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Abstract

Traditional wisdom dictates that statistical model outputs are estimates, not measurements.
Despite this, statistical models are employed as measurement instruments in the social
sciences. In this article, I scrutinize the use of a specific model—the logit model—for
psychological measurement. Given the adoption of a criterion for measurement that I call
comparability, I show that the logit model fails to yield measurements due to properties that
follow from its fixed residual variance.

1. Introduction
Do statistical models yield measurements? On the face of it, clearly not. Consider an
example: suppose I need to measure the square footage of my apartment. To do this, I
decide to construct a statistical model predicting square footage given the number of
bathrooms. I gather an immense amount of data on the number of bathrooms and the
square footage of apartments. I have one bathroom, and my model estimates that my
apartment is 621 square feet. It seems wrong to claim to have measured the area of
my apartment. Say that, as it turns out, my apartment is in fact 621 square feet. Even
then, it seems wrong to say that I have measured the square footage of my apartment.
Statistical model outputs are usually described as estimates or predictions, not as
measurements.

Surprisingly, some do treat some statistical models as measurement instruments.
Social scientists like psychologists and economists study attributes that are not
observable: intelligence, well-being, market value, inflation, and so on. Lacking the
option of direct physical measurement, researchers create models to represent and
measure these hidden magnitudes. Using statistical models as measurement
instruments is a pragmatic response to the circumstances in these fields.

Despite this practical necessity, treating statistical models as measurement
instruments is counterintuitive. And so, in this article, I take up the issue of whether
statistical models are measurement instruments. Because statistical models are
varied in their properties, rather than considering statistical models in general,
I consider whether one particular statistical model that is important for psychological
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measurement can be treated as a measurement: the logit model. Ultimately, I argue
that the logit model is not a measurement instrument because it violates a necessary
condition for measurement: comparability of measurement outcomes.

Here is what I plan to do in this article: in section 2, I give some necessary technical
background. In section 3, I show that two different interpretations of the logit model
developed out of an old debate between George Udny Yule and Karl Pearson about
how to measure association between binary variables. I trace the use of the logit
model as a measurement instrument to one of these interpretations, though I will
ultimately argue that this use is misguided. In section 4, I argue that measurement
instruments necessarily produce comparable outcomes. I call this the comparability
criterion. I show that a variety of philosophical views on measurement can adopt
comparability without challenge to their position. Finally, I argue that the logit model
violates the comparability criterion and thus cannot be used for measurement.

2. Background
Statistical models are used to measure unobservable traits in psychology. Because
these traits are unobservable, the models that are used to measure them are called
latent variable models. A latent variable is one that is unobserved, meaning that no data
correspond to the variable. One such latent variable model that is important for
psychological measurement is logistic regression, also known as the logit model. In
this section, I explain what logistic regression is and how it can be understood as a
representation of an unobserved variable that is supposed to exist.

2.1. Linear regression
Regression analysis uses an intuitive idea to discover relationships in indeterminate
data. Simply put, a linear regression takes a scatterplot and finds a line of best fit. In
this way, indeterminate relationships are discovered between features represented
on the x and y axes. Imagine, for example, that a scatterplot is constructed to plot a
man’s height (y) against the height of his father (x).1 The relationship between x and y
is not determinate, meaning that given the height of a man’s father, one cannot
determine the height of the man. Knowing the father’s height, though, will allow one
to make a better estimate of the son’s.

In this example of a simple linear regression, the father’s height is a predictor
variable, while the son’s height is an outcome variable. The mathematical relationship
between the predictor variables and the outcome variable (this is typically the
variable that most interests the practitioner) is

Yi � β0 � β1Xi1 � . . .� βjXij � ɛi; (1)

where Yi is the outcome variable, Xij is the predictor variable, βj is a coefficient, and ɛi
is the error or difference between the predicted value and the actual value. Given

1 Francis Galton used linear regression to model the relationship between the heights of fathers and
sons. He found that very tall fathers would have sons with heights closer to the average, and ditto for
very short fathers. This is why linear regression is called “regression”: Galton saw that there is a
regression to the mean. This also explains the “sophomore slump” in sports.
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some data, the coefficients are estimated to minimize the difference between the
model predictions and the observed values for the outcome variable. The value of the
coefficient characterizes the relationship between the outcome variable and the
predictor variable. For example, if a regression model predicts a man’s height given
the height of his father, the coefficient represents the change in a man’s height per
unit increase in the height of his father.

However, linear regression cannot model binary outcome variables like sex or
mortality because it is a continuous linear function. Logistic regression was developed
to address this limitation.

2.2. Logistic regression
The general strategy of logistic regression is to transform the data such that the
outcome variable is the log of the odds of a particular outcome rather than a
predicted value. For example, if mortality is the outcome variable of a logistic
regression, the model yields the log of “odds of mortality” given the predictor
variables rather than mortality directly. This is convenient because odds are
continuous and so can be modeled with a continuous linear function.

In a logistic regression, the log of the odds (called a logit) is predicted rather than
the odds. Whereas odds can range between 0 and ∞ , the log of odds ranges from
�∞ to ∞ , so the regression model will always produce an outcome that is
within range.

The logistic regression applies the following transformation to the outcome
variable:

logit x� � � log
x

1 � x

� �
: (2)

In a logistic regression, it is stipulated that the regression equation estimates the
transformed outcome variable rather than the outcome variable directly. The
regression equation is then rewritten as

logit P Yi � 1� �� � � β0 � β1Xi1 � . . .� βjXij; (3)

where Yi is the binary outcome variable, Xij is the predictor variable, and βj is a
coefficient. The coefficients again represent the relationship between the outcome
variable and the predictor variable, although in logistic regression, they are
interpreted as a change in log-odds of success given a one-unit change in the
predictor variable. Unlike the linear regression, there is no error term in the
mathematical form of the logit model. The indeterminacy of the model is instead
captured in the probabilistic interpretation of the outcome variable.

To summarize, the logit model applies the regression framework to binary
outcome variables by estimating the log-odds of an outcome rather than estimating
the outcome directly.

3. Early interpretative disputes about the logit model
In what precedes, I gave a brief overview of the logit model. In this section, I explain
how the logit model came to be viewed as a measurement instrument by social
scientists like psychometricians, those who measure psychological attributes.
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A historical dispute about measuring association among binary variables can provide
insight into this development.

In the twentieth century, statisticians George Udny Yule and Karl Pearson
proposed different ways to measure the degree of association between binary
variables. Yule, a former student of Pearson’s, proposed to measure association with
relative odds, while Pearson developed a measure that depends on positing an
underlying (latent) continuous variable to explain the observed binary data. The
differences in the measures of association revealed deep philosophical disagreements
between Yule and Pearson that I discuss in this section.

As Powers and Xie, (2008) have observed, a parallel dichotomy emerged from the
Yule/Pearson debate for the logit model. According to one interpretation of the logit
model, the outcome is just a log-odds. This interpretation, called the transformational
approach, resembles Yule’s approach to measuring association. According to another,
the outcome variable represents an unobserved variable that explains the behavior of
the manifest binary variable. This interpretation, called the latent variable approach,
resembles Pearson’s approach to measuring association. The second interpretation,
the one that appeals to an unobserved variable, provides an initially plausible (but
ultimately inadequate) justification for the use of the logit model for measurement in
the social sciences.

3.1. Yule’s measure of association
George Udny Yule, (1900) developed his measure of association for binary variables
based on change in odds. This measure is called Yule’s Q. Like correlation, it is a
measure between �1 and 1 of the relationship between two variables. A measure of 0
indicates that the variables are independent, whereas a measure of �1 or 1 indicates
that one can infer the value of one variable from the value of the other variable. The
odds ratio (OR) scaled between �1 and 1 is Yule’s Q:

Q � OR � 1
OR� 1

: (4)

Suppose we have a data set of 1,000 observations with two binary features: whether or
not one has a PhD in philosophy (philosophy PhD) and whether or not one believes in
the external world (external world belief).2 The data are organized in a table with four
cells, such that each combination of values is accounted for (see table 1).

Table 1. Contingency table example with synthetic data

Philosophy PhD= 1 Philosophy PhD= 0

External world belief= 1 15 970

External world belief= 0 5 10

2 These data are made up.

4 Stella Fillmore-Patrick

https://doi.org/10.1017/psa.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2024.25


To calculate the measure of association between philosophy PhD and external
world belief using Yule’s Q, one must measure whether one is more or less likely to
believe in the external world given that one has a PhD in philosophy compared to not
having a PhD in philosophy. This is calculated and standardized as follows:

Q � 15� � 10� � � 970� � 5� �
15� � 10� � � 970� � 5� � � �0:94; (5)

where Q � �0:94 indicates that the binary variables are strongly negatively
associated, meaning that if one has a philosophy PhD, the odds of not believing in the
external world increase relative to the odds if one doesn’t have a philosophy PhD.

Yule’s Q is based on the OR. The OR is a measure of how the odds of one variable
change relative to the value of a second variable. For example, the OR for our toy
example is

OR � 15= 15� 970� �� �
= 970= 15� 970� �� �

5= 5� 10� �� �
= 10= 5� 10� �� � : (6)

The numerator is the odds that ‘Philosophy PhD’= 1 given that ‘External world’= 1.
The denominator is the odds that ‘Philosophy PhD’= 1 given that ‘External
world’= 0. The odds ratio can be simplified to the ratio of the cross diagonals:

OR � 15� � 10� �
970� � 5� � : (7)

3.2. Pearson’s measure of association
Pearson’s measure of association between binary variables, on the other hand, is
based on the assumption that there are underlying continuous variables that govern
the observed binary variables. If, for example, the binary variable observed is
mortality, some underlying continuous but unobserved variable (perhaps overall
health) is assumed to account for the value of the binary variable mortality. At a
certain level of the unobserved variable, the observed variable will change values. On
the basis of the observed binary data, an underlying continuous distribution is fit that
would give rise to the binary observations. The properties of the underlying
distribution of each binary variable are used to construct a measure of association
between �1 and 1 Pearson, (1904).

This method depends on distributional assumptions, whereas Yule’s Q does not.3

Despite the fact that his measure introduces more assumptions, Pearson preferred
this because it closely mirrors his measure of correlation between continuous
variables. Pearson’s correlation coefficient for continuous variables assumes a
bivariate normal distribution among the variables (for the most meaningful result). It

3 A distributional assumption mathematically characterizes the data-generating process that gives
rise to the sample data. Making a distributional assumption will constrain the extent to which one’s
model is determined by the observed data, because one’s data will contribute to parameter estimates
within a particular mathematical form (distribution). For example, if I assume that my data are normal,
my model will look like a bell curve no matter what. The data will determine the width and height of the
bell curve.
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measures the strength of a linear relationship among the data-generating
distributions, not merely among the observed data.

Pearson has other reasons for preferring his measure over Yule’s. Pearson and
Heron (1913) argue that classifications that appear to be binary actually track
continuous quantities. In the case of mortality, for example, they claim that binary
data recording death or recovery “were used to measure a continuous quantity—the
severity of the attack” (192).

3.3. Reflecting on the Yule/Pearson dispute
Yule was concerned that the additional distributional assumptions suggested by
Pearson licensed inferences that went far beyond the observed data. He criticized
Pearson in a 1912 paper, stating that “apart altogether from the question of its
legitimacy, the assumption [of an underlying continuous distribution] is unnecessary
and unverifiable” (612). Given that Pearson’s underlying distributions could not be
verified, Yule suggested that his own measure of association, based purely on the
observed data, should be preferred.

Pearson replied, “If Mr. Yule’s views are accepted, irreparable damage will be done
to the growth of modern statistical theory” (Pearson and Heron 1913, 158).
Continuing his response, he states that “the controversy between us is much more
important than an idle reader will at once comprehend. It is the old controversy of
nominalism against realism. Mr. Yule is juggling with class-names as if they
represented real entities, and his statistics are only a form of symbolic logic. No
knowledge of a practical kind ever came out of these logical theories” (302).

While Yule is motivated by epistemic conservatism, Pearson argues that
classification that does not rest on some underlying continuous variation is
meaningless. Thus he accuses Yule of nominalism, while he sees himself as defending
scientific realism. Pearson never directly replies to Yule’s epistemological point,
however. Yule’s point is that even if binary outcomes are in fact grounded in underlying
continuous attributes, the observed discrete data underdetermine them, and their
existence cannot be verified.

The issues on display in this old dispute continue to plague the interpretation of
statistical techniques in a new context—psychological measurement. The two
competing interpretations of the logit model that I discuss in the next section descend
from Yule’s and Pearson’s different measures of association. One interpretation of the
logit model is epistemically conservative, whereas the other posits the existence of an
underlying latent variable that determines the binary outcome variable. This
interpretation underlies the use of the logit model to measure unobserved attributes
in psychology and economics.

3.4. Two approaches to the logit model
The outputs of a logistic regression model are most straightforwardly interpreted as
the log-odds of a particular outcome: log P Y � 1� � =

� �
1 � P Y � 1� �� �� 	

. This outcome
can be easily converted to the odds of a particular outcome (by exponentiating) or a
probability using the sigmoid function:
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s x� � � 1
1� exp �x� � : (8)

Although the logit model estimates, just like Yule’s Q association measure, are
computed from observed frequencies, there is a further question of how the output
should be interpreted. Literally, the output of a logistic regression is a log-odds. But
does the log-odds reflect an underlying continuous variable that decides category
membership in the same way that Pearson claims that mortality reflects the severity
of a disease? If so, then logistic regression can be seen as a model involving hidden
variables—a latent variable model. Alternatively, does the log-odds summarize the
expected long-run frequencies? Or does it represent a logical connection between the
information obtained from predictor variables and the outcome variable? If so, the
model is fundamentally probabilistic. The various approaches to the logit model
discussed in this article differ with regard to how they answer the question of how to
interpret the output of the logit model.

3.4.1. The transformational approach
The transformational approach to the logit model interprets the outcome variable as
a log-odds of success (Y � 1). This is an estimate of an observable quantity, because
the actual odds of success can be computed from the observed proportions (Powers
and Xie 2008, 32).

The transformational approach to the logit model is a descendant of Yule’s
approach to measuring association between binary variables. Yule’s measure
transformed observed binary data into proportions and odds. All the quantities
involved in Yule’s measure correspond to empirical quantities: quantities that are
recorded in the data set.

Consider a logit model that predicts the odds of a convicted criminal reoffending
given the number of past convictions. According to the transformational approach,
the outcome variable of this model is a function of a predictive probability. It can be
directly compared with the empirical probability (or some function of it), the actual
observed odds of a convicted criminal reoffending given the number of past
convictions.

Perhaps some underlying unobserved attribute is causally responsible for the
observed binary outcome and observed probabilities. Although it does not represent
such unobserved attributes, the transformational approach is not inconsistent with
the existence of one or multiple latent variables that explain the observed
probabilities. Whether or not these unobserved attributes explaining the binary
outcome of the logit model exist, the logit model is restricted to modeling quantities
that correspond to observed data.

3.4.2 The latent variable approach
The latent variable approach to the logit model defines the outcome variable as a
representation of an unobserved attribute that is not reflected in the data. Consider
again the logit model that predicts the odds of a convicted criminal reoffending given
the number of past convictions. Instead of interpreting the outcome variable as a
function of the predictive probability, the latent variable approach legitimizes the
interpretation of the outcome variable of the model as a distinct attribute that
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explains the observed frequencies, probabilities, and odds. For example, the latent
variable could be recidivism, the tendency of a criminal to reoffend.

It is generally accepted that this approach to the logit model is a descendant of
Pearson’s measure of association based on an underlying continuous variable (Agresti
2002; Breen, Karlson, and Holm 2018; Cox and Snell 1989; Powers and Xie 2008). A
continuous underlying variable Z is posited. At a particular threshold of Z, the
observed binary outcome changes from 1 to 0. If, for example, the observed variable is
state of matter and the underlying variable is temperature, at a threshold 32�F, the
observed variable changes because of the value of the underlying variable.

Mathematically, the latent variable approach to the logit model is expressed as
follows. Suppose that Z is a latent variable,

Zi � β0 � β1xi1 � . . .� βjxij � ɛi; (9)

and

if Zi ≥ 0; Yi � 1 (10)

if Zi < 0; Yi � 0: (11)

The error term ɛi is assumed to follow a standard logistic distribution with a fixed
variance. Because the model is not considered a probability model in this case, it is
necessary to express the indeterminacy of the model in an error term. That the
variance of the error is fixed will play an important role in my subsequent argument
that the outcome of a logit model cannot be interpreted as a measurement of a latent
variable. From this distributional assumption, it follows that

logit P Y � 1� �� � � β0 � β1x1i � . . .� βjxji: (12)

Note that unlike the transformational approach, the latent variable approach includes
an error term. The outcome variable in the latent variable approach is not considered
to be fundamentally probabilistic; rather, it is taken to represent the value of a
random variable that is unobserved. Thus the uncertainty is not captured in the
outcome variable of the model. To capture the uncertainty inherent in a regression
model, then, an error term is tacked on. The assumption that the error term follows a
standard logistic distribution defines the relationship between the logit and the
unobserved random variable.

The central question of this article is, do statistical models yield measurements? In
the social sciences, statistical models are sometimes treated as measurement
instruments, meaning that the output of these models are measurements. The latent
variable approach to logistic regression is central to the use of statistical models as
measurement instruments in the social sciences. According to the latent variable
approach, underlying attributes can be represented by statistical models of observed
binary data. In fields that aim to study unobservables like psychological traits or
economic value, this interpretation of the logit model suggests a way to access the
attributes being studied (Everitt 1984; Reise, Ainseoth, and Haviland 2005).

Discrete choice theory in economics, for example, makes use of the latent variable
interpretation of the logit model to measure attributes of individuals that compel
them to make particular choices. Daniel McFadden (1986, 275), the founder of discrete
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choice theory, describes it as a way to “model explicitly the cognitive mechanisms in
the black box that govern behavior.”

The latent variable interpretation of the logit model also plays a central role in
psychometrics, the study of the measurement of psychological traits (Borsboom,
Mellenbergh, and Van Heerden 2003; Borgstede and Eggert 2023; Hood 2013). The
Rasch model is a psychometric model that is a special case of the two-parameter
logistic model (Anderson 2009; Rasch 1960). Statistician Carolyn Anderson (2009, 325)
describes the psychometric framework as assuming “a latent continuum” that “may
be utility, preference, skill, achievement, ability, excellence, or some other construct”
underlying binary test data.

3.4.3. Reflecting on the two approaches
To summarize, the latent variable approach to the logit model can be traced back to a
view of binary data held by Karl Pearson. Pearson asserted that binary data arise from
an underlying continuous variable. Statistical modeling can be used, Pearson claimed,
to reconstruct that underlying variable from observed data. This interpretation of the
logit model is widely in use today, in particular in the social sciences. In fields like
psychology and economics, the logit model is used as a measurement instrument,
providing indirect access to unobservable attributes via binary test data.

The transformational approach, on the other hand, treats the logit model, not as
representative of a hidden quantity, but rather as fundamentally probabilistic. On this
view, the logit model could still be considered a measurement instrument, but not of
an unobservable attribute; rather, it measures a probability.4 Such a view may be
possible, but it would not support use of the model to measure hidden variables in the
social sciences.

The argument between Yule and Pearson can help us understand why the logit
model output is sometimes seen as a measurement of a hidden variable. To decide
whether it’s appropriate to regard it as a measurement, however, we need a theory of
what a measurement is. So, in the next section, I explore philosophical theories of
measurement.

4. The measurement question
In the previous section, I showed that the latent variable approach to the logit model
championed by Karl Pearson provides a historical explanation for why the logit model
is treated as a measurement instrument in the social sciences. In this section, I turn to
the question of whether the logit model is a genuine measurement instrument.

First, I argue that measurement instruments necessarily produce comparable
outcomes.5 If outcomes produced by a measurement procedure cannot be
meaningfully compared, then it can be concluded that genuine measurement has
not taken place. I show that this criterion for measurement follows from the view that
measurement maps empirical relations to numerical relations. Then, I show that the
comparability criterion possesses the following attractive quality: it is consistent with
a variety of philosophical positions on measurement. I show that both foundation-
alists and antifoundationalists about measurement can adopt my criterion without

4 Thanks to an anonymous reviewer for pointing this out.
5 In this section, I use measurement instrument interchangeably with measurement procedure.
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challenge to their respective position. Finally, I show that the logit model violates
comparability.

4.1. The comparability constraint
Some procedures can be ruled out as measurement procedures from the get-go. We
can, for example, rule out the following physical procedure for measuring one’s
height: Take the nearest physical object (no need to report what it is) and count how
many times this object can lie end to end from head to toe. Report the number of
times. The following inferential procedure for measurement can be ruled out too:
Take an instrument indication and multiply it by a random number between 1 and 10.
Report that magnitude as your result.

Why do these procedures fail to yield measurements? In each case, the procedure
violates a criterion I call comparability. Consider the following: if you report your
height to be ten using the “nearest physical object” method, and I report mine to be
nine, I am still in the dark about the empirical relationship between my height and
yours. Comparability is the preservation of empirical relations between quantities in
the numerical outcome of measurement. In the case of height, the empirical relations
“shorter than” and “taller than” should be preserved by the measurement procedure
for comparability.

In this section, I motivate the adoption of the comparability criterion for measurement:
if a procedure violates comparability, then it is not a measurement. In other words, if
no empirical relations between the quantities that are the subject of measurement are
preserved in the numerical outcomes given by a procedure, then that procedure is not
a measurement. Comparability, then, is a necessary condition of measurement.

The representational theory of measurement (Suppes and Zinnes 1963; Krantz,
Suppes, and Luce 1989; Luce et al. 1990; Luce and Suppes 2002) proves to be a useful
formalization for my purposes—comparability can be seen to follow from the use of a
representational theorem to map empirical quantities to numerical scales that
preserve order.6 According to the representational theory, there are two central
problems for measurement: (1) what is the representation theorem that maps
empirical relations to numerical relations (finding a representation theorem)? and (2)
given a representational theorem, what transformations preserve the relations
between the representations (finding a uniqueness theorem)?

The representation theorem maps empirical relations to numerical values. For
example, a representation theorem for assigning numbers to lengths of rods will map
each rod to the real numbers, the operation of concatenation (the action of linking
things together) to addition, and the comparison of physical rods (shorter than,
longer than) to the comparison of real numbers (less than, greater than).

The uniqueness theorem defines the transformations that preserve the relations
given by the representation theorem. Some scales permit more meaningful
transformations than others. For example, a ratio scale can be multiplied and

6 Here I will use some uncontroversial mathematical ideas from the representational theory of
measurement to spell out a notion in which I am interested: comparability of outcomes. Many are critical
of the representational theory for its inadequate treatment of the epistemic and ontological problem of
measurement (Heilmann 2015; Michell 2021; Tal 2021). I set aside these issues for the purposes of this
discussion.
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divided, whereas an interval scale cannot be. A ratio scale is a scale with a true zero,
such as length. The zero point on the scale indicates an actual absence of length. I can
compare length multiplicatively—it is meaningful to claim that the distance from my
house to the university is twice the distance from my house to the grocery store. This
holds true regardless of whether I measure the distance in meters or yards. Interval
scales have an arbitrary zero, such as temperature. Temperatures cannot be
compared multiplicatively—it is not meaningful to claim that it is twice as hot today
as yesterday, because this relation is not preserved across scales with different zero
points (e.g., Fahrenheit vs. Celsius). Ordinal scales indicate order but violate
additivity. Ratio and interval scales distribute numerals evenly, such that there is the
same distance between 1 and 2 and 3 and 4. Ordinal scales make no such guarantee as
to the distance between each numeral, and so additivity is violated.

The representation theorem preserves empirical relations present in the target
system: suppose the representation theorem maps the empirical relations of shorter
than (�) and longer than (	) to the numerical relations < and > ; then, the
representation theoremmust be such that if a � b, then R is a representation theorem
only if R �; a; b� � ! A < B. The empirical relations preserved over and above mere
ordering (like additivity) determine to which type of scale the empirical relations are
mapped.

Comparability is implied when empirical relations are mapped to any scale that
preserves order: ordinal, interval, or ratio.7 Note that comparability is not a formal
property of a scale—instead, it is a property of measurement outcomes that is
guaranteed by the successful mapping of empirical relations to an ordinal, interval, or
ratio scale.

Recall the nonmeasurement procedures described earlier—the “nearest physical
object”method of measuring height, for example. What goes wrong in this case is that
the “representation theorem” employed fails to preserve any empirical relations in
the mapping to numerical relations. Because two individuals who use this method will
have different units for measure (depending on the physical object nearest to them),
it is not guaranteed that given a � b, R �; a; b� � ! A < B.

What it is to measure is to map empirical relations onto an ordinal, interval, or
ratio scale. A measurement procedure performs that mapping while preserving the
empirical relations present in the quantity of interest. If what it is to measure is to
map empirical relations onto an ordinal, interval, or ratio scale while preserving the
empirical relations that are present in the quantity of interest, then comparability is
entailed by measurement.8 A lack of comparability in measurement outcomes, then,
indicates that measurement has not taken place.

7 Nominal scales do not preserve order. Although Stevens (1946) includes nominal scales in his theory
of measurement, nominal scales are not usually considered a type of measurement (Luce and Suppes
2002, 14). My comparability criterion rules out nominal scales for measurement, but this is
uncontroversial.

8 Recall that comparability is the preservation of empirical relations between quantities in the
numerical outcome of measurement.
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4.2. Comparability and the foundationalism debates
An attractive feature of the comparability criterion that I propose is that it is
relativizable to a theory and thus can be adopted by both foundationalists and
antifoundationalists about measurement without challenge to their respective view.

Foundationalism about measurement is the view that measurements reflect
pretheoretical observations that form the foundation for scientific theorizing (Thalos
2023, 1). Antifoundationalism about measurement is the view that measurements are
dependent on theoretical assumptions (Chang 2004; Tal 2012; van Fraassen 2012).
Contemporary discussion of psychological measurement is often focused on this
debate (see Michell 1993, 1997, 1999, 2005; Hood 2013). In this article, though, I offer a
critique of a method employed in psychological measurement that sidesteps this
contentious issue.

Foundationalism is consistent with comparability as a criterion for measurement
because the foundationalist is committed to the view that the use of ordered scales in
measurement reflects real quantitative properties possessed by the measurement
subject. Given this, it is necessary for the measurement procedure, according to the
foundationalist, to accurately map those empirical relations to numerical relations. I
have argued that comparability follows from this view.

Antifoundationalist accounts initially appear to be in greater tension with the
adoption of the comparability criterion than foundationalist accounts are. According
to antifoundationalist views like the model-based theory of measurement advanced
by Eran Tal, measurements are made relative to an idealized model of the
measurement process. This model formalizes background theoretical assumptions
and statistical assumptions about error. For example, in measuring temperature, the
measurement depends upon broad background theoretical assumptions (a physical
theory of temperature) and also statistical assumptions about the error expected
given slight variations in the conditions under which the measurement takes place
(Tal 2019, 864). Measurement, then, is theory laden, meaning it cannot be done
independently of assumptions about the quantity being measured and the process by
which the quantity is measured.

There are constraints on which models yield measurement outcomes: measure-
ments must be based on models that are coherent and that produce outcomes that are
“consistent with other measurements of the same or related general quantity types
performed under different conditions” (Tal 2019, 871). A model is coherent when it
coheres with the physical theories that are presupposed prior to measurement. A
model is consistent when outcomes of different measurement procedures agree
within an acceptable margin of error. Consistency of a model establishes the objectivity
of a measurement, whereby a measurement is objective when it is “about measured
objects rather than about features of the measurement operation” (Tal 2019, 866). Tal
goes on to state that “without this minimal sort of objectivity, measurement itself is
impossible” (866).

Objectivity is model relative, however, meaning that objective measurements can
be made only after some initial background assumptions have been accepted. For
example, the kinetic theory of matter serves as a theoretical background that justifies
the use of thermometers to measure temperature. Our measurements of temperature
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tell us about the measured object in the world, but always with respect to our
background theories.

Like objectivity, comparability can be model relativized in the following way:
model-relative comparability is the preservation of empirical relations between
quantities in the numerical outcome of measurement given the relevant background
theories. So, even when measurements cannot be taken independently of theoretical
assumptions, measurements can be deemed comparable given the theoretical
assumptions that ground the possibility of measurement.

4.3. Logit model measurement
In this section, I describe how the logit model is used for measurement in
psychometrics. Then, I argue that the logit model is not a genuine measurement
instrument of a latent trait because it violates the comparability criterion for
measurement argued for earlier.

4.3.1. The Rasch model
The latent variable approach to the logit model is used in psychometrics to measure
unobservable psychological traits. The Rasch model (developed by Georg Rasch), for
example, is a special case of the logit model that is used to measure ability or some
other latent trait given dichotomous test data.

The Rasch model takes the probability of correctly answering a question as a
function of difficulty and ability (or some other latent trait); that is,

P Correct� � � 1

1� e� ability � difficulty� � : (13)

This expression is equivalent to a logistic regression with two predictor variables,
ability and difficulty. In the context of a Rasch model, the ability coefficient is
interpreted as a measure of a latent trait.

In what follows, I argue that the logit model lacks comparability and thus cannot
be used for measurement. This would challenge the use of logit models like the Rasch
model for psychological measurement.

4.3.2. The logit model and comparability
Earlier, I explained that the logit model is a regression model for binary outcome
variables. The logit model can be interpreted as fundamentally probabilistic or as a
representation of a latent variable. When it is interpreted as a latent variable model,
the model includes an error term with a standard logistic distribution. In what
follows, I (1) review the role of the error term in the logistic regression, (2) explain
why the logit model has a fixed error variance, and (3) show that the fixed error
variance results in the following property: the model coefficients are altered
whenever a new predictor is added to the model or the model is used in a new
context. Then, I argue that this property violates the comparability criterion for
measurement.

4.3.2.1. The error term
A regression partially explains the variation observed in the outcome variable with
predictor variables. For example, yearly salary varies in a population, meaning that
not everyone has the same salary. A regression model that predicts yearly salary
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given years of education explains some of the population variation in salary by years
of education; that is, if the population were to be stratified by years of education,
there would be less variation in each stratum than in the population as a whole.
Because regression models are indeterminate, not all of the variation in the outcome
variable is explained by the predictor variables.

The variation in the outcome variable that is left unexplained by a model is called
the unexplained variance. Adding more predictor variables to the model will increase
the amount of explained variance and decrease the unexplained variance. The
unexplained variance is captured in the model by the error term ɛ. The error term
covers the difference between the outcome predicted by the model and the true
outcome for each observation. The error term has its own distribution that
characterizes how the model errors are distributed. Ideally, it should have a
distribution with a mean of 0 (indicating that the model predictions are not
systematically high or low) and a low variance (indicating that the model makes
accurate predictions).

4.3.2.2. Fixed error variance
In both linear and logistic regression, the distribution of the error term ɛ follows from
the assumed distribution of the outcome variables. In the case of a linear regression, ɛ
is normally distributed. In the case of a logistic regression, ɛ has a logistic distribution.
The error term in linear regression is assumed to have a mean of 0 and a variance that
is estimated from the data. The variance of the error term in a linear regression is
estimated by calculating the difference between the predicted and actual values for
each observation and finding the variance of these differences. The variance of the
error term in logistic regression, though, cannot be estimated from the data. The
latent variable approach interprets the model as estimating a value for a continuous
underlying variable, but the actual value of this variable is unobserved. The difference
between the prediction and actual values cannot be calculated.

To estimate the parameter values of the model, the variance of the errors must be
assumed to have a fixed value because binary data have no “inherent scale” (Powers
and Xie 2008, 58).9 Fixing the value of the variance of the errors serves to set a unit for
the model. The logit model error term is assumed to have a standard logistic
distribution with a fixed error term of π2=3.

As a consequence of fixing the variance of the errors, the logit model parameter
estimates are scaled by an unknown quantity that depends on the actual variance of
the errors. The true variance of the error term is unknown and unknowable, because
the only way of observing this variance would be to observe the true values of the
latent variable that is represented by the logit model (Breen, Karlson, and Holm
2018, 41).

4.3.2.3. Scaled coefficients
One important consequence of the fixed error variance of the logit model is that
coefficient estimates are altered whenever a new predictor variable is added to the

9 In this section, I will be using the word scale to mean the unit of measure or (as a verb) to change the
unit of measure. This is consistent with the word’s use in statistical contexts but different from its use in
measurement contexts.
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model, regardless of whether this new predictor variable is correlated with the
predictor variables already in the model (Mood 2010). This is highly unintuitive.

To appreciate how surprising this property is, consider a linear regression model
that predicts student performance on an exam by hours of studying. A coefficient is
estimated and interpreted to mean that, on average, for every additional hour of
studying, there is a 5-point increase in exam score. Now, imagine that we add a
predictor to our model: hours of sleep the night before the exam. If this new predictor
is uncorrelated with hours of studying, we don’t expect the relationship between
hours of studying and exam score to change, because the new predictor doesn’t
“steal” any of the explained variance from our old predictor. If, on the other hand, the
new predictor is correlated with hours of studying, then we expect the strength of the
relationship between hours of studying and exam score to decrease. Equivalently, the
coefficient estimate will decrease. Some of the variance that was explained by the old
predictor in the old model is taken by the new predictor in the new model. For linear
regression, any change in the coefficient estimates upon the addition of a new
variable to the model can be interpreted as reflecting correlation between the
predictor variables.

The logit model has a fixed error variance. Although adding new uncorrelated
predictors to the model will increase the amount of explained variance, it cannot be
compensated for by a smaller error variance, which must remain π2=3. Instead, all
model terms are scaled differently, meaning that the coefficients for predictor
variables already in the model are altered.

To understand the effect, consider the following abstracted example. Imagine that
we are interested in modeling a variable Y using a predictor variable X1 and that the
total amount of variance in our data of Y is 10. First, suppose our model is a linear
regression. The regression splits up the variance in Y such that 5 is explained by the
predictor variable X1 and 5 remains unexplained, meaning the variance of the errors
is 5.

Now, suppose another predictor, X2, is added to the model. If X2 is uncorrelated
with X1, then the variance of Y could be split in the following way: X1 still explains 5,
X2 explains 3, and 2 remains unexplained, meaning that the variance of the errors in
this model is 2. If X2 is correlated with X1, then the variance of Y could be split in the
following way: X1 now explains 4, X2 explains 4, and 2 remains unexplained, meaning
that the variance of the errors in this model is 2. Observe that when the predictor
variables were correlated in the abstracted case, the second predictor variable “stole”
explained variance from the first predictor variable.

Now, let’s imagine that our model is a logistic regression with a fixed error
variance. Whatever the actual amount of unexplained variance is, it is called π2=3 (or
approximately 3.29) in our model. Now, imagine that an uncorrelated predictor
variable is added to the model. Although this decreases the amount of unexplained
variance, it is still called π2=3 in our model. That means that the unit has changed,
because a different amount of variance is labeled with the same numerical value. A
new unit is fixed for this model whenever the amount of unexplained variance
changes. The coefficients for the model are then estimated using this different unit,
meaning that although the actual amount of variance explained by a predictor is
unchanged, the coefficient estimate will change. This is why, even when new
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predictors are added to the model that are uncorrelated with predictors already in the
model, the coefficient estimates will change.

Coefficients cannot be treated as straightforward effects. They reflect not only the
effect of the predictor variable on the outcome variable but also some unknown scale
quantity. Whenever the amount of unexplained variance in the model changes, the
scale quantity changes too. Coefficients across models with different sets of predictor
variables cannot be compared, because the amount of unexplained variance is
different across models with different sets of predictors (Karlson, Holm, and Breen
2012). So, if two logit models are constructed to target the same latent trait (such as
well-being) with different predictor variables, the models will produce results given
in different units.

Similarly, outcomes of models with the same predictor variables on different
samples cannot be compared, because the variance of the outcome variable is
guaranteed to be different from sample to sample (Breen, Karlson, and Holm 2018). So,
if one logit model is used to target a latent trait on two different samples (perhaps two
individuals), the model will produce results that are given in different units. The
relation between the units is unknown, because the true amount of unexplained
variance is unknown. This is analogous to the “nearest physical object” method of
measuring height—the procedure fails to preserve the empirical relations in the
mapping to numerical relations. Logit models are single use: they provide information
about the relative importance of predictor variables only within a single model
applied to a single sample.

Previously, I suggested that comparability is a necessary condition of measure-
ment. If the empirical relations between quantities are not preserved in the numerical
outcome of a procedure (relative to relevant background theories), then it is not a
measurement. I have shown that outcomes of the logit model are given in different
units with an unknown relationship, and as such, the empirical relationship between
different outcomes is not preserved by the procedure. The logit model produces
incomparable outcomes and thus is not a measurement instrument.10

Statisticians have periodically highlighted the properties of logistic regression that
I have described, although the consequences of these properties for the use of logistic
regression as a measurement instrument in the social sciences have not been
considered (Gail, Wieand, and Piantadosi 1984). Mood wrote in 2010 that “these
insights have not penetrated our research practice and the inter-relations between
the problems have not been fully appreciated. Moreover, these problems are ignored
or even misreported in commonly used methodology books” (68). Nearly ten years
later, in 2018, Breen, Karlson, and Holm made the same observation: “empirical

10 It could be replied that although the coefficients are scaled by an unknown factor, the values of the
coefficients within a single model can still be used to assess the relative importance of coefficients in the
model in predicting the outcome.
It is correct that the logit model coefficient estimates could impose an ordering of importance over the

predictor variable included in the model. This would constitute an ordinal scale, but not an ordinal scale
over the attribute of interest. In using logistic regression as a measure of a latent variable, the
practitioner is interested in creating a scale of the latent variable, not over the different predictor
variables included in the model.
The following reply could also be made: a priori consideration of the logit model form is unnecessary

given methods to establish validity and reliability of psychometric scales. I leave this for future work.

16 Stella Fillmore-Patrick

https://doi.org/10.1017/psa.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2024.25


applications of these nonlinear probability models seldom take account of a body of
work that, over the past three decades, has pointed to their problematic aspects and,
particularly, to difficulties in interpreting their parameters” (40). The relative
obscurity of this property of the logit model may explain why it hasn’t been addressed
in the body of work in psychometrics that treats logistic regression as a measurement
instrument.

5. Conclusion
Do statistical models yield measurements? I’ve argued in this article that the logit
model, a particular statistical model, does not yield measurements of latent traits
despite how it is used in the social sciences.11 Comparability, I argued, is a constraint
on what counts as a measurement instrument that is not satisfied by the logit model.
This result depends on the particular properties of the logit model and thus doesn’t
generalize to all statistical models.

In this article, I hope to have demonstrated the following metaphilosophical
principle: statistical models should be evaluated individually to determine the
meaning of their outputs. Social scientists have developed applied methods to cope
with the circumstances in their fields, and in doing so, they have neglected the task of
establishing that the instruments in use preserve the empirical relations of interest in
the mapping to numerical relations.
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