and cut-free com-
pleteness of these sequent calculi translate into sound-
ness, completeness and normal form theorems for the
natural deduction systems.

1 Introduction

The study of natural deduction systems for many-
valued logics can be motivated by the following two is-
sues: (1) Many-valued logics provide a general frame-
work for the investigation of properties of classical
(two-valued) sytems. (2) A general construction of
sound and complete natural deduction calculi leads to
an adequate syntactical (proof-theoretic) characteri-
zation of many-valued logics for which one wants to
emphasize the rôle of a particular truth value. (For
standard logics, such as the families of Gödel und
 Lukasiewicz logics, one usually considers such distin-
guished truth values.)

We consider finitely-many-valued first order logics
with arbitrary truth-functional connectives and dis-
tribution quantifiers (see Definition 2.2). A natural
deduction derivation for a logic with the truth values
{v1, . . . , vm} is defined as a derivation

Γ1 | . . . | Γm−1....
Γm

where Γi (1 ≤ i ≤ m) are sets of formulas (Γ1 | . . . |
Γm−1 represents the assumptions, Γm is the conclu-
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sion.) Each position i corresponds to one of the truth
values, vm is the distinguished truth value. The in-
tended meaning is as follows: Derive that at least
one formula of Γm takes the value vm under the as-
sumption that no formula in Γi takes the value vi
(1 ≤ i ≤ m− 1).

Our starting point for the construction of natural
deduction systems are sequent calculi. (A sequent is
a tuple Γ1 | . . . | Γm, defined to be satisfied by an
interpretation iff for some i ∈ {1, . . . ,m} at least one
formula in Γi takes the truth value vi.) For each pair
of an operator 2 or quantifier Q and a truth value vi
we construct a rule introducing a formula of the form
2(A1, . . . , An) or (Qx)A(x), respectively, at position i
of a sequent. The resulting calculi are shown to be
sound and cut-free complete by Schütte’s reduction
tree method.

Every sequent rule introducing a formula at a non-
distinguished position is converted into an elimina-
tion rule; the sequent rule introducing a formula at
the distinguished position is transformed into an in-
troduction rule (in the sense of natural deduction).
Any natural deduction derivation can be translated
into a derivation of the corresponding sequent calcu-
lus. On the other hand, any cut-free sequent calcu-
lus proof translates into a normal natural deduction
derivation. (Here normal means that for no branch
of the proof tree an elimination follows an introduc-
tion; this excludes maximal segments in the sense of
Prawitz [1971].) Consequently, the natural deduc-
tion sytems are sound and complete and every deriva-
tion can be transformed into a normal derivation.
Such derivations consist of “analytical” paths.

2 Preliminaries

2.1. Definition A language L for a logic L consists
of: (1) free variables, (2) bound variables, (3) predi-
cate symbols, (4) propositional connectives, (5) quan-
tifiers, and (6) auxiliary symbols: “(”, “)”, “,”

We use a, b, c, . . . to denote free variables; x, y, z,
. . . to denote bound variables; P , Q, R, . . . to denote



predicate symbols; 2 to denote connectives; and Q to
denote quantifiers, all possibly indexed.

2.2. Definition A matrix L for a language L is given
by:
(1) a nonempty set of truth values V = {v1, . . . , vm}

of size m,
(2) an abstract algebra V with domain V of appro-

priate type: For every n-place connective 2 of L
there is an associated truth function 2̃:V n → V ,

(3) for every quantifier Q, an associated truth func-
tion Q̃:℘(V ) \ {∅} → V

A language and a matrix for it together fully deter-
mine a logic L. L is said to be m-valued.

The intended meaning of a truth function for a propo-
sitional connective is obvious and perfectly analogous
to the two-valued case. A truth function for a quanti-
fier is a mapping from nonempty sets of truth values
to truth values: given a quantified formula (Qx)F (x),
such a set of truth values describes the situation where
the instances of F take exactly the truth values in this
set as values under a given interpretation.

2.3. Example The matrix for the three-valued Gödel
logic G3 consists of:
(1) The set of truth values V = {f, ∗, t}
(2) The truth functions for the connectives, e.g.:

¬
t f
∗ ∗
f t

∨ t ∗ f
t t t t
∗ t ∗ ∗
f t ∗ f

⊃ f ∗ t
f t t t
∗ f t t
t f ∗ t

(3) The truth functions for the quantifiers ∀ and ∃
(generalized ∧ and ∨):

∀̃
(
{t}
)

= t ∃̃
(
{t}
)

= t

∀̃
(
{t, ∗}

)
= ∗ ∃̃

(
{t, ∗}

)
= t

∀̃
(
{t, f}

)
= f ∃̃

(
{t, f}

)
= t

∀̃
(
{t, ∗, f}

)
= f ∃̃

(
{t, ∗, f}

)
= t

∀̃
(
{∗}
)

= ∗ ∃̃
(
{∗}
)

= ∗
∀̃
(
{∗, f}

)
= f ∃̃

(
{∗, f}

)
= ∗

∀̃
(
{f}

)
= f ∃̃

(
{f}

)
= f

2.4. Definition An interpretation M is a mapping of
all free variables to elements of a given domain D, and
of predicate symbols to functions of type Dn → V .

A valuation valM is a mapping that extends the in-
terpretation to formulas via the truth functions given
in the matrix. We only give the precise definition of
the valuation function for a quantified formula:

valM
(
(Qx)G(x)

)
= Q̃

(⋃
d∈D

valM(d/a)G(a)
)
,

where a is a new free variable, and M(d/a) is de-
fined as the interpretation equal to M, except that
M(d/a)a = d.

3 Sequent calculi

Sequent calculi for classical logic were intro-
duced by Gentzen [1934] and were later general-
ized to the many-valued case by Schröter [1955],
Rousseau [1967], and others. More recently, equiv-
alent formulations for tableaux calculi were given
(see, e.g., Carnielli [1987] or Hähnle [1991]). The
method used here can also be used to obtain calculi
for transformation into clause form for many-valued
resolution (see Baaz and Fermüller [1992]).

3.1. Definition An (m-valued) sequent is an m-
tuple of finite sets Γi of formulas, denoted thus:

Γ1 | Γ2 | . . . | Γm

For convenience, we will abbreviate Γ ∪ ∆ by Γ,∆;
Γ ∪ {F} by Γ, F ; and sometimes Γ1 | . . . | Γm by
| Γl |ml=1. We say that F stands (or occurs) at place i,
if F ∈ Γi; vi then is the truth value corresponding to
place i.

3.2. Definition An interpretation M is said to sat-
isfy a sequent Γ1 | . . . | Γm, if there is an i (1 ≤ i ≤ m)
and a formula F ∈ Γi, s.t. valM(F ) = vi. A sequent is
called valid, if it is satisfied under every interpretation.

3.3. Definition An introduction rule for a connec-
tive 2 at place i in the logic L is a schema of the
form: 〈

Γ j1 ,∆
j
1 | . . . | Γ jm,∆j

m

〉
j∈I

Γ1 | . . . | Γi,2(A1, . . . , An) | . . . | Γm
2:i

where the arity of 2 is n, I is a finite set, Γl =
⋃
j∈I Γ

j
l ,

∆j
l ⊆ {A1, . . . , An} and the following condition holds:
Let M be an interpretation. Then the following are

equivalent:

(1) 2(A1, . . . , An) takes the truth value vi under M.
(2) For j ∈ I, M satisfies the sequents ∆j

1 | . . . | ∆j
m.

It should be stressed that the introduction rules for a
connective at a given place are far from being unique:
Let the expression Avl denote the statement “A takes
the truth value vl”. Then every introduction rule
for 2(A1, . . . , An) at place i corresponds to a con-
junction of disjunctions of some Avl which is true
iff 2(A1, . . . , An) takes the truth value vi (namely,



∧
j∈I
∨m
l=1

∨
A∈∆j

l
Avl). Any such conjunctive normal

form for 2(A1, . . . , An)vi will do.
In particular, the truth table for 2 immediately

yields a complete conjunctive normal form, the cor-
responding rule is as in Definition 3.3, with: I ⊆ V n

is the set of all n-tuples j = (w1, . . . , wn) of truth val-
ues such that 2̃(w1, . . . , wn) 6= vi; and ∆j

l = {Ak |
1 ≤ k ≤ n, vl 6= wk}.

3.4. Example Consider the implication in three-
valued Gödel logic G3 given in Example 2.3. The
conjunctive forms

(A ⊃ B)f = (A∗ ∨At) ∧Bf

(A ⊃ B)∗ = At ∧B∗

(A ⊃ B)t = (Af ∨A∗ ∨Bt) ∧ (Af ∨B∗ ∨Bt)

yield the following introduction rules:

Γ | ∆,A | Π,A Γ ′, B | ∆′ | Π ′

Γ, Γ ′, A ⊃ B | ∆,∆′ | Π,Π ′
⊃:f

Γ | ∆ | Π,A Γ ′ | ∆′, B | Π ′

Γ, Γ ′ | ∆,∆′, A ⊃ B | Π,Π ′
⊃:∗

Γ,A | ∆,A | Π,B Γ ′, A | ∆′, B | Π ′, B
Γ, Γ ′ | ∆,∆′ | Π,Π ′, A ⊃ B ⊃:t

3.5. Definition An introduction rule for a quantifier
Q at place i in the logic L is a schema of the form:〈

Γ j1 ,∆
j
1 | . . . | Γ jm,∆j

m

〉
j∈I

Γ1 | . . . | Γi, (Qx)A(x) | . . . | Γm
Q:i

where I is a finite set, Γl =
⋃
j∈I Γ

j
l , ∆j

l ⊆
{A(a1), . . . , A(ap)} ∪ {A(t1), . . . , A(tq)}, the al are
metavariables for free variables (the eigenvariables of
the rule) satisfying the condition that they do not oc-
cur in the lower sequent, the tk are metavariables for
terms, and the following condition holds:

Let M be an interpretation. Then the following are
equivalent:

(1) (Qx)A(x) takes the truth value vi under M.
(2) For all d1, . . . , dp ∈ D, there are terms t′1, . . . ,

t′q s.t. for all j ∈ I, M(d1/a1, . . . , dp/ap) satisfies
∆′

j
1 | . . . | ∆′

j
m where ∆′jl is obtained from ∆j

l

by instantiating the term variable tk with t′k (1 ≤
k ≤ q).

The truth function for a quantifier Q immediately
yields introduction rules for place i in a way similar
to the method described above for connectives: Let
I = {j ⊆ {v1, . . . , vm} | Q̃(j) 6= vi}, then the rule is
given as in Definition 3.5, with ∆j

l = {A(ajw) | w ∈

j, w 6= vl} ∪ {A(tj) | vl ∈ V \ j}. Again, it should be
stressed that in general this is not the only possible
rule.

3.6. Example Consider the universal quantifier ∀ in
three-valued Gödel logic G3 given in Example 2.3. In-
tuitively, (∀x)A(x) takes the value f , if A(t) is false for
some t; t, if A(a) is true for all a; and ∗, if A(t) takes
the value ∗ for some t and A(a) never takes the value
f . We obtain the following rules:

Γ,A(t) | ∆ | Π,A
Γ, (∀x)A(x) | ∆ | Π

∀:f
Γ | ∆ | Π,A(a)

Γ | ∆ | Π, (∀x)A(x) ∀:t

Γ | ∆,A(a) | Π,A(a) Γ ′ | ∆′, A(t) | Π ′

Γ, Γ ′ | ∆,∆′, (∀x)A(x) | Π,Π ′ ∀:∗

3.7. Definition A sequent calculus for a logic L is
given by:

(1) Axioms of the form: A | . . . | A, where A is any
formula,

(2) For every connective 2 and every truth value vi
an introduction rule 2:i,

(3) For every quantifier Q and every truth value vi
an introduction rule Q:i,

(4) Weakening rules for every place i:

Γ1 | . . . | Γi | . . . | Γm
Γ1 | . . . | Γi, A | . . . | Γm

(5) Cut rules for every two truth values vi 6= vj :

Γ1 | . . . | Γi, A | . . . | Γm ∆1 | . . . | ∆j , A | . . . | ∆m

Γ1,∆1 | . . . | Γm,∆m

A sequent is provable in a given sequent calculus, if
there is an upward tree of sequents s.t. every topmost
sequent is an axiom and every other sequent is ob-
tained from the ones standing immediately above it
by an application of one of the rules.

3.8. Theorem (Soundness) For every sequent cal-
culus in the sense of Definition 3.7 the following holds:
If a sequent is provable, then it is valid.

Proof. By induction on the length of proofs (see
Baaz et al. [1993]). 2

3.9. Theorem (Completeness) For every sequent
calculus in the sense of Definition 3.7 the following
holds: If a sequent is valid, then it is provable without
cuts from atomic axioms.

Proof. By the method of reduction trees, due to
Schütte (see Baaz et al. [1993]). 2



4 Natural deduction systems

Gentzen [1934] formulated natural deduction for
intuitionistic logic as the system NJ. In correspon-
dence with the intuitionistic sequent calculus LJ,
where the right side of a sequent is restricted to at
most one formula, NJ deals with inferences of one
conclusion from a set of assumptions. At the appli-
cation of rules, assumptions of a certain form can be
cancelled in parts of the proof. A proof of a formula is
a deduction tree where all assuptions have been can-
celled.

Natural deduction for classical logic NK is ob-
tained from NJ by adding tertium non datur. Al-
ternatively, one can drop the restriction to one for-
mula in the conclusion and allow sets of formulas
(cf. Parigot [1992]). We generalize this classical
multi-conclusion system of natural deduction to the
m-valued case.

4.1. Definition Let the 2-introduction rules at
place i be given as in Definition 3.3. The (natural
deduction) introduction rule 2:I for 2 is given by:〈

Γ j1 , [∆
j
1] | . . . | Γ jm−1, [∆

j
m−1]

Γ jm,∆
j
m

〉
j∈I

Γm,2(A1, . . . , An)

The elimination rule 2:Ei for 2 at place i < m is given
by:

MP
Γ ′m,2(A1, . . . , An)

〈
| Γ jl , [∆

j
l ] |

m−1
l=1

Γ jm,∆
j
m

〉
j∈I

Γm, Γ
′
m

where MP denotes the major premise of the form:

Γ ′1, [2(. . .)] | . . . | Γ ′i | . . . | Γ ′m−1, [2(. . .)]
Γ ′m,2(. . .)

The formulas in square brackets are those which can
be cancelled at this inference.

4.2. Example The introduction rule for⊃ in the logic
G3 is:

Γ, [A] | ∆, [A]
Π,B

Γ ′, [A] | ∆′, [B]
Π ′, B

Π,Π ′, A ⊃ B

The elimination rule at place ∗ is:

Γ, [A ⊃ B] | ∆
Π,A ⊃ B

Γ ′′ | ∆′′
Π ′, A

Γ ′′ | ∆′′, [B]
Π ′′

Π,Π ′,Π ′′

The elimination rule at place f is:

Γ | ∆, [A ⊃ B]
Π,A ⊃ B

Γ ′′ | ∆′′, [A]
Π ′, A

Γ ′′, [B] | ∆′′
Π ′′

Π,Π ′,Π ′′

4.3. Definition Let the Q-introduction rules at place
i be given as in Definition 3.5. The (natural deduc-
tion) introduction rule Q:I for Q is given by:〈

Γ j1 , [∆
j
1] | . . . | Γ jm−1, [∆

j
m−1]

Γ jm,∆
j
m

〉
j∈I

Γm, (Qx)A(x)

The elimination rule Q:Ei for Q at place i < m is given
by:

MP
Γm, (Qx)A(x)

〈
| Γ jl , [∆

j
l ] |

m−1
l=1

Γ jm,∆
j
m

〉
j∈I

Γm, Γ
′
m

where MP denotes the major premise of the form:

Γ ′1, [(Qx)A(x)] | . . . | Γ ′i | . . . | Γ ′m−1, [(Qx)A(x)]
Γm, (Qx)A(x)

The eigenvariables in ∆j
l must not occur in Γ1, Γ

′
1, . . . ,

Γm, Γ
′
m nor in (Qx)A(x).

4.4. Definition A natural deduction system for a
logic L is given by:

(1) Assumptions of the form | A |m−1
l=1 where A is any

formula,
(2) For every connective 2 an introduction rule 2:I

as well as an elimination rule 2:Ei for every truth
value vi 6= vm;

(3) For every quantifier Q an introduction rule Q:I
as well as an elimination rule Q:Eifor every truth
value vi 6= vm;

(4) The weakening rule:

Γ1 | . . . | Γm−1

Γm
Γm, A

w

Weakenings are considered as introductions.

In the classical case, a derivation of a formula F from
an assumption A has the intuitive meaning of: as-
suming A holds, we can deduce F . Viewed truth-
functionally, this means: assuming that A is true, i.e.,
not false, then F is true as well. The generalization
to the many-valued case is as follows: Given a deriva-
tion of F from the assumption A1 | . . . | Am−1: if Ai
does not take the truth value vi (1 ≤ i ≤ m− 1), then
F takes the truth value vm.



4.5. Definition A natural deduction derivation is
defined inductively as follows:

(1) Let A be any formula. Then

| A |m−1
l=1

A

is a derivation of A from the assumption | A |m−1
l=1

(an initial derivation).
(2) If Dj are derivations of Γ jm,∆

j
m from the assump-

tions Γ j1 ,∆
j
1 | . . . | Γ

j
m−1,∆

j
m−1, and〈

Γ j1 , [∆
j
1] | . . . | Γ jm−1, [∆

j
m−1]

Γ jm,∆
j
m

〉
j∈J

Γm

is an instance of a deduction rule (the ∆j
i may

be empty) satisfying the eigenvariable conditions,
then

〈Dj〉j∈J
Γm

is a derivation of Γm from the assumptions⋃
j∈I Γ

j
1 | . . . |

⋃
j∈I Γ

j
m−1. The formulas in ∆j

i

which do not occur in
⋃
j∈I Γ

j
i are said to be can-

celled at this inference.

4.6. Definition In an elimination, the premises (sets
of formulas) containing the formula to be eliminated
are called major premises, the other premises are
called minor premises.

We call a formula occurence A

(1) the conclusion formula of an introduction, if it is
the formula being introduced,

(2) a premise formula of an introduction, if it is one
of the formulas in ∆j

m in that introduction,
(3) the major premise formula of an elimination, if it

is the formula being eliminated,
(4) a minor premise formula of an elimination, if it is

among the formulas in ∆j
m in that elimination,

(5) a cancelled assumption formula of an elimination,
if it stands immediatley below an assumption
which contains the formulas in ∆j

l (1 ≤ j ≤ m−1)
being cancelled at that elimination.

A formula occurence A is said to follow A′, if both are
of the same form and A′ stands immediately above A.

4.7. Theorem (Soundness) If a set of formulas Γm
can be derived from the assumptions Γ1 | . . . | Γm−1,
then the following holds for every interpretation M: If
no formula in Γi (i < m) evaluates to the truth value
vi, then there is a formula in Γm that evaluates to vm.

Proof. By inductive translation of a derivation D of
Γm from Γ1 | . . . | Γm−1 to a sequent calculus proof of
Γ1 | . . . | Γm (see Baaz et al. [1993]). 2

4.8. Remark Translating sequent rules for two-valued
logic yield natural deduction elimination rules which
differ from those given by Gentzen. However,
Gentzen’s rules can be obtained in a systematic way by
a simplification of the constructed rules. The result-
ing schema falls outside of our definition of natural
deduction rules. We demonstrate this simplification
pars pro toto for the ∀-elimination rule. The classical
version as given by Parigot [1992] is:

Γ
∆, (∀x)A(x)
∆,A(t)

The constructed rule is:

Γ
∆, (∀x)A(x)

Γ ′, [A(t)]
∆′

∆,∆′

Taking {A(t)} for ∆′ and ∅ for Γ ′, we obtain Parigot’s
rule by disregarding the redundant right premise.

5 Normal derivations

A maximum segment in the intuitionistic natural
deduction calculus NJ is a sequence of formulas in a
derivation that starts with an introduction and end
with an elimination. In the classical, multi-conclusion
system, it is a sequence starting with an introduction
of a formula and ending in an elimination acting on
the same formula. A maximum segment constitutes a
redundancy in the proof. In NJ, and also in multi-
valued natural deduction, there are always proofs
without such redundancies (see Prawitz [1971]).

5.1. Definition A sequence A1, . . . , Ar of occur-
rences of one and the same formula is called a max-
imum segment, if A1 is the conclusion formula of an
introduction, Aj+1 stands immediately below Aj , and
Ar is the the major premise formula in an elimination.

5.2. Definition A normal derivation is a natural de-
duction derivation where no major premise of an elim-
ination stands below an introduction.

5.3. Proposition A normal derivation contains no
maximum segments.

5.4. Theorem Every cut-free sequent calculus proof
of S = Γ1 | . . . | Γm can be translated into a normal
natural deduction derivation of Γm from the assump-
tions Γ ′1 | . . . | Γ ′m−1, where Γ ′l ⊆ Γl (1 ≤ l ≤ m− 1).



Proof. See Baaz et al. [1993]. 2

5.5. Corollary (Completeness) Natural deduc-
tion systems are complete.

Proof. By Theorems 3.9 and 5.4. 2

5.6. Corollary (Normal Form Property) For ev-
ery natural deduction derivation, there exists a normal
natural deduction derivation of the same set of formu-
las from (a subset of) the same assumptions.

Proof. If there is a derivation of Γm from Γ1 | . . . |
Γm−1, then by Theorem 4.7 there is a cut-free sequent
calculus proof of Γ1 | . . . | Γm, whose translation yields
a normal derivation. 2

5.7. Definition A path in a natural deduction
derivation is a sequence of occurences of formulas A1,
. . . , Ar s.t.

(1) A1 is either
(a) a formula standing immediately below an as-

sumption or
(b) is the conclusion formula of an introduction

without premise formulas (e.g., weakenings);
(2) Ar is either

(a) an end formula of the derivation or
(b) a minor premise formula of an elimination or
(c) a major premise formula of an elimination

without cancelled assumption formulas, and
(3) Aj+1 (1 ≤ j ≤ r − 1) is either

(a) a cancelled assumption formula of an elimi-
nation rule, if Aj is the major premise for-
mula of that elimination, or

(b) the conclusion formula of an introduction if
Aj is a premise formula of that rule, or

(c) follows Aj .

5.8. Proposition A path in a normal derivation can
be divided into three (possibly empty) parts:

(1) The analytical part A1, . . . , Ap, where each for-
mula is the major premise formula of an elimi-
nation and stands immediately below an assump-
tion; Aj is a subformula of Aj−1 (2 ≤ j ≤ p).

(2) The minimum part Ap+1, . . . , Aq; Aj is equal to
Aj+1 (p ≤ j ≤ q).

(3) The synthetical part Aq+1, . . . , Ar; Aq+1 is
the conclusion formula of an introduction with
premise formula Aq; Aj−1 is a subformula of Aj
(q + 1 ≤ j ≤ r).

6 Conclusion

We emphasize the fact that the construction of the
logical calculi as well as the translations given are
purely systematic and can in principle be automatised.
Moreover, soundness, completeness and normal form
theorems for the systems considered are derived in a
uniform way.

It remains to be investigated for which collections
of operators one can achieve strong normalisation
(i.e., normal form transformations with Church-Rosser
property) according to some reasonable definition.
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Logik Grundlag. Math., 1, 241–251.


