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Abstract
Is logic normative for belief? A standard approach to answering this question has 
been to investigate bridge principles relating claims of logical consequence to norms 
for belief. Although the question is naturally an epistemic one, bridge principles 
have typically been investigated in isolation from epistemic debates over the correct 
norms for belief. In this paper we tackle the question of whether logic is norma‑
tive for belief by proposing a Kripkean model theory accounting for the interaction 
between logical, doxastic, epistemic and deontic notions and using this model theory 
to show which bridge principles are implied by epistemic norms that we have inde‑
pendent reason to accept, for example, the knowledge norm and the truth norm. We 
propose a preliminary theory of the interaction between logical, doxastic, epistemic 
and deontic notions that has among its commitments bridge principles expressing 
how logic is normative for belief. We also show how our framework suggests that 
logic is exceptionally normative.

1  Introduction

Suppose that Donald believes the following claims: 

(1)	 Iran is a nuclear threat;
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(2)	 If a nation is a nuclear threat, then it has the ability to produce nuclear weapons. 
Yet, Donald disbelieves (3):

(3)	 Iran has the ability to produce nuclear weapons.

Prima facie, Donald ought not to have this combination of doxastic attitudes, and 
is irrational for doing so. The following is one diagnosis of what is wrong with 
Donald: 

1.	 (3) is a logical consequence of (1) and (2); and
2.	 If (3) is a logical consequence of (1) and (2), then Donald ought not disbelieve 

(3) if he believes both (1) and (2).

This diagnosis suggests that logic is normative for belief and other doxastic and 
epistemic attitudes. Put another way, there are true conditionals from claims about 
logical consequence (or known logical consequence) to norms concerning what dox‑
astic and epistemic attitudes to have. For instance, the following general principle 
yields the previously mentioned diagnosis: 

WO −:	� If q is a logical consequence of p1,… , pn , then one ought not to (disbelieve 
q, if one believes p1 and … and one believes pn).

Wo− is a “bridge principle” combining three kinds of expressions: deontic opera‑
tors (‘ought’), doxastic operators (‘believes’ and ‘disbelieves’) and logical operators 
(‘is a logical consequence’). MacFarlane (2004) has offered a useful taxonomy of 
principles, like Wo−, that link claims of logical consequence to epistemic norms 
governing doxastic attitudes, and addressed the question of which of those bridge 
principles, if any, are true. Following MacFarlane, we propose to address the ques‑
tion of whether logic is normative by examining which bridge principles are true. 
However, unlike others who have addressed this question, we will begin from epis‑
temic norms that we have good reason to endorse, and use these to infer which 
bridge principles are true, given those epistemic norms. To do this, we build a 
model able to represent both the bridge principles and the epistemic norms. We then 
use our model to infer bridge principles from the epistemic norms. As we note, this 
model also has further potential uses, as it allows one to represent and examine the 
relationships between distinct phenomena involving combinations of logical, doxas‑
tic, epistemic and deontic operators.

Our method is somewhat different to the method that has more often been 
employed to examine which bridge principles are true. MacFarlane (2004)—and 
others—compare candidate bridge principles based on how well they meet various 
intuitive desiderata, such as how well they deal with the Preface Paradox, or whether 
they are too demanding (or not demanding enough).1 One difficulty with this meth‑
odology is that it relies on background intuitions about epistemic matters that pull 
in opposite directions. For example, MacFarlane lists as desiderata both that logic 

1  See e.g., Harman (1986) and Steinberger (2019b).
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not make “excessive demands” of agents by requiring them to clutter their minds 
with the logical consequences of their beliefs, and “strictness”—the idea that there 
is something wrong with someone who does not believe the logical consequences 
of her beliefs. This incompatibility suggests that these desiderata reflect competing 
background epistemic commitments. It is thus not possible to use this methodology 
to decide on correct bridge principles without also resolving the tension between 
these background epistemic commitments. By contrast, our approach for adjudicat‑
ing between bridge principles primarily consists in determining whether they are 
consequences of general epistemic norms which form a stable package. Here, we 
begin from a package of stable and, we think, plausible epistemic norms, but it is 
worth noting that it would be possible to employ the same approach using an alter‑
native package of norms.

Whether, and how, logic is normative for belief is, we think, a primarily epis‑
temic question. It is thus natural to begin from our epistemic theories in answering 
it. With this in mind, we do this by constructing a model in which the relationships 
between epistemic norms and bridge principles can be examined.2

As MacFarlane highlighted, ascertaining which are the true bridge principles 
promises to be important for ascertaining which logic is the true one. Accordingly, 
a further distinctive aspect of our investigation is that it will strive for some logical 
neutrality in the investigation of which bridge principles follow from which epis‑
temic norms, so as not to bias our results in favour of any particular logical theory. 
We do so by officially conducting our inquiry in a language without boolean con‑
nectives. Instead, our language will be equipped with conditional logical, epistemic, 
doxastic and deontic operators. This neutrality promises to have important implica‑
tions for  both the normativity of logic and the plurality of logic. We offer a simple 
example of how the framework may come to be relevant to inquiry into such issues 
in Sect. 4.2.3

We have two related aims in this paper. The first is to propose and defend a theory 
of the interaction between logical, doxastic, epistemic and deontic operators. The 
second is to show how the bridge principles in the MacFarlanian taxonomy and spe‑
cific epistemic norms relate to each other.4 Our focus will be on what we will call 
‘purely epistemic norms,’ i.e., norms formulated solely in terms of boolean connec‑
tives, deontic operators, and doxastic or epistemic operators.5

2  Our approach has something in common with Pettigrew (2017)’s attempt to justify bridge principles 
based on their epistemic utility, though we take a more deontological approach.
3  Thanks to an anonymous reviewer for inviting us to be more explicit about this potential advantage of 
our framework. It might also be that our framework’s neutrality with respect to the logic of the boolean 
connectives affords new insight into the prospects of collapse arguments against logical pluralism (Keefe, 
2014; Priest, 2006; Read, 2006; Steinberger, 2019c). We hope to have the opportunity to explore this 
issue in future work.
4  We approach the issue while trying to remain neutral, in a sense specified in Sect. 4, on the logic of the 
boolean connectives. A reviewer observes that our approach may be useful for research on the relation‑
ship between logical normativity and logical pluralism. We hope to investigate the issue in future work.
5  The Kripkean model-theory in the paper turns out to afford more nuanced ways of characterising 
the notion of a purely epistemic norm in terms of invariances across frames. However, doing so would 
require a different paper.
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MacFarlane’s choice of the expression ‘bridge principle’ to describe principles 
like Wo− is suggestive. ‘Bridge principles’ are formulas that involve expressions 
from different kinds of formal theories, and are familiar from discussions of how 
best to combine theories formulated in terms of different kinds of expressions into 
a single, unified theory.6 Bridge principles, in the combination of logics’ sense, are 
of interest because they yield predictions about the interaction of the expressions of 
the different theories being combined that go beyond those theories’ original predic‑
tions. Since all MacFarlanian bridge principles are formulated in terms of logical, 
doxastic, epistemic and deontic expressions, they are bridge principles also in the 
combination of logics’ sense. MacFarlanian bridge principles thus make it possible 
to unify logical, epistemic, doxastic and deontic theories, thus yielding predictions 
about how their respective expressions interact.

There is more than one way of combining logics governing different expressions. 
We will do so via a Kripkean model theory. This makes it possible to determine the 
principles that govern these expressions in terms of how we conceive of their inter‑
action, formulated in terms of constraints on accessibility relations between worlds. 
Principles combining logical, epistemic, doxastic and deontic expressions are thus 
interpreted in terms of conditions on the accessibility relations associated with those 
expressions (for example, reflexivity, symmetry, etc.). In this setting, the truth of 
particular bridge principles or epistemic norms implies that the accessibility rela‑
tions between worlds associated with the logical, epistemic, doxastic and deontic 
expressions satisfy particular constraints. Likewise, particular constraints satisfied 
by the accessibility relations imply the truth of particular bridge principles or epis‑
temic norms. Accordingly, one’s views on particular principles combining logical, 
epistemic, doxastic and deontic expressions may be used to inform one’s views on 
the conditions on accessibility relations that are associated with those expressions, 
and vice-versa.

Despite its obvious relevance for inquiry into the normativity of logic, the broader 
question of how best to combine theories of logical, doxastic, epistemic and deontic 
operators has, for the most part, been neglected in the literature. A notable excep‑
tion is (Tajer, 2020). Notwithstanding, there are a number of important differences 
between our approach and Tajer’s. Arguably, the most relevant of these concerns the 
epistemic norms appealed to when investigating the question. While we use wide-
scope epistemic norms, Tajer uses narrow-scope norms. This difference means that 
we arrive at different conclusions about the normativity of logic. We say more about 
this issue in Sects. 7.3 and 8. Another difference between our approach and Tajer’s 
is that our investigation puts a greater emphasis on model-theoretic tools, given how 
we take epistemic norms to encode hypotheses about accessibility relations between 
worlds. Accordingly, we investigate the conditions on accessibility relations which 
are encoded by epistemic norms (we further distinguish our approach from Tajer’s 
in Sect. 7.3).

More specifically, our focus will be on the following epistemic norms. Call these 
the ‘basic norms’:

Basic Norms:

6  See (Carnielli & Coniglio, 2020) for a general introduction to the topic of how to combine logics.
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Knowledge norm:	� It is obligatory to be such that (one knows that p if one believes 
that p).

Truth norm:	� It is obligatory to be such that (p if one believes that p).

Immodesty norm:	� It is obligatory to be such that (one believes that p if p is 
obligatory).

The following are two particularly interesting results shown in the paper: 

1.	 Bridge principle Wo− is a consequence of the truth norm (and of the knowledge 
norm);

2.	 The following bridge principle is a consequence of the immodesty norm:

Wo+:	� If q is a logical consequence of p1,… , pn , then one ought to (believe q if 
one believes p1 , … , pn).

These results are interesting insofar as both Wo− and Wo+ have been thought 
to be subject to important objections. For example, some (including MacFarlane) 
have thought that Wo− does not account for the Preface Paradox correctly, and that 
it fails to account for the putative irrationality of failing to believe the obvious logi‑
cal consequences of one’s beliefs (as MacFarlane calls it, “Logical Obtuseness”). 
Wo+ has been thought to impose excessive demands on agents, and inappropriately 
require them to clutter their minds with a vast number of useless beliefs. However, 
we show that both of these bridge principles are entailed by some fairly plausible 
epistemic norms: the knowledge norm, the truth norm and the immodesty norm. 
As we argue in Sect. 3, rejecting Wo+ or Wo− requires rejecting these epistemic 
norms.7

The plan for the paper is as follows. The specific reading of the deontic operators 
that we are interested in is singled out in Sect. 2. Section 3 introduces the basic epis‑
temic norms we begin from. The formal language � used in the formulation of the 
theses discussed throughout the paper is presented in Sect. 4. Section 5 introduces 
the Kripkean model theory in which the results presented in the paper are proven. In 
Sect. 6 we present and motivate what we call the ‘minimal principles’ governing the 
logical, doxastic, epistemic and deontic operators. Among these are the theses that 
logical necessity is factive and that knowledge implies belief.

Section 7 presents the key results concerning which MacFarlanian bridge prin‑
ciples are implied by which minimal principles and basic norms. In particu‑
lar, in Sect.  7.4 we bring together the various elements already discussed to give 
an account of how logic bears on an agent’s epistemic obligations, via a theory of 
how the logical, epistemic, doxastic, and deontic operators interact. This theory has 

7  These norms all fit, for example, with a Knowledge First epistemology (see (Williamson, 2000)).
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among its commitments all the minimal principles, all the basic norms, as well as 
several bridge principles—among which are principles of Wo+ and Wo−. Finally, 
in Sect. 8 we reconsider how our framework and results bear on the question whether 
logic is normative for belief. We argue that our results and framework suggest, but 
do not entail, that logic is exceptionally normative relative to at least some sciences.

2 � Norms: Epistemic, Evaluative and Owned

Epistemic norms, as we understand them here, express distinctively epistemic obli‑
gations and permissions. That is, they have epistemic force and are thus distinct 
from moral, prudential, or aesthetic norms.8

Specifically, the adopted reading of ‘ought’ is the following. Let a world x be an 
epistemically ideal world for an agent A relative to a world y if and only if, at x, A’s 
epistemic and doxastic states are epistemically best from the standpoint of y. Then, 
⌜ought �⌝ is true at y relative to A if and only if � is true at every world x that is 
epistemically ideal for A from the standpoint of y. The readings of the other deontic 
expressions of interest (e.g., ‘permissible’ and ‘forbidden’) are also formulated in 
terms of epistemically best worlds. They are presented in Sects. 4–5.

Strictly speaking, ‘ought’ stands for a relation between an agent and a proposi‑
tion, for it concerns the states that are epistemically best for a given agent.9 It is thus 
similar to Broome’s (2013, Sect. 2.3) “owned ought”.10 On this reading the knowl-
edge norm states that, for every proposition p and world x that is epistemically best 
for agent A from the standpoint of the actual world, A believes p at x only if A knows 
that p at x.

Our focus is on an evaluative understanding of epistemic norms.11 Evaluative 
norms provide objective standards by which a state of the world can be evaluated 
as epistemically best. They do not provide rules by which agents can be guided 
towards an epistemically best state. Nor do they concern whether agents are to be 
credited or criticised for being in a particular state. Our epistemic norms are also 
understood propositionally rather than doxastically—they specify the attitudes the 
agent ought to have in order to be epistemically best, but not how she could come to 
have those attitudes in an epistemically acceptable way given her situation.12 Epis‑
temic norms are thus distinct from both guiding rules aimed at improving epistemic 

9  We stress that ‘ought’, as we will be using it, stands for a relation between an agent and a proposition, 
not between an agent and an action. Notwithstanding, the two are closely related. We will flesh out a 
claim such as ⌜x (epistemically) ought to �⌝ as ⌜x (epistemically) ought to be such that x �s⌝.
10  Even though ought is agent relative, this is consistent with it being the case that every obligation that 
an agent has is the same as every obligation that any other agent has.
11  Christensen (2004), Field (2000), Steinberger (2019c) and Wedgwood (2017) also take evaluative 
norms to be relevant to the normativity of logic. Steinberger (2019c) argues that an understanding of 
norms as directives as well as appraisals is also relevant to the normativity of logic. In what follows we 
will not be concerned with these further senses of norms.
12  In this, we follow, e.g., Ichikawa and Jarvis (2013), Smithies (2015), Staffel (2019), Titelbaum (2015) 
and Williamson (2017).

8  In what follows we discuss norms that govern full beliefs rather than credal states. We thus leave dis‑
cussion of epistemic norms governing credal states for a different occasion.
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attitudes and considerations that contribute to the appraisal of agents as praisewor-
thy or blameworthy.13

We have chosen to focus on evaluative norms since there is reason to think that 
these are “theoretically prior”. Evaluative epistemic norms play a useful role in the 
other normative projects of guiding agents towards better states and of appraising 
agents. For example, it would be very difficult to determine norms that guide agents 
towards epistemically ideal states without first having in mind a conception of which 
states are epistemically ideal. Evaluative norms can help in guidance because they 
tell us what agents are to be guided towards. By telling you how to get to Larissa I 
presuppose that ideally you should get to Larissa, not London.14

Similarly, only in light of a set of primary evaluative norms can we begin to 
think about what kind of epistemic appraisal an agent deserves. It would be diffi‑
cult to determine whether agents are to be praised, blamed, or excused without first 
knowing whether they have done well or badly relative to some epistemic ideal.15 
Whereas evaluative epistemic norms focus on whether the agent has the epistemic 
attitudes she ought to have, when appraising an agent’s epistemic conduct we focus 
on considerations such as whether she was misled, deceived, did as well as she could 
given her circumstances, or lacked the relevant capacity.16 But, prima facie, agents 
should not always be praised (or escape blame) for having the epistemic attitudes 
they ought to have, nor should they always be blamed for failing to have the attitudes 
that they ought to have.17

Since they are not concerned with guidance, evaluative epistemic norms are inde‑
pendent of the agent’s abilities. Evaluative situation-independent standards are use‑
ful in various arenas—in ice skating a figure skater can be evaluated on an attempt 

13  Failure to distinguish these three kinds of epistemic normativity has led to confusion in the debate 
over whether logic is normative (Steinberger, 2019c). For the present purposes, our commitment is only 
to the existence of evaluative epistemic norms.
14  See Christensen’s comparisons with the moral ideal: “although the moral ideal might be attainable for 
no one, it might yet play a crucial role in grounding the moral obligations of each agent, obligations that 
were conditioned by particular facts about what that person could achieve” (Christensen, 2004).
15  For example, see Williamson’s (Forthcoming) account of epistemic excusability, which understands 
the norms governing excusability to be derivative from evaluative epistemic norms such as the knowl-
edge norm.
16  Various other considerations can  also contribute to epistemic appraisal: whether the agent exhibits 
epistemic virtues or avoids epistemic vices (Cassam, 2016, 2019), responds appropriately to her evidence 
(Kvanvig, 2014; Lord, 2018; Zimmerman, 2008), demonstrates the right kind of concern for epistemic 
reasons (Boult, 2019), or manifests success-conducive dispositions (Lasonen-Aarnio, 2020; Williamson, 
Forthcoming). For further discussion of the conditions for blameworthy belief see (Hieronymi, 2008; 
McCormick, 2011; McHugh, 2013; Peels, 2016; Smith, 2005). For discussion of the practice of epis‑
temic blaming, see (Brown, 2020).
17  The distinction between conformity to  evaluative norms and appraisals  of praise- or blameworthi‑
ness is well-established in ethics and law, so we should not be surprised to find it also in epistemology. 
Anti-luminosity offers a further reason to distinguish evaluative norms and epistemic appraisal. Anti-
luminosity says that there is no non-trivial condition for which it is always possible to know whether 
or not one has met that condition. The epistemic norms could not be so trivial as to be luminous. How‑
ever, this means that being as one ought to be, epistemically, is not always under one’s control. In such 
cases, it would be implausibly harsh to think that agents also deserve epistemic blame for failing to meet 
requirements(see Srinivasan (2015a, 2015b) and Williamson (2000)).
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to perform a triple axel by reference only to the moves required for doing it. These 
are the same regardless of whether the skater is able, given her present situation 
and capacities, to execute it. Considerations such as that the skater is not currently 
wearing her skates, is out of shape, or has a false belief about how many rotations 
a triple axel requires, do not affect what a triple axel requires. Similarly, evaluative 
epistemic norms provide standards for assessing states of the world and agents inde‑
pendently of whether the agents have the capacities to meet those standards.18 As 
Christensen (2004, p. 162) puts it, epistemic standards, “need not grade on effort”. 
We need not consider the agent’s capacities when evaluating whether a state of the 
world is epistemically ideal.19

3 � Basic Norms

Two of the three Basic Norms from which we begin find widespread support in epis‑
temology. For example, if Williamson (2000, p. 47) is correct that “mere believing 
is a kind of botched knowing”, then believing without knowing is a less than ideal 
epistemic state. But, in epistemically ideal worlds, beliefs are not botched. A plausi‑
ble idea is thus that knowledge is the most valuable of the possible epistemic states. 
So, an agent’s belief state is epistemically best when it is a state of knowledge.

Not only might we think that knowledge is intrinsically valuable, but we also 
might think it provides the normative standard for action and assertion. For exam‑
ple, knowledge removes the risk of being wrong.20 If knowledge is the most epis‑
temically valuable belief state, then the knowledge norm is true—agents ought to 
be such that they believe p only if they know p. That is, in all epistemically ideal 
worlds, agents believe only what they know. Since knowledge implies truth, the 
truth norm is a consequence of the knowledge norm. The knowledge and truth 
norms are both endorsed by Hattiangadi (2010), Smithies (2012), Sutton (2005, 
2007) and Williamson (2000). Meanwhile, the truth norm alone has even broader 
appeal. It is endorsed, in some form, by externalists and internalists alike (Gibbard, 
2005; Gibbons, 2013; Littlejohn, 2012; Shah, 2003; Wedgwood, 2002; Whiting, 
2012; Velleman, 2000).

A common objection to the knowledge and truth norms is that they are exces‑
sively demanding. This objection can seem compelling when we consider agents in 
unfortunate epistemic situations—agents who have systematically misleading evi‑
dence, who are brains in vats, or who are otherwise doomed to arrive at false beliefs 
despite managing their beliefs in what would seem to be epistemically acceptable 
ways. It is impossible for such agents to acquire knowledge, since knowledge is fac‑
tive. Still, it can seem counterintuitive to say that these agents are failing to meet 
epistemic norms. After all, they seem to be doing everything right.

However, these agents are non-ideal, and here we are concerned with the epis‑
temic norms that express how it would be epistemically ideal for agents to be. Brains 

18  Capacities which ordinary agents may fail to have(see e.g.Cohen, 1981; Kahneman et al., 1982).
19  Others who see epistemic norms in this way include (Smithies, 2015; Wedgwood, 2017).
20  See Dutant (2014) for discussion of this way of understanding the value of knowledge.
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in vats are not epistemically ideal. They are connected to their environment in sub‑
optimal ways, and so fail to have knowledge. While they are not at fault for this - 
they are merely unlucky - we can distinguish norm conformity from other positive 
epistemic evaluations, such as blamelessness. Doing so permits us to conclude that 
agents who do everything right, but fail to know, may deserve a positive evalua‑
tion of blamelessness (or praiseworthiness) despite failing to meet the knowledge 
norm.  For example, if they have employed good epistemic habits (Hawthorne & 
Srinivasan, 2013), been reasonable (Lasonen-Aarnio, 2010), or done what someone 
who was disposed to meet the knowledge norm would do (Srinivasan, 2015a; Wil‑
liamson, Forthcoming).

We have not been able to find discussion of a norm quite like the immodesty norm 
in the literature.21 This norm says that ideal agents believe whatever is invariantly 
true across all ideal worlds. To put it differently, it says that being ideal is incompati‑
ble with having doxastic attitudes that fail to rule out that you are not ideal. One way 
to get a better understanding of the immodesty norm is by noting that epistemically 
ideal agents have beliefs that have appropriate epistemic bases, and are not defeated. 
For example, if, for all an epistemically ideal agent believes, she is being deceived or 
malfunctioning, then that this is left open by the agent as a live possibility provides 
an undercutting defeater for the reasons she would otherwise have for believing any 
other proposition. She cannot, then, be ideal because epistemically ideal agents do 
not have reasons that are undercut in this way.

Take the epistemically non-ideal circumstances to be circumstances in which the 
agent is, in one way or another, “tricked” by her environment—as she would be in 
a sceptical scenario—as well as circumstances in which, internally, she is not func‑
tioning correctly. Thus, the epistemically non-ideal circumstances include not only 
circumstances in which the agent is, e.g., a brain in a vat, but also circumstances in 
which she is having a perception as of being in front of a red wall although lighting 
conditions are misleading, as well as circumstances in which she is having a percep‑
tion as of being in front of a red wall although her color vision is malfunctioning. 
According to the immodesty norm, when the agent is neither being deceived by her 
environment nor malfunctioning, she also believes that she is neither being deceived 
by her environment nor malfunctioning. This is because it is true in all epistemically 
ideal worlds that the agent is neither being deceived nor malfunctioning.

Epistemically ideal agents are thus immodest. They believe they are the “epis‑
temically lucky” ones, the ones that are neither being deceived nor malfunctioning, 
and, indeed, they are.22 As should be clear, when circumstances are epistemically 
ideal, the agent’s belief that she is epistemically lucky will be true. So, the immod-
esty norm does not require that epistemically ideal agents believe what is false. This 

21  Though Williamson’s (2000) views on how ideal agents’ knowledge is not undermined by the positing 
of sceptical scenarios is reminiscent of the norm. Also, observe that the norms are labelled ‘basic’ not 
because they are obviously true—after all, the truth norm and knowledge norm are highly contested—
but because they will be our starting points in the investigation of the relationship between bridge princi‑
ples and epistemic norms.
22  Some readers may find the immodesty norm reminiscent of Lewis’s (1971) view that rationality 
requires our inductive methods to be immodest. Indeed, that’s from where we have taken the norm’s 
name.
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is, of course, consistent with non-ideal agents not believing that they are epistemi‑
cally lucky.23

For instance, suppose that Eliza’s perceptual apparatus is functioning appropri‑
ately, that lighting conditions are optimal, that no illusions are taking place, and so 
on. In other words, suppose that circumstances are epistemically ideal. Suppose, fur‑
thermore, that Eliza is currently having a perception as of being in front of a red 
wall. Her evidential bases are faultless. In such a circumstance, she should believe 
that she is in front of a red wall.

Now, assume that, for all Eliza believes, John has been playing with the lights, 
so that lighting conditions are not ideal. For this reason, she refrains from believing 
that she is in front of a red wall. “For all I believe, John is tricking me”, she thinks 
to herself, “so I don’t believe that this wall is red”. Now, in fact, John is not playing 
tricks on Eliza, and in fact there is no good reason for her to entertain that possibil‑
ity. After all, circumstances are epistemically ideal. But she leaves open the possibil‑
ity that she is being tricked by John nonetheless. Her beliefs do not rule this out. By 
entertaining the “sceptical hypothesis’ that John is tricking her, Eliza’s beliefs are 
not ideal, because entertaining this epistemic possibility undercuts her appropriately 
based beliefs. So, if one’s beliefs do not rule out the possibility that one is not epis‑
temically ideal, then one cannot, in fact, be epistemically ideal. The immodesty norm 
rules out such cases.

As with the truth norm and the knowledge norm, there is debate to be had about 
the immodesty norm, its prospects, and how it fits with other norms already in the 
literature. Indeed, we hope that this first appearance of the norm will motivate fur‑
ther discussion on it. Here, we have aimed to show only that it is interesting, and that 
its consequences are worth exploring. As will be seen, some of its consequences are 
surprising with regard to the normativity of logic.

This concludes the presentation of the basic epistemic norms on which our results 
will be based. Although we have chosen to use these norms, in principle one could 
employ the same methods using different epistemic norms, which might lead to dif‑
ferent results. In Sects. 4–5 we present the formal language and model-theoretic 
framework that we will use to inquire into which bridge principles are consequences 
of which basic norms.

4 � The Language

Our first step is to delineate the formal object language that we will use. Our lan‑
guage contains none of the customary logical constants of first-order logic. No 
boolean connectives, quantifiers or identity.

One reason that led us to adopt such a language is that bridge principles con‑
cern primarily how logical, epistemic, doxastic and deontic operators interact. 
They do not, at least in the first instance, concern the customary logical constants. 

23  Indeed, the immodesty norm should not be confused with the following principle: ‘one believes p if p 
is obligatory’ ( □Op → □Bp ). This reading would have the false consequence that all agents do in fact 
believe that they are epistemically lucky.
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So, questions concerning what principles govern the logical constants would 
appear to be distracting. By leaving these expressions out we avoid the need to 
incur commitments concerning which principles govern them.

A related reason is that by formulating our results in a language without the 
customary logical constants it is possible to achieve a higher degree of neutrality 
with respect to which logic of the boolean connectives, quantifiers and identity 
is the correct logic. This promises to make our findings neutral ground for some 
debates between some proponents of different logics—even if our findings turn 
out not to constitute neutral ground with respect to all such debates. We will fur‑
ther clarify the sense in which classical logic is being presupposed, and the sense 
in which it isn’t, later in this section.

4.1 � Language �

The following are the primitive expressions and formulae of the formal language 
� in which we will be operating.

Primitive expressions of � : 

1.	 Propositional variables: ⌜pi⌝ , for each i in the positive integers;
2.	 Conditional operators:

•	 Actuality operator: ‘@’;
•	 Logical operators: ‘□L’ , ‘◊L’ , ‘▪L

’ , and ‘⧫L’;
•	 Epistemic operators: ‘□K’ , ‘◊K’ , ‘▪K

’ , and ‘⧫K’;
•	 Doxastic operators: ‘□B’ , ‘◊B’ , ‘▪B

’ , and ‘⧫B’;
•	 Deontic operators: ‘□O’ , ‘◊O’ , ‘▪O

’ , and ‘⧫O’.

Formulae of � : 

1.	 Every propositional variable is a formula;
2.	 For any operator # , formulae � , �1 , … , �n , and natural number n: 

⌜#(�|�1,… ,�n)⌝ is also a formula.

We use ⌜#(�)⌝ to abbreviate ⌜#(�|)⌝ , for all operators # and formulae � of � . 
Also, we will informally be using ‘p’, ‘q’, ‘r’, with as well as without superscripts, 
rather than the official propositional variables ‘ p1 ’, ‘ p2 ’ and ‘ p3 ’. Where p abbre‑
viates p1,… , pn , the intended reading of the language’s operators is as follows, 
for every X ∈ {L,K,B,O}:24 

1.	 ⌜@(q|p)⌝ : actually, q given that p;
2.	 ⌜□X(q|p)⌝ : it is logically necessary that/ x knows that/ x believes that/ x ought to 

be such that q given that p;

24  As is common, mention of the agent is left implicit in the doxastic, epistemic and deontic operators.
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3.	 ⌜◊X(q|p)⌝ : it is logically possible that/ for all x knows/ for all x believes/ x is 
permitted to be such that q given that p;

4.	 ⌜▪X(q|p)⌝ : it is logically impossible that/ x’s knowledge state rules out/ x’s belief 
state rules out/ x is forbidden to be such that q given that p;

5.	 ⌜⧫X(q|p)⌝ : it is logically possible that/ for all x knows/ for all x believes/ x is 
permitted to be such that q isn’t the case given that p.

A few clarifications about language � are in order. Firstly, � contains logical 
operators rather than logical predicates.25 Syntactically, logical operators take 
as arguments a (finite) sequence of formulae and a formula. By contrast, logical 
predicates—predicates standing for, e.g., logical consequence and logical consist-
ency—take as arguments sequences of names of formulae. Semantically (as will be 
seen in Sect. 5) L ’s logical operators stand for functions from pairs of a sequence of 
propositions and a proposition to propositions, whereas logical predicates stand for 
relations between formulae. Since the objects of the epistemic, doxastic and deontic 
operators are propositions, there is a mismatch between their objects and the relata 
of logical consequence. This mismatch is the main reason why � contains a logical 
necessity operator rather than a logical consequence predicate.26 The elimination 
of this mismatch thus simplifies the shape of principles involving logical as well as 
deontic, doxastic and epistemic expressions. Furthermore, the choice of a logical 
operator rather than a logical predicate makes it possible to articulate such princi‑
ples in terms of a basic Kripkean model theory for multi-modal languages. Other‑
wise, further complications would be needed in order to distinguish between the val‑
ues, in a model, of names of sentences and those of sentences themselves.

Secondly, � contains a large stock of primitive logical, epistemic, doxastic and 
deontic operators when compared to more standard languages containing expres‑
sions of these kinds. Whereas it is common to take one of ‘necessity’ and ‘possibil‑
ity’ as a primitive, defining the remaining operators in terms of the chosen primitive, 
� contains 4 primitive operators of each one of these kinds. Owing to the absence 
of boolean connectives from � , none of these operators is definable in terms of the 
others.

Thirdly, � ’s operators are conditional operators taking as arguments not formulae 
but pairs of a formula and a sequence of formulae. This makes it possible to for‑
mulate correlates of the MacFarlanian bridge principles and of the basic norms via 
formulae containing no occurrences of boolean connectives, which allows us to be 
neutral on the status of substantive principles concerning the logic of the boolean 
connectives.

Fourthly, � contains no correlate of the natural language expression ‘has a rea‑
son’. Consequently, the bridge principles in the MacFarlanian taxonomy formulated 
in terms of ‘has a reason’ are not formalisable in � . So, our theory of the interaction 

25  Russell (2020, p. 380) takes the alternative option of formulating bridge principles in terms of doxas‑
tic predicates of sentences (‘believes-true’) rather than in terms of doxastic operators (‘believes that’).
26  Although Steinberger uses the term ‘logical consequence’ in his discussion of bridge principles, he 
seems to have in mind the logical necessity operator rather than a predicate of sentences. For it is propo-
sitions, not sentences, that he takes to stand in logical relations (see (Steinberger, 2019a), p. 311).
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between logical, epistemic, doxastic and deontic operators will be silent on their sta‑
tus. The reason for leaving out the ‘has a reason’ operator is that there currently 
is no standard model-theoretic treatment of this expression. Defending any of the 
existing treatments, or proposing a novel one, would take us much beyond the scope 
of this paper.

Fifthly, the presence of the actuality operator makes it possible to find correlates 
in � of MacFarlane’s bridge principles—originally formulated in terms of the mate‑
rial conditional—without appealing to the boolean connectives. In Sect.  4.2 we 
explain how to obtain, in � , “neutral” correlates of formulae involving boolean con‑
nectives and the logical, epistemic, doxastic and deontic operators. Further details 
are given in the Appendix, Sect. A.1.

4.2 � Neutral Value

Let �bool be a language containing the operators of � , together with the boolean con-
nectives. It is possible to obtain, in our language � , the neutral values of some for‑
mulae of �bool as they are used by proponents of classical logic. Here, the neutral 
value of a formula � of �bool is a formula in which no boolean connectives occur and 
which is equivalent to � in the context of the classical logician’s theory of the behav‑
iour of the boolean connectives. The neutral value of � is thus the result of “factor‑
ing out” from � those commitments of classical logicians which are independent 
from their theory of the boolean connectives.

For instance, classical logicians take □L(p → p) (‘it is logically necessary that 
p → p ’) to be equivalent to □L(p|p) (‘it is logically necessary that p given that p’), 
there being no occurrence of boolean connectives in this last principle. Accord‑
ingly, a commitment to □L(p → p) may be factorised into (i) a commitment to 
□L(p|p) , a formula which is □L(p → p) ’s neutral value, and (ii) a commitment to 
principles of a general theory of the behaviour of the boolean connectives—e.g., to 
□L(□L(p → p)|□L(p|p)) and □L(□L(p|p)|□L(p → p)).

By appealing to the neutral value of a formula we will be able to formulate our 
discussion as if we are using boolean connectives—and in the way that classical 
logicians use them—while in fact our object language possesses no boolean con‑
nectives, so that we may remain neutral on their logic. Formulating the discussion in 
terms of neutral value will thus have the benefit of making it easier to follow, given 
the familiarity of boolean connectives.

In the Appendix (Sect. A.1) we characterise the sublanguage �nv+ of �bool for 
which we will offer neutral values, and specify in more detail the neutral value func-
tion, [⋅]nv , that maps each formula of �nv+ to its neutral value. Here we offer nothing 
but a gloss on the neutral value function. If � is a formula of � (and so formulated 
solely in terms of our conditional operators), then

[�]nv = �. Furthermore, for each operator # , and where � is not a negated for‑
mula, we have that:

[#((�1∧…∧�n)→(�1
→(…→(�m

→�))))]nv = #([�]nv | [�1]nv,…, [�n]nv, [�1]nv,…, [�m]nv) 
Thus, the neutral value function “treats” conjunction as the comma and puts 
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as further antecedents the antecedents of the nested sequence of conditionals 
(�1

→ (… (→ (�m
→ �)))) . For instance,27

If � ∶= � is a negated formula, then,

[#((�1∧…∧�n)→(�1
→(…→(�m

→¬�))))]nv = #c([�]nv | [�1]nv,…, [�n]nv, [�1]nv,…, [�m]nv) , 

where #c is # ’s solid version if # isn’t solid, and is # ’s nonsolid version if # is solid. 
For instance,28

Formulae with a conditional as their main connective are not in the domain of the 
neutral value function. Yet, neutral values for some of those formulae may be found 
by appealing to the actuality operator in the following manner:29

[(�1 ∧… ∧ �n) → (�1
→ (… → (�m

→ �))))]nv = [@((�1 ∧… ∧ �n) → (�1
→

(… → (�m
→ �))))]nv

For instance,30

Classical theorists and those who disagree with them on the logic of the boolean 
connectives may nonetheless agree on the truth of the neutral values of some for‑
mulae. For instance, while classical logicians and �3ers disagree about whether 
□L(p → p) is true, they do agree that □L(p|p) ( □L(p → p) ’s neutral value) is true.31 
In this sense □L(p|p) captures, for �3ers, the “kernel of truth” of □L(p → p) as this 
formula is used by classical logicians. Their disagreement with respect to □L(p → p) 
may be seen as stemming from a disagreement on how a theory of the conditional is 
to be built on top of a principle on which they agree, specifically, □L(p|p).32

The possibility of such agreements promises to be of relevance to debates on the 
normativity of logic involving proponents of different logical theories. When theo‑
rists have disagreeing views on the logic of the boolean connectives, their disagree‑
ments may give rise to disagreements on the status of particular bridge principles, 
as well as on which bridge principles are consequences of which epistemic norms. 

(1)[□B((p ∧ q) → (r → q)]nv = □B(q|p, q, r).

(2)[◊O(p → ¬q)]nv = ⧫O(q|p).

(3)[(p ∧ q) → p]nv = [@((p ∧ q) → p)]nv = @(p|p, q).

27  Where n = 2 , m = 1 , �1 is p, �2 is q, �1 is r and � is q.
28  Where n = 1 , m = 0 , �1 is p and � is q.
29  Strictly speaking, the neutral value function [⋅]nv is extended to a function [⋅]nv+ . But we will refer to 
both functions as [⋅]nv , since no confusion is likely to arise. For details see Sect. A.1, especially Defini‑
tion 14, and the paragraph that follows.
30  Where n = 2 , m = 0 , �1 is p, �2 is q and � is p.
31  Recall for �3 ’s a conditional statement is either false or lacking a truth-value if its consequent lacks a 
truth-value, even though they take it to be logically necessary that p given that p.
32  Williamson (2013, ch. 7) conceives the cash value of a formula �—as used by proponents of a theory 
A, for proponents of a theory B—as a formula � which is a commitment of both A and B, and which Aers 
take to be equivalent to � . Formula � thus captures the “kernel of truth,” from the standpoint of Bers, in 
the Aers commitment to � . Depending on the nonclassical theory T being considered, the neutral value of 
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Still, it may happen that these further disagreements are spurious in the sense that, 
once their idiosyncratic views on the boolean connectives are filtered out, the theo‑
rists come to agree on at least some of the issues involving the normativity of logic 
with respect to which they previously seemed to disagree.33

Considering the neutral values of bridge principles and epistemic norms can thus 
help in ascertaining whether classical and nonclassical logicians are involved in spu‑
rious disagreements of the sort just described. To give a simple example, consider 
the following bridge principle: 

(4)	 □L(p|p) → □O(□Bp → □Bp).

A �3 er and a classical logician may disagree on the truth of (4) owing to nothing but 
divergent views on the conditional. For instance, it may be that while the classical 
logician accepts (4), the �3 er does not. For the �3 er may think that □Bp is truth-
valueless for some values of ‘p’, and so that □O(□Bp → □Bp) is truth-valueless for 
some values of ‘p’. In such a case she will think that (4) itself lacks a truth-value, 
given how she takes □L(p|p) to be true. Accordingly, our �3 er will reject (4). She 
will also reject Wo+, given how (4) is among its instances. But it should be clear 
that the disagreement between the classical logician and the �3 er is not really about 
the way in which logic is normative, but rather about what it takes for sentences 
involving the conditional to be true.

Appealing to the notion of neutral value thus allows us to move past such spurious 
disagreements between the classical logician and the �3er. For they may nonetheless 
both agree on the truth of [(4)]nv , since in [(4)]nv their divergent views with respect to 
the logic of the conditional are filtered out. Indeed, it may be that they agree on the 
truth of [WO+]nv in its full generality. In such a case their disagreement with respect 
to Wo+ would not emerge due to contrasting views on the normativity of logic, but 
rather due to their divergent commitments on the logic of the boolean connectives.

The notion of neutral value thus promises to be of relevance to issues at the inter‑
section of debates on the normativity of logic and the plurality of logics. Indeed, to 
continue with our example, it is not unreasonable to think that considerations similar 
to the ones we have adduced involving the �3ers’ views on the conditional could 
be deployed to make a case that they should reject all MacFarlanian bridge prin‑
ciples. Those committed to the view that logic is normative might then regard this 
fact as offering some reason for rejecting the logic �3 . Yet, by resorting to the notion 
of neutral value it is possible to ascertain some of the ways in which their thought 
would be misguided. For �3ers may reject the truth of MacFarlanian bridge prin‑
ciples while accepting the truth of their neutral values, and so while taking logic 
to be normative for thought. MacFarlanian bridge principles would be rejected by  

33  Note that there is no guarantee that if a classical logician advocates a formula � , then both the classi‑
cal logician and any nonclassical logician will advocate [�]nv . When there isn’t, that shows that the disa‑
greement between classical logician and the nonclassical logician in question stems from more than just 
their respective theories of the boolean connectives.

a formula � of �bool may be seen as providing the cash value—in Williamson’s sense—, for proponents 
of T, of the classical logician’s commitment to �.

Footnote 32 (continued)
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�3ers owing not to their views on the normativity of logic, but rather to their views 
on the conditional. Consideration of the notion of neutral value would be helpful in 
not prejudging the discussion against proponents of �3.

While this is nothing but a toy example, it shows that the fact that our investigation 
and findings do not involve object-language presuppositions with respect to the logic 
of the boolean connectives does promise to make them useful in addressing issues at 
the intersection of debates on the normativity of logic and the plurality of logics. Also, 
note that our theory does presuppose that the conditional operators of our language 
� are governed by a number of principles, even if it does not exhibit object-language 
presuppositions with respect to the logic of the boolean connectives.

A related issue that is important to clarify concerns the status of our model 
theory, yet to be presented, and its relationship to our object-language. Our model 
theory is formulated in a classical metatheory. So, we do assume, in the metalan‑
guage, a classical logic of the boolean connectives (as they are used in the metalan‑
guage). Notwithstanding, we expect our metatheory to yield an object-level theory 
of the conditional operators of � over which there can be agreement among at least 
some proponents of different logics of the boolean connectives (like the agreement 
of classical logicians and �3 rs with respect to [□L(p → p)]nv , despite their disagree‑
ment with respect to □L(p → p) ), even if there won’t be universal agreement with 
respect to it. For while our metatheory is classical, adherence to the object-level the-
ory that results from it does not require adherence to the metatheory – in the same 
way that a classical metatheory for intuitionistic logic does not require adherence 
to classical logic by intuitionistic logicians. To further clarify the issue, the role of 
the meta-theory is to specify the object language commitments involving � ’s condi‑
tional operators. It is not to “endow those operators with meanings”. We presuppose 
that they are already meaningful and not unfamiliar, even if their use is by all means 
not as common as that of their nonconditional counterparts.

Overall, we intend our results to be available as neutral ground for different par‑
ties involved in disputes over questions such as which logic of the boolean con‑
nectives is the correct logic, even if we expect them not to be available as neutral 
ground for all parties involved in such disputes, since they may disagree with our 
object level theory of � ’s conditional operators.

We are now able to obtain the neutral value of both MacFarlane’s bridge princi‑
ples and of the basic norms. For simplicity, we will here focus solely on the MacFar‑
lanian bridge principles Wo+ and Wo−, as these are the ones which have attracted 
most attention in the literature (where 

⋀
i≤n(□Bp

i) abbreviates □Bp
1 ∧… ∧□Bp

n) , 
and □Bp abbreviates the sequence □Bp

1,… ,□Bp
n):34

34  We follow MacFarlane (2004) in the naming scheme of bridge principles. That is, “the first letter indi‑
cates the scope of the deontic operator, the second letter indicates the type of the deontic operator, and 
the third letter indicates its polarity.” The choices for the first letter are ‘W’ (wide-scope) ‘B’ (both) and 
‘C’ (consequent). The choices for the second letter are ‘o’ (obligation) and ‘p’ (permission). The choices 
for polarity are ‘ + ’ (‘believes’) and ‘−’ (‘doesn’t disbelieve’).
  The neutral value of a MacFarlanian bridge principle with positive polarity and its negative polarity 
version’s neutral value differ in that the deontic and doxastic operators become solid in the negative 
polarity version’s neutral value. A full list of the MacFarlanian bridge principles on which our results 
bear, and of their neutral values, can be found in the Appendix.
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Bridge principles Wo+ and Wo−: 

Wo+:	� □L(q�p) → □O(
⋀

i≤n(□Bp
i) → □Bq)

[WO+]nv = @(□O(□Bq|□Bp)|□L(q|p)).

Wo−:	� □L(q�p) → □O(
⋀

i≤n(□Bp
i) → ¬▪Bq)   .     

[WO−]nv = @(▪O(▪Bq|□Bp)|□L(q|p)).

As for the basic norms and their neutral values, these are formulated as follows:
Basic Norms: 

Knowledge norm:	� □O(□Bp → □Kp) 
[KNOWLEDGE NORM]nv = □O(□Kp|□Bp)

Truth norm:	� □O(□Bp → p). 
[TRUTH NORM]nv = □O(p|□Bp).

Immodesty norm:	� □O(□Op → □Bp). 
[IMMODESTY NORM]nv = □O(□Bp|□Op).

For ease of readability and familiarity, we will for the most part refer to the for‑
mulae of � indirectly, via the formulae of which they are neutral values. We now 
turn to the model theory for �.

5 � Model Theory

5.1 � Frames and Operator Frames

Frames provide the basic resources for representing the interpretations of the differ‑
ent conditional operators of � . Formulae are interpreted as sets representing collec‑
tions of worlds—which themselves represent propositions. Each conditional opera‑
tor is interpreted as a function mapping each pair of a sequence of propositions and 
a proposition to a proposition. As expected, the interpretation of � ’s conditional 
operators is constrained by the different accessibility relations between worlds. 
Frames are defined as follows:

Definition 1  (Frames) A frame is a sequence ⟨W,A,RL,RK ,RB,RO⟩ such that: 

1.	 W is a nonempty set—W represents the set of worlds;
2.	 A ∈ W—A represents the actual world;
3.	 RL,RK ,RB,RO ⊆ W ×W—RL, RK , RB and RO are, respectively, logical, epis‑

temic, doxastic and deontic accessibility relations between worlds;
4.	 ARLA—the actual world is logically possible relative to itself.
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The accessibility relations of frames capture the fact that what is logically neces‑
sary, known, believed and epistemically obligatory may depend on which world one 
is in. The only condition on the accessibility relations that will be imposed from the 
outset is that the actual world be logically possible relative to itself.

Our model-theory makes use of operator frames—structures more complex than 
frames. Operator frames are defined in terms of the notion of a (model-theoretic cor‑
relate of) a conditional operator:35

Definition 2  (Conditional operators) A conditional operator of a nonempty set W is 
a function from 

⋃
n∈ℕ((℘(W))n) ×℘(W) to ℘(W).

Each conditional operator thus represents a function mapping each pair of a finite 
sequence of propositions and a proposition to a proposition. Conditional operators 
will be the interpretation of � ’s operators.

Operator frames consist of frames together with a specification of the particular 
conditional operators that constitute the interpretation of � ’s operators, since their 
interpretation is partially but not completely determined by a frame’s accessibility 
relations.

Definition 3  (Operator frames) An operator frame is a pair F = ⟨S,O⟩ , where S 
is a frame and O is a function assigning to each operator of � a conditional opera‑
tor of W such that, for every world w logically accessible to the actual world, every 
finite sequence Y = ⟨y1,… , yn⟩ of propositions, every proposition z and every 
X ∈ {L,K,B,O}:36

•	 If # is ⌜@⌝ , then O(#)(Y , z) is a proposition true at w (i.e., w ∈ O(#)(Y , z) ) iff, 
if all members of Y are true at the actual world, then z is true at the actual 
world (i.e., A ∈ y , for all members y of Y, only if A ∈ z);

•	 If # is ⌜□X⌝ , then O(#)(Y , z) is true at w iff, for every world v such that v is RX

-accessible from w (i.e., wRXv ), if all members of Y are true at v, then z is true 
at v;

•	 If # is ⌜▪X⌝ , then O(#)(Y , z) is true at w iff, for every world v such that v is RX

-accessible from w, if all members of Y are true at v, then z fails to be true at 
v;

•	 If # is ⌜◊X⌝ , then O(#)(Y , z) is true at w iff there is some world v such that v is 
RX-accessible from w and z is true at v if all members of Y are true at v;

•	 If # is ⌜⧫X⌝ , then O(#)(Y , z) is true at w iff there is some world v such that v is 
RX-accessible from w and z isn’t true at v if all members of Y are true at v.

35  For simplicity, we use ‘operator’ for both the syntactic items and their model-theoretic correlates.
36  The model-theory forces the agent whose epistemic, doxastic and deontic states it models to have 
beliefs and epistemic obligations at all worlds logically possible relative to the actual world. This is an 
idealization. While it could be done away with, this would come at the cost of complicating the model-
theoretic framework—in particular the definition of the value of the epistemic, doxastic and deontic oper‑
ators—with little gain vis-à-vis the questions at hand.
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Only at worlds logically possible relative to the actual world is it guaranteed 
that the truth of the proposition that is the value of O(#) for a sequence ⟨Y , z⟩ 
depends on the truth of y1,… , yn and z in a standard way. Whether this is so also 
at worlds logically impossible relative to the actual world depends on the specific 
operator frame in question. So, the only difference between operator frames based 
on precisely the same frame concerns the behaviour of operators at worlds logi‑
cally impossible relative to the actual world. Thus, operator frames complement 
the representation of reality afforded by frames by distinguishing the conditional 
operators that represent the semantic values of the operators of �.

One of our results (Theorem 2) will make use of a particular class of operator 
frames, defined as follows:

Definition 4  An operator frame is focused just in case ∀x, y((ARLx & xRLy) ⇒ ARLy).

Thus, focused operator frames are operator frames in which a world is linked 
to the actual world by a chain of logical accessibility only if that world is itself 
logically accessible to the actual world.

5.2 � Models, Truth and Consequence

We now turn to the definition of models for the language �.

Definition 5  (Models) A model M for � is a pair M = ⟨F,V⟩ , where F  is an opera‑
tor frame and V is a valuation function which assigns to each propositional variable 
of � a a subset of worlds (i.e., V(p) ⊆ W , for every propositional variable p of �).

Thus, each model for � consists of a particular interpretation of the propo‑
sitional variables of the language. Each model for � furthermore determines an 
interpretation for each formula of the language:

Definition 6  (Interpretation in a model) For each model M , the interpretation [[�]] 
in M of a formula � is determined as follows: 

1.	 Atomic formulae: [[�]] = V(�) , if � is an atomic formula;
2.	 Complex formulae: [[#(���1,… ,�n)]] = O(#)(⟨⟨[[�1]],… , [[�n]]⟩, [[�]]⟩) , for 

every conditional operator # of � , all formulae � , �1,… ,�n , and every n ∈ ℕ.

Truth in a model and world is then defined as follows:

Definition 7  (Truth in a model relative to a world) A formula � of � is true in a 
model M relative to a world w ∈ W , M,w ⊨ 𝜑 , iff w ∈ [[�]].

This section’s final definitions are those of truth in a model, truth in an operator 
frame and consequence:
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Definition 8  (Truth in a model) 

1.	 A formula � is true in a model, M ⊨ 𝜑 , if and only if M,A ⊨ 𝜑.
2.	 A set of formulae Γ is true in a model, M ⊨ Γ , if and only if M ⊨ 𝛾 for all � ∈ Γ.

Definition 9  (Truth in an operator frame) A formula � is true in an operator frame 
F  , F ⊨ 𝜑 , if and only if M ⊨ 𝜑 for all models based on operator frame F .

Definition 10  (Consequence) 

1.	 � is a consequence of Γ in an operator frame F  , Γ ⊨F 𝜑 , iff, if F ⊨ Γ , then F ⊨ 𝜑

;
2.	 � is a consequence of Γ , Γ ⊨ 𝜑 , iff, Γ ⊨F 𝜑 for all operator frames F .

Each operator frame encodes a certain hypothesis about the different accessibil‑
ity relations between worlds, and about the behaviour of operators at non-logically 
possible worlds. Thus, truth at an operator frame is best understood as representing 
truth, at the actual world, given certain hypotheses about the structure of accessibil‑
ity relations, and the behaviour of conditional operators at worlds logically impos‑
sible relative to the actual world. Accordingly, with (model-theoretic) consequence, 
as we’ve defined it, we aim to represent actual truth-preservation independently of 
the particular structure of the logical, epistemic, doxastic and deontic accessibility 
relations, their interaction, and of the behaviour of operators at logically impossible 
worlds. In particular, we do not intend it to represent logical consequence, nor logi-
cal necessity.37

Our model-theoretic definitions of truth and of consequence presuppose that the 
formulae of the language are interpreted as implicitly universally quantified. For the 
truth of a formula in an operator frame boils down to the truth of the result of prefix‑
ing the formula with universal quantifiers binding all of its free propositional vari‑
ables. Thus, we are treating principles containing free variables as being of a general 
character—independent of the particular values that the variables in them take.

One important idea behind our model-theoretic framework is that there may be 
worlds which are logically impossible relative to the actual world and yet linked to 
the actual world via chains of accessibility relations. For this reason, worlds which 
are logically impossible relative to the actual world may nonetheless be relevant for 
the evaluation of the truth, at the actual world, of some of the formulae in the lan‑
guage. Relatedly, some worlds which are logically impossible relative to the actual 
world may be logically possible relative to other, nonactual, worlds. Thus, what is 
logically possible may itself be a “contingent” matter.38

37  For instance, logical necessity consists of truth-preservation at every world logically possible relative 
to the actual world—but we do not require that to be the case.
38  Our model theory is thus a version of Kripke’s (1965) model-theoretic semantics for nonnormal 
modal logics.
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One of our aims is to investigate the way in which the logical, epistemic, dox‑
astic and deontic operators interact by considering the operator frames which are 
determined by the truth of distinguished principles governing those operators. These 
principles may informally be understood as encoding specific hypotheses about the 
structure of the logical, epistemic, doxastic and deontic accessiblity relations, and 
their interaction. Since this is one of our aims, our model-theory allows for close 
to maximal variation with respect to the structure of the logical, epistemic, doxas‑
tic and deontic accessibility relations, and their interaction. The one requirement 
which we impose is that the actual world be logically possible relative to itself. For, 
if it weren’t, then the conditional operators might behave in unruly ways even at 
the actual world. In such a case, the truth at the actual world of the principles to be 
investigated, such as the basic norms and the MacFarlanian bridge principles, would 
impose no particular conditions on the accessibility relations between worlds.

We now turn to the presentation of some plausible principles governing the con‑
ditional operators of our language, and to the investigation of the specific hypotheses 
concerning the structure of the logical, epistemic, doxastic and deontic accessibility 
relations encoded by them.

6 � Minimal Principles

The following are plausible, logically necessary principles governing our operators:

Minimal principles: 

TL:	� [□L(□Lp → p)]nv—Logical necessity is factive in all logically possible 
worlds;

4L:      �[□L(□Lp → □L□Lp)]
nv—Logical necessities are logically necessary in all 

logically possible worlds;

BL:	� [□L(p → □L◊Lp)]
nv—Truths are (logically) necessarily logically possible in 

all logically possible worlds;

TK:	� [□L(□Kp → p)]nv — Knowledge is factive in all logically possible worlds;

KB:	� [□L(□Kp → □Bp)]
nv—Knowledge implies belief in all logically possible 

worlds;

DO:	� [□L(□Op → ◊Op)]
nv—Obligations are permitted in all logically possible 

worlds;

LO:	� [□L(◊Op → ◊Lp)]
nv—Permission implies logical possibility in all logically 

possible worlds.
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Now, consider the following conditions on the accessibility relations of frames:

•	 Logical reflexivity@: ∀x ∈ W(ARLx ⇒ xRLx);
•	 Epistemic reflexivity@: ∀x ∈ W(ARLx ⇒ xRKx);
•	 Doxastic-epistemic inclusion@: ∀x, y ∈ W(ARLx ⇒ (xRBy ⇒ xRKy));
•	 Deontic seriality@: ∀x ∈ W(ARLx ⇒ ∃y(xROy));
•	 Logical-deontic inclusion@: ∀x, y ∈ W(ARLx ⇒ (xROy ⇒ xRLy));
•	 Logical symmetry@: ∀x, y ∈ W(ARLx ⇒ (xRLy ⇒ yRLx));
•	 Logical transitivity@: ∀x, y, z ∈ W(ARLx ⇒ ((xRLy & yRLz) ⇒ xRLz)).

We have the following correspondences between frame truth and frame 
conditions:

Theorem 1  For all operator frames F  : 

1.	 F ⊨ TL iff F  satisfies logical reflexivity@;
2.	 F ⊨ 4L iff F  satisfies logical transitivity@;
3.	 F ⊨ TK iff F  satisfies epistemic reflexivity@;
4.	 F ⊨ KB iff F  satisfies doxastic-epistemic inclusion@;
5.	 F ⊨ DO iff F  satisfies deontic seriality@;
6.	 F ⊨ LO iff F  satisfies logical-deontic inclusion@.

In Theorem 1 are presented the so-called frame correspondents of principles 
TL , TK , KB , DO , LO , and 4L , these being the hypotheses concerning the structure 
of accessibility relations encoded by those principles.

Our next result concerns the relationship between principle BL and logical 
symmetry@. As it turns out, logical symmetry@ fails to be the frame correspond‑
ent of BL.39 Still, if only focused frames are considered, then logical symmetry@ 
does turnout to be BL ’s frame correspondent:

Theorem  2  F ⊨ BL iff F  satisfies logical symmetry@, for all focused operator 
frames F .

The following is a corollary of Theorems 1 and 2, and the fact that a frame satis‑
fies logical transitivity@ only if it is focused.

Corollary 1 If F ⊨ 4L , then F ⊨ BL iff F  satisfies logical symmetry@, for all 
operator frames F .

39  That is, we don’t have that F ⊨ BL iff F  satisfies logical symmetry@. We won’t go through the proof 
here. Suffice it to say that this failure has to do with the fact that the degree of nesting of ◊Lp , as it 
occurs in BL , may require determining whether ◊Lp is true at a world which is logically impossible rela‑
tive to the actual world.
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How plausible are the minimal principles? Very plausible, presumably. Arguably, 
these principles are encapsulated in the usual understanding of the operators, and 
appear to be implicit in their standard logics. These observations afford some rea‑
sons for thinking that they hold of logical necessity (though a full defence of this 
claim lies outside our paper’s scope). For example, principles T L , 4 L and B L are rela‑
tively uncontroversial principles about logical necessity. According to T L , logical 
necessity is factive; 4 L states that if p is logically necessary, then it is not logically 
contingent, nor logically impossible, that p is logically necessary; and, according to 
B L , if p is true, then it is logically necessary that it is logically possible that p is true.

Principles T K and KB are closely related to commitments of the standard log‑
ics for knowledge and belief. They are also independently plausible. Presumably, 
it is logically necessary that knowledge is factive, and it is logically necessary that 
knowledge implies belief. Principle D O is closely related to the “ought implies per‑
mission” axiom of Standard Deontic Logic (SDL).40

According to principle LO, every epistemically ideal world is logically possible. 
To our knowledge this principle has not been discussed in the literature. Still, it is 
suggested by SDL’s rule of necessitation. For, according to this rule, if � is a logical 
truth of SDL, then that � is obligatory is also a logical truth of SDL—and so, pre‑
sumably, a plain truth. So, presumably, whatever is a logical truth is epistemically 
obligatory. Arguably, this principle—whatever is a logical truth is epistemically 
obligatory—is logically necessary, in which case we obtain principle LO.

It is worth clarifying the role of the minimal principles in our investigation. They 
afford legitimate hypotheses, to be conjoined with the basic norms, with regard to 
the aim of deriving MacFarlanian principles Wo+ and Wo−. Even if none of Wo+ 
and Wo− is derivable from just the basic norms, they turn out to be derivable from 
the basic norms together with the minimal principles. Insofar as the minimal prin‑
ciples constitute intuitively plausible hypotheses on the behaviour of our language’s 
conditional operators, deriving Wo+ and Wo− from nothing but the basic norms 
and the minimal principles reveals the extent to which the MacFarlanian bridge 
principles may be seen as outright consequences of general epistemic norms. In 
addition, negative results showing that Wo− or Wo+ are not derivable from some 
basic norms even in conjunction with all the minimal principles suggest that those 
bridge principles encode substantive assumptions about the structure of epistemic 
normativity which go beyond the ones encoded by the basic norms in question. Min‑
imal principles also play a role in our investigation of whether logic is autonomously 
normative, as we further discuss in Sect. 8.

40  Some who propose the possibility of epistemic dilemmas reject the idea that epistemic obligation 
implies epistemic permission. For a discussion of epistemic dilemmas and defence of their possibility, 
see (Hughes, 2019). As will become clear, the more interesting results presented in the paper are inde‑
pendent of the truth of DO.
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7 � Results

The principal aim of this section is to present the main results of our framework 
in relation to the normativity of logic. In Sect. 7.1 we show what the frame corre‑
spondents of the basic norms are. By considering the hypotheses about the structure 
of accessibility relations encoded by the basic norms, our correspondence results 
will make it possible to extract consequences about the relationship between bridge 
principles, basic norms and minimal principles. In Sect.  7.2 we prove our main 
results by appealing to the frame correspondents of the minimal principles and the 
basic norms. In Sect. 7.3 we discuss Tajer’s alternative routes for deriving Wo− and 
Wo+ from purely epistemic norms. Finally, in Sect. 7.4 we show what MacFarla‑
nian bridge principles are consequences of the full theory resulting from collecting 
together the minimal principles and the basic norms.

We will make use of the following conventions. By ‘minimal’ and ‘basic norms’ 
we will mean the collections consisting of, respectively, the minimal principles, and 
the neutral values of the basic norms. Furthermore, given formulae �1,… ,�n of 
� , by ⌜MINIMAL − {�1,… ,�n}⌝ we mean the collection of principles in minimal 
which are distinct from all of �1 , … , �n , and by ⌜BASIC NORMS − {�1,… ,�n}⌝ we 
mean the collection of basic norms which are distinct from all of �1 , … , �n . For 
instance, MINIMAL − {LO, TK} consists of the collection of those principles in mini-
mal which are distinct from both LO and TK.

7.1 � Frame Correspondents of the Basic Norms

Consider the following conditions on the accessibility relations on frames:

•	 Truth norm condition: ∀x ∈ W(AROx ⇒ xRBx);
•	 Knowledge norm condition: ∀x, y ∈ W(AROx ⇒ (xRKy ⇒ xRBy));
•	 Immodesty norm condition: ∀x, y ∈ W(AROx ⇒ (xRBy ⇒ xROy)).

These conditions are the natural candidates for being the frame correspondents of 
the neutral values of their respective norms. Indeed, once the class of frames is 
restricted to those frames in which LO is true, the basic norms do have as corre‑
spondents their respective conditions.41

Theorem 3  F ⊨ [TRUTH NORM]nv if and only if F  satisfies the truth norm condition, 
for all operator frames F  such that F ⊨ LO.

41  As it turns out, there are operator frames F  such that F ⊨ MINIMAL − {LO} , F ⊨ BASIC NORMS and 
yet F  doesn’t satisfy the truth norm condition, the knowledge norm condition or the immodesty norm 
condition. Similarly, there are operator frames F  such that F ⊨ MINIMAL − {LO} , F  satisfies all of the 
truth norm, the knowledge norm and the immodesty norm conditions, and yet F ⊭ [TRUTH NORM]nv , 
F ⊭ [KNOWLEDGE NORM]nv and F ⊭ [IMMODESTY NORM]nv.
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Theorem  4  F ⊨ [KNOWLEDGE NORM]nv if and only if F  satisfies the knowledge 
norm condition, for all operator frames F  such that F ⊨ LO.

Theorem  5  F ⊨ [IMMODESTY NORM]nv if and only if F  satisfies the immodesty 
norm condition, for all operator frames F  such that F ⊨ LO.

The final result of Sect.  7.1 maps the relationships between the different basic 
norms:

Theorem 6 

1.	 The [TRUTH NORM]nv is not a consequence of MINIMAL together with the 
[IMMODESTY NORM]nv;

2.	 The [IMMODESTY NORM]nv is not a consequence of MINIMAL together with the 
[KNOWLEDGE NORM]nv;

3.	 The [KNOWLEDGE NORM]nv is not a consequence of MINIMAL together with 
BASIC NORMS − {[KNOWLEDGE NORM]nv};

4.	 The [TRUTH NORM]nv is a consequence of TK , LO and the [KNOWLEDGE NORM]nv

.

Of particular significance is the observation that the [IMMODESTY NORM]nv and 
the [KNOWLEDGE NORM]nv are independent, as are the [IMMODESTY NORM]nv and 
the [TRUTH NORM]nv.

7.2 � Bridge Principles and Basic Norms

What follows are the substantial results of the framework with respect to the rela‑
tionship between the basic norms and bridge principles [WO-]nv and [WO+]nv . Given 
the importance of the results, we prove them in the main text. In the appendix fur‑
ther results concerning the neutral values of the remaining bridge principles singled 
out in (MacFarlane, 2004) are presented.

7.2.1 � Wo−

We begin with a preliminary result:

Theorem  7  [WO−]nv is not a consequence of MINIMAL and the 
[IMMODESTY NORM]nv.

Proof of Theorem 7  The following model M witnesses the fact that [WO-]nv fails to 
be a consequence of minimal and the [IMMODESTY NORM]nv:

Model M (Fig. 1) has two worlds, the actual world A , and w. Arrows represent 
the accessibility relations. For instance, world w is both epistemically and doxas‑
tically possible relative to the actual world. It is neither logically nor deontically 
possible relative to the actual world. The placement of a propositional letter inside 



	 C. Field, B. Jacinto 

1 3

a world represents the fact that the proposition assigned to that propositional let‑
ter contains the world in question, and so that the propositional letter is true at that 
world. For instance, since p occurs in both A and w, p is true at both the actual 
world and w; q is true at A but not at w.

Checking that the [IMMODESTY NORM]nv and all the minimal principles are true 
in the operator frame F  on which M is based is a routine exercise, owing to Theo‑
rems 1 and 5 and Corollary 1. But [WO-]nv fails to be true in M , and so in F  . For p 
is true at w whereas q isn’t (Fig. 1). So, p is true at every world doxastically possible 
relative to the actual world, and q fails to be true at every world doxastically possible 
relative to the actual world. So, □Bp and ▪Bq are both true at the actual world, as 
the actual world is logically possible relative to itself. So, [□O(□Bp → ¬▪Bq)]

nv is 
false at the actual world, since the actual world is deontically and logically possible 
relative to itself. Yet, the actual world is the only world logically possible relative 
to itself, and q is true at the actual world. Hence, [□L(q|p)]nv is true at the actual 
world. Therefore, [WO-]nv is false at the actual world, and so on the operator frame 
on which M is based.

Our first positive result shows that the assumption of the truth of the basic norms 
does yield positive predictions vis-à-vis the normativity of logic.42

Theorem 8  [WO−]nv is a consequence of LO and the [TRUTH NORM]nv.

Proof of Theorem 8  Suppose that □L(q|p) is true at the actual world. Suppose also 
that x is an arbitrary world deontically possible relative to the actual world at which 
□Bp

i is true, for all members pi of p . So, x is doxastically possible relative to itself, 
by the [TRUTH NORM]nv and Theorem 3. Furthermore, x is logically possible relative 
to the actual world, by LO and Theorem 1. So, all the pi s are true at x. So, q is true 
at x. Hence, ▪Bq is false at x, since x is logically possible relative to the actual world. 
So, □Bp

i is true at x, for all members pi of p only if ▪Bq is false at x. Therefore, 
[□O(

⋀
□Bp

i
→ ¬▪Bq)]

nv is true at the actual world, since the actual world is logi‑
cally possible relative to itself. So, [WO-]nv is true at the actual world.

Theorem 8 thus reveals that if epistemically best beliefs must be true—as advo‑
cated by, among others, proponents of Knowledge First epistemology—then Wo− is 
true. Relatedly, a straightforward corollary of Theorems 6 and 8 is that [WO-]nv is a 
consequence of LO and the [KNOWLEDGE NORM]nv.

7.2.2 � Wo+

Our next result is a reveals the limitations of the [KNOWLEDGE NORM]nv:

42  We note that the appeal to LO is essential, since [WO−]nv is not a consequence of MINIMAL − {LO} 
and the BASIC NORMS.
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Theorem  9  [WO+]nv is not a consequence of MINIMAL together with the 
[KNOWLEDGE NORM]nv.

Proof of Theorem 9  Consider the following model M:
Checking that the [KNOWLEDGE NORM]nv and all minimal principles and are true 

in the operator frame F  on which M (Fig. 2) is based is a routine exercise. To see 
why [WO+]nv fails to be true in M , note that □Bq is false at the actual world, since 
w is doxastically possible relative to the actual world, q is false at w, and the actual 
world is logically possible relative to itself. Also, p is true at both the actual world 
and w, these are the only worlds doxastically possible relative to the actual world, 
and the actual world is logically possible relative to itself. So, □Bp is true at the 
actual world. Moreover, the actual world is deontically possible relative to itself. So, 
there is a possible world deontically possible relative to the actual world such that 
□Bp is true at it, but □Bq isn’t. Furthermore, the actual world is logically possible 
relative to itself. So, [□O(□Bp → □Bq)]

nv isn’t true at the actual world. Further‑
more, □L(q|p) is true at the actual world, since the actual world is the only world 
logically possible relative to the actual world and q is true at the actual world. There‑
fore, [WO+]nv fails to be true at the actual world.

Next comes the second main positive result of our framework.43

Theorem 10  [WO+]nv is a consequence of the [IMMODESTY NORM]nv , LO and 4L.

Proof of Theorem 10  Let F  be an arbitrary operator frame such that LO, 4L and the 
[IMMODESTY NORM]nv are all true at F  . Suppose that □L(q|p) is true at the actual 
world, x is an arbitrary world deontically possible relative to the actual world, and 
□Bp

i is true at x, for every member pi of p . Since x is deontically possible relative 
to the actual world, and the actual world is logically possible relative to itself, it fol‑
lows from LO that x is logically possible relative to the actual world, by Theorem 1. 
Now, let y be any world doxastically possible relative to x. Then, every member 

Fig. 1   Witness to MINIMAL, IMMODESTY NORM ⊭ [WO-]nv

p, q

A

p

w

RL, RK , RO

RK , RB

43  We also mention two other negative results, whose proofs are outside the paper’s scope: (i) [WO+]nv 
is not a consequence of MINIMAL − {LO} and the BASIC NORMS ; (ii) [WO+]nv is not a consequence of 
MINIMAL − {4L} and the BASIC NORMS.
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pi of p is true at y, since x is logically possible relative to the actual world. Fur‑
thermore, y is deontically possible relative to x, by Theorem 5, since LO and the 
[IMMODESTY NORM]nv are all true at operator frame F  . So, y is logically possible 
relative to x, by Theorem 1, since LO is true at F  . Hence, y is logically possible 
relative to the actual world, by Theorem 1, since 4L is true at F .

Since y is logically possible relative to the actual world, all the pi s are true at y 
only if q is true at y, as □L(q|p) is true at the actual world and the actual world is 
logically possible relative to itself. So, q is true at y. So, □Bq is true at x, since y 
was an arbitrary world doxastically possible relative to x, and x is logically possible 
relative to the actual world. Moreover, x was an arbitrary world deontically possible 
relative to the actual world. So, [□O(

⋀
(□Bp

i) → □Bq)]
nv is true at the actual world, 

since the actual world is logically possible relative to itself. Hence, [WO+]nv is true 
at the actual world.

The status of Wo+ has been disputed. The principle is fairly strong as it implies, 
for instance, logical omniscience—an agent ought to believe everything that is logi‑
cally necessary. So, Theorem 10 is quite substantive. It reveals that if epistemically 
ideal agents’ belief states rule out that conditions fail to be ideal—as presumably 
required by anti-sceptic views such as Knowledge First epistemology—, then Wo+ 
is true.

Essentially, the result is available owing to the fact that any frame in which 
LO, 4L and the [IMMODESTY NORM]nv are all true is a frame in which, for all 
worlds x and y, x is deontically possible relative to the actual world and y is dox‑
astically possible relative to x only if y is logically possible relative to the actual 
world. Thus, if a frame has worlds related as follows,

and if [IMMODESTY]nv , LO, and 4L are satisfied by F  , then F  must be comple‑
mented as follows:

Fig. 2   Witness to MINIMAL, [KNOWLEDGE NORM]nv ⊭ [WO+]nv

p, q

A

p

w

RL, RK , RB , RO

RK , RB
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7.3 � Alternatives Routes to Wo− and Wo+

The following principles afford alternative routes for basing MacFarlanian bridge 
principles in purely epistemic norms:44

T
→

:	� p → □O□Bp – If p, then it is epistemically obligatory to believe p.

F
→

:	� p → ▪O▪Bp – If p, then it is epistemically forbidden to disbelieve p.

We begin by presenting a result concerning the frame correspondents of both 
[T

→
]nv and [F

→
]nv . Consider the following conditions on frames.

•	 T
→ condition: ∀x, y ∈ W(AROx ⇒ (xRBy ⇒ A = y)).

•	 F
→ condition: ∀x, y ∈ W(AROx ⇒ xRBA).

Then, the following result offers a characterisation of the frame correspondents of 
[T

→
]nv and [F

→
]nv:45

Theorem 11 

1.	 F ⊨ [F
→
]nv if and only if F  satisfies the F

→
 condition, for every operator frame 

F  such that F ⊨ LO.
2.	 F ⊨ [T

→
]nv if and only if F  satisfies the T

→
 condition, for every operator frame 

F  such that F ⊨ LO.

Here we offer a proof only of part 2 of Theorem 11. The proof of Theorem 11.1 is 
found in the appendix.

Proof of Theorem 11.2  Suppose that LO is true for all values of p. We start by estab‑
lishing the left-to-right direction of the theorem. Suppose that and [T

→
]nv is true for 

all values of p. Furthermore, let x be an arbitrary world deontically possible relative 
to the actual world and y be an arbitrary world doxastically possible relative to x. Let 
p stand for the set whose only element is the actual world. Then, clearly, p is true 
at the actual world. So, it is also true at the actual world that □O□Bp , since LO is 
assumed to be true for all values of p. So, □Bp is true at x, as x is deontically pos‑
sible relative to the actual world and the actual world is logically possible relative to 
itself. Since LO is true at the actual world, x is also logically possible relative to the 
actual world, by Theorem 1. So, p is true at y, as y is doxastically possible relative to 

44  The labels come from (Tajer, 2020).
45  We also note the following results: (i) There is an operator frame F  such that F ⊨ MINIMAL − {LO} , 
F ⊨ [T

→
]nv and F ⊨ [F

→
]nv , and yet F  doesn’t satisfy the T

→
 condition nor the F

→
 condition; (ii) There 

is an operator frame F  such that F ⊨ MINIMAL − {LO} , F  satisfies the T
→

 condition and the F
→

 condi‑
tion, and yet F ⊭ [T

→
]nv and F ⊭ [F

→
]nv.
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x, □Bp is true at x and x is logically possible relative to the actual world. So, y must 
be identical to the actual world, since the actual world is the only world at which p is 
true. Therefore, ∀x, y ∈ W(AROx ⇒ (xRBy ⇒ y = A)).

As to the theorem’s right-to-left direction, suppose that 
∀x, y ∈ W(AROx ⇒ (xRBy ⇒ y = A)) , x is an arbitrary world deontically possible 
relative to the actual world, y is an arbitrary world doxastically possible relative to 
x, and p is true at the actual world, for an arbitrary proposition p. Then, y just is 
the actual world. So, p is true at y. Furthermore, x is logically possible relative to 
the actual world, by LO and Theorem 1. So, □Bp is true at x, as y was an arbitrary 
world doxastically possible relative to x and x is logically possible relative to the 
actual world. Hence, □O□Bp is true at the actual world, since x was assumed to be 
an arbitrary world deontically possible relative to the actual world, and x is logically 
possible relative to the actual world. So, [T

→
]nv is true at the actual world.

The alternative routes for Wo− and Wo+ are encapsulated in the following 
theorems.

Theorem 12  [WO−]nv is a consequence of [F
→
]nv and LO.

Theorem 13  [WO+]nv is a consequence of [T
→
]nv and LO.

Results close to Theorems 12 and 13 are proven in (Tajer, 2020), and the discus‑
sion in Sect. 8 will make reference to them. There, we argue that T

→
 and F

→
 are both 

seemingly implausible on the present evaluative understanding of epistemic obliga‑
tion. Given this understanding of epistemic obligation, Theorems 12 and 13 fail to 
legitimise conclusions with respect to the way in which logic is normative for belief. 
It was for this reason that we did not include T

→
 and F

→
 in the basic norms. Still, 

Theorems 12 and 13 give us the opportunity to further clarify some of the ways in 
which our approach to inquiry into the normativity of logic differs from Tajer’s.

By contrast to our result, in Tajer’s framework WO+ doesn’t follow simply from 
T
→

 even given standard deontic logic’s rule of necessitation—Tajer’s version of 
LO. The assumption of F

→
 is also required. Arguably, the reason for the mismatch 

between the results available in ours and Tajer’s respective frameworks concerns 
a difference with respect to the generality with which we and Tajer, respectively, 
interpret the principles by us investigated. By contrast with our interpretation, Tajer 
adopts a restricted and schematic reading of the different epistemic norms and bridge 
principles which he investigates. Only the result of replacing the propositional vari‑
ables by formulae of standard propositional logic are instances of those schemas.

Tajer’s schematic reading of epistemic norms is guided by the view that the 
epistemic norms T

→
 and F

→
 are implausible when understood unrestrictedly, given 

how they give rise to Moorean anomalies.46 We agree with Tajer that T
→

 and F
→

 

46  For instance, if the formulae allowed to count as instances of T
→

 include doxastic and deontic opera‑
tors, then one may obtain as an instance of T

→
 the formula (p ∧ ¬□Bp) → □O(□B(p ∧ ¬□Bp)) , which 

states that if p is true and the agent does not believe it, then she ought to believe that p is true and she 
does not believe it. Since there are p such that p is true and the agent does not believe p, it follows that 
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are implausible when understood unrestrictedly. Yet, Tajer’s alternative reading 
removes close to all generality from epistemic norms and bridge principles. Essen‑
tially, according to it a bridge principle fails to follow from an epistemic norm if 
there is some way of interpreting the atomic propositional letters that makes true all 
instances of the epistemic norm formulated in terms of boolean formulae built out of 
atomic propositional letters, while making false some boolean instance of the bridge 
principle. By contrast, according to our “universalist” reading of bridge principles 
and epistemic norms a bridge principle fails to follow from an epistemic norm just 
in case the bridge principle is false on some way of interpreting the atomic propo‑
sitional letters, even though the epistemic norm is true no matter how its atomic 
propositional letters are interpreted.47

To give a parallel, Tajer’s interpretation would lead to the result that identity 
( a = b ) does not follow from set-indiscernibility ( a ∈ S ↔ b ∈ S ) in a language in 
which the only set term is ‘S’, since ‘a’ and ‘b’ can be interpreted as, respectively, 
Joe Biden and Vladimir Putin, and ‘S’ can be interpreted as {Biden, Putin} , which 
would make true ‘ a ∈ S ↔ b ∈ S ’, while making false ‘ a = b ’. But this counts as a 
counterexample only if one disregards the intended reading of set-indiscernibility as 
an implicitly universally quantified claim ( ∀S(a ∈ S ↔ b ∈ S) ). Given this reading, 
one must also consider the interpretation of ‘S’ as {Biden} . But on this interpretation 
‘ a ∈ S ↔ b ∈ S ’ come out as false, since Biden ∈ {Biden} and yet Putin ∉ {Biden} . 
The purported counterexample to the entailment from set-indiscernibility to identity 
turns out not to be a counterexample at all.48 Indeed, and for the reason just given, 
on our interpretation, identity would follow from set-indiscernibility.

The effect of Tajer’s restriction is a weaker theory. For instance, on Tajer’s frame‑
work the following model M would be a counterexample to the claim that Wo+ 
follows solely from T

→
.

47  That is, on Tajer’s interpretation, a bridge principle fails to follow from an epistemic norm if there is 
some frame and some model based on it which makes true all boolean instances of the epistemic norm, 
while making some boolean instance of the bridge principle. By contrast, on our interpretation, a bridge 
principle fails to follow from an epistemic norm if there is some frame such that all models based on 
that frame make true the epistemic norm, while some model based on the frame makes false the bridge 
principle.

the agent ought to believe that p and she does not believe p, which seems absurd. See also (Bykvist & 
Hattiangadi, 2007).

Footnote 46 (continued)

48  A reviewer observes that in our framework [p → □Kp]
nv—everything true is known—is a joint con‑

sequence of [p → ◊L□Kp]
nv—everything true could have been known—and the minimal principle TK . 

This result, a version of Fitch’s paradox, would have been avoided if we had not adopted a universal 
interpretation of bridge principles and epistemic norms. But those who think that the correct solution to 
the paradox consists in restricting the range of the quantifiers in the formulation of moderate anti-realism 
(to which Fitch’s paradox seemingly poses a problem) should not take [p → ◊L□Kp]

nv to express moder‑
ate anti-realism anyway, so that the fact that [p → □Kp]

nv is a consequence of [p → ◊L□Kp]
nv would no 

longer seem to be problematic to moderate anti-realists. Our inclination is towards the view that the reso‑
lution of Fitch’s paradox lies in reinterpreting what moderate anti-realists mean by ‘knowability’. How‑
ever, the issue lies clearly beyond the scope of the present paper. For a recent exploration of this kind of 
resolution, inspired by (Edgington, 1985), see, e.g., (Schlöder, 2021).
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Here, a world is logically possible just in case it has a rectangular shape. So, 
the actual world is the only world which is logically possible. World w is thus a 
logically impossible world. In this model all the formulae of classical proposi‑
tional logic which are true at the actual world are also true at w. This guarantees 
that any suitable instance of T

→
 is true at the actual world. Furthermore, exactly 

one more formula is true at w, specifically, the formula ¬p . Then, □Bp and □B¬p 
are both true at the actual world, since w is the only world doxastically pos‑
sible relative to the actual world. But □B(p ∧ ¬p) is false at the actual world, as 
p ∧ ¬p is not true at w. Since the actual world is deontically possible relative 
to itself, □O((□Bp ∧□B¬p) → □B(p ∧ ¬p)) is false at the actual world. But 
□L(p ∧ ¬p|p,¬p) is true at the actual world (assuming classical logic, as Tajer does). 
So, the model is a counterexample to the claim that Wo+ is a consequence of T

→
 on 

its own.
From our standpoint, M fails to constitute a genuine counterexample to the claim 

that Wo+ is a consequence of T
→

 (given the truth of LO). For, if we are completely 
general, then T

→
 is true also when p is that proposition which is true at the actual 

world, and only at it. In such a case, world w of model M must be the actual world 
itself, otherwise □O□Bp would be false at the actual world while p was true at it. 
But the actual world is logically possible, and so it cannot be that p and ¬p are both 
true at it.

This discrepancy between ours and Tajer’s results is not problematic per se. Our 
results complement Tajer’s insofar as we are considering unrestricted readings of 
T
→

 and F
→

 , whereas Tajer is only concerned with particular restricted readings. But 
the discrepancy does mean that one of our most important results, that [WO+]nv is 
a consequence of the [IMMODESTY NORM]nv (given LO and 4L ) is unavailable in 
Tajer’s framework, owing precisely to the fact that Tajer finds countermodels where 
we find none. Consider the following model M:

In this model u, w and the actual world are all logically possible worlds, whereas v 
is a logically impossible world. Furthermore, all formulae of classical propositional 
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logic which are true at u are also true at v. The effect of this feature of the model 
is that all instances of the immodesty norm which result from replacing p by some 
formula in the language of classical propositional logic are true at the actual world. 
Moreover, ¬p is also true at v, this being the only formula not true at u which is 
true at v. So, □Bp and □B¬p are both true at w. Yet, □B(p ∧ ¬p) is false at w. So, 
□O((□Bp ∧□B¬p) → □B(p ∧ ¬p)) is false at w. But □L(p ∧ ¬p|p,¬p) is true at the 
actual world, assuming classical logic, as Tajer does. So, the model constitutes a 
(putative) counterexample to the claim that Wo+ is a consequence of the immodesty 
norm. But the model does not constitute a counterexample to the claim that Wo+ is 
a consequence of the immodesty norm (together with LO and 4L ) given a completely 
general interpretation of the immodesty norm. In such a case v must itself be deonti‑
cally possible relative to w (given Theorem 1), and so a logically possible world. So, 
it cannot be that p and ¬p are both true at v.

So, arguably, Tajer’s restricted reading of the bridge principles and epistemic 
norms leads one to miss out on important connections between these—such as the 
connection between the immodesty norm and Wo+. In Sect.  7.4 we consider the 
result of combining the minimal principles and the basic norms.

7.4 � Putting it All Together

Together, the principles in minimal and in the basic norms give rise to the combined 
theory: 

Combined theory:	� The combined theory consists in the joint consequences of min-
imal and the basic norms.

The combined theory affords a substantive theory of the interaction between the 
logical, epistemic, doxastic and deontic operators. It yields predictions with respect 
to different domains. For example, how logical necessity and obligation interact, 
how logical necessity and belief interact, how logical necessity and knowledge inter‑
act, how logical necessity and epistemic obligation interact, and so on. Since we 
are interested in whether logic is normative for belief, we focus on the interaction 
between all the operators in the language.

The results of Sect. 7.2 reveal that among the commitments of the combined the-
ory are principles [WO-]nv and [WO+]nv . More generally, in the appendix we prove 
the following result (in the appendix are also given the formulations and neutral val‑
ues of the extra bridge principles referred to in Theorem 14) :

Theorem  14  The MacFarlanian bridge principles [WO+]nv , [WO+K]nv , [WO−]nv , 
[WO-K]nv , [WP+]nv , [WP+K]nv , [WP-]nv , [WP-K]nv , [BO+]nv , [BO+K]nv , [BO-]nv 
and [BO-K]nv are all commitments of the combined theory. No other MacFarlanian 
bridge principle is a commitment of the combined theory.

Observe that the combined theory does not rule out the truth of the (neutral values 
of) the remaining MacFarlanian bridge principles. It is just that it is not committed 
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to them. Note also that the combined theory will have a number of other predictions. 
To give a simple example, consider the following bridge principle not in the Mac‑
Farlanian taxonomy: 

LWo+:	� □L(q|p) → □O□B□L(q|p)—If q is logically necessary given that p , then 
it is obligatory to believe that (q is logically necessary given that p).

 As it turns out, [LWO+]nv is among the commitments of the combined theory. 
This reveals some of the combined theory’s predictive power. Relatedy, Steinberger 
(2019c) has characterised an interesting family of “internal” bridge principles in 
which the deontic operator takes “super wide scope” (as he puts it) over the whole 
conditional rather than just wide scope over the conditional’s conditional con‑
sequent.49 Our theory will also deliver predictions concerning the status of these 
Steinbergerian bridge principles.50

This concludes the presentation of the main results of our framework vis-à-vis 
the relationship between the MacFarlanian bridge principles and the basic norms. 
In Sect. 8 we consider how these results may shed light on the question in what way 
logic is normative for belief.

8 � Is Logic Normative?

There are a number of ways of fleshing out the idea that logic is normative. Here, we 
focus on two of these: (i) the view that logic is autonomously normative; and (ii) the 
view that logic is exceptionally normative.51

A domain D of inquiry is autonomously normative when its truths have as con‑
sequences, on their own, normative demands. Domain D is derivatively normative 
when D’s truths have as consequences normative demands only when combined 
with true assumptions from other (presumably normative) domains. A domain will 
be neither autonomous nor derivatively normative if it fails to have as consequences 
normative demands both on its own and when combined with true assumptions from 
other domains.52

49  One example of such a bridge principle is □O(□B□L(q|p) → (□Bp → □Bq)) . Though note that 
Steinberger distinguishes between belief and endorsement, and speaks of endorsing a claim of logical 
consequence rather than believing it.
50  There is also the promise of using our model-theoretic framework, or extensions thereof, together 
with the present interpretation of the logical, epistemic, doxastic and deontic expressions, to address 
further questions in epistemology—e.g., to give a fuller account of what are the true purely epistemic 
norms. We leave this investigation for future work.
51  See (Labukt, 2021) for an extended survey and discussion of the senses in which logic might be nor‑
mative for belief
52  Autonomous normativity and derivative normativity are very close to, respectively, Russell’s (2020) 
second degree and third degree of entanglement with the normative. A theory is entangled with the nor‑
mative to the second degree ‘if the theory itself entails normative conclusions’. A theory is entangled 
with the normative to the third degree when it ‘has normative consequences, but only alongside other 
(perhaps quite prevalent) normative assumptions’ (Russell 2020, pp. 379–380).
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To give an example, ethics is arguably autonomously normative. Some of its 
truths (assuming that there are ethical truths) seem to themselves consist of norma‑
tive demands, and so to have normative consequences on their own. By contrast, 
physics is, either derivatively normative, or neither autonomously nor derivatively 
normative. Prima facie, no truth of physics consists in a normative demand, and the 
truths of physics do not have as consequences, on their own, normative demands.

Since our specific concern is with the normativity of logic for belief, in what fol‑
lows we are interested in whether the truths of logic have as consequences, on their 
own, normative requirements for belief. Given the central role that MacFarlanian 
bridge principles have played in investigation into the normativity of logic, we will 
focus on the question whether MacFarlanian bridge principles are consequences of 
the truths of logic on their own.53 For if the truths of logic had as consequences, on 
their own, some MacFarlanian bridge principles, that would strongly suggest that 
logic is autonomously normative for belief.

The view that logic is normative might also be understood as the view that it is 
exceptionally normative, in these sense that it is normative in a manner distinct from 
the manner in which the sciences are normative (we are here following (Labukt, 
2021); see, e.g., pp. 1025–1027). The view that logic is exceptionally normative can 
be associated with Frege (1979) (even if Frege doesn’t directly address this issue). 
Anti-exceptionalists about logic’s epistemology and methodology have argued that 
logical theories are in principle revisable in the same way that the sciences are, and 
that rational choice of a logical theory is to be done using the same methodology as 
rational choice of other scientific theories.54 If logic were unexceptionally norma‑
tive, a claim defended by Labukt (2021) and Russell (2020), then this would consti‑
tute another way in which it would be on a par with the other sciences.

The following result is arguably of relevance to the issue whether logic is autono‑
mously normative:55

Theorem  15  No neutral value of any MacFarlanian bridge principle is a conse-
quence of minimal.

It is reasonable to count the minimal principles as auxiliary assumptions since 
these consist of logically necessary facts concerning the relationship between the 
logical, epistemic, doxastic and deontic operators. Still, no neutral value of any 
MacFarlanian bridge principle is a consequence of the minimal principles. The chief 
relevance of Theorem 15 to the question whether logic is autonomously normative is 
as a limitative result. Minimal, which consists of minimal principles about the logi‑
cal, epistemic, doxastic and deontic operators, and their interaction, does not have as 
a consequence any one of the MacFarlanian bridge principles. To be sure, this does 

53  Specifically, the interest will be on the neutral values of the MacFarlanian bridge principles which 
have formulations in �.
54  See (Hjortland, 2017), and the references therein.
55  Theorem 15 is proved in the appendix. Note that it applies to the neutral values of every MacFarlanian 
bridges principle (that has a neutral value), not only to Wo+ and Wo−.
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not deliver the result that logic is not autonomous. For there may be other principles 
which hold of logical necessity and from which the MacFarlanian bridge principles 
follow.56

Other results of ours are also relevant to the issue. Recall that it was an open 
possibility that logic was neither autonomously nor derivatively normative. But we 
have shown that [WO-]nv and [WO+]nv are consequences of the minimal principles 
together with the basic norms. Thus, assuming the truth of the basic norms, these 
results reveal that logic is at least derivatively normative.57

Turning to the question whether logic is exceptionally normative, in what follows 
we will be interested on a particular of way of narrowing down this view. Where 
S is a place-holder for a scientific field, let ⌜□S�⌝ formalise ⌜� is a truth of sci‑
ence S⌝ . Also, let the S-correlate of a MacFarlanian bridge principle � be a principle 
obtained by substituting ⌜□S((p

1 ∧… ∧ pn) → q)⌝ for ‘ □L(q|p1,… , pn) ’ in � . For 
instance, for each science S, S Wo− is WO − ’s S-correlate: 

S Wo−:	� □S(
⋀

i(p
i) → q) → □O(

⋀
i≤n(□Bp

i) → ¬▪Bq)—If it is a truth of science 
S that (q, if p1 and … and pn ), then one epistemically ought to (not disbe‑
lieve that q, if one believes each one of p1 , … , pn).

Say that a MacFarlanian bridge principle � is normatively exceptional just in 
case it is true for all values of its propositional values, even though there is some 
science S—such as physics or psychology—such that � ’s S-correlate is false for 
some values of its propositional values. Our specific interest will be in the question 
whether there is some normatively exceptional MacFarlanian bridge principle. For 
a positive answer to this question would presumably imply that logic is normatively 
exceptional. For instance, showing that Wo− is true and yet there is some science 
S such that S Wo− is false would presumably suffice for establishing logic’s excep‑
tional normativity.

Labukt and Russell argue against the normative exceptionality of, respectively, 
Wo+ and Wo−. Their arguments are usefully seen as applications of the following 
general strategy. Given true bridge principles connecting logical facts with claims 
about what to believe, the strategy consists in finding one or more true epistemic 
norms having as their consequences both those bridge principles and their S-cor‑
relates, for all sciences S. For then, the truth of the epistemic norms establishes the 
truth of all of the bridge principles’ S-correlates, thus revealing that those bridge 
principles’ normative unexceptionality.

Accordingly, Labukt and Russell argue against the normative exceptionality of, 
respectively, Wo+ and Wo− in the following manner. As Labukt notes, for all sci‑
ences S, SWO+ is a consequence of T

→
 . So, Labukt concludes that Wo+ isn’t nor‑

matively exceptional, on the assumption that T
→

 is true. Similarly, as Russell notes, 

56  Among these other principles which may hold of logical necessity are the MacFarlanian bridge princi‑
ples themselves, as it is an open question whether they are logically necessary.
57  See Labukt (2021) and Russell (2020) for further arguments to the effect that logic is derivatively nor‑
mative (but not autonomously normative).
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for all sciences S, S Wo− is a consequence of F
→

 . So, Russell concludes that Wo− 
isn’t normatively exceptional, since F

→
 is true.

As should be clear, arguments based on the strategy we’ve just described are suc‑
cessful only given the truth of the proposed general epistemic norms which have 
as consequences both the relevant bridge principles and their S-correlates, for all 
sciences S. So, one way to undermine arguments based on this strategy is to show 
that the proposed general epistemic norms are implausible. We argue that Russell 
and Labukt’s arguments are problematic precisely because they rely on implausible 
epistemic norms.

In order to do so, it will be helpful to spell out our model-theoretic treatment of 
‘ □S ’, the ⌜truth in S⌝ operator. This operator will function as all other conditional 
operators. We add an extra accessibility relation RS to our frames and assign to ‘ □S ’ 
a conditional operator on propositions satisfying our framework’s typical clause for 
a necessity operator.58 The following principle presumably governs ⌜truth of S⌝ , for 
every science S:59

TS:	� □L(□Sp → p)—It is logically necessary that (p, if p is a truth of science S).

Preliminarily, we show that [SWO-]nv is not a consequence of the basic norms 
even when these are conjoined with the minimal principles and [TS]

nv . Here’s a 
countermodel:

A quick inspection shows that [TS]
nv , the principles in MINIMAL and the 

BASIC NORMS are all true at the model’s frame. Furthermore, □Sp is true at the 
actual world, given how the actual world is the only world S-possible relative to 
the actual world. But p fails to be true at w, and so ▪Bp is true at w, since w is the 
only world doxastically possible relative to w. So, there is some world deontically 
possible relative to the actual world at which ▪Bp is true. Hence, [□O¬□Bp]

nv 
is false at the actual world. Therefore, [□Sp → □O¬□Bp]

nv is itself false at the 
actual world. The countermodel in Fig.  3 further reveals that [SWO+]nv is not 
a consequence of MINIMAL , BASIC NORMS and [TS]

nv . So, pending further prin‑
ciples governing ⌜□S⌝ , our basic norms fail to support the view that Wo+ and 
Wo− are normatively unexceptional.

Of course, this result does not show that Labukt’s and Russell’s arguments 
for the normatively unexceptional character of, respectively, WO+ and WO − are 
unsuccessful. For they defend the truth of WO+ and WO − not on the basis of the 
basic norms, but instead on the basis of T

→
 and F

→
 . So, the question becomes: 

how plausible are T
→

 and F
→

?

58  That is, each operator frame has O assign to □S a conditional operator subject to the following clause: 
O(□S)(Y , z) is true at w iff, for every world v such that v is RS-accessible from w, if all members of Y are 
true at v, then z is true at v.
59  We make no further assumptions concerning ⌜truth of S⌝ . For instance, the following is presumably 
false of at least some sciences S: ⌜p → □Sp⌝ . After all, there are sciences S such that not all truths are 
truths of S.



	 C. Field, B. Jacinto 

1 3

These norms are implausible. According to the evaluative reading of epistemic 
obligation which we have singled out in Sect. 2, what one ought to believe is what 
one does believe whenever one is as one epistemically ought to be. So, as a coun‑
terexample to T

→
 , suppose that Jill is cognitively biased (that is, suppose that Jill 

is cognitively biased at the actual world). Then, it follows from T
→

 that Jill ought 
to believe that she is cognitively biased. That is, it follows from T

→
 that whenever 

Jill is as she epistemically ought to be (i.e., whenever Jill is in an epistemically 
ideal world), she believes that she is cognitively biased. Yet, whenever Jill is as 
she epistemically ought to be, she is not cognitively biased. So, it follows from 
T
→

 that, whenever Jill is as she epistemically ought to be, she believes a false‑
hood—in particular, she believes that she is not as she epistemically ought to be. 
First, observe that this consequence of T

→
 clearly conflicts with the truth norm. 

Moreover, it just seems implausible. Why think that whenever an agent is as she 
epistemically ought to be, she believes that she is not?

The counterexample to F
→

 is similar. Given that Jill is cognitively biased, it 
follows from F

→
 that whenever she is as she epistemically ought to be, she fails 

to disbelieve that she is cognitively biased. First, observe that this consequence 
of F

→
 conflicts with immodesty. For whenever Jill is as she epistemically ought 

to be, she epistemically ought to be cognitively unbiased. So, whenever Jill is as 
she epistemically ought to be, Jill disbelieves that she is biased, by IMMODESTY . 
Furthermore, this consequence of F

→
 just seems implausible. For it is never the 

case that Jill is as she epistemically ought to be and yet is cognitively biased. So, 
why think, then, that it is never the case that Jill as she epistemically ought to be 
and yet disbelieves that she is cognitively biased?

So, Labukt’s and Russell’s arguments against the exceptional normativity of 
Wo+ and Wo− are unsuccessful. For those arguments are based on implausible 
epistemic norms. Of course, this does not show that Wo+ and Wo− are norma‑
tively exceptional. For all we have shown, there may be other general epistemic 
norms which are true and have as consequences SWO+ and S Wo−, for all sci‑
ences S.

There is one aspect of the relation between logic and epistemic obligation that 
we want to highlight, for it gives an indication of a potential source of the norma‑
tive exceptionality of logic—if logic does turn out to be exceptionally normative. 
Recall that our results showing that [WO-]nv and [WO+]nv are consequences of the 
basic norms both presupposed the truth of LO . For instance, if LO were false, then 
an agent might do everything that is required to comply with the [TRUTH NORM]nv 
at an ideal world x while disbelieving a logically necessary truth p, owing in part to 
the fact that x, a world doxastically accessible to her, is a world in which p isn’t true. 
Principle LO, according to which every ideal world is logically possible, rules out 
such a possibility.

So, consider the following analogue of LO, for each science S: 

SO:	� [□L(□Sp → □Op)]
nv – It is logically necessary that (p is epistemically obliga‑

tory, if p is a truth of science S).
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As it turns out, the following result can be shown in a manner similar to the proof 
of Theorem 8:

Theorem 16  [SWO−]nv is a consequence of LO , SO and the [TRUTH NORM]nv.

Now, one thought is that, ultimately, logic is exceptionally normative because LO 
is true whereas some other sciences S are such that SO (and, indeed, [□Sp → □Op] ), 
turns out to be false. Logic is exceptionally normative because every epistemically 
ideal world is logically possible, even though the (actual) truths of some science 
may fail at some epistemically ideal world.60

For instance, consider our previous example involving cognitive biases. Even 
though Jill actually has some cognitive biases that invariably lead her to possess 
false beliefs, she will not possess those biases in at least some epistemically ideal 
worlds. Thus, this particular truth of psychology—that Jill is cognitively biased in 
this particular way—will fail to be true at some (indeed, all) epistemically ideal 
worlds. So, some truths of psychology—true, that is, at the actual world—are argu‑
ably false at some epistemically ideal worlds. Accordingly, SO will be false when 
the science S in question is psychology.61

Fig. 3   Witness to COMBINED THEORY, [T
S
]nv ⊭ [WO-

X
]nv

p

A w

RL,RK ,RB ,RO,RS

RO,RL

RL,RK ,RB ,RO,RS

60  Indeed, there are quick arguments from the minimal principles, the basic norms, and, respectively, 
[WO-]nv and [WO+]nv , to [□Sp → □Op]

nv though we will not go through them here.
61  Some normative anti-exceptionalists may want to reject the counterexample to SO involving Jill’s 
being cognitively biased by adopting an alternative reading of ⌜□S�⌝ as ⌜� is a consequence of the laws 
of science S⌝ . This would allow them to resist the counterexample, as they would reject that the fact that 
Jill is cognitively biased is not a consequence of the laws of psychology.
  Two quick thoughts on this approach. First, if there are sciences S such that the S-correlates of bridge 
principles turn out to be false when, as initially proposed, ‘ □S ’ is understood as ⌜truth of science S⌝ , 
then this arguably shows that logic is normatively exceptional, at least on one natural way of understand‑
ing ‘normatively exceptional’. This thought can be bolstered by noting that the discovery of Neptune was 
certainly a scientific discovery, as are the current discoveries of exoplanets (and as can be the discovery 
that a person is cognitively biased). If these truths do not figure as antecedents of scientific correlates of 
bridge principles, whereas the truths of logic all do, then that would appear to reveal logic’s normative 
exceptionality.
  A second remark is that it is unclear whether scientific laws are even true, the laws of physics included 
(Cartwright, 1980; Lange, 1993). It is also unclear what are scientific laws to begin with: whether these 
consist of those truths that belong to all systems that best combine simplicity and strength, of true rela‑
tions of contingent necessitation between universals, or what not. But, depending on one’s take on the 
nature of scientific laws, SO may seem implausible for at least some sciences anyway.
  For instance, if there are false scientific laws, then this arguably affords the sort of contrast between 
logic and the sciences that may lead one to think that logic is normatively exceptional. If, alternatively, 
the best systems account of laws is true, then, arguably, there are some laws which are false at some 
epistemically ideal worlds, in which case SO is false. It is less clear what to conclude if laws consisted 
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For all that we have said, it is not unreasonable to think that every mathematical 
truth holds at every epistemically ideal world, so that logic is not normative in a 
manner distinct from the way mathematics is normative. Still, the case of a paradig‑
matic science such as physics is not so clear. Does every physical truth—true, that 
is, at the actual world—hold at every epistemically ideal world? If so, then presum‑
ably psychology does not have a physical basis, in the specific sense that logically 
possible worlds that are physically indiscernible–i.e., in which the physical truths 
are exactly the same—may nonetheless be psychologically discernible.62 For Jill 
is cognitively biased at the actual world, but fails to be cognitively biased at every 
epistemically ideal world. This seems an unwelcome consequence of the view that 
every truth of physics holds at every epistemically ideal world, though we leave a 
fuller treatment of this issue for another occasion.63

We again point out that we do not take the considerations which we have here 
presented to show that logic is exceptionally normative. What we have shown is that 
Labukt’s and Russell’s arguments for the normative unexceptionality of Wo+ and 
Wo− are premised on what appear to be false assumptions. We have also singled 
out a principle, principle LO, which, if logic does turn out to be normatively excep‑
tional, promises to afford some insight as to why it is. While LO is arguably true, SO 
appears to be false for some sciences S.

We leave further discussion on logic’s normative status for another occasion. 
There is certainly much more to be said about the issue, and we hope our remarks 
raise a number of interesting questions.

9 � Conclusion

We have examined whether logic is normative for belief through inquiry into the 
interaction between logical, epistemic, doxastic and deontic operators. To do this, 
we formulated a model-theoretic framework with which to inquire into the best way 
of combining these operators, and showed how it can be used to determine particular 

62  Suppose every proposition that is a truth of physics at the actual world is also a truth of physics at 
every epistemically ideal world, and yet there is some truth of physics that is true at some epistemically 
ideal world w but isn’t true at the actual world. Then, its negation will be true at the actual world. So, its 
negation will also be true at w. But this is impossible. (This reasoning assumes, among other things, that 
it is not logically contingent whether a proposition is about the physical facts, that if a proposition about 
the physical facts is false, its negation is true, and that it is not the case that both a proposition and its 
negation are true at a logically possible world).
63  This is not to say that, at every epistemically ideal world w, the physical truths of w are true at w. This 
much is true, and a consequence of TS when the science S is physics. But it is also uninformative and 
irrelevant to the present discussion. After all, [SWO−]nv is not a consequence of TS , the BASIC NORMS 
and MINIMAL.

Footnote 61 (continued)
of true relations of contingent necessitation between universals. In any case, given how a formulation of 
normative antiexceptionalism in terms of lawhood would “open a can of worms”, which we would not be 
able to fully explore in this paper, focusing on the truths of sciences rather than their laws simplifies the 
discussion in welcome ways.
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bridge principles. Furthermore, we carried our investigation in a language without 
boolean connectives, with the aim of making our results available for research at the 
intersection of logical normativity and logical plurality/logical rivalry.

Beginning from epistemic norms—the basic norms—that we found indepen‑
dently plausible, and minimal principles governing the logical, epistemic, doxastic 
and deontic operators, we arrived at a substantive theory of how these operators 
interact. Among the commitments of this theory are the widely discussed MacFarla‑
nian bridge principles Wo+ and Wo−.

We then inquired into whether our framework and results gave us reason to think 
that logic is autonomously normative for belief, and whether it is exceptionally nor‑
mative for belief. We showed that our results offer some insight into the first ques‑
tion, and suggest that the answer to the second question is that logic is exceptionally 
normative—though we also noted that the evidence was far from conclusive.

Additionally, the framework devised here enables clarification of further issues 
relating to interactions between epistemic norms. For example, potential applica‑
tions include theorising about the true epistemic norms, as well as conflicts between 
norms. The model-theoretic framework also makes it possible to assess arguments 
for or against particular logical theories based on the normativity of logic, such as 
arguments to the effect that the law of explosion conflicts with the normativity of 
logic.64

Appendix A

We will start by offering a rigorous characterisation of the notion of neutral value. 
Then, we offer proofs of the results stated in the main text, except for those already 
proven there.

A.1 Neutral Value

We begin by defining the neutral value function for the following fragment of �bool:

Definition 11  (Language �nv ) The set of formulae of �nv consists of the smallest set 
such that: 

1.	 If � is a formula of � , then � is a formula of �nv;
2.	 #((�1 ∧… ∧ �n) → (�1

→ (… → (�m
→ �)))) is a formula of �nv , if �1 , … , �m , 

� , �1 , … , �n are formulae of �nv , and # is an operator of �;
3.	 #((�1 ∧… ∧ �n) → (�1

→ (… → (�m
→ ¬�)))) is a formula of �nv , if �1 , … , �m , 

� , �1 , … , �n are formulae of �nv , and # is a logical, epistemic, doxastic or deontic 
operator of �.

64  See (Priest 1979, p. 297) and (Steinberger, 2016).
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The neutral value function [⋅]nv mapping each formula � of �nv to � ’s neutral 
value is defined as follows:

Definition 12  (Neutral value) Where # is any operator, and #c is # ’s solid version if # 
isn’t solid, and #c is # ’s nonsolid version if # is solid: 

1.	 [�]nv = � , if � is a formula of �;
2.	 [�]nv = #([�]nv|[�1]nv,… , [�n]nv, [�1]nv,… , [�m]nv) , if � is the formula 

#((�1 ∧… ∧ �n) → (�1
→ (… → (�m

→ �)))) of �nv and # is an operator of �;
3.	 [�]nv = #c([�]nv|[�1]nv,… , [�n]nv, [�1]nv,… , [�m]nv) , if � is the formula 

#((�1 ∧… ∧ �n) → (�1
→ (… → (�m

→ ¬�)))) of �nv and # is a logical, epis‑
temic, doxastic or deontic operator of �.

We will now extend [⋅]nv to a larger fragment of � . Let �nv+ be the following 
language:

Definition 13  (Formulae of �nv+ ) The set of formulae of �nv+ con‑
sists of the smallest set that contains the formulae of �nv and such that 
(�1 ∧… ∧ �n) → (�1

→ (… → (�m
→ �))) are all formulae of �nv+ whenever �1 , 

… , �n and �1 , … , �m , � are all formulae of �nv.

Then, the neutral value function is extended to �nv+ in the following manner:

Definition 14  (Extension of the neutral value function) For every formula � of �nv+:

The rationale for extending the neutral value function to �nv+ in the manner speci‑
fied in Definition  14 is that the schema ⌜@p ↔ p⌝ is commonly taken to govern 
the actuality operator. Thus, provided that classical logicians accept ⌜@p ↔ p⌝ , they 
will be committed to the truth of p just in case they are committed to the truth of 
@p. For instance, since classical logicians are committed to the truth of p → p , they 
are also committed to the truth of @(p → p) . But this formula does have a neutral 
value. Specifically, [@(p → p)]nv = @(p|p).

Since no confusion is likely to arise, in the main text we use ‘ [⋅]nv ’ to refer both 
to the original neutral value function [⋅]nv as well as to its extension [⋅]nv+ to the lan‑
guage �nv+ . We now turn to the proof of the paper’s relevant results.

A.2 Proofs

Theorem 1  For all operator frames F  : 

1.	 F ⊨ TL iff F  satisfies logical reflexivity@;
2.	 F ⊨ 4L iff F  satisfies logical transitivity@;

[�]nv+ =

{
nv if � is a formula of �nv

[@(�)]nv otherwise
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3.	 F ⊨ TK iff F  satisfies epistemic reflexivity@;
4.	 F ⊨ KB iff F  satisfies doxastic-epistemic inclusion@;
5.	 F ⊨ DO iff F  satisfies deontic seriality@;
6.	 F ⊨ LO iff F  satisfies logical-deontic inclusion@.

Proof of Theorem 1 

1.	 (⇒ ) Suppose that F ⊨ [□L(□Lp → p)]nv , for an arbitrary operator frame F  , and 
that ARLw , for an arbitrary world w ∈ W . Let M be a model based on F  such 
that V(p) = {x ∈ W ∶ wRLx} . Then, M,w ⊨ □Lp ⇒ M,w ⊨ p , owing to the fact 
that ARLw . Furthermore, M,w ⊨ □Lp , again owing to the fact that ARLw . So, 
M,w ⊨ p . Hence, w ∈ V(p) , and so wRLw . Therefore, ∀x ∈ W(ARLx ⇒ xRLx) . 
( ⇐ ) Suppose that F  is an operator frame such that ∀x ∈ W(ARLx ⇒ xRLx) . 
Let M be an arbitrary model based on M such that ARLw and M,w ⊨ □Lp , 
for an arbitrary w ∈ W . Since ARLw , we have that wRLw and, for every u 
such that wRLu , M, u ⊨ p . So, M,w ⊨ p . So, for every w such that ARLw , 
M,w ⊨ □Lp ⇒ M,w ⊨ p . But ARLA . So, M,A ⊨ [□L(□Lp → p)]nv . Hence, 
F ⊨ [□L(□Lp → p)]nv.

2.	 (⇒ ) We begin by showing that F ⊨ [□L(□Lp → □L□Lp)]
nv only if F  is focused, 

for every operator frame F  . So, suppose that F ⊨ [□L(□Lp → □L□Lp)]
nv 

for an arbitrary operator frame F  . Let M be a model based on F  such 
that V(p) = {x ∶ ARLx} . Then, M,A ⊨ □Lp , since ARLA . Moreover, 
M,A ⊨ □Lp ⇒ M,A ⊨ □L□Lp , as ARLA . So, M,A ⊨ □L□Lp . Now, 
suppose that ARLx and xRLy , for arbitrary x, y ∈ W , Then, M, x ⊨ □Lp , as 
ARLA and ARLx . So, M, y ⊨ p , as ARLx and xRLy . Hence, ARLy . Therefore, 
F ⊨ [□L(□Lp → □L□Lp)]

nv only if F  is a focused operator frame. Now, sup‑
pose that F  is an arbitrary operator frame such that F ⊨ [□L(□Lp → □L□Lp)]

nv , 
ARLx , xRLy and yRLz . Then, ARLy , as F  is focused. Now, let M be a model 
based on F  such that V(p) = {u ∶ xRLu} . Then, M, x ⊨ □Lp ⇒ M, x ⊨ □L□Lp , 
as ARLx and ARLA , and M, x ⊨ □Lp , since ARLx . So, M, x ⊨ □L□Lp . 
So, M, y ⊨ □Lp , as xRLy and ARLx . So, M, z ⊨ p , since yRLz and ARLy . 
S o ,  xRLz  .  H e n c e ,  ∀x, y, z ∈ W(ARLx ⇒ ((xRLy & yRLz) ⇒ xRLz))  . 
( ⇐ ) Suppose that F  is an arbitrary operator frame such that 
∀x, y, z ∈ W(ARLx ⇒ ((xRLy & yRLz) ⇒ xRLz)) . Suppose that an arbitrary 
model M based on F  is such that M, x ⊨ □Lp , for an arbitrary x such that 
ARLx . Suppose also that y and z are arbitrary elements of W such that xRLy and 
yRLz . Then, ARLy , since ARLA . It also follows that xRLz . So, M, z ⊨ p . Hence, 
M, y ⊨ □Lp . So, M, x ⊨ □L□Lp . Therefore, M,A ⊨ [□L(□Lp → □L□Lp)]

nv . 
So, F ⊨ [□L(□Lp → □L□Lp)]

nv.
3.	 (⇒ ) Suppose that F ⊨ [□L(□Kp → p)]nv . Suppose that ARLx , for an 

otherwise arbitrary x ∈ W  . Let M be a model based on F  such that 
V(p) = {w ∶ xRKw} . Then, M, x ⊨ □Kp . So, M, x ⊨ p . Hence, xRKx . So, 
∀x ∈ W(ARLx ⇒ xRKx) . ( ⇐ ) Suppose that F  is an arbitrary operator frame 
such that ∀x ∈ W(ARLx ⇒ xRKx) . Suppose that ARLx , for an arbitrary 
x ∈ W and M, x ⊨ □Kp . So, xRKx . Therefore, M, x ⊨ p , since ARLx . So, 
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M, x ⊨ □Kp ⇒ M, x ⊨ p . Hence, M,A ⊨ [□L(□Kp → p)]nv . Therefore, 
F ⊨ [□L(□Kp → p)]nv.

4.	 (⇒ ) Suppose that F ⊨ [□L(□Kp → □Bp)]
nv , for an arbitrary operator frame F  , 

ARLx , and xRBy , for arbitrary x, y ∈ W . Let M be a model based on F  such that 
V(p) = {w ∶ xRKw} . Then, M, x ⊨ □Kp . So, M, x ⊨ □Bp . Hence, M, y ⊨ p . 
So, xRKy . Therefore, ∀x, y ∈ W((ARLx ⇒ (xRBy ⇒ xRKy)) . ( ⇐ ) Suppose that 
∀x, y ∈ W(ARLx ⇒ (xRBy ⇒ xRKy)) , for an arbitrary operator frame F  , M is 
an arbitrary model based on F  , x is an arbitrary element of W such that ARLx , 
M, x ⊨ □Kp , and xRBy for an arbitrary y ∈ W . Since xRBy , we have that xRKy . 
Hence, M, y ⊨ p . So, M, x ⊨ □Bp . Therefore, M,A ⊨ [□L(□Kp → □Bp)]

nv . 
Hence, F ⊨ [□L(□Kp → □Bp)]

nv.
5.	 (⇒ ) Suppose that F ⊨ [□L(□Op → ◊Op)]

nv , for an arbitrary operator frame 
F  , ARLx , for an otherwise arbitrary x ∈ W , and M is a model based on F  
such that V(p) = {w ∶ xROx} . Then M, x ⊨ □Op . So, M, x ⊨ ◊Op . Hence, 
there is some y such that xROy . So, ∀x ∈ W(ARLx ⇒ ∃y(xROy)) . ( ⇐ ) Sup‑
pose that ∀x ∈ W(ARLx ⇒ ∃y(xROy)) , for some arbitrary operator frame F  , 
M is an arbitrary model based on F  such that ARLx , and M, x ⊨ □Op . So, 
there is some y ∈ W such that xROy . Hence, M, y ⊨ p . So, M, x ⊨ ◊Op . So, 
M,A ⊨ [□L(□Op → ◊Op)]

nv . Therefore, F ⊨ [□L(□Op → ◊Op)]
nv.

6.	 (⇒ ) Suppose that F ⊨ [□L(◊Op → ◊Lp)]
nv , ARLx , xROy , for arbitrary 

x, y ∈ W , and M is a model based on F  such that V(p) = {y} . Then, M, y ⊨ p . 
So, M, x ⊨ ◊Op . So, M, x ⊨ ◊Lp . So, there is some z such that xRLz and 
M, z ⊨ p . Hence, xRLy , as y = z . So, ∀x, y ∈ W(ARLx ⇒ (xROy ⇒ xRLy)) . 
( ⇐ ) Suppose that ∀x, y ∈ W(ARLx ⇒ (xROy ⇒ xRLy)) for an otherwise arbi‑
trary frame F  , ARLx and M, x ⊨ ◊Op . Then, there is some y such that xROy . 
So, xRLy . Therefore, M, x ⊨ ◊Lp . So, M,A ⊨ [□L(◊Op → ◊Lp)]

nv . Hence, 
F ⊨ [□L(◊Op → ◊Lp)]

nv.

Theorem  2  F ⊨ BL iff F  satisfies logical symmetry@, for all focused operator 
frames F .

Proof of Theorem 2  Let F  be an arbitrary focused operator frame.
(⇒ ) Suppose that F ⊨ [□L(p → □L◊Lp)]

nv . Suppose that ARLx and xRLy , for 
arbitrary worlds x, y ∈ W . Then, ARLy , as F  is focused. Let M be a model based 
on F  such that V(p) = {x} . Then, M, x ⊨ p . So, M, x ⊨ □L◊Lp . So, M, y ⊨ ◊Lp . 
Hence, there is some z such that yRLz and M, z ⊨ p . But then, z = x . So, yRLx . 
Therefore, ∀x, y ∈ W(ARLx ⇒ (xRLy ⇒ yRLx));

(⇐ ) Suppose F  is a focused frame such that ∀x, y ∈ W(ARLx ⇒ (xRLy ⇒ yRLx)) , 
M, x ⊨ p , for an arbitrary x ∈ W such that ARLx , and xRLy , for an arbitrary y ∈ W . 
Then, yRLx , and ARLy , as F  is focused. So, M, y ⊨ ◊Lp . So, M, x ⊨ □L◊Lp . 
Hence, M,A ⊨ [□L(p → □L◊Lp)]

nv . Therefore, F ⊨ BL.
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Theorem 3  F ⊨ [TRUTH NORM]nv if and only if F  satisfies the truth norm condition, 
for all operator frames F  such that F ⊨ LO.

Proof of Theorem 3  Suppose that F ⊨ LO , for an arbitrary operator frame F .
(⇒ ) Suppose F ⊨ [TRUTH NORM]nv and AROx , for an arbitrary x ∈ W . 

Then, ARLx by Theorem  1, since F ⊨ LO . Let M be an arbitrary model 
such that V(p) = {w ∶ xRBw} . Then, M, x ⊨ □Bp , as ARLx . So, M, x ⊨ p , 
since F ⊨ [TRUTH NORM]nv and ARLA . Hence, xRBx . Therefore, 
∀x ∈ W(AROx ⇒ xRBx).

(⇐ ) Suppose that ∀x ∈ W(AROx ⇒ xRBx) , AROx , and M, x ⊨ □Bp , for an 
arbitrary model M based on F  and arbitrary x ∈ W . So, xRBx . From Theorem 1 
and F ⊨ LO it follows that ARLx . Hence, M, x ⊨ p , since M, x ⊨ □Bp . Therefore, 
M,A ⊨ [□O(□Bp → p)]nv , since ARLx . Hence, F ⊨ [□O(□Bp → p)]nv.

Theorem  4  F ⊨ [KNOWLEDGE NORM]nv if and only if F  satisfies the knowledge 
norm condition, for all operator frames F  such that F ⊨ LO.

Proof of Theorem 4  Suppose that F ⊨ LO , for an arbitrary operator frame F .
(⇒ ) Suppose that F ⊨ [KNOWLEDGE NORM]nv , AROx , and xRKy , for arbi‑

trary x, y ∈ W . So, ARLx , by Theorem  1, since F ⊨ LO . Let M be an arbi‑
trary model such that V(p) = {w ∶ xRBw} . M, x ⊨ □Bp ⇒ M, x ⊨ □Kp , since 
F ⊨ [KNOWLEDGE NORM]nv , AROx and ARLA . Also, M, x ⊨ □Bp , since 
ARLx . Hence, M, x ⊨ □Kp . So, M, y ⊨ p , as ARLx . So, xRBy . Therefore, 
∀x, y ∈ W(AROx ⇒ (xRKy ⇒ xRBy)).

(⇐ ) Suppose that ∀x, y ∈ W(AROx ⇒ (xRKy ⇒ xRBy)) , AROx , M, x ⊨ □Bp 
and xRKy , for arbitrary x, y ∈ W and an arbitrary model M . xRBy , since 
AROx and xRKy . Furthermore, ARLx , since AROx , by F ⊨ LO and Theo‑
rem  1. So, M, y ⊨ p , since ARLx . Therefore, M, x ⊨ □Kp , since ARLx . Hence, 
M, x ⊨ □Bp ⇒ M, x ⊨ □Kp . So, M,A ⊨ [□O(□Bp → □Kp)]

nv , as ARLA . 
Hence, F ⊨ [□O(□Bp → □Kp)]

nv.

We omit the proof of Theorem 5, as it follows closely that of Theorem 4.

Theorem 6 

1.	 The [TRUTH NORM]nv is not a consequence of MINIMAL together with the 
[IMMODESTY NORM]nv;

2.	 The [IMMODESTY NORM]nv is not a consequence of MINIMAL together with the 
[KNOWLEDGE NORM]nv;

3.	 The [KNOWLEDGE NORM]nv is not a consequence of MINIMAL together with 
BASIC NORMS − {[KNOWLEDGE NORM]nv};

4.	 The [TRUTH NORM]nv is a consequence of TK , LO and the [KNOWLEDGE NORM]nv.
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Proof of Theorem 6 

1.	 Consider the following operator frame F :

	   It is a routine exercise to check that F  satisfies the frame correspond‑
ents of all the minimal principles. So, F ⊨ MINIMAL , by Theorem  1 and 
Corollary  1. Similarly, F  satisfies the immodesty norm condition, and so 
F ⊨ [IMMODESTY NORM]nv , by Theorem 5. But AROw and yet it is not the 
case that wRBw . Hence, F  does not satisfy the truth norm condition. So, 
F ⊭ [TRUTH NORM]nv , by Theorem 3.

2.	 Consider the following operator frame F :

	   It is a routine exercise to check that F  satisfies the frame correspond‑
ents of all the minimal principles. So, F ⊨ MINIMAL , by Theorem  1 and 
Corollary  1. Similarly, F  satisfies the knowledge norm condition, and so 
F ⊨ [KNOWLEDGE NORM]nv , by Theorem  4. But AROw , wRBw , and yet 
¬wROw . Hence, F  does not satisfy the immodesty norm condition. So, 
F ⊭ [IMMODESTY NORM]nv , by Theorem 3.

3.	 Consider the following operator frame F :

	   It is a routine exercise to check that F  satisfies the frame correspondents of 
all the minimal principles. So, F ⊨ MINIMAL , by Theorem 1 and Corollary 1. 
Similarly, F  satisfies the truth norm and the immodesty norm conditions, and so 
F ⊨ [TRUTH NORM]nv and F ⊨ [IMMODESTY NORM]nv , by Theorems 3 and 5. But 
AROw , wRKu , and yet ¬wRBu . Hence, F  does not satisfy the knowledge norm 
condition. So, F ⊭ [KNOWLEDGE NORM]nv , by Theorem 4.

4.	 Suppose F ⊨ TK  , F ⊨ LO , and F ⊨ [KNOWLEDGE NORM]nv , and AROx , 
for an arbitrary x ∈ W . Then, ARLx by Theorem 1 and the fact that ARLA 
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(since F ⊨ LO ). So, xRKx , by Theorem 1 and the assumption that F ⊨ TK . So, 
xRBx , by Theorem 4 and the assumption that F ⊨ [KNOWLEDGE NORM]nv . So, 
∀x ∈ W(AROx ⇒ xRBx) . So, F ⊨ [TRUTH NORM]nv , by Theorem 3.

Theorem 11 

1.	 F ⊨ [F
→
]nv if and only if F  satisfies the F

→
 condition, for every operator frame 

F  such that F ⊨ LO.
2.	 F ⊨ [T

→
]nv if and only if F  satisfies the T

→
 condition, for every operator frame 

F  such that F ⊨ LO.

Proof of Theorem 11.1 

1.	 Suppose that F  is an arbitrary operator frame such that F ⊨ LO . ( ⇒ ) Suppose 
that F ⊨ [F

→
]nv , and AROx for an arbitrary x ∈ W . Then, ARLx , by Theorem 1. 

Let M be a model based on F  such that V(p) = {A} . Then, M,A ⊨ p . So, 
M,A ⊨ ▪O▪Bp . So, M, x ⊭ ▪Bp , since ARLA and AROx . Then, there is some y 
such that xRBy and M, y ⊨ p , since ARLx . So, y ∈ {A} . Hence, y = A . There‑
fore, ∀x ∈ W(AROx ⇒ xRBA) . ( ⇐ ) Suppose that ∀x ∈ W(AROx ⇒ xRBA) . 
Suppose that M,A ⊨ p and AROx for an arbitrary model M based on F  and 
an arbitrary x ∈ W . Then xRBA . So, there is some y such that xRBA and 
M, y ⊨ p . Therefore, M, x ⊭ ▪Bp , as F ⊨ LO , and so ARLx , by Theorem 1. So, 
M,A ⊨ ▪O▪Bp , since x was an arbitrary world such that AROx and ARLx . So, 
F ⊨ [F

→
]nv.

Theorem 12  [WO−]nv is a consequence of [F
→
]nv and LO.

Proof of Theorem  12  Suppose F ⊨ LO , and F ⊨ [F
→
]nv , M,A ⊨ □L(q|p) for 

an arbitrary model M based on F  , and x is an arbitrary world such that AROx 
and M, x ⊨ □Bp

i , for all members pi of p . So, ARLx , by LO and Theorem  1. 
Furthermore, xRBA , by Theorem  11, as F ⊨ [F

→
]nv . So, M,A ⊨ pi , for all 

pi of p . So, M,A ⊨ q . So, ∃y ∈ W(xRBy & M, y ⊨ q) . So, M, x ⊭ ▪Bq . So, 
M,A ⊨ [□O(

⋀
i≤n □Bp

i
→ ¬▪Bq)]

nv . So, F ⊨ [WO-]nv.

Theorem 13  [WO+]nv is a consequence of [T
→
]nv and LO.

Proof of Theorem 13  Suppose that □L(q|p) is true at the actual world. Suppose fur‑
thermore that x is an arbitrary world deontically possible relative to the actual world 
such that □Bp

i is true at x, for all members pi of p . So, x is logically possible rela‑
tive to the actual world, by LO and Theorem 1. Suppose that y is an arbitrary world 
doxastically possible relative to x. Then, all the pi s are true at y. But y is just the 
actual world, by Theorem 11 and [T

→
]nv . Since the actual world is logically possible 

relative to itself, and all the pi s are true at the actual world, we have that q is true at 
the actual world, since □L(q|p) is true at the actual world. So, q is true at y. Hence, 
□Bq is true at x, since y was assumed to be an arbitrary world doxastically possible 
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relative to x. So, [□O(
⋀

□Bp
i
→ □Bq)]

nv is true at the actual world, since the actual 
world is logically possible relative to itself and x was assumed to be an arbitrary 
world deontically possible relative to the actual world. So, [WO+]nv is true at the 
actual world.

As announced, we will now prove a number of results which culminate in a 
proof of Theorem 14. We start by briefly noting the neutral values of the remain‑
ing MacFarlanian bridge principles of interest:

•	 [BO+]nv = [□L(q�p) → (
⋀

i≤n
(□O□Bp

i) → □O□Bq)]
nv = @(□O□Bq�□L(q�p),□O□Bp)

•	 [BO-]nv = [□L(q�p) → (
⋀

i≤n
(□O□Bp

i) → □O¬▪Bq)]
nv = @(▪O▪Bq�□L(q�p),□O□Bp)

•	 [BP+]nv = [□L(q�p) → (
⋀

i≤n
(◊O□Bp

i) → ◊O□Bq)]
nv = @(◊O□Bq�□L(q�p),◊O□Bp)

•	 [BP-]nv = [□L(q�p) → (
⋀

i≤n
(◊O□Bp

i) → ◊O¬▪Bq)]
nv = @(⧫O▪Bq�□L(q�p),◊O□Bp)

•	 [WP+]nv = [□L(q�p) → ◊O(
⋀

i≤n(□Bp
i) → ◊Bq)]

nv = @(◊O(◊Bq�□Bp)�□L(q�p))
•	 [WP-]nv = [□L(q�p) → ◊O(

⋀
i≤n(□Bp

i) → ¬▪Bq)]
nv = @(⧫O(⧫Bq�□Bp)�□L(q�p))

•	 [CO+]nv = [□L(q�p) → (
⋀

i≤n(□Bp
i) → □O□Bq)]

nv = @(□O□Bq�□L(q�p),□Bp)

•	 [CO-]nv = [□L(q�p) → (
⋀

i≤n(□Bp
i) → □O¬▪Bq)]

nv = @(▪O▪Bq�□L(q�p),□Bp)

•	 [CP+]nv = [□L(q�p) → (
⋀

i≤n(□Bp
i) → ◊O□Bq)]

nv = @(◊O□Bq�□L(q�p),□Bp)

•	 [CP-]nv = [□L(q�p) → (
⋀

i≤n(□Bp
i) → ◊O¬▪Bq)]

nv = @(⧫O▪Bq�□L(q�p),□Bp)

We now turn to the proof of the relevant theorems.

Theorem 17  The neutral value of the K-variant of each MacFarlanian bridge prin-
ciple is, when defined, a consequence of the neutral value of that bridge principle 
together with TK.

Proof of Theorem  17  It suffices to show that F ⊨ TK and F ⊨ [□L(q|p) → 𝜑]nv 
only if F ⊨ [□K□L(q|p) → 𝜑]nv , for every operator frame F  . So, suppose that 
F ⊨ TK and F ⊨ [□L(q|p) → 𝜑]nv . Then, ARKA , as ARLA , by Theorem 1 and the 
assumption that F ⊨ TK . Moreover, suppose that M,A ⊨ □K□L(q|p) , for an arbi‑
trary model M based on F  . Then, M,A ⊨ □L(q|p) . But F ⊨ [□L(q|p) → 𝜑]nv , by 
assumption. So, M,A ⊨ [□K□L(q|p) → 𝜑]nv . Hence, F ⊨ [□K□L(q|p) → 𝜑]nv.

Theorem 18 

1.	 [BO-]nv is a consequence of [WO−]nv;
2.	 [WP-]nv is a consequence of [WO−]nv together with DO.

Proof of Theorem 18 

1.	 Suppose that F ⊨ [WO-]nv . Suppose that M is an arbitrary model based on F  such 
that M,A ⊨ □L(q|p) , M,A ⊨ □O□Bp

i , for all members pi of p , and AROx , for 
an arbitrary x ∈ W . Then, M, x ⊨ □Bp

i , for all members pi of p , since ARLA . 
Moreover, M, x ⊨ □Bp

i for all members pi of p only if M, x ⊭ ▪Bq , as F ⊨ [WO

-]nv . So, M, x ⊭ ▪Bq . Hence, F ⊨ [□L(q�p) → (
⋀

i≤n(□O□Bp
i) → □O¬▪Bq)]

nv.



1 3

Bridge Principles and Epistemic Norms﻿	

2.	 Suppose that F ⊨ [WO-]nv . Also, suppose that M is an arbitrary model based on 
F  and that M,A ⊨ □L(q|p) . Then, M,A ⊨ [□O(

⋀
i≤n(□Bp

i) → ¬▪Bq)]
nv . So, 

for every x ∈ W such that AROx , M, x ⊨ □Bp
i , for all members pi of p , only if 

M, x ⊭ ▪Bq . By Theorem 1 and the assumption that F ⊨ DO , there is some x such 
that AROx . So, there is some x such that AROx and M, x ⊨ □Bq if M, x ⊨ □Bp

i , 
for all members pi of p . Hence, F ⊨ [□L(q�p) → ◊O(

⋀
(□Bp

i) → ¬▪Bq)]
nv.

Theorem 19 

1.	 [BO+]nv is a consequence of [WO+]nv;
2.	 [WP+]nv is a consequence of [WO+]nv together with DO.

Proof of Theorem 19 

1.	 Suppose that F ⊨ [WO+]nv , for an otherwise arbitrary operator frame F  , 
and M is an arbitrary model based on F  such that M,A ⊨ □L(q|p) and 
M,A ⊨ (□O□Bp

i) , for each pi in p . Finally, suppose that AROx , for an arbi‑
trary x ∈ W . Since F ⊨ [WO+]nv , we have that M, x ⊨ □Bq if M, x ⊨ □Bp

i , for 
every member pi of p , since ARLA . But M, x ⊨ □Bp

i , for every member pi of 
p , since M,A ⊨ □O(□Bp

i) , for each member pi of p . Hence, M, x ⊨ □Bq . So, 
M,A ⊨ □O□Bq , as x was assumed to be an arbitrary world deontically possible 
relative to A . So, F ⊨ [□L(q�p) → (

⋀
i(□O□Bp

i) → □O□Bq)]
nv.

2.	 Suppose that F ⊨ [WO+]nv , for an otherwise arbitrary operator frame F  , 
and that F ⊨ DO . Suppose furthermore that M,A ⊨ □L(q|p) , for an arbi‑
trary model M based on F  . So, there is some x ∈ W such that AROx , by 
Theorem  1, since F ⊨ DO and ARLA . Since F ⊨ [WO+]nv , we have that 
M,A ⊨ [□O(

⋀
i(□Bp

i) → □Bq)]
nv , and thus, that M, x ⊨ □Bq if M, x ⊨ □Bp

i , 
for every member pi of p . Hence, M,A ⊨ [◊O(

⋀
i(□Bp

i) → □Bq)]
nv . Therefore, 

F ⊨ [□L(q�p) → ◊O(
⋀

i(□Bp
i) → □Bq)]

nv.

Theorem 20  None of [CO+]nv , [CO-]nv , [CP+]nv , [CP-]nv , [BP+]nv , [BP-]nv , and none 
of their k-variants, is a joint consequence of the minimal principles and the basic 
norms.

Proof of Theorem  20  In light of Theorems  1, 4, 6, 17 and Corollary  1, it suffices 
to show that, for each one of [CO+K]nv , [CO-K]nv , [CP+K]nv , [CP-K]nv , [BP+K]nv , 
[BP-K]nv , there is a model M based on an operator frame F  such that the principle 
is false at M even though F  satisfies all of logical reflexivity@, epistemic reflexiv‑
ity@, doxastic seriality@, logical-deontic inclusion@, logical symmetry@, logical 
transitivity@, the knowledge norm condition and the immodesty norm condition. 
So, consider the following model M:
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It is a routine exercise to check that M is based on a frame that satisfies all of 
logical reflexivity@, epistemic reflexivity@, doxastic seriality@, logical-deontic 
inclusion@, logical symmetry@, logical transitivity@, the knowledge norm condi‑
tion and the immodesty norm condition. Moreover, it is clear that M,A ⊨ □L(p|p) , 
M,A ⊨ □K□L(p|p) and that M,A ⊨ □Bp.

•	 In order to show that M,A ⊭ [CO+K]nv it suffices to show that 
M,A ⊭ □O□Bp . But this is a straightforward result, since AROw , wRBw , 
M,w ⊭ p and ARLw;

•	 In order to show that M,A ⊭ [CO-K]nv it suffices to show that 
M,A ⊭ [□O¬▪Bp]

nv . Since w is the only world doxastically accessible to w 
and M,w ⊭ p it follows that M,w ⊨ ▪Bp . So, there is some world w such that 
AROw and M,w ⊨ ▪Bp ; Hence, M,A ⊭ [□O¬▪Bp]

nv.
•	 In order to show that M,A ⊭ [CP+K]nv it suffices to show that 

M,A ⊭ ◊O□Bp . As already seen, M,w ⊭ □Bp . But w is the only x such that 
AROx . So, M,A ⊭ ◊O□Bp;

•	 In order to show that M ⊭ [CP-K]nv it suffices to show that 
M,A ⊭ [◊O¬▪Bp]

nv . As already seen, M,w ⊨ ▪Bp . But w is the only world x 
such that AROx . So, M,A ⊭ [◊O¬▪Bp]

nv.

Counterexamples to [BP+]nv and [BP-]nv require considering a different model N :

It is a routine exercise to check that N  is based on a frame that satisfies all of log‑
ical reflexivity@, epistemic reflexivity@, doxastic seriality@, logical-deontic inclu‑
sion@, logical symmetry@, logical transitivity@, the knowledge norm condition 
and the immodesty norm condition. Moreover, it is clear that N,A ⊨ □L(r|p, q) , 
N,w ⊨ □L(r|p, q) , and N, u ⊨ □L(r|p, q) . So, N,A ⊨ □K□L(r|p, q) . Observe 
also that N,w ⊨ □Bp , since w is the only world x such that wRBx , and ARLw . So, 
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N,A ⊨ ◊O□Bp , since AROw and ARLA . Finally, observe that, by symmetrical 
reasoning, we have that N,A ⊨ ◊O□Bq.

Now, w is the only world x such that wRBx , M,w ⊭ r , and ARLw . So, 
M,w ⊭ □Br and M,w ⊨ ▪Br . By symmetrical reasoning, we have that 
M, u ⊭ □Br and M, u ⊨ ▪Br . So, M,A ⊭ ◊□Br , and M,A ⊭ [◊¬▪Br]

nv . 
Therefore, M,A ⊭ [□L(r|p, q) → ((◊O□Bp ∧◊O□Bq) → ◊O□Br)]

nv and 
M,A ⊭ [□L(r|p, q) → ((◊O□Bp ∧◊O□Bq) → ◊O¬▪Br)]

nv.

We now prove Theorem 14, here restated:

Theorem  14  The MacFarlanian bridge principles [WO+]nv , [WO+K]nv , [WO−]nv , 
[WO-K]nv , [WP+]nv , [WP+K]nv , [WP-]nv , [WP-K]nv , [BO+]nv , [BO+K]nv , [BO-]nv 
and [BO-K]nv are all commitments of the combined theory. No other MacFarlanian 
bridge principle is a commitment of the combined theory.

Proof of Theorem 14  Theorem 14 is a straightforward corollary of Theorems 8, 10, 
17, 18, 19, and 20.

We conclude with the proof of Theorem 15, here restated:

Theorem  15  No neutral value of any MacFarlanian bridge principle is a conse-
quence of minimal.

Proof of Theorem 15  Theorems 7 and 9 reveal that neither [WO-]nv nor [WO+]nv are 
among the consequences of minimal. More generally, the countermodels used in the 
proofs of Theorems 7 and 9 are also countermodels to respectively, bridge principles 
[WP-]nv and [BO-]nv , and bridge principles [WP+]nv and [BO+]nv . So, the following 
result is an easy corollary of these facts together with Theorems 14 and 17.
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you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com‑
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material. If material is not included in the article’s Creative Commons licence and your intended use is 
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