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Abstract

In philosophical logic and proof theory, we often find multiple-conclusion systems that in-
duce a conjunctive reading of premises and a disjunctive reading of conclusions. In mathe-
matical logic, in contrast, we often find multiple-conclusion systems that induce a conjunctive
reading of both premises and conclusions. This paper studies some technical and philosophi-
cal aspects of this latter approach to multiple-conclusion consequence. The takeaway is that,
while the importance of disjunctive multiple conclusions is beyond doubt, conjunctive mul-
tiple conclusions also have philosophical interest. First, because there is some evidence that
there are arguments with conjunctive multiple conclusions in natural language. Second, be-
cause conjunctive multiple conclusions are compatible with the reflexivity and transitivity of
logical consequence, and this allows them to cohere better with some of our best accounts of
what logical consequence is.

1 Introduction

The received wisdom tells us that arguments from natural language can have several premises,
but exactly one conclusion. Yet, in the actual practice of logicians we often find logical systems
where arguments can have none, one, or many conclusions; we call them multiple-conclusion logi-
cal systems.

In philosophical logic and proof theory, multiple-conclusion systems typically induce what
we call a conjunctive (or universal) reading of premises, and a disjunctive (or existential) reading
of conclusions. By this we mean, roughly, that validity in these systems admits at least one of the
following informal paraphrases1

Γ entails ∆ just in case the (perhaps infinite) conjunction of the things in Γ entails the
(perhaps infinite) disjunction of the things in ∆

Γ entails ∆ just in case, whenever all things in Γ are true (or meet these and those
conditions), some things in ∆ are true (or meet these and those conditions)

where Γ and ∆ are collections of the appropriate sort. Multiple-conclusion systems of this kind
were first introduced by Gentzen [23, 24] and then studied by several other authors.2 They are

1The template is meant to be quite general. In the first paraphrase, the conjunction and the disjunction mentioned can
but need not behave as whatever operations may be available in the relevant object language. In the second paraphrase,
the conditions imposed on premises and conclusions need not match—which leaves room to so-called mixed consequence
relations, see, e.g. Chemla et. al. [7].

2See, for instance, Carnap [5], Kneale [28], Scott [45] and Shoesmith and Smiley [46].
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particularly popular in discussions related to logical inferentialism; one of the reasons—but not
the only one—is that several authors have claimed, and others have denied, that disjunctive mul-
tiple conclusions make classical logic acceptable from an inferentialist standpoint.3

In mathematical logic, in contrast, multiple-conclusion systems typically induce a conjunctive
reading of both premises and conclusions. So, validity can be paraphrased

Γ entails ∆ just in case the (perhaps infinite) conjunction of the things in Γ entails the
(perhaps infinite) conjunction of the things in ∆

Γ entails ∆ just in case, whenever all things in Γ are true (or meet these and those
conditions), all things in ∆ are true (or meet these and those conditions)

Multiple-conclusion systems of this kind have a long history, as they can be traced back at least to
Bolzano [3]. They are particularly useful in algebraic and categorical logic;4 the reason is that they
enable notions of consequence that are reflexive and transitive, and such notions of consequence
can be generalised to wider classes of structures.

Recently, conjunctive multiple conclusions also received philosophical application in the work
of Cintula and Paoli [9]. The authors use them to answer a challenge faced by non-contractive
logics. The challenge is that, given any single-conclusion consequence relationJ, we expect being
able to associate it with some closure operation Cn in the following way: Γ J A just in case
A ∈ Cn(Γ); alas, there is an impossibility result saying that this cannot be done if J is non-
contractive.5 In response, Cintula and Paoli show that, once we move to a multiple-conclusion
framework where conclusions are read conjunctively, non-contractive consequence relations and
closure operations can be matched in the expected way. This leads the authors to conclude that
non-contractive consequence relations are “intrinsecally” or “essentially” multiple-conclusioned
(p. 753).

The purpose of this paper is to study some technical and philosophical aspects of the conjunc-
tive approach to multiple-conclusion consequence, with a keen eye on the relationships with the
disjunctive approach. I take classical propositional logic as my main test case—but many of my
results and arguments apply to other systems as well. Section 2 is mostly technical. First, I give se-
mantic presentations of classical logic with conjunctive and with disjunctive multiple conclusions,
and compare the structural properties of the two systems; one of the most notable differences (that
will be of philosophical importance in the sequel) is that the former system is, while the latter is
not, reflexive and transitive in the usual, relation-theoretic sense of these notions. Second, I pro-
vide a sequent calculus for classical logic with conjunctive multiple conclusions—something that,
as far as I know, is not yet to be found in the literature.

Sections 3 and 4 are philosophical. In Section 3, I provide some evidence to think that there
are arguments with conjunctive multiple conclusions in natural language; I give examples of such
arguments, and consider potential objections. In Section 4, I argue that the fact that conjunctive
multiple conclusions are compatible with the reflexivity and transitivity of logical consequence
makes them more satisfactory in a number of ways. On the one hand, they allow a more natural
treatment of the notion of logical equivalence, and in particular, of the generalisation of this notion
from sentences to collections thereof. On the other hand—and more importantly—they cohere

3For arguments broadly in favour of this claim see Hacking [25], Read [37], Cook [11] and Restall [39]. For arguments
against it, see Tennant [51], Dummett [15] and Steinberger [48].

4See, e.g. Font [19], Galatos and Tsinakis [21], Novak [32] and Cintula et. al. [8].
5The objection was raised by Ripley [41].
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better with some of our best accounts of what logical consequence is. The accounts I consider are
the one that understands consequence in terms of preservation (of truth or some other property),
the one that understands it in terms of content inclusion, and the one that understands it in terms
of existence of a proof. In all these cases—I claim—disjunctive conclusions face certain challenges
which conjunctive conclusions do not.

The paper by no means argues that multiple conclusions should be read one way or another.
It does not seem reasonable to expect that there is ‘one correct way’ of interpreting multiple con-
clusions: the merits of each approach will be assessed relative to applications. Also, it is beyond
doubt that disjunctive multiple conclusions have important applications in philosophy and proof
theory. The more humble takeaway of the paper is that conjunctive multiple conclusions are
more than a mere technical artefact, useful in some areas of (mostly mathematical) logic; they
have philosophical interest on their own. First, because they do not seem entirely foreign to ac-
tual inferential practices. Second, because they harmonise well with some of our best ways of
understanding the central object study of logic, that is, consequence.

2 Technical Exploration

As announced, we take good old classical logic as our main test case. I define a multiple-conclusion
presentation of this logic where conclusions are read conjunctively, and compare it with the usual
presentation where conclusions are read disjunctively. Sect. 2.1 studies our system from a seman-
tic perspective. Sect. 2.2 addresses its proof theory.

Before going on, it pays to lay down some stipulations. We will treat languages as identical to
their respective sets of well-formed formulas. We call our propositional language L, and assume
it has a denumerable stock of variables p, q, r, ..., and primitive constants ⊥, ∧, ∨ and → with
their usual arities and interpretations. Negation ¬A will be defined as A → ⊥, and logical truth
⊤ as ¬⊥. We will use capital Latin letters A,B,C, ... for arbitrary formulas of L, and capital
Greek letters Γ,∆,Σ, ... for collections of formulas that can be either sets or multisets—we will
disambiguate the reference in each case. Lastly, we will keep using J as a neutral symbol for
entailment.

2.1 Valuations

We start by defining the three logical systems that we will mainly focus on: single-conclusion
classical logic, henceforth CL, classical logic with disjunctive multiple conclusions, dCL, and
classical logic with conjunctive multiple conclusions, cCL.

Let V be the set of all classical (viz. Boolean bivalued) interpretations of L. Throughout this
section, Γ,∆,Σ, ... will denote sets of formulas. We shall occasionally use a comma for set union,
and omit the brackets in singleton sets; so, for instance, Γ, A stands for Γ ∪ {A}. Given an inter-
pretation v, we write v[Σ] to denote the set {v(σ) : σ ∈ Σ}.

Definition 1. The set-to-formula relation |=CL ⊆ P(L) × L and the set-to-set relations
|=dCL, |=cCL ⊆ P(L)× P(L) are defined by

Γ |=CL C iff for each v ∈ V , if v[Γ] ⊆ {1} then v(C) = 1

Γ |=dCL ∆ iff for each v ∈ V , if v[Γ] ⊆ {1} then v[∆] ̸⊆ {0}
Γ |=cCL ∆ iff for each v ∈ V , if v[Γ] ⊆ {1} then v[∆] ⊆ {1}
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So, reading 1 as ‘true’ and 0 as ‘false’, we have the following informal paraphrases: (a) an ar-
gument is valid in CL just in case whenever the premises are all true the conclusion is true; (b)
an argument is valid in dCL just in case whenever the premises are all true, at least one of the
conclusions is true; and (c) an argument is valid in cCL just in case whenever the premises are all
true the conclusions are all true.

Next, I describe the behaviour of cCL in more detail, and analyse the structural properties that
differentiate it from dCL. Along the way I record a number of simple but relevant facts; most of
the the proofs are easy, and thus they are left to the reader.

To begin with, one set entails another in cCL just in case the former entails each of the sen-
tences in the latter. In other words,

Fact 1. Γ |=cCL ∆ if and only if Γ |=cCL B for each B ∈ ∆.

This justifies the idea that in cCL multiple conclusions should be read conjunctively.
Arguably, the most important difference between the conjunctive and the disjunctive ap-

proaches concerns the properties of reflexivity and transitivity. These notions come from the
theory of relations: a dyadic relation R on a set A is reflexive if and only if, for every a ∈ A, aRa;
R is transitive if and only if, for every a, b, c ∈ A, if aRb and bRc then aRc. At least since the work
of Tarski [49], it is commonplace to say that logical consequence is both reflexive and transitive.
Yet, single-conclusion consequence relations such as |=CL are strictly speaking neither, because
they are not relations on a single set, and so they are not even the kind of thing that can have
these properties. (When we say that they are reflexive and/or transitive, we mean that they sat-
isfy some principles resembling reflexivity and/or transitivity to a greater or lesser extent—for
instance, the restrictions of these properties to sentences). Multiple-conclusion consequence re-
lations, on the other hand, are relations on a single set, so they could be reflexive and transitive
in principle. Now, typically, consequence relations inducing a disjunctive reading of conclusions
are neither transitive nor reflexive, while consequence relations inducing a conjunctive reading of
conclusions are both. In particular, we have:

Fact 2. The following properties hold for cCL and do not hold for dCL:
(i) Γ J Γ, for every Γ.

(ii) If Γ J ∆ and ∆ J Σ, then Γ J Σ, for every Γ,∆ and Σ.

To exemplify the negative claims, we have that (i) ∅ ̸|=dCL ∅, and (ii) {p} |=dCL {p, q} and
{p, q} |=dCL {q}, but {p} ̸|=dCL {q}. Certainly, dCL satisfies some properties resembling re-
flexivity and transitivity; for instance, reflexivity restricted to non-empty sets, and transitivity as
encoded by the properties

(iii) If Γ J ∆, A and A,Γ J ∆, then Γ J ∆, for every A,Γ,∆

(iv) If Γ J ∆, A and A,Σ J Π, then Γ,Σ J ∆,Π, for every A,Γ,Σ,∆,Π

(These properties are the semantic counterparts of the sequent rules known as ‘additive cut’
(Cut+) and ‘multiplicative cut’ (Cut×) respectively.) Now, cCL satisfies (iii) and (iv) as well.
Indeed, Ripley [42] distinguishes other eleven properties resembling transitivity that dCL satis-
fies, and cCL satisfies them all. Hence, even when we focus on non-relation-theoretic variations
of transitivity, cCL is not any less transitive than dCL.

Another interesting difference between the conjunctive and the disjunctive approaches con-
cerns the behaviour of the empty set, ∅. It is standard to assume that a disjunction with no
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disjuncts is always false (for it never has a true disjunct); in other words, letting
∨
(Σ) be the dis-

junction of all the things in Σ, we have that
∨
(∅) is a logical falsehood. Dually, a conjunction with

no conjuncts is always true (for it never has a false conjunct); letting
∧
(Σ) be the conjunction of all

things in Σ, we have that
∧
(∅) is a logical truth. Given these assumptions, under the disjunctive

approach, ∅ turns out to be a kind of cyclothymic character: it plays different inferential roles de-
pending on where it appears in the argument. When it is the set of premises, it works as a logical
truth, in the sense that it only entails logical truths; when it is the set of conclusions, it behaves
as a logical falsehood, in the sense that it only follows from logical falsehoods. Graphically, we
have:

∅ |=dCL A iff ⊤ |=dCL A

A |=dCL ∅ iff A |=dCL ⊥

Under the conjunctive approach, in contrast, ∅ is a more temperate fellow. It is read as
∧
(∅) no

matter what; thus, it always behaves as a logical truth:

∅ |=cCL A iff ⊤ |=cCL A

A |=cCL ∅ iff A |=cCL ⊤

It follows that A |=cCL ∅ for every A. And the two claims above still hold when we replace ‘A’
with ‘Γ’. Hence, cCL is a system where ∅ follows from any set whatsoever!

In view of this, the reader may perhaps wonder why cCL is not trivial. The answer concerns
the property of monotonicity. A multiple-conclusion consequence relation J is monotone if and
only if it satisfies the properties

(v) If Γ J ∆, then Σ,Γ J ∆, for every Γ,∆,Σ

(vi) If Γ J ∆, then Γ J ∆,Σ, for every Γ,∆,Σ

(These properties are the semantic counterparts of the sequent-rules of ‘left weakening’ (LW) and
‘right weakening’ (RW), respectively.) Monotonicity is often thought to encode the non-defeasible
character of deductive reasoning. dCL satisfies both (v) and (vi), and so is monotone. cCL sat-
isfies (v) but not (vi); to exemplify, {p} |=cCL {p} but {p} ̸|=cCL {p, q}. This explains why cCL

is not trivial, even though Γ |=cCL ∅ for every Γ. The failure of (vi) should not be taken as a de-
ductive weakness of the system, however, or as evidence that it models defeasible reasoning only.
First and foremost, under the conjunctive approach, (vi) intuitively says that, whenever certain
conjunction follows from our premises, adding some additional conjuncts delivers a conjunction
that also follows. But this of course is not the case in general. Thus, (vi) is not reasonable in this
context, and it should not be taken to encode the non-defeasibility of deductive reasoning. Sec-
ondly, there are some limitative results concerning the properties of reflexivity, transitivity and
monotonicity:

Fact 3. Let J⊆ P(L)× P(L)
(a) If J is reflexive and monotone, then it is trivial.
(b) If J is transitive, monotone, and there are at least two sets ∆ and Γ such that ∅ J ∆ and

Γ J ∅, then J is trivial.

Proof. (a) Reflexivity gives ∅ J ∅; by monotonicity we get Σ J Π for arbitrary Σ and Π. (b) By
monotonicity, from ∅ J ∆ and Γ J ∅ we get ∅ J Γ ∪∆ and Γ ∪∆ J ∅, respectively; transitivity
gives ∅ J ∅, and monotonicity again delivers Σ J Π for arbitrary Σ and Π.
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Thus, having all these properties at once was never a realistic goal to start with. dCL gives up
both reflexivity and transitivity. cCL only gives up (one of the sides of) monotonicity.

Related to monotonicity is the property

(vii) If Γ J ∆,Σ, then Γ J ∆, for every Γ,∆,Σ

(This is the counterpart of a sequent-rule sometimes called ‘right anti-weakening’ (RaW).) This
property is satisfied by cCL, but not so by dCL. This is perfectly reasonable, given the informal
reading that validity receives in these systems.

What we already said implies that cCL and dCL are contralogics of one another, that is, there
are arguments that are valid in cCL but not in dCL and vice versa:

Fact 4. A ver
(a) |=cCL ̸⊆ |=dCL (e.g. {p} |=cCL ∅ but {p} ̸|=dCL ∅)
(b) |=dCL ̸⊆ |=cCL (e.g. {p} ̸|=cCL {p, q} but {p} |=dCL {p, q})

Nevertheless, dCL and cCL are both what is known as counterparts of CL; this means that they
coincide with CL in single-conclusion arguments:

Fact 5. Γ |=CL C iff Γ |=dCL {C} iff Γ |=cCL {C}

Systems CL and dCL are compact, in the sense that whenever a set Γ entails something, there
is a finite subset Γ′ of Γ that entails that very thing. Now, cCL is not compact in this particular
sense. To see this, consider the set PV of all propositional variables of L. Clearly, PV |=cCL PV.
However, there is no finite subset PV′ of PV such that PV′ |=cCL PV. Luckily, cCL is compact in
the following slightly amended way:

Fact 6. Γ |=cCL ∆ just in case, for each finite subset ∆′ of ∆ there is some finite subset Γ′ of Γ such
that Γ′ |=cCL ∆′.

(The result follows easily by Fact 1, Fact 5 and the compactness of CL.) And this version of
compactness seems entirely reasonable from the perspective of the conjunctive approach.

We have seen that conjunctive conclusions differ from disjunctive conclusions in that they
are compatible with the common idea that logical consequence is reflexive and transitive. I will
argue later that this has some relevant philosophical consequences. For the time being, it must be
noticed that, as a counterpart of this difference (or perhaps, a price to be paid for it), disjunctive
conclusions exhibit certain expressive richness that conjunctive conclusions lack.6 Arguably, one
of the major advantages of dCL is that its consequence relation displays some well-known and
elegant symmetries. If Γ is a set of formulas, let ¬Γ be the set {¬A : A ∈ Γ}. Then, in dCL we
have the following equivalence

Γ J ∆ if and only if ¬∆ J¬Γ (1)

and more in general,

Γ J ∆, A if and only if ¬A,Γ J ∆

A,Γ J ∆ if and only if Γ J ∆,¬A
(2)

6I thank an anonymous referee of this journal for encouraging me to address this point.
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Now, statement (1) seems to express a generalised form of contraposition. Statements in (2), in
turn, seem to express the equivalence that exists in classical logic between proving (refuting) a
sentence A and refuting (proving) its negation ¬A. All these claims appear to capture something
central about the classical notion of consequence. Moreover, they make possible the formula-
tion of certain proof systems such as, for instance, one sided sequent calculi. However, they all
fail for cCL: for (1), we have {p, q} |=cCL {q} but {¬q} ̸|=cCL {¬q,¬p}; for (2), we have, first,
{¬p} |=cCL {¬p} but ∅ ̸|=cCL {¬p, p}, and second, {p} |=cCL {p} but ∅ ̸|=cCL {p,¬p}. Hence,
one might say that the framework of conjunctive multiple conclusions is expressively weaker
than the framework of disjunctive multiple conclusions, and in particular, it fails to express some
central properties of classical consequence.

I think that the objection is correct, and that it pinpoints a potential limitation on the applica-
tions of the conjunctive reading of conclusions. Having said that, I point out that in cCL we still
have some ways of expressing the facts about classical consequence mentioned in the objection.
Let us officially stipulate that

∧
(∅) = ⊤ and

∨
(∅) = ⊥. Consider the following statements:

Γ J ∆, with Γ,∆ finite if and only if ¬
∧
(∆) J ¬

∧
(Γ) (1∗)

Γ J {A ∨B : B ∈ ∆} if and only if ¬A,Γ J ∆

A,Γ J ∆ if and only if Γ J {¬A ∨B : B ∈ ∆}
(2∗)

It’s easy to check that

Fact 7. Equations (1∗) and (2∗) hold for cCL.

When both premises and conclusions are read conjunctively, (1∗) obviously expresses contraposi-
tion. With (2∗) things are less obvious; but notice that it has the special cases

∅ J A ∨ ⊥ if and only if ¬A J ⊥
A J ⊥ if and only if ∅ J ¬A ∨ ⊥

Modulo the meanings of ⊥ and ∨, these statements arguably express the idea that to prove (refute)
a statement and to refute (prove) its negation are similar businesses in classical logic.

One evident drawback of (1∗) and (2∗) is that, unlike (1) and (2), they use object linguistic
conjunction and disjunction. In a way, these connectives make explicit an application of the De
Morgan laws that remains implicit in (1) and (2) as read in dCL. To see this, take {p, q} J {r, s}
as the left hand side of (1); the operational reading of this in dCL is p ∧ q J r ∨ s; contraposition
gives us ¬(r∨ s) J ¬(p∧ q), and then the De Morgan laws deliver ¬r∧¬s J ¬p∨¬q, which is the
operational reading in dCL of {¬r,¬s} J {¬p,¬q}. Either way, the appeal to these constants in
(1∗) is problematic, for two reasons: first, we might want to work in a language that lacks them;
second, (1∗) cannot be generalised to infinite Γ and ∆.

If we complicate things a bit, and allow ourselves to use collections of validity claims, we can
avoid using conjunction and disjunction. Let Σ⊤ stand for Σ if Σ is non-empty, and for {⊤}
otherwise. Consider the following statements:

Γ J ∆ if and only if Γ⊤/{A},¬B J ¬A
for A ∈ Γ⊤ and B ∈ ∆⊤

(1∗∗)

Γ,¬B J A, for B ∈ ∆⊤ if and only if ¬A,Γ J ∆

A,Γ J ∆ if and only if Γ,¬B J ¬A, for B ∈ ∆⊤ (2∗∗)
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While the proofs are less self-evident (and the reader can cheerfully skip them), we still have

Fact 8. Equations (1∗∗) and (2∗∗) hold for cCL

Proof. Equation (1∗∗). Left to right. Suppose Γ |=cCL ∆ and consider any A ∈ Γ⊤ and B ∈ ∆⊤.
Assume v assigns 1 to ¬B and to everything in Γ⊤/{A}. Then v assigns 0 to B, and thus B ̸= ⊤,
and hence B ∈ ∆. It follows that v assigns 0 to something in Γ. Hence, Γ ̸= ∅, which implies
Γ = Γ⊤. Thus, v assigns 0 to something in Γ⊤. But by assumption v assigns 1 to everything in
Γ⊤/{A}. Hence, v assigns 0 to A, and thus 1 to ¬A. Right to left. Suppose that Γ⊤/{A},¬B |=cCL

¬A for each A ∈ Γ⊤ and B ∈ ∆⊤. Assume v assigns 1 to everything in Γ, and consider any B ∈ ∆.
Clearly, v assigns 1 to everything in Γ⊤. Since Γ⊤ ̸= ∅, there is at least one A ∈ Γ⊤ such that v
assigns 1 to A, and thus 0 to ¬A. It follows that v assigns 0 to ¬B, and thus 1 to B. Equation (2∗∗).
We show the uppermost biconditional. Left to right. Suppose Γ,¬B |=cCL A for each B ∈ ∆⊤.
Suppose v assigns 1 to ¬A and to all formulas in Γ. Then for each B ∈ ∆, v assigns 0 to ¬B, and
hence 1 to B. Right to left. Suppose ¬A,Γ |=cCL ∆. Consider any B ∈ ∆⊤. Assume v assigns 1 to
¬B and to all formulas in Γ. Then v assigns 0 to B, and thus B ̸= ⊤, and hence B ∈ ∆. It follows
that v assigns 0 to ¬A or to some formula in Γ. But by assumption v assigns 1 to all formulas in Γ.
Hence it assigns 0 to ¬A, and thus 1 to A. The lowermost biconditional is established by similar
reasoning.

Arguably, modulo the meanings of ⊥ and ⊤, (1∗∗) and (2∗∗) still encode the target phenomena.
However, now the evident drawback of these properties is that they appeal to the object linguistic
expressions ⊤ and ⊥. Which brings us directly to what might be the core, most basic expressive
limitation of the framework with conjunctive conclusions: it has no means to say, without using
object-linguistic resources, that a sentence A is refutable. In dCL, the fact that A is refutable is
encoded in the claim

A J ∅

but this claim tells us absolutely nothing about the logical status of A in cCL. Alongside with the
behaviour with respect to reflexivity and transitivity, this is, arguably, the most conceptually rele-
vant difference between the conjunctive and the disjunctive approaches to multiple conclusions,
in general, and between cCL and dCL in particular.

2.2 Proofs

In this section I will provide a sequent calculus for cCL. In a nutshell, I will take a system for
single-conclusion classical logic CL, and show how to extend it with appropriate rules for multi-
ple conclusions. A disclaimer is in place: I do not contend that the resulting calculus is the best we
can do, either in proof-theoretic or in philosophical terms. The goal is just to provide one possi-
ble calculus for classical logic where conclusions are read conjunctively, which is something that,
as far as I know, is already new to the literature. The quest for nice(er) calculi with conjunctive
multiple conclusions is an interesting enterprise, but one that must be left for future work.

Throughout this section, Γ,∆,Σ, ... stand for multisets of formulas of L.7 Formally, they are
functions from L to the set N of natural numbers. Intuitively, they are lists with multiplicity but

7We could have used sets in our proof-theory as well. But we choose to use multisets to avoid certain (solvable)
complications that, as shown by Negri and von Plato [31], the use of sets brings about.
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without order, and Γ(A) is the amount of times that formula A occurs in Γ. The root set of Γ,
denoted by |Γ|, is the set {A ∈ L : Γ(A) > 0}; we write A ⊏− Γ as a shorthand for A ∈ |Γ|.
A multiset is finite just in case its root set is finite. Γ is a submultiset of ∆ just in case Γ(A) ≤
∆(A) for every A. The multiset union of Γ and ∆, denoted by Γ,∆, is the multiset where each A

occurs Γ(A)+∆(A) times. We use ∅for the empty multiset—as opposed to ∅, which denotes the
empty set. Officially, we use square brackets to describe multisets by extension; so, [A,A,B] is the
multiset containing two occurrences of A, one of B and nothing more. Occasionally, however, we
omit the brackets on multisets with just one formula occurrence; so, Γ, A stands for Γ, [A].

We define a sequent as a pair of finite multisets of formulas of L, and we denote the sequent
⟨Γ,∆⟩ as Γ ⇒ ∆. Below, we find the sequent-rule counterparts of the various semantic properties
alluded to in the previous subsection:

Ref
Γ ⇒ Γ

Γ ⇒ ∆, A A,Γ ⇒ ∆
Cut+

Γ ⇒ ∆

Γ ⇒ ∆ ∆ ⇒ ΣTr
Γ ⇒ Σ

Γ ⇒ ∆, A A,Σ ⇒ Π
Cut×

Γ,Σ ⇒ ∆,Π

Γ ⇒ ∆LW
A,Γ ⇒ ∆

Γ ⇒ ∆RW
Γ ⇒ ∆, A

Γ ⇒ ∆, A
RaW

Γ ⇒ ∆

We say that a sequent Γ ⇒ ∆ is valid in cCL just in case |Γ| |=cCL |∆|. A rule is sound in cCL

just in case, for each of its instances, if the premise-sequents are all valid, the conclusion-sequent
is valid. We adopt similar definitions for CL and dCL. It is easy to check that, of the rules above,
all but RW are sound in cCL, and all but RaW, Ref and Tr are sound in dCL.

Our single-conclusion calculus will be the one given by Negri and von Plato [30, p. 114]. We
write A/B for a formula that is either A or B, and p for an arbitrary propositional variable.

Definition 2. The calculus SCL is determined by the following rules:

Id-at
p,Γ ⇒ p

A,Γ ⇒ C B,Γ ⇒ C
L∨

A ∨B,Γ ⇒ C

A,B,Γ ⇒ C
L∧

A ∧B,Γ ⇒ C

A → B,Γ ⇒ A B,Γ ⇒ C
L→

A → B,Γ ⇒ C

L⊥ ⊥,Γ ⇒ A

Γ ⇒ A/B
R∨

Γ ⇒ A ∨B

Γ ⇒ A Γ ⇒ BR∧
Γ ⇒ A ∧B

A,Γ ⇒ B
R→

Γ ⇒ A → B

p,Γ ⇒ C ¬p,Γ ⇒ C
Lem-at

Γ ⇒ C

Calculus SCL is sound and complete for CL:

Theorem 9 (Negri and von Plato, p. 119). A sequent Γ ⇒ A is valid in CL if and only if it is provable
in SCL

One important remark about the calculus is that applications of Lem-at can be restricted in deriva-
tions, as follows:

Fact 10 (Negri and von Plato, p. 120). If a sequent Γ ⇒ C is derivable in SCL, then it has a
derivation where Lem-at is applied only on subformulas of C.
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Since Lem-at is the only elimination rule of the calculus, it follows that if a sequent is derivable in
SCL, then it has a derivation with the subformula property—that is, a derivation whose formulas
are all subformulas of formulas in the end-sequent.

To obtain a calculus for cCL, we just add a pair of rules:

Definition 3. The calculus ScCL results from SCL by adding the rules

R ∅
Γ ⇒ ∅

Γ ⇒ ∆1 . . . Γ ⇒ ∆nSM
Γ ⇒ ∆1, ...∆n

The intuitive readings of rules R ∅and SM are quite straightforward: the former says that the
empty multiset follows from any multiset whatsoever, and the latter says that, if one multiset
entails several others, then it entails their multiset union.

Theorem 11. A sequent Γ ⇒ ∆ is valid in cCL if and only if it is provable in ScCL.

Proof. We leave soundness as an exercise, and prove completeness. So, suppose Γ ⇒ ∆ is valid
in cCL. If ∆ = ∅, then Γ ⇒ ∆ is provable by a single application of R ∅, and we are done. So,
suppose ∆ ̸= ∅. The fact that Γ ⇒ ∆ is valid in cCL means that |Γ| |=cCL |∆|. From this it follows
that, for every C ∈ |∆|, |Γ| |=cCL {C} (Fact 1), and thus |Γ| |=CL C (Fact 5), and thus the sequent
Γ ⇒ C is derivable in SCL (Theorem 9). Hence, suppose ∆ = [C1, ..., Cn]. The above implies that
there exists a sequence D1, ...,Dn such that each Di is a derivation in SCL of the sequent Γ ⇒ Ci.
Thus, we just merge together all these derivations as follows

D1

...
Γ ⇒ C1

· · ·
...

· · ·

Dn

...
Γ ⇒ CnSM

Γ ⇒ [C1, ..., Cn]

and obtain a derivation in ScCL of Γ ⇒ ∆.

One consequence of soundness and completeness (together with Facts 1, 5 and 10) is that in
ScCL applications of Lem-at can also be restricted:

Corollary 12. If a sequent Γ ⇒ ∆ is derivable in ScCL, then it has a derivation where Lem-at is
applied only on subformulas of formulas occurring in ∆.

(We leave the proof as an exercise for the reader.) Again, this implies that if a sequent is derivable
in ScCL, then it has a derivation with the subformula property.

Another consequence of soundness and completeness is that all the rules that are sound in
cCL are admissible in ScCL.8 Thus, for instance,

Corollary 13. Rules Ref, Tr, Cut+, Cut×, LW and RaW are admissible in ScCL.

Proof. We just prove the case of Cut×. Suppose sequents Γ ⇒ ∆, A and A,Σ ⇒ Π are both
provable in ScCL. By soundness, they are valid in cCL. By the fact that Cut× is sound in cCL,
sequent Γ,Σ ⇒ ∆,Π is valid in cCL as well. Then, by completeness, it is provable in ScCL. The
remaining cases are analogous.

8A sequent rule is admissible in a sequent calculus S if and only if, for each of its instances, if the premise-sequents are
all provable in S, the conclusion-sequent is provable in S.
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One worry that one might have about calculus ScCL concerns the fact that it only has two
rules (namely R ∅and SM) that feature multiple conclusions. On the one hand, this arguably
endows ScCL with a certain elegance, as the calculus proves complete for cCL while extending
SCL with rather minimal resources. On the other hand, however, it makes the calculus rather
odd from a philosophical standpoint. If the consequence relation that the calculus encodes allows
arguments with multiple conclusions, why would the rules for the logical constants not allow
such arguments? It seems desirable to have a calculus for cCL where the rules for the logical
constants allow multiple conclusions as well.

Luckily, such a calculus is at hand:

Corollary 14. The following rules are sound in cCL, and thus also admissible in ScCL:

Id-at+
p,Γ ⇒ Γ, p

A,Γ ⇒ ∆ B,Γ ⇒ ∆
L∨+

A ∨B,Γ ⇒ ∆

A,B,Γ ⇒ ∆
L∧+

A ∧B,Γ ⇒ ∆

A → B,Γ ⇒ ∆, A B,Γ ⇒ ∆
L→+

A → B,Γ ⇒ ∆

L⊥+

⊥,Γ ⇒ ∆

Γ ⇒ ∆, A/B
R∨+

Γ ⇒ ∆, A ∨B

Γ ⇒ ∆, A Γ ⇒ ∆, B
R∧+

Γ ⇒ ∆, A ∧B

A,Γ ⇒ [C1, ..., Cn]
R→+

Γ ⇒ [A → C1, ..., A → Cn]

p,Γ ⇒ ∆ ¬p,Γ ⇒ ∆
Lem-at+

Γ ⇒ ∆

Let S+
cCL be the calculus that results from replacing, in ScCL, each single-conclusioned rule R

with its multiple-conclusioned counterpart R+. By the above corollary, calculus S+
cCL proves no

more sequents than ScCL. By the fact that each of the mentioned Rs is just a special case of the
corresponding R+, calculus S+

cCL also proves no less sequents. That is to say, S+
cCL is also sound

and complete for cCL.
Another source of worries has to do with the rules of cut, Cut+ and Cut×. Corollary (13)

establishes the admissibility of these rules in ScCL by means of a semantic argument—which
relies, remember, on the fact that these rules are sound in cCL. For many purposes, however, it
is often useful to have a direct, syntactic proof of their admissibility. But calculus ScCL has two
rules, R ∅and SM, whose form is quite different from what we are used to see in the literature
on sequent calculi; hence, it is not obvious that these rules do not ‘mess’ with the procedures that
the usual proofs of cut admissibility employ. To dispel such a worry, in the Appendix I lay down
purely syntactic proofs of the admissibility of Cut+ and Cut× in ScCL.

One important application of cut-free sequent calculi is to enable purely syntactic proofs of
consistency. However, proofs of this sort typically rely on the fact that sequent ∅⇒ ∅is invalid,
and this sequent is valid in cCL. So, one may also worry that, in a framework with conjunctive
multiple conclusions, purely syntactic proofs of consistency are not available. But the worry is
unfounded. The consistency of ScCL can be proven by purely syntactic means. First, one shows
that ScCL is consistent (viz. it does not prove any sequent of the form ⇒ A ∧ ¬A) if and only if
sequent ⇒ ⊥ is not derivable. Then, one goes on to show that in ScCL no derivation of ⇒ ⊥ can
exist. Intuitively, this is because ⇒ ⊥ can only be obtained in one of the following two ways:
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...
p ⇒ ⊥

...
¬p ⇒ ⊥

Lem-at ⇒ ⊥

...
⇒ ⊥ R ∅⇒ . . .

R ∅⇒SM ⇒ ⊥

But in each case, one of the premises can only be obtained using Lem-at or SM again, which leads
to an infinite regress. Thus, purely syntactic proofs of consistency can still be obtained in our
framework (although in a slightly different way).

Calculus ScCL does have one shortcoming, however. If we formulate it in a first order lan-
guage and extend it with the usual rules for the quantifiers, then the resulting system, call it SFO

cCL,
is not complete for the first-order version of cCL; rather, it is a system where propositional con-
nectives are classical but quantifiers are intuitionistic—so, for instance, we cannot prove ∃xAx ∨
¬∃xAx for arbitrary A.9 There are a couple of possible reactions. One option would be to take
SFO
cCL and, in the rule of excluded middle, drop the restriction that the formula being eliminated

should be atomic. The problem with this strategy is that, although the resulting system is com-
plete, it makes some variants of cut derivable,10 and it is not clear if applications of excluded mid-
dle can be restricted in derivations in some meaningful way. Another, more radical option would
be to start from some altogether different calculus for first-order, single-conclusion classical logic,
and then add rules R ∅and SM to that calculus. For instance, one could take the system given by
Boolos [4, p. 183]. The issue with that particular system is that it is a natural deduction calculus
in sequent style (viz. it has elimination rules for the connectives), and this could be less than
satisfactory for some purposes. All in all, the proof theory of first-order classical logic with con-
junctive multiple conclusions is to be developed, and I take it to be an interesting topic of research
for future work.

3 Natural Language Arguments

Arguably, one of the most important applications of logical systems is to describe and/or pre-
scribe the way in which we deductively reason and/or ought to reason in natural language; in
other words, to model our everyday reasoning. In this section I claim that the conjunctive ap-
proach to multiple conclusions is useful in this respect.

In the philosophy of logic, most authors take sides with tradition and claim that arguments in
natural language have exactly one conclusion:

The vice of the idea of multiple conclusion arguments is that it seems completely for-
eign to the evidence of the arguments we see in practice. (Beall and Restall [1, p. 13].)

The rarity, to the point of extinction, of naturally occurring multiple conclusion argu-
ments has always been the reason why mainstream logicians have dismissed multiple-
conclusion logic as little more than a curiosity. (Rumfitt [44, p. 79].)

(See also [15, 22, 43, 48, 51].) Some have challenged this attitude, and argued that in natural
language we sometimes find arguments with multiple conclusions [39, 46] or, at least, logical
constants whose adequate formalisation requires a multiple conclusion framework [14]. Both
sides in the debate, however, share a key implicit assumption, namely, that multiple conclusions

9I thank an anonymous reviewer of this journal for bringing this matter to my attention.
10A sequent rule is derivable in a sequent system S just in case, for each of its instances, the conclusion-sequent is

provable in the system that results from S by adding the premise-sequents as new axioms.
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are to be read disjunctively.11 I drop that assumption, and argue that, at least when conclusions
are read conjunctively, there are arguments in natural language whose most natural and simple
formalisation involves multiple conclusions.

My starting observation is simple. In English, it makes perfect sense to say things as

(1) Such and such predictions follow from such and such hypotheses.
(2) What you said entails the following set of statements: A1, A2, ..., An.
(3) This theoretical standpoint has a series of undesirable consequences

It is clear that, were these fragments to be formalised using multiple conclusions, those conclu-
sions should be read conjunctively. Hence, I next consider some objections against the idea that
they can be plausibly formalised using multiple conclusions.

The most immediate objection is that the above fragments can be formalised just as well using
a conjunction as the only conclusion; therefore, multiple conclusions are dispensable. For starters,
it should be noted that, if this objection is convincing, then an analogous one applies to multiple
conclusions under the disjunctive reading: they can be explained away by means of disjunctions.
Setting this aside, there are several answers to the objection.

The first one is that, sometimes, to formalise using sets is more faithful to the speaker’s inten-
tion than to formalise using a conjunction. For instance, let us precisify (3) as follows:

(3*) Hard determinism has a series of undesirable consequences, namely, the nonexistence of
moral responsibility, the lack of individual autonomy, and a depressing fatalism.

and compare this with

(3**) Hard determinism has a series of undesirable consequences, namely, the nonexistence of
moral responsibility, a depressing fatalism, and the lack of individual autonomy.

There are at least some contexts of utterance in which the difference between (3*) and (3**) seems
entirely irrelevant. To avoid unnecessary logical manipulations of object linguistic constants, in
such contexts it seems reasonable to formalise both fragments using a set of conclusions instead
of a single conclusion of conjunctive form. While non-decisive, the point should not be very
controversial: it is for similar considerations that, often, when we face an argument with prima
facie many premises, we formalise it using a set of premises rather than a conjunction thereof.

Secondly, it is true that, in our setting, conjunction and multiple conclusions are equivalent in
the following sense:

Γ J A,B,∆ iff Γ J A ∧B,∆

But this happens only because we work in classical logic; in many non-classical systems, the
equivalence will break. For instance, consider any logic where conjunction has a non-standard
behaviour in that it violates simplification (A∧B J A/B) or adjunction (A,B J A∧B).12 Suppose
also that in this logic validity is defined as preservation of designated value, following the general
template that we can extract from Definition 1:

11A note to avoid confusion. In the terminology of Steinberger [48], those who favour the so-called bilateralist reading of
multiple-conclusion consequence (where Γ J ∆ is read as “It is incoherent to accept everything in Γ and deny everything
in ∆”) do not have a disjunctive reading of conclusions. But they do have such a reading in our usage of words, because
they work with systems where validity can be paraphrased as per the disjunctive approach.

12There are many logics where conjunction is non-standard in this sense. Just to give a couple of examples, adjunction
fails in Jaśkowski’s [27] discussive logic as well as in non-falsity logic NFL (Shramko [47]), whereas simplification fails
in paraconsistent weak Kleene logic PWK (Haldén [26]).
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Γ J ∆ just in case, for every relevant interpretation, if all the things in Γ have desig-
nated value, all the things in ∆ have designated value.

where Γ and ∆ are sets. Then, conjunction and structural comma will come apart in this logic,
for the definition of validity just given imposes on the comma the structural renderings of sim-
plification (A,B J A/B) and adjunction (A,B J A,B). The point is that conjunctive multiple
conclusions are not in general reducible to mere conjunctions.

Thirdly, infinite collections of conclusions are not expressible with ordinary conjunctions. And
we sometimes use arguments with prima facie infinite conclusions, as when we say

(4) The Peano axioms entail all formulas of the form t+ 0 = t.
(5) This theory of physic entails all the sentences of the language

Perhaps, the objector could insist by appealing to infinite conjunctions. But the formulation of
infinite conjunctions requires set-theoretical vocabulary anyway; hence, it does not contribute to
economise on expressive resources. For instance, let us try to formalise (5). Let T be the relevant
theory, and L our language. With multiple conclusions, we can write

T |= {A : A ∈ L}

If we restrict ourselves to single conclusions, we have to write

T |=
∧
{A : A ∈ L}

In both cases we will need the machinery of set-theory. Thus, why don’t we allow multiple con-
clusions from the outset?13

Fourth and last. If the above reasons do not convince the reader, then they may also lack
good reasons to admit multiple premises. Now that our reading of multiple premises and conclu-
sions is similar, reasons that justify the former tend also to justify the latter, and vice versa. Also
arguments with prima facie many premises could be formalised with a conjunction as the only
premise. If the reader is consequent, they should opt for such a formalisation. But I doubt that
this would be pleasing for them.

The second possible objection to my proposal runs as follows. If an argument in natural lan-
guage appears to have multiple conclusions, then it is just an abbreviation of multiple different
arguments, one for each of the apparent conclusions. In particular, when a speaker asserts that Γ
entails ∆, and ∆ is understood conjunctively, what the speaker means is the universal statement
“Γ entails C for each C in ∆”. This picture builds on some suggestions by Cintula and Paoli [9].

This objection is more plausible, but its significance is rather limited. To begin with, if it is
convincing, then again there is an analogous objection that affects multiple conclusions under a
disjunctive reading; indeed, Cintula and Paoli’s original argument is meant to give an elimina-
tivist account of those. Very roughly, the assertion that Γ entails ∆, where ∆ is read disjunctively,
can be understood as expressing the universal statement according to which each C in ∆ follows
from Γ together with the negations of the remaining things in ∆. Regardless of this, the objection
is again contestable.

First, it is true that, in our setting, the following ‘reduction’ holds:

13My last two answers develop some considerations made by Shoesmith and Smiley in their defence of disjunctive
multiple conclusions [46, p. 2].
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Γ J ∆ iff Γ J δ for each δ ∈ ∆

But again, whether some such result is available will depend on the details of the framework. For
instance, if a consequence relation J is defined on multisets rather than sets, then the obvious
reformulation of the reduction would be the following

Γ J ∆ iff Γ J δ for each δ ⊏− ∆

But this reduction could reasonably fail if J is meant to formalise resource-sensitive reasoning:
we could have, for example, [A] ̸J [A,A] but [A] J [A] (where, notice, the latter implies that
[A] J [C] for each C ⊏− [A,A]).14 The point is, now, that conjunctive multiple conclusions do not
in general merely abbreviate classes of single-conclusion arguments.

But even for those systems where the reduction can be done, it is hasty to conclude that con-
junctive multiple conclusions are just dispensable. First and foremost, when a speaker utters, for
instance, “Such and such predictions follow from such and such hypothesis”, or even “This the-
ory entails that one”, they do not make explicit use of any quantifiers—and they are not aware of
making any implicit use of quantifiers either. Hence, the most literal and simple way to model
their claim is by means of two collections of statements, say Γ and ∆, of which they are saying
that Γ J ∆. If we relinquish from multiple conclusions, and model the speaker’s utterance by
means of a universal quantification over a certain class of single-conclusion arguments, we make
a non-literal (or at least, a less literal) reading of what the speaker has said. Of course, non-literal
readings can have their advantages sometimes. But, all other things being equal, the more literal
reading is to be preferred.

For another thing, the reduction makes essential use of certain metatheoretical expressions
such as the indicative biconditional and the universal quantifier. Since these expressions pertain
to the metalanguage, they are preformal in that their usage is not regimented. Multiple conclu-
sions allow us to dispense with these expressions and thus give a more rigorous account of the
logic regulating fragments like (1) to (5)—and the interactions between these fragments. This
increase in rigour arguably brings about some epistemic gains. For instance, it enables a proof-
theoretic decision procedure for the validity of these fragments, and it allows a better analysis of
the structural properties that these pieces of reasoning display. These epistemic gains, I take it,
provide further reasons to formalise fragments (1) to (5) by means of multiple conclusions.

I conclude that, at least when conclusions are read conjunctively, we have good reasons to
admit that there are multiple conclusions in natural language. This makes conjunctive multiple
conclusions useful in the enterprise of modelling our everyday reasoning. To be clear, I have
not argued that in natural language there are no arguments with disjunctive multiple conclusions.
There may well be. For instance, one could try to mimic the reasoning from this section by ap-
pealing to examples like “These facts entail the following set of possible scenarios”, “What you
said leaves the following possibilities open”, and so on. But following this line of thought escapes
the subject of this paper.

14A concrete example of a system where this happens is logic MŁ in Cintula and Paoli [9, p. 753].
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4 On Reflexivity and Transitivity

One of the major differences between the conjunctive and the disjunctive approaches has to do
with their policies towards the properties of reflexivity and transitivity: the disjunctive approach
induces failures of these properties, while the conjunctive one does not. In this section we will
see that this difference is tightly related to a number of aspects in which the conjunctive approach
seems to be more satisfactory than the disjunctive one. In Sect. 4.1, I claim that it allows a more
natural generalisation of logical equivalence from sentences to collections thereof. In Sects. 4.2
to 4.4, I claim that it gets along better with some of our best accounts of logical consequence,
namely, the ones based on preservation, on content inclusion, and on existence of a proof.

4.1 Generalising Logical Equivalence

The relation of logical equivalence is typically assumed to hold between sentences. But when
we work in a multiple-conclusion framework, the relata of logical consequence are collections of
sentences. Hence, it makes sense to ask what logical equivalence looks like when we generalise it
to collections as well.

In the single-conclusion framework, two sentences A and B are said to be logically equivalent
just in case they mutually entail each other, in symbols AL B. So, let us extend this stipulation to
the multiple-conclusion framework: two sets Γ and ∆ are logically equivalent just in case ΓL ∆.
Under this modest assumption, the disjunctive approach has some consequences that strike me
as highly counter-intuitive:

Case 1: Set {A,B} is logically equivalent to {A ∨ B}, but also to {A ∧ B}!
(In other words, {A,B} |=|=dCL {A ∨ B} and {A,B} |=|=dCL {A ∧ B}.) How can
the same set be logically equivalent to sentences that have different truth conditions
(or, more precisely, to sets that do not have the same models)?15

Case 2: The empty set, ∅, is logically equivalent to {A,¬A}, but not to itself!
(In other words, ∅ |=|=dCL {A,¬A} but ∅ ̸|≠|=dCL ∅.) If something entails an in-
consistent set, and classical logic is explosive, why does it not entail everything and,
in particular, why does it not entail itself?

Of course, these questions have clear technical answers. As for Case 1, sets {A,B} and {A ∨ B}
are logically equivalent because, although they do not have the same models, every model of the
latter assigns value 1 to at least one sentence in the former and vice versa; this is all we need to
have validity in dCL. As for Case 2, ∅ is not equivalent to itself because, although every model
assigns 1 to each of its sentences, no model assigns 1 to at least one of them; this precludes dCL

validity. But notice that these answers assume a disjunctive reading of multiple conclusions; hence,
they just beg the question in favour of this reading. Needless to say, none of the counter-intuitive
examples affects the conjunctive approach: in cCL, ∅L ∅ and {A,B} L̸ {A ∨B}.

Examples 1 and 2 have quite a bit in common. Indeed, they can both be explained by a single
fact about dCL, namely, that the system invalidates the following principle:

ΓL Σ ∆L ΣAx-1
ΓL ∆

15It is noteworthy that, as a special case of this example, we have that {A,¬A} is logically equivalent both to {A∧¬A}
and to {A ∨ ¬A}, that is, both to a set without models and to a set without counter-models.
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The informal reading is: ‘If two things are logically equivalent to a third, they are logically equiv-
alent to one another’. Label ‘Ax-1’ honours the clear similarity with the first axiom of Euclid. In
Case 1, Γ is {A∨B}, ∆ is {A∧B}, and Σ is {A,B}. In Case 2, Γ and ∆ are both ∅, and Σ is {A,¬A}.
Both examples show that Ax-1 does not hold in dCL.

I submit that Ax-1 throws light upon an important aspect in which cCL is more akin to CL

than dCL is. In the single-conclusion framework, logical equivalence is defined for sentences,
while in the multiple-conclusion framework, it is defined for sets of sentences. Thus, in the cases
of both CL and cCL, logical equivalence is a genuine equivalence relation, that is, it is reflexive,
transitive and symmetric. This is not so, however, in the case of dCL; the explanation is that Ax-1
is a necessary condition for a relationL to be an equivalence relation. The upshot is that there is
a sense in which the conjunctive reading of multiple conclusions is more faithful to the spirit of
single-conclusion consequence than the disjunctive reading is.

The sympathiser of the disjunctive approach could object. When we focus on sentences, the
relations of ‘having the same models’ and ‘entailing each other’ are coextensive: A has the same
models as B just in case AL B. As a consequence, logical equivalence can be defined in terms of
any of these relations, and the results will be the same. When we focus on sets, however, things
are different. The relations mentioned now come apart: there are pairs of sets that have the same
models, but do not entail each other (e.g. ∅ and ∅) and there are also pairs of sets that entail each
other in spite of not having the same models (e.g. {A,B} and {A∨B}). Thus, logical equivalence
cannot adjust to both relations at once. We must choose. And we have just seen that defining
logical equivalence in terms of mutual entailment runs into troubles. Hence, we should define it
in terms of sameness of models.16 This keeps the counter-intuitive examples at bay: now, {A,B}
and {A ∨B} are not logically equivalent, but ∅ and ∅ are.

The objection is relevant, since it provides a coherent picture where multiple conclusions are
read disjunctively and, yet, undesirable consequences are avoided. However, I do not think that
the position depicted is ultimately satisfactory; the reason is that it incurs in theoretical costs that
can be avoided. Under the conjunctive approach, the relations of ‘having the same models’ and
‘entailing each other’ are coextensive both for sentences and for sets. Also, the approach is not
prone to the counter-intuitive consequences that threaten the disjunctive reading. But then, why
pay the cost that the disjunctive reading supposes? Why break the symmetry between the notions
of logical equivalence for sentences and for sets, if this is not indispensable to save the data? I do
not see good answers in favour of the disjunctive approach.

4.2 Validity as Preservation

One of the (if not the) most established analysis of logical consequence in the literature tells us that
an argument is valid just in case it preserves certain property from premises to conclusion(s). The
property that is assumed to be preserved varies across logical systems and philosophical views;
it can be, e.g. truth or satisfaction, assertability, constructive provability or even evidence. For
concreteness, in what follows I assume the relevant property to be truth. Not much hinges on
this, however. My argument is quite general, and it aims to apply to most (if not all) explanations
of logical consequence as preservation.

16This is not the only option, though. As an anonymous reviewer rightly observes, the sympathiser of the disjunctive
approach could also say that two sets Γ and ∆ are logically equivalent just in case they entail the same sets, viz. for every
Σ, Γ J Σ if and only if ∆ J Σ. My answer to this proposal is similar to the reply I give below to the proposal based on
sameness of models.
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The starting point I would like to make is that the idea of ‘truth preservation’ suggests that
there is a pair of entities such that the first ‘transfers’ its truth to the second or, alternatively,
the second ‘inherits’ the truth of the first. Of course, this is metaphoric. But that should not be
a problem, since the very talk of ‘truth preservation’ is metaphoric as well. I am just positing
further informal conditions that should intuitively hold for the metaphor to make sense. Our
guiding question, then, will be the following: What are the entities between which truth is preserved
in valid arguments? LetJ be any logical consequence relation. We will consider three options: that
J stands for consequence in CL, in cCL, and in dCL.

If J stands for consequence in CL, things seem quite straightforward. First, we stipulate
that a set of sentences is true just in case all of its sentences are true. Then, we note that, under
the usual reading of the semantics for classical logic (where 1 stands for ‘true’ and 0 for ‘false’),
the following obtains:

(Set-Fmla) Γ J C just in case, whenever Γ is true, C is true

Thus, we are justified in giving the next answer to our question: in valid arguments, truth is
preserved between the set of premises and the conclusion. Label ‘(Set-Fmla)’ stands for ‘Set-Formula
truth preservation’.

If J stands for consequence in cCL, no additional complications seem to arise. We stick to the
above stipulation, and note that the following obtains:

(Set-Set) Γ J ∆ just in case, whenever Γ is true, ∆ is true

Thus, we are justified in giving the answer: in valid arguments, truth is preserved between the set
of premises and the set of conclusions. The meaning of label ‘(Set-Set)’ is the expected one, namely
‘Set-Set truth preservation’.

WhenJ stands for consequence in dCL, however, things are way less obvious. To begin with,
the idea that truth is preserved between sets seems bound to failure. The reason is that there
seems to be no reasonable stipulation of what it means that a set of sentences is ‘true’ such that
(Set-Set) obtains. Suppose that we stick to the stipulation we entertained so far: a set of sentences
is true just in case all of its sentences are true. Then, (Set-Set) fails because {p} |=dCL {p, q} but it
is not the case that whenever al the sentences in {p} are true, all the sentences in {p, q} are true.
Suppose, alternatively, that a set of sentences is true just in case at least one of its sentences is
true. Then, (Set-Set) fails because ∅ ̸|=dCL {p∧¬p} even though, whenever some sentence in ∅ is
true, some sentence in {p∧¬p} is true (namely, never). Maybe, one could try some more intricate
stipulations; for instance, one could say something like this: “A set is true in the premises of an
argument just in case all of its sentences are true, and a set is true in the conclusions of an argument
just in case at least one of its sentences is true’. But this, I take it, makes no philosophical sense
at all. In general, I see no stipulation that satisfies Set-Set without being horribly ambiguous or
context-dependent.

Let us discard, then, the idea that in valid arguments truth is preserved between sets. Another
option that could come to mind is that in valid arguments truth is preserved between the set of
premises and some sentence in the set of conclusions. The problem with this proposal is that, for it
to be justified, the following should obtain:

(Set-Set⋆) Γ J ∆ just in case there is a C in ∆ such that, whenever Γ is true, C is true

Yet, this fact fails spectacularly in dCL; for instance, we have that ∅ |=dCL {p,¬p} but it is neither
the case that p is always true, nor that ¬p is always true. Indeed, (Set-Set⋆) fails in most of the
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logical systems I know of.17

The last, and most plausible answer that I could come up with runs as follows: in valid argu-
ments, truth is preserved between the sentence-translations of the sets of premises and conclusions.
Let us define the premise-sentence-translation of a set Σ, denoted by p(Σ), as

∧
(Σ∪{⊤}), and the

conclusion-sentence-translation of Σ, denoted by c(Σ), as
∨
(Σ∪{⊥}). Then, the justifying fact for

this position would be the following:

(Set-Set⋆⋆) Γ J ∆ just in case whenever p(Γ) is true, c(∆) is true.

Of course, this obtains for dCL as well as many non-classical systems. The problem I see with this
proposal is that, if we take seriously the idea that the relata of logical consequence are sets and,
moreover, we assume that logical consequence is to be explained in terms of truth preservation,
then it seems odd, at the very least, that the relation of truth preservation does not have sets
anywhere among its relata. In other words, under this proposal, sets can be arguably understood
as mere abbreviations: the genuine relata of logical consequence are not sets anymore, but the
sentences they abbreviate. But if this is the case, then the sympathiser of disjunctive multiple
conclusions has lost multiple conclusions (as well as multiple premises) along the way.18

I conclude that the conjunctive reading allows a simpler and more reasonable specification of
what are the entities between which truth is preserved in valid arguments. Arguably, the reason
for this has to do with the properties of reflexivity and transitivity. The very notion of preservation
seems to support these properties: any object a preserves its own features, and for any objects a, b
and c, if b preservers a certain feature P of a, and c preserves feature P of b, then c preserves feature
P of a. Since the disjunctive approach violates reflexivity and transitivity, it cannot account for
this plausible fact about the notion of preservation. Notice that I nowhere appealed to specificities
of the notion of truth. Hence, the above line of reasoning applies just as well to any other property
that one may think that is preserved in valid arguments.

4.3 Validity as Content Inclusion

Another venerable explanation of logical consequence maintains that an argument is valid just in
case the content of the conclusion is included in the content of its premises. The account can be
traced back to Aristotle and passes through Sextus Empiricus and most prominently Kant.19 In
the early 20th century, some logicians such as Carnap [6] and Popper [34] thought that classical
logic can be characterised in terms of content inclusion. As the discussion proceeded, however, a
broad consensus was reached that this is not the case. The reason, in a nutshell, is that classical
logic overgenerates valid arguments. In particular, it validates some arguments that allow the
occurrence in the conclusion of a subject matter that was not present in the premises, and this is
deemed incompatible with the idea that the content of the premises includes that of the conclu-
sion. The point was famously made by Parry [33]:

If a system contains the assertion that two points determine a straight line, does the
theorem necessarily follow that either two points determine a straight line or the moon

17One should not confuse (Set-Set⋆) with the disjunction property of intuitionistic logic. The mentioned property holds
for theorems (if A ∨ B is an intuitionistic theorem, then A is a theorem or B is a theorem) but not for valid arguments
(p ∨ ¬p entails p ∨ ¬p in intuitionistic logic, but it neither entails p nor ¬p).

18One may perhaps understand the argument of this subsection as an elaboration of the complaint made by Gareth
Evans (quoted in [46, 48]). One reading of Evans complaint is that, once disjunctive multiple conclusions are properly
understood, they are nothing more than single-conclusions in disguise.

19See Ferguson [16] for a nice summary.
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is made of green cheese? No, for the system may contain no terms from which ‘moon,’
etc., can be defined.

This is why, in the last decades, the literature on logics of content inclusion focuses mostly on non-
classical systems. Accordingly, I shall not restrict my attention to classical logic in this subsection.
Rather, I will make some general considerations that are relevant for (the multiple-conclusion
counterparts of) many systems.

Logics of content inclusion are usually developed in a propositional language and a single
conclusion framework. It is standard to impose on them a syntactic restriction that Parry called
the proscriptive principle:

(PP) Γ J A only if V ar(A) ⊆ V ar(Γ)

where V ar(Γ) is the set of propositional variables occurring as subformulas in Γ, and likewise for
A. The idea is that PP warrants that no novel subject matter appears in the conclusion of a valid
argument, and thus avoids the kind of problems that affected classical logic. The question arising
now is how we should extend PP to the multiple-conclusion framework.

I submit that, if the relata of logical consequence are assumed to be sets, then a natural answer
to this question is:

(PP⋆) Γ J ∆ only if V ar(∆) ⊆ V ar(Γ)

This warrants that no conclusion introduces a subject matter that is absent in the premises, and
thus allows us to read Γ J ∆ as saying that the content of ∆ is included in that of Γ. Under this
generalisation of PP, however, the disjunctive reading of conclusions runs into troubles. Arguably,
the relation of content inclusion is like that of preservation in that it supports reflexivity and
transitivity: any content a is included in itself,20 and for any contents a, b and c, if a is included
in b and b is included in c, then a is included in c. But the disjunctive approach will induce
counterexamples to this. First, for any plausible choice of J we will have ⊤ ̸J ⊥, which, by the
stipulation that

∨
(∅) amounts to ⊥ and

∧
(∅) amounts to ⊤, implies ∅ ̸J ∅. Second, for many

plausible choices of J we will have {p ∨ q} J {p, q} and {p, q} J {p ∧ q} (these validities do not
violate PP⋆); but of course we will also have {p ∨ q} ̸J {p ∧ q}. For the conjunctive reading of
conclusions, on the other hand, similar issues do not arise. For any reasonable choice ofJwe will
have ∅ J ∅, avoiding the first problem, and {p ∨ q} ̸J {p, q}, avoiding the second one. Notice
also that since now ∅ behaves as ⊤ everywhere, we will also have that Γ J ∅ for any Γ; this is
coherent with a plausible interpretation of ∅, which is that it lacks any content.

One might perhaps object that, in a way, PP⋆ begs the question in favour of the conjunctive
approach. If the relation J is assumed to induce the disjunctive approach, then a different gen-
eralisation of the proscriptive principle should be imposed on it. For instance, Ciuni et. al. [10]
work with logics with disjunctive multiple conclusions that satisfy the restriction

(PP⋆⋆) Γ J ∆ only if V ar(∆′) ⊆ V ar(Γ) for some ∆′ ⊆ ∆

This warrants that there is a subset of the conclusions that does not introduce a subject matter
that is absent in the premises; thus, it allows us to read Γ J ∆ as saying that there is a subset
of ∆ whose content is included in that of Γ. However, I think that PP⋆⋆ is not a sufficiently
demanding generalisation of PP. It allows for the reappearance, at the structural level, of the kind

20Of course, I am working with a non-strict notion of content inclusion here. Strict notions of content inclusion would
justify non-reflexivity, and even require irreflexivity.
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of phenomena that motivated the abandonment of classical logic in the first place. For many
choices of J (for instance, the systems studied by Ciuni et al.) we will have validities such as
{p} J {p, q}. And I do not see why this is more innocuous than {p} J {p∨q}. If, following Parry’s
example, “Either two points determine a straight line or the moon is made of green cheese” does
not follow from “Two points determine a straight line” because the language of geometry might
not even have the means to talk about the moon, cheese and so on, then, by parity of reasoning, a
set comprising the statements “Two points determine a straight line” and “The moon is made of
green cheese” should not follow from the former of these two statements alone, for the very same
reasons. In a way, PP⋆⋆ allows us to extend logics of content inclusion to a multiple-conclusion
framework, but at the cost of giving up content inclusion.

4.4 Validity as Existence of a Proof

The philosophical standpoint known as logical inferentialism maintains that the meaning of logical
constants is determined by the rules that govern their behaviour. These rules are assumed to be
sound without further justification. Then, an argument is said to be valid if and only if there is a
proof that goes from the premises to the conclusion(s) and only uses sound rules of inference.21

Steinberger [48] already provided a battery of reasons to think that typical multiple-conclusion
systems (viz. systems inducing a disjunctive reading of conclusions) are not compatible with logi-
cal inferentialism. Here, however, I will rehearse an independent argument that I made elsewhere
[17], which bears on the properties of reflexivity and transitivity. While there is no space to present
the argument in full here, I offer a brief sketch of how it goes.

We focus on the metalinguistic comma that is used to aggregate premises and/or conclusions.
In a nutshell, we present an analogy between, on the one hand, the comma as it behaves in sys-
tems with disjunctive multiple conclusions, and on the other, Prior’s infamous connective TONK.
As is well-known, Prior [36] presents TONK as an alleged counterexample to logical inferential-
ism; the idea is that the constant is meaningless or somehow illegitimate, and thus it is not the
case that any set of rules determines a meaningful or legitimate constant. The analogy we present
shows that TONK and the comma have much in common; indeed, the latter can be understood
as nothing more a structural incarnation of the former. Arguably, then, whatever philosophical
story one has to tell about TONK, there are good reasons to tell a similar story about the comma,
and viceversa.

The first and most noticeable similarity between TONK and the comma stems from the rules
governing these expressions. TONK can be characterised by means of the rules22

A J B
L-TONK

C TONK A J B

A J B
R-TONK

A J B TONK C

The comma, in turn, can be characterised by means of the rules of left and right weakening, which
for the sake of the analogy we restate as follows:

Γ J ∆
L-SET

Σ,Γ J ∆

Γ J ∆
R-SET

Γ J ∆,Σ

21I refer the reader to Murzi and Steinberger [29] for a gentle overview of inferentialism in general, and logical inferen-
tialism in particular.

22These are the usual rules for TONK (see e.g. [18, 40]) with the only difference that we restrict them to a single-
conclusion and single-premise framework.
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where Γ,∆, ... are sets of sentences. It is apparent that these two pairs of rules are formally iden-
tical: each rule for the comma results by taking the corresponding rule for TONK and uniformly
replacing arbitrary formulas with sets and TONK with the comma. Both expressions are intro-
duced as conjunctions on the left-hand side of the turnstile, and as disjunctions on the right-hand
side—we could say that they are ambiguous in a similar way.

A second important similarity concerns the pathological character that both TONK and the
comma display. It is well-known that TONK does not get along with the reflexivity and transitivity
of consequence. If J satisfies reflexivity and transitivity for formulas, then the rules of TONK

trivialise it:

A J A

A J A TONK B

B J B

A TONK B J B

A J B

Now, the comma does not get along with reflexivity and transitivity either. If J satisfies either
reflexivity for sets, or reflexivity for formulas and transitivity for sets, then the rules for the comma
make it trivial and quasi-trivial, respectively:

∅ J ∅
Σ J ∅
Σ J Π

A J A

Γ J A

Γ J Γ,∆

B J B

B J ∆

Γ,∆ J ∆

Γ J ∆

(where A ∈ Γ and B ∈ ∆). Thus, with slight variations, both TONK and the comma are incompat-
ible with the consequence relation being reflexive and transitive.

The last parallel we will highlight here is that, indeed, TONK and the comma have been treated
likewise in the literature. A few attempts have been made to design logical systems where TONK

is admissible without triviality. Cook, for instance [12], defined a non-transitive but reflexive sys-
tem where the rules of TONK can be conservatively added. Fjellstad, however [18], convincingly
argued that a system for TONK should be both non-transitive and non-reflexive; the main reason
is that, in a sequent calculus containing an axiom of reflexivity, the rules of TONK fail to uniquely
define a connective—which undermines the idea that the calculus admits the addition of the con-
nective TONK, as opposed to a family of connectives.23 Now, of course, reflexivity and transitivity
are the key structural properties that fail in typical multiple-conclusion systems. Then, we could
say that, since Gentzen, our sequent calculi avoid triviality by means of the same kind of trick
that we do when we want to get away with TONK.

As we announced, the upshot of the analogy is that TONK and the comma are beasts of the
same blood, and indeed, the latter can be seen as a structural incarnation of the former. The philo-
sophical moral is that, whatever story we may have to tell about TONK, we should arguably tell a
similar story about the comma, and viceversa. In particular: some inferentialist follow the trace of
Belnap [2] and think that TONK is unacceptable only relative to certain background assumptions
about the notion of logical consequence.24 Those who follow this path may reject TONK and wel-
come multiple conclusions at the same time, as long as they claim that our notion of consequence
is transitive and reflexive for formulas but not for sets. Many other inferentialist, however, follow

23Roughly, a connective is uniquely defined in a calculus just in case it is intersubstitutable in inference without loss of
validity with any other connective that has formally identical rules. See Belnap [2] for the precise definition.

24See, for instance, Cook [12], Ripley [40] and Dicher [13].
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the traces of Prawitz [35] and Dummett [15], and think that TONK is unacceptable in an inherent
or absolute sense—the reason being that its rules are not in harmony.25 Those who follow this path
will have a much harder time justifying why the comma of typical multiple-conclusion systems
should not also be regarded as unacceptable.26,27 Absent some such justification, they seem forced
to part ways with typical multiple conclusions.

It goes without saying that conjunctive multiple conclusions are not subject to the kind of
analogy we discussed, for they are governed by entirely different patterns of inference.

4.5 Takeaway

When we talk about the reflexivity and transitivity of logical consequence, we usually have in
mind some non-relation-theoretic variants of these properties. In this section we have seen that
proper reflexivity and transitivity can be of philosophical significance; indeed, they seem to be
tightly related to some of our most entrenched ways of thinking about logical consequence.

5 Closing Remarks

In this paper, I explored some technical and philosophical aspects of an approach to multiple
conclusions that is often employed in mathematical logic, has recently been shown to be useful
in the conceptual justification of certain non-classical systems (namely, the non-contractive ones),
and yet, has gone largely unnoticed by the philosophical community. I defined and analysed
a presentation of multiple-conclusion classical logic where conclusions are read conjunctively. I
argued that we can find arguments with conjunctive multiple conclusions in natural language.
Lastly, I claimed that the fact that the disjunctive and the conjunctive approaches have different
policies towards reflexivity and transitivity has philosophical consequences; in particular, it is
related to various aspects in which the conjunctive reading seems to behave in a more satisfactory
way than the disjunctive one. I hope that the previous pages awaken the reader’s curiosity about
the structure, informal reading and explanation of our claims of logical consequence. After all,
following Tarski [50], “In considerations of a general theoretical nature, the proper concept of
consequence must be placed in the foreground”.

Acknowledgements: Some of the materials in this paper have been presented at the 11th Work-
shop on Philosophical Logic of the Buenos Aires Logic Group, and at the 2022 Conference of the Aus-
tralasian Association for Logic; I am thankful to the attendees of these talks for their feedback;
in particular, I thank Guillermo Badia, Bogdan Dicher, Camila Gallovich, Lloyd Humberstone,
Joaquı́n Toranzo Calderón, and Damián Szmuc. I am deeply grateful to Natalia Buacar, Thomas

25See, for instance, Read [38], Tennant [52] and Francez [20].
26Of course, harmony, as usually defined, is a property of object-language constants (as TONK) and not of structural

expressions (as the comma). So the point of the analogy cannot be that the comma is literally not harmonious. The point,
rather, is that structural expressions can be ill behaved as well, and hence, we should impose on them similar meaning-
theoretic constraints as the ones we impose on object-language constants. Thus, it is what we might call the structural
counterpart of harmony what is at stake in the case of the comma.

27Note the following: the Dummettian cannot just say that, under the disjunctive reading of conclusions, reflexivity and
transitivity for sets are invalid, the cut rules are valid and the rules of the comma are harmonious. Because the rules of
the comma are formally identical to the rules of TONK, and since harmony is to be understood as an internal or intrinsic
property of a pair rules (viz. it is not relative to whatever background structural rules we deem valid), it would follow that
the rules of TONK are harmonious as well—unless the Dummettian gives, in addition, some intrinsic difference between
the pairs of rules L-TONK and R-TONK, on the one hand, and L-SET and R-SET on the other: that is the challenge!

23



Ferguson, Federico Pailos, Francesco Paoli, and my supervisors and mentors, Bruno Da Ré and
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Appendix

We provide syntactic proofs of admissibility of rules Cut+ and Cut× in ScCL.
Let us start with Cut+. The case of this rule is easy, because the move from its left premise-

sequent alone to its conclusion-sequent is already licensed by rule RaW. So, to show that Cut+ is
admissible in ScCL, it suffices to show that RaW is admissible.

Lemma 15 (Admissibility of RaW in ScCL). If Γ ⇒ ∆, A is provable in ScCL, then Γ ⇒ ∆ is
provable as well.

Proof. We define the height of a derivation as the number of nodes in its longest branch, minus 1.
We proceed by induction on the height of the derivation of Γ ⇒ ∆, A.

• Base step. The height is 0. Then Γ ⇒ ∆, A is an axiom. It follows that ∆ = ∅, and thus,
Γ ⇒ ∆ is just an instance of R ∅.

• Inductive step. The height is n > 0. There are two cases: (a) ∆ = ∅and (b) ∆ ̸= ∅. In case
(a), Γ ⇒ ∆ is again an instance of R ∅. In case (b), we can assume w.l.o.g.28 that the target
application of RaW has the following form:

Γ ⇒ ∆1, A Γ ⇒ ∆2 . . . Γ ⇒ ∆m
SM

Γ ⇒ ∆, A

Γ ⇒ ∆

Then we just permute the applications of SM and RaW:

Γ ⇒ ∆1, A

Γ ⇒ ∆1 Γ ⇒ ∆2 . . . Γ ⇒ ∆m
SM

Γ ⇒ ∆

and since the derivation of Γ ⇒ ∆1, A is of height at most n−1, the new application of RaW
is admissible by our inductive hypothesis.

Fact 16 (Admissibility of Cut+ in ScCL). If Γ ⇒ ∆, A and A,Γ ⇒ ∆ are both provable in ScCL,
Γ ⇒ ∆ is provable as well.

Proof. If Γ ⇒ ∆, A is provable, then Γ ⇒ ∆ is provable as well by the admissibility of RaW.

Now, let us turn to Cut×. In the case of this rule, we will rely on Negri and von Plato’s proof
that the following single-conclusioned version of cut is admissible in SCL:

28Here and below, the ‘w.l.o.g.’ qualifications are because the respective derivations may have the premises of SM in a
different order. But we can always rearrange them to match the form depicted.
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Γ ⇒ A A,∆ ⇒ C
sc-Cut×

Γ,∆ ⇒ C

Theorem 17 (Admissibility of sc-Cut× in SCL). If sequents Γ ⇒ A and A,∆ ⇒ C are provable in
SCL, then Γ,∆ ⇒ C is provable as well.

(The proof can be found in [30, p. 117]). We will also use two more preliminary results about
ScCL. First, LW is admissible in the system:

Lemma 18 (Admissibility of LW in ScCL). If Γ ⇒ ∆ is provable in ScCL, then A,Γ ⇒ ∆ is provable
as well.

Proof. We proceed by induction on the height of the derivation of Γ ⇒ ∆.
• Base step. The height is 0. Then Γ ⇒ ∆ is an axiom. A quick inspection of the axioms of

ScCL shows that A,Γ ⇒ ∆ must be an axiom as well.
• Inductive step. The height is n > 0. There are eight cases, corresponding to the last rule

applied in the derivation of Γ ⇒ ∆. We just consider the case of SM—the other rules are
dealt with similarly. In this case, the target application of LW has the form

Γ ⇒ ∆1 . . . Γ ⇒ ∆m SM
Γ ⇒ ∆

A,Γ ⇒ ∆

Then we just permute the applications of SM and LW:

Γ ⇒ ∆1

A,Γ ⇒ ∆1 . . .

Γ ⇒ ∆m

A,Γ ⇒ ∆m SM
A,Γ ⇒ ∆

and since the derivations of Γ ⇒ ∆1, ...,Γ ⇒ ∆m have all heights at most n − 1, by our
inductive hypothesis the new applications of LW are all admissible.

Second, system ScCL is conservative over SCL, in the sense that if a single-conclusioned sequent
is provable in the former, it was already provable in the latter.

Lemma 19 (Conservativity of ScCL). If a single-conclusioned sequent is provable in ScCL, then it
is also provable in SCL.

Proof. Take any single-conclusioned sequent Γ ⇒ C and suppose it is provable in ScCL. We
proceed by induction on the height of its derivation.

• Base step. The height is 0. Then Γ ⇒ C is an axiom of ScCL, and since it has a non-empty set
of conclusions, it must be also an axiom of SCL.

• Inductive step. The height is n > 0. There are two subcases.
(a) The last rule applied is a rule R of SCL. Then, the premises of this last rule application

are also single-conclusioned. Since their derivations are of height at most n − 1, by
inductive hypothesis it follows that they are provable in SCL. So, take their respec-
tive derivations in SCL, and extend these derivations by applying R. We obtained a
derivation of Γ ⇒ C in SCL.

(b) The last rule applied is SM. Then, w.l.o.g. we can assume that the last step of the
derivation has the following form:

Γ ⇒ C
R ∅

Γ ⇒ ∅ . . .
R ∅

Γ ⇒ ∅
Γ ⇒ C
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Since the sequent Γ ⇒ C is single-conclusioned, and the height of its derivation is n− 1, by
inductive hypothesis it follows that it is provable in SCL. So, we are done.

With the above preliminaries at hand, we are ready to prove our target result:

Theorem 20 (Admissibility of Cut× in ScCL). If sequents Γ ⇒ ∆, A and A,Σ ⇒ Π are provable in
ScCL, then Γ,Σ ⇒ ∆,Π is provable as well.

Proof. We call Γ ⇒ ∆, A and A,Σ ⇒ Π the ‘cut-premises’, and Γ,Σ ⇒ ∆,Π the ‘cut-conclusion’.
We define the cut-height as the sum of the heights of the derivations of the cut-premises plus 1.
The proof proceeds by induction on the cut-height.

• Base step. The cut-height is 1. This means that the cut-premises are both axioms. By in-
spection of the axioms of ScCL we know that the target application of Cut× has one the
following forms:

Id-at
A,Γ′ ⇒ A A,Σ ⇒ Π

(a)
A,Γ′,Σ ⇒ Π

L⊥⊥,Γ′ ⇒ A A,Σ ⇒ Π
(b)

⊥,Γ′,Σ ⇒ Π

In subcase (a), the cut-conclusion can be obtained from the right cut-premise alone by a
number (perhaps 0) of applications of LW, which by Lemma 18 we know is admissible
in ScCL. In subcase (b), if the cut-premise A,Σ ⇒ Π is an instance of R ∅, then the cut-
conclusion is an instance of R ∅as well; and if A,Σ ⇒ Π is an instance of some other axiom,
then Π = {π} for some formula π, and the cut-conclusion ⊥,Γ′,Σ ⇒ π is an instance of L⊥.

• Inductive step. The cut-height is n > 1. There are two cases:
(a) Both cut-premises are single-conclusioned. In this case, by the conservativity of ScCL

(Lemma 19) we know that they are both provable in SCL. Then, by the admissibility
of sc-Cut× in SCL (Theorem 17) we know that the cut-conclusion is provable in SCL.
Lastly, by the fact SCL is a subsystem of ScCL, we know that the cut-conclusion is
provable in ScCL.

(b) At least one cut-premise is multiple-conclusioned. We just cover the subcase where
A,Σ ⇒ Π is multiple-conclusioned, since the other subcase is symmetric. Inspection
of the rules of ScCL shows that, if A,Σ ⇒ Π is multiple-conclusioned, then we can
assume that the target application of Cut× is of the form

Γ ⇒ ∆, A

A,Σ ⇒ Π1 . . . A,Σ ⇒ Πm SM
A,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π

Then, we proceed as follows, where the rule applications marked with dashed lines are
to be performed only if ∆ ̸= ∅:

Γ ⇒ ∆, A A,Σ ⇒ Π1

Γ,Σ ⇒ ∆,Π1

Γ ⇒ ∆, A A,Σ ⇒ Π2

Γ,Σ ⇒ ∆,Π2
RaW

Γ,Σ ⇒ Π2 . . .

Γ ⇒ ∆, A A,Σ ⇒ Πm

Γ,Σ ⇒ ∆,Πm
RaW

Γ,Σ ⇒ Πm
SM

Γ,Σ ⇒ ∆,Π

The applications of RaW (if any) are warranted by the admissibility of this rule in ScCL

(Lemma 15). Also, it is easy to check that the new applications of Cut× are all of cut-
height at most n− 1; hence, they are admissible by inductive hypothesis.
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