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Abstract

Can stable regularities be explained without appealing to governing laws or any other modal

notion? In this paper, I consider what I will call a ‘Humean system’—a generic dynamical system

without guiding laws—and assess whether it could display stable regularities. First, I present what can

be interpreted as an account of the rise of stable regularities, following from Strevens [2003], which

has been applied to explain the patterns of complex systems (such as those from meteorology and

statistical mechanics). Second, since this account presupposes that the underlying dynamics displays

deterministic chaos, I assess whether it can be adapted to cases where the underlying dynamics is

not chaotic but truly random—that is, cases where there is no dynamics guiding the time evolution

of the system. If this is so, the resulting stable, apparently non-accidental regularities are the fruit of

what can be called statistical necessity rather than of a primitive physical necessity.
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1 Introduction

Some regularities in the world do not seem to be accidental. Their traditional explanation, then, appeals

to the existence of laws of nature. However, under philosophical scrutiny the notion of law of nature

turns out to be mysterious. Philosophers have tried to reduce it to other notions (for example, necessity

relations, propensities, or causation). Still, some of us felt that little was gained, since these are still

modal notions that postulate a mysterious primitive physical necessity in our ontology. Thus, some have

sought a reductionist account of laws of nature to something non-modal. Associated with David Hume’s

skepticism towards necessary connections, such an account is known as the ‘Best System Account’ (Mill,

1884; Lewis, 1999; Earman and Roberts, 2005; Cohen and Callender, 2009). According to it, the laws of

nature (and any modal notion) supervene on the Humean mosaic, that is, on the vast non-modal spatio-

temporal mosaic of local matters of particular fact. The Humean does not confer physical necessity on

the Humean mosaic and thus neither onto the mosaic’s time evolution; in other words, laws do not

govern the mosaic’s trajectory through state-space.

Now, some Humeans consider that there is no need to explain the abundance of the apparently non-

accidental regular behaviour ubiquitous in our Humean mosaic, such as that described by the current

laws of physics. Yet, others among us �nd this too quick, to say the least. Our Humean mosaic displays

some regularities that are extremely stable, even exceptionless. Thus for instance Foster [1983, 89] �nds

that something is missing in Humean or ‘de�ationary’ accounts (see also Carroll, 2008, 2016):

“The past consistency of gravitational behavior calls for some explanation. For given the in�nite

variety of ways in which bodies might have behaved non-gravitationally and, more importantly, the

innumerable occasions on which some form of non-gravitational behavior might have occurred and
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been detected, the consistency would be an astonishing coincidence if it were merely accidental – so

astonishing as to make the accident-hypothesis quite literally incredible.”

In this paper I share the Humean spirit in that I do not commit myself to any genuine physical

necessity; however, I consider that the “cosmic coincidence” of the empirically acknowledged extremely

stable regularities demands, or at least welcomes, an explanation.
1

Accordingly, in this paper I address the following question: can stable regularities be explained without

appealing to governing laws? A positive answer—not presupposing primitive causation, propensities, or

any such modal notion—would complement de�ationary accounts of physical necessity.

I wish to start by suggesting that an answer to the question, be it positive or negative, could be

sought in the �elds of dynamical systems theory and probability theory, in particular in the stability

results of dynamical systems theory and the convergence results of the theory of stochastic processes, both

�elds which have barely been explored in philosophy.

In this paper, in fact, I study the formation of stable regularities through one such mathematical

result, the so-called ‘method of arbitrary functions’ (MAF). I assess whether the results of MAF—coarse-

grained stable patterns—could hold in scenarios lacking a guiding dynamics.

Accordingly, in Section 3 I reconstruct how MAF accounts for coarse-grained stable patterns in deter-

ministic chaotic systems. I refer to work by Strevens [2003] that generalizes the application conditions of

the method and applies it to the domain of complex systems sciences, such as meteorology and statistical

mechanics.

Before that, in Section 2, I characterize a physical system that lacks guiding laws. Drawing from

dynamical systems theory, I characterize a physical system that lacks guiding laws in terms of all its

possible state-space trajectories.2 Such a ‘Humean system’, as I will call it, can be described in terms of

the mathematical notion of randomness of a process. In Appendix A I complement this characterization

with further technical details.

In Section 4, then, I assess whether the results of MAF could also obtain in such a system without

guiding laws.

I �rst argue that in MAF the particular form of the assumed laws—the “governing” di�erential

equations—is irrelevant as long as the dynamics is chaotic. More speci�cally, I propose a way to meet

the two conditions required by MAF without assuming any dynamical property (in §4.1 and §4.2 respec-

1
For a defense that even the Humean should demand an explanation of the extremely speci�c arrangement of the Humean

mosaic, see Filomeno [20xxa,x].

2
The state-space of a physical system is the set of its possible states, where a state is a set of values for all of the system’s

variables. A state is represented as a point in the state-space, and a trajectory of successive points represents the system’s time

evolution. A system is to be understood as is standard in physics, that is, a model of a portion of the universe, which can also

represent the whole universe. Hence, the Humean mosaic (as it includes a temporal dimension) corresponds to the trajectory

in state-space of a point representing the state of the whole universe. More details in Section 2 and Appendix A.
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tively). These two conditions are those that the MAF literature assumes in standard examples.

This leaves, then, the required dynamical property of chaos. Yet as I spell out in §4.3 (and Appendix

B), this property is unproblematic. The underlying reason is that chaos is required for the explanation of

stable patterns in complex systems sciences precisely because a chaotic guiding dynamics produces (rel-

ative to relevant variables and a su�ciently coarse-grained description) a random-looking distribution

among the possible values. And now, instead of a chaotic guiding dynamics, we explicitly postulate the

desired randomness. We just postulate a randomly generated state-space trajectory which, as I spell out

below, typically is random-looking.

Finally, in the Conclusion (Section 5) I discuss whether the results presented could be signi�cant for

metaphysical debates on laws of nature. On the one hand, this paper allows us to see how di�cult is it for

de�ationist accounts of laws to provide an explanation of lawful behaviour. This upshot aims to highlight

a serious di�culty in de�ationist accounts mostly neglected in the literature. On the other hand, a

proposal to meet this di�culty is o�ered: the results presented aim to provide a possible explanation of

the rise of stable regularities from non-dynamical conditions.

Now, the signi�cance of this proposal is proportional to the extent that the conditions assumed are

completely non-dynamical. In the best case, the conditions are completely non-dynamical, in that they

can be justi�ed without presupposing any governing dynamics—for instance along the lines proposed in

Section 4. However, it is unclear that my proposal could be completely non-dynamical, I object in Section

5. So, while I think that it would not be cautious to discard the best case since the objections might be

addressed in future research (pursuing another non-dynamical justi�cation of the conditions, e.g. seek-

ing another reductive explanation or justifying them a privileged status), I consider that the conditions

are not completely non-dynamical. This is a worse, yet less controversial, case, in which we have arrived

to two conditions, dynamical to some extent, which su�ce to account for stable regularities. Even in

this case, I argue, the resulting proposal would be of interest to Humean (or de�ationist, more generally)

accounts of physical necessity. For as we will see, a Humean would regard as more intelligible, and of

less modal import, the postulation of such conditions rather than the postulation of a fully determinate

set of speci�c governing laws.

2 Preliminary De�nitions

Contemporary Humean metaphysics does not address how to model a scenario without governing laws—

it assumes that the whole Humean mosaic is a brute fact. Here instead I address such a scenario, which I

call ‘Humean’ because of the stipulated lack of any physical necessity. It is convenient throughout what

follows to keep in mind the Humean view on laws and to express the scenario under study in those

terms. To characterize a scenario without guiding laws we have to consider all the possible trajectories

that a generic physical system can display through its state-space. From a Humean point of view, that

4



is to say that for any initial condition each of the trajectories has a corresponding best induction which

results in a set of axioms—the Humean laws—that best describe such a trajectory.

There is in principle no restriction on how the trajectory evolves. It is not generated or governed by

any dynamics. It is, we will say, randomly generated. Accordingly, a physical system without governing

laws can be described in terms of the mathematical notion of randomness. We must specify now which

speci�c notion of randomness we refer to.

2.1 Lack of Guiding Laws in Terms of Process Randomness

Two senses of randomness are distinguished in the mathematical literature. One is the so-called process

(or genesis) sense; the other, the product (or performance) sense. The product sense refers to a feature of

a sequence that has occurred previously; it is a judgement as to whether the resulting outcomes, as they

appear, present certain characteristics that warrant the sequence meriting the quali�cation of random.

This sense has been historically formalized by mathematicians in terms of: 1) complexity; 2) disorder ; and

3) typicality.
3

Additionally, Schnorr’s theorem proves that the three de�nitions turn out to be equivalent

[Eagle, 2012, §2.3].

The process sense, meanwhile, is in principle orthogonal to the appearance of the outcomes of a

sequence. It is related to the process that generates an outcome: with its generation. Earman [1986,

137] describes the process sense of randomness as describing a process that is “without principle, without

guidance of laws” (my italics), whereas the product sense describes an output that is “disordered or

lacking in pattern” (see also Berkovitz et al. 2006, 666).

Hence, a scenario that lacks governing laws is to be described by the process sense. The resulting

domain of possible trajectories of a randomly generated (i.e. process-random) dynamics is the entire

possibility space of trajectories, thus coinciding with the characterization laid out above in terms of all

possible state-space trajectories.

One distinctive property which a process-random system possesses is that the state at time t is

independent of any states at any other time. In a model with discrete time instants, the previous states

(including the present) xt ,xt−1, ...x0 are irrelevant for determining the successive state xt+1. So-called

Bernoulli processes are commonly used to model real systems that are governed by laws but that their

states at di�erent times are independent. In our model, we will explicitly postulate that each state is

independent of the others. Throughout the paper we will come to know more about what a system

without governing laws amounts to; especially in §4.1, where we will see the close relationship between

process and product randomness, and in §4.3, where we will see the relationship of both notions of

randomness with chaos. More speci�cally, I include in Appendix A a formal model of a generic dynamical

3
For details on how these 3 notions are mathematically de�ned see, e.g., Earman [1986, Ch. VIII], Dasgupta [2011], Volchan

[2002], or Eagle [2012, §2].
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system whose time evolution follows according to the Bernoulli property: the so-called Bernoulli scheme.

The present characterization, which considers that the fundamental time evolution is randomly gen-

erated and thus considers all possible trajectories, shares similarities with characterizations found in

physics, worth exploring elsewhere.
4

A caveat on the lack of constraints in the state-space trajectory is worth mentioning now. Given that

many interesting results in support and against the rise of coarse-grained patterns hold assuming cer-

tain constraints on the dynamics space (for example in the so-called Hamiltonian dynamical systems), it

might be worth exploring also such scenarios, which I brie�y survey in the appendix B. Then, however,

their philosophical signi�cance for accounts of laws of nature should be reassessed, because such scenar-

ios assume what seems to be some dynamical condition. For instance, Hamiltonian dynamical systems,

extensively studied and showing several potentially signi�cant results of stability, assume the principle

of conservation of energy. To what extent it would be worth exploring an account of lawful behaviour

which presupposes the principle of conservation of energy? This constraint would in fact threaten to

limit the scope of the project.

Still, let me suggest two lines of response here. (1) Such conservation principle could be in turn jus-

ti�ed by other reasons, as in fact has been historically attempted (for a survey of (disputable) historical

attempts see Darrigol, 2014, ch.3). For instance, one could (1.a) confer a privileged status to this conser-

vation principle, sometimes considered a meta-law, or (1.b) seek a non-dynamical interpretation of the

principle along the lines suggested in §4.2.3, where it is remarked that the spacetime structure leads to

certain symmetries, and the speci�c symmetry of time-translation leads to the conservation of energy

(by Noether’s theorem). (2) Otherwise, one can just assume the principle and argue why the account still

is philosophically signi�cant for the metaphysical debates on laws of nature. Still in this case, as I argue

in Section 5 and appendix A, the results can be signi�cant for de�ationist accounts of physical necessity

and worth exploring in future research.

4
In physics, certain projects model the lawless scenario following a similar strategy as well as seeking a similar goal:

projects seeking the derivation of laws from what they call a “random dynamics” and projects concerning entropic forces.

According to the former, all complex Lagrangians lead in the low-energy limit to the laws of particle physics [Froggatt and

Nielsen, 1991, Froggatt and Nielsen, 2002, Chadha and Nielsen, 1983, Chkareuli et al., 2011]. See also Mukohyama and Uzan

[2013], Jacobson and Wall [2010]. Similarly, according to the (speculative) projects of entropic forces, allegedly fundamental

forces (such as gravity) are explained not as fundamental but as emergent, arising from the statistical behaviour of lower-

level degrees of freedom; see Verlinde [2011, 2017] or the more elaborated derivation of the Einstein �eld equations from

thermodynamic assumptions of Jacobson [1995]. Previously, Wheeler proposed the idea of “law without law” [Wheeler, 1983,

Deutsch, 1986]. According to him, chaos and unknown regulating principle(s) lead to approximate laws. Cf. also the research on

chaotic cosmologies [Linde, 1983, Misner, 1969, Barrow, 1977], which assumes an undetermined fundamental chaotic dynamics.

Finally, despite substantial di�erences, a proposal for the emergence of laws from a lawless level can be traced back to the

(metaphysical) ‘evolutionary cosmology’ of C. S. Peirce [Peirce, 1867, Reynolds, 2002].
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2.2 Chaos

The application of MAF requires certain conditions to hold. Drawing from Strevens [2003, 2013], I appeal

to su�cient conditions. As we will see in the next section, one of these conditions is chaos. There is

no common shared de�nition of chaos, but fortunately we can leave aside these debates by specifying

the feature that we will need: sensitive dependence on initial conditions [Strogatz, 1994, Hasselblatt and

Katok, 2003]. That is, in a chaotic dynamical system arbitrarily small variations in the initial conditions

become magni�ed over time—what is also known as divergence of nearby trajectories (we will not need

the divergence to be exponential).
5

We will therefore refer to chaos, although future research might show that this condition for MAF

can be replaced by the weaker condition of ergodicity: the condition that the system’s trajectory through

state-space visits regions of the same volume with the same frequency.
6

3 The Method of Arbitrary Functions

MAF dates back to Von Kries [1886] and Poincaré [1896]; yet I focus on the recent treatment carried out

by Strevens [2003].
7

As we will see, MAF resembles approaches found in the foundations of statistical

mechanics: (1) ergodic theory; (2) what U�nk [2006, 135] calls ‘coarse-graining stochastic dynamics’;

and (3) ‘typicality’ approaches to equilibrium, especially when the typicality of dynamics is stressed, as

in [Frigg, 2009]. Besides, there are results similar to those that MAF yields, whose signi�cance could be

explored elsewhere:

1. in dynamical systems theory, results of stability (and instability) and periodicity (and aperiodicity)

of trajectories.
8

5
Other characterizations further demand aperiodic long-term behaviour [Strogatz, 1994, 323]; topological mixing; the

system exhibiting dense periodic orbits [Hasselblatt and Katok, 2003]; autocorrelations vanishing in the in�nite-time limit;

continuous power spectra; positive Liapunov exponents; and the presence of strange attractors [Smith, 1998, ch. 10]. Aperiodic

long-term behaviour means that there are trajectories which do not settle down to �xed points, periodic orbits, or quasiperiodic

orbits as t → ∞. For a dynamical system to exhibit topological mixing means that the system evolves over time such that

any given region of its state-space will eventually overlap with any other given region. That its periodic orbits are dense

means that every point in the space is approached arbitrarily closely by periodic orbits. Alternatively, within the so-called

ergodic hierarchy, which I will introduce in §4.3, Werndl [2009] de�nes chaos in terms of mixing (following on from a stronger

characterization in terms of the Kolmogorov property by Belot and Earman [1997]). Finally, Berkovitz et al. [2006] de�ne chaos

as a matter of degree within the ergodic hierarchy.

6
Chaos implies ergodicity, through the ‘chaotic hypothesis’ [Gallavotti, 2008], or as seen in the ergodic hierarchy explained

in §4.3.

7
Others to have explored this technique include Hopf [1934], Keller [1986], Von Plato [1983], Suppes [1987], Engel [1992]

and Myrvold [2014, Forthcoming].

8
See e.g. Ruelle [1989, ch. 4-8], Wiggins [2003, ch. 1-12], Strogatz [1994, ch. 2, 7], and Sklar [1993, ch. 5.III]. Some of these
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2. in the theory of probability and random processes, results of convergence of random sequences.

The most representative is the law of large numbers.
9

Regarding the philosophical signi�cance of these results, Batterman [1992] is the �rst to point out

that in some physical systems certain phenomena emerge whose explanation is irreducibly statistical.
10

Among those who have explored MAF, Suppes [1987] explicitly contended that it has metaphysical im-

plications, arguing that this result could explain the metaphysical notion of propensity. Hence, although

Suppes talks of propensities and I talk of stable regularities, our aims do not seem to genuinely di�er.

Besides the approaches cited above and those in footnote 4 from physics, it is also worth citing

a di�erent and venerable body of literature that has sought the same goal—an explanation of lawful

behaviour—by trying to vindicate a (logically) necessary status to laws of nature. See for instance Dar-

rigol’s (2014) proposal, which also discusses previous proposals in the history of physics. Rather than

seeking the emergence of coarse-grained regularities from the free time-evolution of the system, this

approach seeks to vindicate the logical necessity of the laws by deriving them from allegedly more basic

assumptions (see Darrigol [2007] for the case of the laws of classical mechanics). It is worth keeping

in mind this di�erent line of thought insofar as it could be useful to justify the dynamical assumptions

that one might need in the other approaches. As I have advanced in the last paragraph of §2.1, although

in this paper the results presented allegedly dispense with dynamical assumptions, other convergence

results (outlined in appendix B) hold only in systems with certain dynamical assumptions.

In what follows, the plan is to rely on Strevens’ (2003) proposal—whose validity is, of course, dis-

putable, see Werndl [2010]—and study in Section 4 its applicability to a scenario that lacks guiding laws.

3.1 Outline of the method

The goal of Strevens [2003, 2005] is to explain the fact that higher-level laws are simple, whereas they

are assumed to be reducible to lower-level laws that are instead complex.
11

Clear examples of simple

laws are the laws of thermodynamics and the laws of the rate of increase of a population of rabbits

in a certain ecosystem. In each case, there is an assumed complex microlevel dynamics to which the

macrolevel laws reduce. The complexity at the microlevel is due to the large number of degrees of

freedom (e.g., the large number of particles) as well as the non-linear interactions between them. In

results are cited in Appendix B.

9
See e.g. Grimmett and Stirzaker [1985, ch. 7, 9, 10, 13] and Bhattacharya and Majumdar [2007, ch. 2, 3].

10
Although it has been surprisingly neglected in the literature, this paper advanced many other subjects later discussed:

deterministic chances, probabilities from symmetries, an indi�erence principle justi�ed by the dynamics, and the existence of

an irreducibly statistical explanation of emergent phenomena in chaotic (‘dynamically unstable’) systems.

11
‘Simple’ as opposed to ‘complex’, where ‘complex’ is understood as in complex systems theory and ‘simple’ means that

the simple regularities can be described by equations with few variables (usually linear equations but not necessarily). Simple

behaviour is characterized by convergence to an equilibrium �xed-point, periodic cycles, and similar variants.
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the example of thermodynamics, the microlevel is modeled by kinetic theory (or statistical mechanics),

which presupposes a large number of particles ruled by chaotic deterministic Newtonian dynamics.

Strevens explains how, in certain cases, the simplicity of the higher-level laws is in part (surprisingly)

due to the complexity of the lower-level laws. It is the microlevel chaotic behaviour, together with some

other properties of the systems, that leads to the macrolevel simple laws. This explanation is grounded

in MAF.

To convey the core results of MAF it will help to refer to an example. Consider a roulette wheel,

as analyzed by both Poincaré and Strevens. Other games of chance could be chosen, as well as more

“exotic” examples such as Poincaré’s application of MAF to prove the equidistribution of planets across

the sky [Poincaré, 1896, 129]. Strevens [2003, 48] says of the roulette wheel:

“The complex probability of the ball’s ending up in a red section is determined, like all complex

probabilities, by two things: the physics of the wheel, represented by an evolution function, and the

distribution of the initial conditions, represented by an ic-density. The initial condition distribution

will be determined by facts about the croupier who is spinning the wheel. Because the croupier

changes from time to time, the relevant ic-density presumably changes from time to time as well.

But, as everyone knows, the probability of obtaining red remains the same”.

Figure 1: A roulette wheel

This fragment states a key idea that leads to the conclusion that almost any probabilistic distribution

of the initial conditions will determine approximately the same probability of the outcome. Let me note

that in the quote, what Strevens calls the “physics of the system” is �xed; later on, I will consider the

possibility of variation in that physics.

Let us analyse how it is that the roulette wheel tends to exhibit, in the long run, an approximate 50/50

frequency of red and black outcomes, and does so irrespective of the croupier (irrespective of the way

the croupier launches the ball). The outcome of a spin of the wheel is determined, among other things,

by the initial speed with which the wheel is spun, which can be modeled by a random variable ν . While

this initial condition ν can take the form of di�erent probability distributions, the outcome probability,

as we know, is always the same: approximately 0.5 for red and 0.5 for black. We have stability of the
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outcome probability, independently of the initial probability distribution. A way of understanding this

(remarkable) fact is as follows.

The outcome red, equidistributed between the black slots, is represented as a function of the variable

‘speed of the wheel’ ν as seen in Figure 2. Now take two di�erent initial probability distributions, one

Figure 2: Red and black roulette outcomes as a function of the initial speed

corresponding to an enthusiastic croupier who spins the wheel faster than a second mellower croupier;

both are represented in Figure 3. We already have the intuition—and the casino already knows—that

changing the croupier does not a�ect the �nal outcome probability. The reason for this is that the

contributions of each slice of red over the entire graph will be approximately the same proportion as

those of the black slices. Crucially, this will also be the case if we examine a small enough region of

possible values of the speed (i.e., it will be so in any small region of the domain of the function of Fig.

2). Thus, for each croupier the proportion of red (or black) outcomes will be approximately 0.5. For this

to occur, there must be quick alternation between red and black (i.e., the alternation must be sensitive

to the value of the initial condition—speed in this case) and it must be constant (i.e., its pattern must be

constantly repeated). Strevens uses a single term to label these two crucial properties as the property of

‘microconstancy’. It is easy to visualize graphically (see Figure 2).

Together with this property, the other condition is that the probability distribution over the initial

conditions must be smooth. That is, however strong or mellow the croupiers, they cannot have a highly

peaked distribution that does not cover a whole pattern (i.e., the variance of the distribution cannot be

too small). Not covering a whole pattern will be di�cult when the patterns are constantly repeated, that

is, when the aforementioned ‘microconstancy’ obtains. Then,

“a smooth density will be approximately �at over any neighbouring pair of red and black areas in

the evolution function, for which reason the contribution made by that part of the ic-density to the

probability of red will be approximately equal to the contribution made to the probability of black”

[Strevens, 2003, 50].

In sum, Strevens generalizes the case presented showing that, in general:
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Figure 3: The frequency distribution of speeds for the spins of two di�erent croupiers, superimposed over the

outcome in function of the initial speed

(S-MAF): If the evolution function for an outcome ‘e’ is microconstant, then any smooth dis-

tribution of initial conditions determines, in the long run and with probability 1, the same

probability for ‘e’; where the value of this probability is equal to the ratio of outcome e to

the other outcomes (in this case of red to black).

This is the result of ‘Theorem 2.2’, stated and proved in [Strevens, 2003, 2.C, pp. 127–138]; for an informal

defense see also [Strevens, 2003, 2.23].
12

I have explained MAF with the classic example of the roulette wheel, yet many others have been

studied. Case-by-case study is required to prove that stable simple behaviour emerges in a particular

context. This is what Strevens [2003, 4.8 and 4.9] pursues for statistical mechanics and population ecol-

ogy respectively.
13

12
For a comparison with previous formulations of MAF (cited in footnote 7) see Strevens [2003, 2.A]. For theorems and

applications of previous formulations I recommend Engel [1992]. To give a glimpse, Theorem 5.3 of [Engel, 1992] proves that:

being X a random variable and t ∈ R large, the random variable (tX)(mod1) converges in the variation distance to a uniform

distribution on the unit interval if and only if X has a density. See also Theorems 3.1, 3.9, 4.1, and 5.3. With these results, cases

such as the roulette wheel are treated. Being X a random variable and n a positive integer, it was proved that equation 1 holds

for any random variable X with an absolutely continuous density (an extension by Fréchet [1921] upon Poincaré [1896]):

lim
n→∞

P{(nX)(mod1)≤ 1/2}= 1
2

(1)

These results are for a physical system with one degree of freedom. The generalization to higher dimensions can be found in

[Engel, 1992, ch. 4], and is analogous to the one-dimensional case (compare the necessary and su�cient conditions for the two

cases as summarized in [Engel, 1992, p.35 and p.72]).

13
For more on statistical mechanics, see Engel [1992, 4.2.4, 5.6], Myrvold [2014, Forthcoming], and Strevens [2013, ch. 8].

For other applications, see [Engel, 1992, 3.2, 4.2] reconstructing Poincaré’s law of small planets, billiards, etc.
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4 Can a Humean System Meet the Conditions?

In the previous section, I outlined Strevens’ generalization of MAF. In his terms, the system is to give

rise to stable behaviour if three conditions are met:

1. Smoothness in the distribution of relevant initial conditions (§4.1);

2. Microconstancy (§4.2);

3. Chaos, understood as sensitivity to initial conditions (§4.3).

In this section, I argue that the �rst two conditions can be met independently of modal notions, and then

that chaos, even if it is a dynamical condition, is typically met by a Humean system.

In other words, in the previous section the rise of simple behaviour has been explained in standard

cases in which “the physics of the wheel” is ruled by the actual deterministic Newtonian dynamics. In

this section, I instead elaborate and assess the following claim by Strevens [1998, 19, italics added]:

“The value of a microconstant probability may come out the same onmany di�erent, competing stories

about fundamental physics. The probability of heads on a tossed coin, for example, is one half in

Newtonian physics, quantum physics, and the physics of medieval impetus theory.”

4.1 Smoothness Condition

First, recall that the kind of physical system under consideration is one in which a large number of trials

is repeated (for more examples besides those cited in Section 3, see §4.2.2). The method is then called ‘the

method of arbitrary functions’ because, regardless of the distribution of initial values of the variables,

in the long term the same output pattern obtains. Strictly speaking, though, this does not work for any

distribution: the distribution of initial values of the relevant variables (the initial conditions, or ‘IC’) has

to be smooth.

Smoothness means, in a standard analysis of MAF (such as those cited in fn 7), that the distribution

of the IC is absolutely continuous with respect to the variable. One of the re�nements in [Strevens,

2003] is that in order to hold for �nite but large values of the variable at stake, the smoothness condition

must be stronger than usually understood. The stronger degree of smoothness (called ‘macroperiodicity’

in [Strevens, 2003] and ‘microequiprobability’ in [Strevens, 2013]) demands that the initial probability

distribution be approximately uniform over almost all micro-sized regions. This de�nition of smoothness

su�ces for our purposes, yet a more formal de�nition can be found in [Strevens, 2003, §2.C ‘de�nition

2.5’ and ‘approximation 2.2’].
14

14
What is micro-sized in one context may be macro-sized in another. ‘Micro’ and ‘macro’ are thus relative to the case in

point. This should not be problematic; see Strevens [2013, 5.6] for discussion. MAF is also relative to the outcome and the way

12



4.1.1 Obtaining the condition

We have, then, to require such a smoothness condition. Its reasonableness and ubiquity is defended in

[Strevens, 2013, 12.3], reworking what is thoroughly argued in [Strevens, 2003, 2.53]. In short, Strevens

proposes an argument based on the idea that random perturbations or its surrogates (such as environ-

mental noise) provoke a general tendency in the IC-distributions to smooth out or even become uniform.

Likewise, North [2010, p. 22 fn 48, p. 35] defends something stronger than this smoothness, namely a

uniform distribution, but restricted to holding only for a narrow set of variables, the “canonical vari-

ables” of fundamental physics. See also Poincaré [1905, 222] defending the reasonableness of assuming

smoothness as continuity, and the justi�cation of absolute continuity seen in Von Plato [1983, 45].

Aside from these arguments, in the particular setting that concerns us—a lawless scenario—we have

a more straightforward justi�cation of smoothness. In each of the cases studied in the literature there

is some causal explanation for the IC distribution being as it is: for instance, the croupier’s being a

human with certain characteristics explains the distribution in Figure 3 and its smoothness. Instead, in

our lawless scenario the value of the IC for each trial is chosen at random. That is to say, in a lawless

scenario it is not only the time evolution that is randomly generated, but also the values of the IC in each

trial. To be clear, here the probability function over IC is not to be interpreted as modally loaded—that

is, it is not describing any genuine propensity such as the propensity of the croupier to launch the ball.

On the contrary, the probability function over IC is to be understood merely as the statistics describing

the frequencies of each IC after a large number of trials. So, what can we say about the smoothness of

the IC distribution resulting from a large number of trials?

We can say that a distribution resulting from a process-random process is typically approximately

product-random. This automatically guarantees a smooth IC distribution.

It is true that there is no conceptual connection between process and product randomness. In fact, Ea-

gle [2012, §4] proposes counterexamples to the following conceptual connection (labeled by him ‘RCT’):

An outcome happens by chance [i.e. process-randomness] i�, were the trial which generated

that outcome repeated often enough under the same conditions, we would obtain a [product-

]random sequence including the outcome (or of which the outcome is a subsequence).

However, the counterexamples only a�ect a conceptual connection between process-randomness and

product-randomness. As Eagle [2012, §8] concludes, we can safely accept “an evidential and epistemic

connection”.

In more detail, an evidential and epistemic connection can be justi�ed by appealing to Brudno’s

theorem. Following Frigg [2004, 432], the theorem states that for almost all trajectories of a system, its

of measuring the IC. The latter might be more problematic: it is analogous to the relativity of choosing measures in statistical

mechanics. An attempt to deal with this relativity is found in [Strevens, 2013, 5.6, 12.1] and in more detail in [Strevens, 2003,

2.5].
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algorithmic complexity—which is equated with product-randomness—is equivalent to communication-

theoretic entropy—which is equated with process-randomness. The conclusion is then that “whenever a

dynamical system behaves randomly in a process sense [...], almost all of its trajectories exhibit product

randomness (in the sense of algorithmic complexity), and vice versa”. Thus, if we know that a process is

process-random, we should expect (eventually, with high and increasing probability) a product-random

sequence of outcomes [Eagle, 2012, §8].

Hence, in the long run the IC distribution will tend not only to a smooth distribution but to one that

is very smooth: a uniform distribution.
15

4.1.2 The role of the dynamics

Now we have to ask, is the smoothness condition non-dynamical? In other words, is no dynamical

property required for it to obtain?

This can be clearly seen by considering the classic system studied in statistical mechanics: a system

of ideal gas particles in a closed container with an initial distribution of their positions and velocities.

Here, the distribution of initial conditions is independent of the Newtonian dynamics: the dynamics

determines the motion and collisions once particular initial conditions are provided (and there is no

causal mechanism providing the values of the initial conditions).

One might be tempted to think of the IC distribution as a Humean law, something along the lines

of David Albert’s proposal that the ‘Past Hypothesis’ (the postulation of the initial conditions of the

universe in a very low entropy state) should be considered a Humean law. However, even if endorsing

this line of thought, it would be misleading to believe that the IC distribution, interpreted as a Humean

law, is a dynamical condition, for a Humean law is, by de�nition, far from being a rule that guides the

time evolution of a system, and does not involve any modal notion.

4.2 Microconstancy condition

The other condition is so-called microconstancy, so now we ask: Is there a way to obtain microconstancy

without requiring any dynamical property?

We will see that there is a way, imposing certain non-dynamical conditions (viz., symmetries), such

that the only dynamical property needed is chaos. (Then in §4.3 we will see that chaos typically obtains

in a Humean system.)

15
One might wonder whether we need a physical probability distribution over initial conditions. Strevens [2013, 12.5, 13.2]

addresses this issue and argues that we do not: we can “infer a tendency to a stable distribution over outcomes (...) without the

oversight of a governing physical probability distribution.”
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4.2.1 Obtaining the condition

Microconstancy is de�ned as that property we ascribe to a system if and only if within any small neigh-

bourhood of the evolution function the proportion of initial conditions producing a given outcome is the

same (see Fig. 2 p. 10; regarding the relativity of notions such as ‘small’ see fn 14). Thus, to satisfy this

condition there must be a constant ratio of the outcomes and they must alternate frequently. So, upon

what does the constant stable form of the evolution function and its frequent alternation depend?
16

We can draw upon a “non-dynamical” account of microconstancy proposed by Strevens [2003, 2013].

He opts for another “dynamical” account, yet the reasons for his choice are irrelevant to our purpose.

More speci�cally, the following account of microconstancy is upheld by the analysis carried out by

Strevens both in his article “Inferring probabilities from symmetries” [Strevens, 1998] and in his two

books (see especially Strevens 2013, 64-5, 90-1, 119 and Strevens 2003, 62).

The underlying idea of the non-dynamical account of microconstancy is that given a chaotic dynam-

ics, certain physical constraints su�ce for having microconstancy. The physical constraints are relevant

stable properties of the system under consideration—in the examples presented, properties of symmetry,

such as a symmetry of the spatial structure of the system, as illustrated by the three examples below.

Thus, the non-dynamical account of microconstancy can be summarized as:

(MicroConst): A variable’s evolution function is microconstant if the system displays

sensitive dependence on initial conditions and relevant physical sym-

metries.

For the sake of simplicity and in keeping with the examples, I formulate (MicroConst) appealing to

symmetry properties; notwithstanding, the results can be generalized to other relevant stable proper-

ties, as shall later be addressed.

In other words, we can see that the underlying idea behind (MicroConst) is that the quick alterna-

tion (the ‘micro’ of ‘microconstancy’) is achieved by the random-looking behaviour due to the chaotic

trajectories, and the constancy (of ‘microconstancy’) is achieved through the symmetry of the physical

con�guration of the system.

In the following, I illustrate with three examples how (MicroConst) yields microconstancy, while

also showing that the speci�c form of the underlying dynamics is irrelevant.

16
In the case of the roulette outcomes represented in Fig. 2 the ratio is 50:50, but this would be equally true for any other

ratio. Had the wheel been painted so that one third of its slots were red and two thirds black, the evolution function would be

di�erent but it would still display a constant ratio of outcomes: 1/3 for red and 2/3 for black.
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4.2.2 The role of the dynamics

First, let us return to the roulette wheel. We explained in §3.1 how it is that microconstancy obtains in

such a setup. Would the roulette wheel still be microconstant if we modi�ed the actual dynamics, for

instance by considering a wheel that wobbled as it rotated on its axis? Yes—microconstancy is ensured

by the symmetric colour scheme of the wheel and the rotational symmetry of its dynamics. The latter,

in turn, is related to the symmetric circular shape of the wheel and with the periodic (hence symmetric)

cycles it makes. This is suggested by Strevens [2003, 62]:

“The physical details underlying these facts are unimportant in themselves. In a wheel that comes

slowly to a halt, for example, the precise facts about the frictional forces that slow the wheel do not

matter. Only one fact about these forces matters, the rather abstract fact of the rotational symmetry

of their combined e�ect.”

In more detail, the constant 50:50 ratio that we see in Fig. 2 is a consequence of the fact that, at any

moment during a spin, the wheel takes approximately equal time to rotate through a red segment as

it does to rotate through a black segment. Likewise, due to the rotational symmetry of the wheel, the

whole pattern is repeated in the evolution function each time the wheel performs a whole cycle.

The same is true for the example of a tossed coin: only the symmetrical distribution of mass in the

coin matters. Again, we can infer the value of the coin’s probability “from few facts about physical sym-

metries, even if one knows very little about physics” (ibidem, 62). In general, what is needed is whatever

guarantees the existence of relevant symmetries in the operation of the mechanism, for example “what-

ever entails that a spinning coin takes about the same time for each half-revolution, or that a spinning

roulette wheel takes about the same time for each 1/36th of a revolution” [Strevens, 1998, 19]. The sym-

metry in the coin case results from the coin having two equal sides. The time one side takes to �ip is the

same time the other side takes. There is no physically relevant di�erence between the two sides of the

coin: as such, no law whatsoever could possibly di�erentiate one side from the other.

An analogous story goes for the hard-sphere model of classical statistical mechanics. Here, the spher-

ical shape of the gas particles is involved: the spherical symmetry makes it logically impossible to have

a dynamics that discriminates one particular side of the particle as reacting di�erently to a collision.

On the whole, notice that the account of microconstancy (MicroConst) does not appeal to the

details of the actual dynamics; besides the sensitive dependence, the antecedent in (MicroConst) does

not appeal to how the dynamics has to be; for instance, it does not appeal to how collisions between

objects have to be or, say, what rate of decrease some repulsive force has to obey.

4.2.3 A candidate for meeting the condition

It depends on each particular case what the relevant symmetries are; a general account cannot be more

speci�c here. Case-by-case analysis is required, as Strevens [2003, 4.8 and 4.9] performs for the cases
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of statistical mechanics and population ecology. In addition to the examples given above, I wish to

conclude this subsection 4.2 by proposing another allegedly non-dynamical candidate that would satisfy

the microconstancy condition.

We need something that plays the role of the stable non-dynamical properties. Some of the sym-

metries found in physics might play this role. The global, continuous symmetry principles of modern

physics are commonly interpreted as meta-laws. There is a priority of the symmetries of the laws over

the laws themselves. In fact, the symmetries “(...) can (...) be realized (...) by any number of distinct sets

of fundamental laws of physics (...)” [Albert, 2015, 13].
17

Aside from this alleged priority, symmetries can be instantiated by something non-dynamical: sym-

metries of many sorts can be exhibited by the geometrical structure of space in physical theories (by its

topological, a�ne, and metric structure). In fact, Eugene Wigner highlighted that symmetry principles

are grounded by the stable properties of the de�ning structure of spacetime [Martin, 2003, 50]. In more

detail, according to the so-called geometrical interpretation, the symmetries of the laws are interpreted

as symmetries of spacetime itself; they codify “the geometrical structure of the physical world” [Brad-

ing and Castellani, 2013, §5]. To give an example, think of the homogeneity of space, assumed “in the

physical description of the world since the beginning of modern science” (ibidem, §2.1).

Furthermore, a symmetry of a law can result from the presence of a scalar or vectorial �eld—that is,

again from something non-dynamical. A certain �eld can lead to symmetric properties of the space that

it permeates.

To sum up this subsection, the account of microconstancy (MicroConst) appeals to sensitivity to

initial conditions (SIC) and stable properties such as the aforementioned symmetries. In the next sub-

section, I assess how we can tolerate the dynamical condition of SIC.

4.3 Substituting chaos by randomness

We have arrived at a result which can be naturally interpreted as an account of the rise of stable coarse-

grained behaviour in the setups displaying the relevant symmetries and for any chaotic dynamics. Previ-

ously in §2.1 we have characterized a scenario with no governing dynamics as one whose state-space evo-

lution is randomly generated, in the process sense of randomness. So, can we obtain the same results—

coarse-grained stable patterns—substituting a chaotic dynamics by a process-random dynamics?

Yes, we can. In a nutshell, we can because process-randomness is a stronger condition than chaos

(or any condition that has been proposed as being required by MAF): hence, if we merely need chaos,

we will a fortiori obtain the results with process-randomness.

17
Lange [2007] studies why symmetry principles are prior to the associated conservation laws—it is not obvious why the

priority should be in that order and not the other way around. In short, he argues that this is the case because symmetry

principles remain true under a larger set of counterfactual suppositions than all other laws do (including conservation laws).
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In more detail, a chaotic dynamics is required in MAF precisely because it produces (relative to rele-

vant variables and a su�ciently coarse-grained description) an approximately product-random evolution

of the system’s state-space trajectory. (This yields, as explained in Section 3, a visitation rate among the

outcomes proportional to the patterns in the evolution function, which in turn in the long-term yields

a stable output probability distribution.) In fact, it is known that the resulting outcome of a su�ciently

coarse-grained chaotic system is indistinguishable from a product-random sequence [Smith, 1998, ch. 9].

We have also seen that process-randomness typically yields a product-random sequence (§4.1.1). Thus, if

instead of chaos we directly postulate process-randomness, we will be able to obtain the same results.
18

We can see this in more detail by framing the notions in the so-called ergodic hierarchy: this allows us

to clearly contrast the outputs of chaotic and process-random systems. The ergodic hierarchy consists of

�ve dynamical properties, which are used to classify the degree of product-randomness of deterministic

(i.e. law-governed) systems, and which we can also use to classify the output of our not-law-governed

process-random system. The ergodic hierarchy is this:

Bernoulli ⊂ Kolmogorov ⊂ strong mixing ⊂ weak mixing ⊂ ergodic

where A ⊂ B is to be read as systems with property A also possess property B. Following Berkovitz

et al. [2006], we can interpret the �ve levels of the hierarchy as corresponding to di�erent degrees of

unpredictability, which in turn correspond to di�erent patterns of decay of correlations between their past

states and present states.19
Berkovitz et al. [2006] understand product randomness as unpredictability

(along the lines of Eagle [2005], which traces back to Von Mises), and is de�ned as a matter of degree.

The lower the degree, the more the correlations arise, yielding a weaker notion of randomness. At its

highest degree, randomness is instead associated with the Bernoulli level, at which there is a total lack

of correlation between the present state and the past states.

We are now focusing on the output generated by a process-random system. This output, we have

seen in §4.1.1, typically coincides with the maximum degree, the Bernoulli level (recall the approximate

extensional equivalence between process and product randomness).

18
Which particular dynamical property is required by MAF is a contentious matter; moreover, there is also general discussion

in dynamical systems theory regarding the de�nitions of the possible candidate properties. For instance Brown and Chua [1998]

present dozens of counterexamples to a variety of theses and de�nitions of chaos and related notions (SIC, ergodic, non-linear,

in�ationary, complex, etc.). See also above §2.2 and fn 5. In any case, in this paper we are following an account by Strevens

[1998, 2003, 2005, 2013] in which the only dynamical condition needed is chaos, and in particular the feature of SIC. (SIC can

also be achieved by non-linear systems that are not chaotic, but this is irrelevant because we are simply not interested in such

systems!) Strevens himself considers stronger or weaker conditions along with other approaches. Caution has driven me to

choose chaos, given that it is a condition su�ciently strong to deliver the results, while at the same time it is still weaker than

process-randomness.

19
For our purposes it su�ces to follow this interpretation of each level’s meaning, but for more details see Frigg et al. [2016]

and references therein.
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Now consider the following account of chaos introduced in §2.2. Following Werndl [2009], de�ne

chaos in terms of strong mixing. (Likewise, the present argument holds equally for the previous char-

acterization by Belot and Earman [1997], where chaos is de�ned in terms of the higher Kolmogorov

level, and for the characterization by Berkovitz et al. [2006], who advocate seeing chaos as a matter of

degree, quanti�ed according to the position within the hierarchy: whatever the speci�c degree chosen,

the present argument holds.)

As we can see in the hierarchy, it follows that a Bernoulli system possesses the property of mixing;

hence, it possesses the properties of a chaotic system. No matter what the degree of chaos we consider

within the hierarchy, the Bernoulli level is included in any other set. Hence, if we obtain some results in

virtue of the property of chaos, we can obtain the same results in a Bernoulli, i.e. Humean, system.

Measures of the dynamics space. Alternatively, an interesting way to assess whether chaos can be

substituted by process-randomness is by analysing the dynamics space, measuring the proportion of

chaotic trajectories. This can be done appealing to results from the �elds known as measure theory

and topological dynamics. I outline some results in Appendix B aimed at ascertaining whether chaotic

trajectories are typical (or ‘generic’), which means that most of all the trajectories are chaotic trajectories.

However, this task would require such a technical background and discussion of controversial decisions

as, for reasons of space, goes beyond the scope of this paper.

5 Conclusion

Strevens’ aim was the obtaining of a stable probability distribution from something non-probabilistic. My

aim instead has been the obtaining of a stable probability distribution from something non-probabilistic

and non-dynamical. In doing so, I have assessed whether certain results support an explanation of stable

regularities in a lawless system; an explanation that presupposes neither the (suspicious) existence of

laws, nor the entire (suspiciously) regular Humean mosaic. Instead, the proposal assessed assumes two

conditions, arguably non-dynamical (i.e. conditions that can be obtained without presupposing any

dynamical property).

This stable behaviour is, then, the result of what can be called statistical necessity. In the type of con-

texts described, the apparent physical necessity is just statistical necessity—there is no need for physical

necessity between pure contingency and logical necessity. That is, the resulting non-accidental regu-

larities are just robustly stable contingent regularities, arising not because some pre-existing rules dictate

them, but because of a statistical explanation. For such an explanation, grounded in the results presented

in Section 3, does not need to postulate any modal notion, as has been argued in Section 4. Thus, by sta-

tistical necessity I refer to the resulting (metaphysically innocent) stability of those regularities yielded

by the results presented here. The term ‘statistical necessity’ aims to convey that the purported expla-
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nation of stable behaviour does not deterministically deduce the explanandum (the stable patterns) from

the explanans (the applicability of MAF) but rather provides, in the long run, convergence in probabil-

ity results of approximate statistical patterns. The suggestion, then, is that the appearance of physical

necessity in these cases simply corresponds to such statistical necessity.

While much obviously remains unsettled, I have assessed what I consider one promising result which

would account for such statistical necessity: the method of arbitrary functions, spelled out in Section 3.

MAF has already been applied to complex systems sciences (where, crucially, the underlying dynamics

is chaotic) to explain coarse-grained stable patterns. I have assessed whether it could also be applied

to a lawless “Humean system”. Thus, rather than assuming as a brute fact the extremely stable, appar-

ently non-accidental, contingent regularities of the Humean mosaic, I have at least proposed a potential

explanation.

In a nutshell, MAF explains the rise of stable behaviour for a large number of IC distributions. I

have argued that MAF explains the rise of stable behaviour for a large number of IC distributions and a

large number of state-space trajectories. Given the way I model a system that lacks governing laws (in

Section 2 and Appendix A) this could be signi�cant, as long as ‘large’ is large enough, for an explanation

of stable behaviour in such a lawless system.

First and foremost, the discussion has revealed the di�culties faced by this thesis—most seriously,

the di�culty of avoiding dynamical properties.
20

However, we have at least clari�ed what this thesis

requires.

More speci�cally, I have argued that as long as we assume two conditions (that the MAF literature

assumes in standard examples), in the long run almost any state-space trajectory of a system that is not

guided by any dynamics will display, with probability 1, stable behaviour. First, as explained in Section 3

(see ‘S-MAF’ on p.11), MAF accounts for the said stable behaviour—a stable probabilistic distribution of

the coarse-grained values of an outcome variable. Then, in Section 4, I assessed whether the conditions

required by MAF could be met without appealing to dynamical properties.

One condition is a certain degree of smoothness in the distribution of the initial conditions (§4.1);

the other is that the system displays certain relevant physical symmetries—or, more generally, stable

(non-dispositional) properties (§4.2). Besides standard examples, I proposed a candidate for these phys-

ical symmetries: spacetime symmetries from modern physics (such as the homogeneity of space). As I

explained, such spacetime symmetries can be accounted for, in turn, by the structure of spacetime or by

postulating scalar or vectorial �elds.

This leaves the dynamical condition of chaos, de�ned as sensitivity to initial conditions (§4.3). A

chaotic guiding dynamics was required in MAF precisely because it produces (relative to relevant vari-

20
Also, the proposal is just a candidate explanation (i.e., stable behaviour might arise due to other reasons); the results

provided obtain in the long run (and nothing has been said about relaxation times); and the actual veri�cation of the abstract

conditions is of course a tricky issue.
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ables and a su�ciently coarse-grained description) an approximately product-random evolution of the

system’s state-space trajectory. Hence, a fortiori we can obtain the same results if instead of chaos we

directly postulate process-randomness.

The application of the results at a local scale would be in tune with an anti-realist view of laws, in

the sense of something like oases of order emerging among the “chaos”, à la Cartwright. That is, MAF

applying not globally but to local set-ups over which the proper conditions hold—sort of “nomological

machines” without propensities. Otherwise, the conjecture that the results apply universally at a fun-

damental scale would be in tune with the projects in physics cited in footnote 4, which aim to derive

the current laws of particle physics from a complex or random underlying dynamics or explain them

statistically (as ‘entropic forces’). Future work could in fact analyze the applicability of the conditions of

the present proposal in contexts of physics (Filomeno [2014, Ch.3,5] and Filomeno [20xxc] point in this

direction).

Finally, in spite of the non-dynamical justi�cations of the conditions, one might still be skeptical

that the two conditions can be completely non-dynamical (in particular, the stable non-dispositional

properties). Even so, as I argue in §2.1 and Appendix A, the present proposal’s signi�cance would not

be seriously undermined, for in any case the ontological status of the two conditions is closer to that of

meta-laws than to that of standard governing laws. That is to say, there is a di�erence of ontological and

modal import in postulating, as metaphysically primitive, (i) non-dispositional properties of the matter-

content (such as the spacetime structure proposed in §4.2.3), as opposed to (ii) a set of governing laws

(or primitive propensities, or primitive causation). A Humean, at least, would regard as more intelligible,

and of less modal import, the �rst kind of postulation.

A Appendix. Dynamical Systems and Randomness

In this Appendix I put forward (1) a mathematical characterization of a generic dynamical system en-

dowed with a set of possible laws describing its time evolution, capturing the idea of describing all

state-space trajectories (as explained in Section 2); and (2) a ‘Bernoulli scheme’, from the �eld known as

‘random dynamical systems’, which models the notion of random state-space evolution (also explained in

Section 2). I include and discuss constraints that might be imposed, which restrict the logically possible

trajectories to the kinematically possible trajectories.

Dynamical systems with a set of laws. A generic dynamical system [X, Σ, µ , T] is de�ned as a

probability space [X, Σ, µ] and a transformation T of it.
21

X is a set of elements, interpreted as a state-

21
For a clear introduction to dynamical systems see, e.g., [Strogatz, 1994], or [Wiggins, 2003].
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space (e.g., phase space in classical mechanics); Σ is a σ -algebra of measurable subsets of X; and there

is a probability measure µ on Σ as usually de�ned. In the standard approach, T consists of a dynamical

law over the probability space [X, Σ, µ]. T has the generic form of an ordinary di�erential equation:

d
dt

x = f (x, t); which is autonomous of the independent variable t which represents time, where x is the

position of the system in the n-dimensional state-space (where n is the number of degrees of freedom).

In footnote 2 it has been explained what a state-space, a state, a system, and a trajectory are. Here it is

worth remarking only that a trajectory can be continuous as well as discontinuous. The trajectory of a

state x is the time-ordered collection of states, that usually follow from x using the evolution rule [Meiss,

2007].

There is a generalization in which T is not a single transformation that is iterated to give a unique

dynamics of the system, but instead is a monoid or a group of transformations Ts : X → X parametrized

by s ∈ R, where each transformation of Ts satis�es the same requirements as T above.
22

The range of kinematical possibility. Throughout the paper we have considered all the possible

trajectories, insofar as the results predicted by MAF obtain without imposing any constraint on the de-

tails of the dynamics (besides the SIC). One might be willing to assume some constraints on the space

of all possible trajectories for some reasons, but the legitimacy of these reasons should be discussed.

Consider the following reasons:

(i) one casts doubts on the arguments presented in Section 4, in particular on the completely non-

dynamical character of the conditions, therefore on the complete lack of constraints to the dynamics

space; or

(ii) one considers that the whole space of logical possibilities is too wide since it tolerates, for instance,

that any discontinuous function from points in space to points in space quali�es as a possible trajectory—

in this case, Ts would follow assumptions aimed at excluding certain conceptual possibilities not ruled

out by logic; or

(iii) one decides to pursue other approaches at our disposition, such as those cited in Section 3, and

their results hold only in a constrained class of dynamical systems. For instance, as explained in ap-

pendix B, interesting results in support and against the rise of coarse-grained patterns hold in so-called

Hamiltonian dynamical systems.

However, following any of these reasons is problematic and limits the signi�cance of the results

presented. Reason (ii) is weak in that it is motivated by a subjective intuition of ruling out “strange”

discontinuous trajectories, and we already have empirical evidence to object to this intuition, since or-

thodox quantum mechanics exhibits discontinuous particle trajectories (discontinuous spectra for most

22
In topological dynamics, it is considered a space of r-di�erentiable (0 ≤ r ≤ ∞) maps of Rn

into Rn
. This denotes the

dynamics space and is usually labelled asCr(Rn,Rn). Its elements are to be thought of as trajectories, as de�ned above [Wiggins,

2003, ch.1]
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of the observables). Regarding (i), the arguments in Section 4 are in fact far from uncontroversial, as

pointed out in Section 5, and in any case they should be elaborated (hopefully in further research). In

general, regarding any of these reasons, one might object that constraining the space of trajectories

undermines the philosophical signi�cance of the project.

Still, I have argued (last paragraphs of §2.1 and Section 5) that such a “constrained” project, if success-

ful, is signi�cant insofar as it is able to account for all sort of regular and potentially complex behaviour

from few and simple dynamical assumptions. That is, merely by imposing few and simple dynamical

assumptions, a state-space point that is assumed to evolve free displays, in the long run, coarse-grained

stable patterns. From a Humean point of view, the ontological and modal import of these few assump-

tions seems preferable than the standard set of governing laws. Besides, it remains of course open the

possibility of justifying elsewhere the dynamical assumptions, for of course not justify here these as-

sumptions does not mean that they cannot be justi�ed.

Be that as it may, in the case that we follow any of these reasons, we would consider a dynamics

space that can be said to correspond to the space of the kinematically possible. The kinematically possible

is a space of functions that represent histories of the system. De�ne Ts as the class of all the kinemat-

ically possible trajectories in state-space. The idea is that Ts delineates the subspace of “metaphysical

possibilities consistent with the theory’s basic ontological assumptions” [Pooley, 2013, 12].

To illustrate the range of kinematical possibility, consider the framework of classical mechanics: con-

sider a model of gravitating point particles with distinct masses, as in [Belot, 2011, 7]. A point in the

space of the kinematically possible models of the theory assigns to each of the particles a worldline in

spacetime, without worrying about whether the worldlines of each particle jointly satisfy the Newtonian

laws of motion. There is then a subset of the kinematically possible models called the set of dynamically

possible models. This is a space of solutions which is a 6N-dimensional submanifold whose points cor-

respond to the motions of particles that obey Newton’s laws. Here, such a submanifold will be ignored

for it would obviously constrain us too much, to a single set of laws—the actual ones.
23

The Bernoulli scheme from random dynamical systems. Having laid out the model of a dynam-

ical system endowed with a set of kinematically possible equations of motion, I include now the char-

acterization of a lawless scenario stemming from the �eld of ‘random dynamical systems’. Random

dynamical systems are characterized by:

(1) a set of maps Ts from X into itself that can be thought of as the set of all possible equations of motion;

and

23
The range of the kinematically possible can be also formulated in the lagrangian formalism, where the kinematically

possible models are monotonically rising curves in the product space formed from the con�guration space (whose points

represent the possible instantaneous states of the system) and a one-dimensional space representing time [Pooley, 2013, 40].

Then, the dynamically possible models are the curves that extremize a particular functional of such histories: the action.
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(2) a stationary probability distribution P on the set Ts that represents the random choice of map.

Then, the motion of state x ∈ X evolves according to a succession of maps “randomly” (probabilistically)

chosen according to the distribution P. We can then characterize the randomly generated dynamics as

the resulting evolution of a Bernoulli system. A dynamical system [X ,Σ,µ,T ] as de�ned in this appendix

is a Bernoulli system if T is a Bernoulli automorphism. A Bernoulli automorphism is an automorphism

T : X → X of a probability space [X, Σ, µ] where there exists a partition α = {α1, ...αn} such that

T iα(−∞ < i < +∞) are independent of each other. The partitions are said to be independent of each

other i� for any two partitions α and β , µ(αi∩β j) = µ(αi)µ(β j) for all atoms αi ∈ α and β j ∈ β .

The ‘Humean’ process-random system studied in this paper can then be identi�ed as a Bernoulli

scheme, which is a generalization of the Bernoulli process to more than two possible outcomes.

Last but not least, it could be objected to this model that the distribution P is in tension with a truly

process-random system, since P is stationary. However, in light of the properties of process randomness

that we have surveyed throughout this paper—in particular, the approximate extensional equivalence of

process and product randomness—it could be replied that if P is chosen to be a uniform distribution, then

the stationarity of P would not be problematic because the model would faithfully capture the expected

behaviour of a Humean process-random system.

B Appendix. Measures of the Dynamics Space

As mentioned in §4.3, obtaining the same results (viz, coarse-grained stable patterns) by substituting a

chaotic system by a random (Bernoulli) system is further supported if it turns out that chaotic trajectories

are generic over the whole of the dynamics space. This has been one of the main tasks throughout the

history of dynamical systems—in particular, in the area known as topological dynamics.

Here I �rst review some classic results for and against the genericity of chaos, which I discard in that

their domain is too constrained. Then I outline further results for the genericity of chaos relative to an

arguably appropriate domain of possible trajectories. A proper discussion of the signi�cance of these

results, though, goes beyond the scope of this paper (see Filomeno [20xxc] and references therein for

more details).

Classic but excessively constrained results. There are methods that allow us to rule out the possi-

bility of closed orbits, thus of periodic motion: the methods of index theory, the existence of Lyapunov

functions, and gradient systems (see any textbook on dynamical systems, e.g., Strogatz 1994). How-

ever, these desirable results have to be studied case by case, analysing each dynamical equation, and say

nothing about how frequently such periodic orbits are ruled out. On the negative side, the Poincaré-

Bendixson theorem proves the existence of periodic orbits, which is incompatible with the existence of

chaotic motion [Strogatz, 1994, 210]. However, this result has only been proven for vector �elds on a
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plane, that is, for 2 degrees of freedom.

Similarly, literature in statistical mechanics has been critical of ergodicity, mainly on the grounds of

the KAM theorem. Yet not only is the KAM theorem narrowed down to Hamiltonians of �xed kinetic

energy, T = p2/2, but a careful look at the theorem shows that it can hardly be taken to represent the

general behaviour of classical mechanical systems; see Frigg [2009, 1005-6], Frigg and Werndl [2011,

sec.5], Berkovitz et al. [2006, sec. 4.1], and Sklar [1993, 174-5].

Ergodicity as a generic property. Since in the approach of topological dynamics we are measuring

trajectories, we have to use a topological counterpart of the standard Lebesgue measure, namely a topo-

logical measure based on Baire categories. The topological counterpart of a set of measure zero is a set

that is said to be of �rst Baire category, aka scarce. A set is scarce i� it is a countable union of nowhere

dense sets. The topological counterpart of a set of non-zero measure is a set that is said to be of second

Baire category, aka generic. A set is generic i� its complement is scarce.
24

It is crucial that the class is appropriate. For our purpose, in order to cover all the kinematically

possible worlds (de�ned in Appendix A), it seems appropriate to select the class of measure-preserving

homeomorphisms and automorphisms on all compact manifolds. However, there is a possible objection

to this choice: measure-preserving dynamical systems are those in which energy is conserved, and this

new assumption can be considered a dynamical condition. To resolve this issue, we could concede a

privileged status to this conservation principle, sometimes considered a meta-law. Otherwise, a non-

dynamical interpretation of this principle could be given along the lines suggested in §4.2.3. Still, even

if taking the principle as dynamical, the results might be of philosophical interest for the reasons given

in Section 5.

That being said, the �rst result worth mentioning comes from Oxtoby and Ulam [1941], who dis-

covered that ergodicity is generic for measure-preserving homeomorphisms on all compact manifolds.

More speci�cally, the discovery was that the set of dynamical �ows that are not ergodic is of the �rst

category in the set of measure-preserving generalized dynamical �ows.

Remember from §2.2 that ergodicity might be a su�cient condition (not chaos) and that the class of

Oxtoby and Ulam’s result is (arguably) appropriate, as it covers not only the actual physical possibilities

but the whole set of kinematical possibilities.

Extension of the results for ergodicity and weak mixing. Furthermore, the results have since

been extended. The genericity of ergodicity is extended to automorphisms: Halmos [1944a] shows that

24
For a little more detail, cf. [Wiggins, 2003, 162]: a property of a vector �eld is said to be Ck generic if the set of vector

�elds possessing that property contains a residual subset in the Ck
topology, where a residual subset contains the intersection

of a countable number of sets, each of which is open and dense in the topological space. A property is de�ned as generic (or

typical) if it holds for a countable intersection of open dense subsets.
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ergodicity is generic to the weak topology in the space of all automorphisms.

Finally, the genericity of the stronger condition of weak mixing has also been proved, both in home-

omorphisms and in automorphisms [Katok and Stepin, 1970, Halmos, 1944b]. A discussion of these and

other results can be found in [Filomeno, 20xxc] and [Alpern and Prasad, 2001].
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