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Abstract

In philosophical logic and proof theory, we often find multiple-conclusion systems that

induce a conjunctive reading of premises and a disjunctive reading of conclusions. In mathe-

matical logic, in contrast, we often find multiple-conclusion systems that induce a conjunctive

reading of both premises and conclusions. This paper studies some technical and philosophi-

cal aspects of this latter approach to multiple-conclusion consequence. The takeaway is that,

while the importance of disjunctive multiple conclusions is beyond doubt, conjunctive multiple

conclusions also have philosophical interest. First, because there is some evidence that there

are arguments with conjunctive multiple conclusions in natural language. Second, because

conjunctive multiple conclusions are compatible with the reflexivity and transitivity of logical

consequence, and this allows them to cohere better with some of our best accounts of what

logical consequence is.

1 Introduction

The received wisdom tells us that arguments from natural language can have several premises,

but exactly one conclusion. Yet, in the actual practice of logicians we often find logical systems

where arguments can have none, one, or many conclusions; we call them multiple-conclusion logical

systems.

In philosophical logic and proof theory, multiple-conclusion systems typically induce what we

call a conjunctive (or universal) reading of premises, and a disjunctive (or existential) reading of

conclusions. By this we mean, roughly, that validity in these systems admits at least one of the

following informal paraphrases1

Γ entails ∆ just in case the (perhaps infinite) conjunction of the things in Γ entails the

(perhaps infinite) disjunction of the things in ∆

Γ entails ∆ just in case, whenever all things in Γ are true (or meet these and those

conditions), some things in ∆ are true (or meet these and those conditions)

where Γ and ∆ are collections of the appropriate sort. Multiple-conclusion systems of this kind

were first introduced by Gentzen [23, 24] and then studied by several other authors.2 They are

particularly popular in discussions related to logical inferentialism; one of the reasons—but not the

1The template is meant to be quite general. In the first paraphrase, the conjunction and the disjunction mentioned
can but need not behave as whatever operations may be available in the relevant object language. In the second
paraphrase, the conditions imposed on premises and conclusions need not match—which leaves room to so-called
mixed consequence relations, see, e.g. Chemla et. al. [7].

2See, for instance, Carnap [5], Kneale [28], Scott [45] and Shoesmith and Smiley [46].
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only one—is that several authors have claimed, and others have denied, that disjunctive multiple

conclusions make classical logic acceptable from an inferentialist standpoint.3

In mathematical logic, in contrast, multiple-conclusion systems typically induce a conjunctive

reading of both premises and conclusions. So, validity can be paraphrased

Γ entails ∆ just in case the (perhaps infinite) conjunction of the things in Γ entails the

(perhaps infinite) conjunction of the things in ∆

Γ entails ∆ just in case, whenever all things in Γ are true (or meet these and those

conditions), all things in ∆ are true (or meet these and those conditions)

Multiple-conclusion systems of this kind have a long history, as they can be traced back at least to

Bolzano [3]. They are particularly useful in algebraic and categorical logic;4 the reason is that they

enable notions of consequence that are reflexive and transitive, and such notions of consequence

can be generalised to wider classes of structures.

Recently, conjunctive multiple conclusions also received philosophical application in the work of

Cintula and Paoli [9]. The authors use them to answer a challenge faced by non-contractive logics.

The challenge is that, given any single-conclusion consequence relation J, we expect being able to

associate it with some closure operation Cn in the following way: Γ J A just in case A ∈ Cn(Γ);

alas, there is an impossibility result saying that this cannot be done if J is non-contractive.5 In

response, Cintula and Paoli show that, once we move to a multiple-conclusion framework where

conclusions are read conjunctively, non-contractive consequence relations and closure operations

can be matched in the expected way. This leads the authors to conclude that non-contractive

consequence relations are “intrinsecally” or “essentially” multiple-conclusioned (p. 753).

The purpose of this paper is to study some technical and philosophical aspects of the conjunc-

tive approach to multiple-conclusion consequence, with a keen eye on the relationships with the

disjunctive approach. I take classical propositional logic as my main test case—but many of my

results and arguments apply to other systems as well. Section 2 is mostly technical. First, I give

semantic presentations of classical logic with conjunctive and with disjunctive multiple conclusions,

and compare the structural properties of the two systems; one of the most notable differences (that

will be of philosophical importance in the sequel) is that the former system is, while the latter is

not, reflexive and transitive in the usual, relation-theoretic sense of these notions. Second, I pro-

vide a sequent calculus for classical logic with conjunctive multiple conclusions—something that,

as far as I know, is not yet to be found in the literature.

Sections 3 and 4 are philosophical. In Section 3, I provide some evidence to think that there

are arguments with conjunctive multiple conclusions in natural language; I give examples of such

arguments, and consider potential objections. In Section 4, I argue that the fact that conjunctive

multiple conclusions are compatible with the reflexivity and transitivity of logical consequence

makes them more satisfactory in a number of ways. On the one hand, they allow a more natural

treatment of the notion of logical equivalence, and in particular, of the generalisation of this notion

from sentences to collections thereof. On the other hand—and more importantly—they cohere

better with some of our best accounts of what logical consequence is. The accounts I consider are

the one that understands consequence in terms of preservation (of truth or some other property),

3For arguments broadly in favour of this claim see Hacking [25], Read [37], Cook [11] and Restall [39]. For
arguments against it, see Tennant [51], Dummett [15] and Steinberger [48].

4See, e.g. Font [19], Galatos and Tsinakis [21], Novak [32] and Cintula et. al. [8].
5The objection was raised by Ripley [41].
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the one that understands it in terms of content inclusion, and the one that understands it in terms

of existence of a proof. In all these cases—I claim—disjunctive conclusions face certain challenges

which conjunctive conclusions do not.

The paper by no means argues that multiple conclusions should be read one way or another.

It does not seem reasonable to expect that there is ‘one correct way’ of interpreting multiple

conclusions: the merits of each approach will be assessed relative to applications. Also, it is

beyond doubt that disjunctive multiple conclusions have important applications in philosophy and

proof theory. The more humble takeaway of the paper is that conjunctive multiple conclusions

are more than a mere technical artefact, useful in some areas of (mostly mathematical) logic;

they have philosophical interest on their own. First, because they do not seem entirely foreign to

actual inferential practices. Second, because they harmonise well with some of our best ways of

understanding the central object study of logic, that is, consequence.

2 Technical Exploration

As announced, we take good old classical logic as our main test case. I define a multiple-conclusion

presentation of this logic where conclusions are read conjunctively, and compare it with the usual

presentation where conclusions are read disjunctively. Sect. 2.1 studies our system from a semantic

perspective. Sect. 2.2 addresses its proof theory.

Before going on, it pays to lay down some stipulations. We will treat languages as identical to

their respective sets of well-formed formulas. We call our propositional language L, and assume

it has a denumerable stock of variables p, q, r, ..., and primitive constants ⊥, ∧, ∨ and → with

their usual arities and interpretations. Negation ¬A will be defined as A → ⊥, and logical truth

⊤ as ¬⊥. We will use capital Latin letters A,B,C, ... for arbitrary formulas of L, and capital

Greek letters Γ,∆,Σ, ... for collections of formulas that can be either sets or multisets—we will

disambiguate the reference in each case. Lastly, we will keep using J as a neutral symbol for

entailment.

2.1 Valuations

We start by defining the three logical systems that we will mainly focus on: single-conclusion

classical logic, henceforth CL, classical logic with disjunctive multiple conclusions, dCL, and

classical logic with conjunctive multiple conclusions, cCL.

Let V be the set of all classical (viz. Boolean bivalued) interpretations of L. Throughout

this section, Γ,∆,Σ, ... will denote sets of formulas. We shall occasionally use a comma for set

union, and omit the brackets in singleton sets; so, for instance, Γ, A stands for Γ ∪ {A}. Given an

interpretation v, we write v[Σ] to denote the set {v(σ) : σ ∈ Σ}.

Definition 1. The set-to-formula relation |=CL ⊆ P(L) × L and the set-to-set relations

|=dCL, |=cCL ⊆ P(L) × P(L) are defined by

Γ |=CL C iff for each v ∈ V, if v[Γ] ⊆ {1} then v(C) = 1

Γ |=dCL ∆ iff for each v ∈ V, if v[Γ] ⊆ {1} then v[∆] ̸⊆ {0}
Γ |=cCL ∆ iff for each v ∈ V, if v[Γ] ⊆ {1} then v[∆] ⊆ {1}

So, reading 1 as ‘true’ and 0 as ‘false’, we have the following informal paraphrases: (a) an argument
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is valid in CL just in case whenever the premises are all true the conclusion is true; (b) an argument

is valid in dCL just in case whenever the premises are all true, at least one of the conclusions is

true; and (c) an argument is valid in cCL just in case whenever the premises are all true the

conclusions are all true.

Next, I describe the behaviour of cCL in more detail, and analyse the structural properties

that differentiate it from dCL. Along the way I record a number of simple but relevant facts; most

of the the proofs are easy, and thus they are left to the reader.

To begin with, one set entails another in cCL just in case the former entails each of the sentences

in the latter. In other words,

Fact 1. Γ |=cCL ∆ if and only if Γ |=cCL B for each B ∈ ∆.

This justifies the idea that in cCL multiple conclusions should be read conjunctively.

Arguably, the most important difference between the conjunctive and the disjunctive approaches

concerns the properties of reflexivity and transitivity. These notions come from the theory of

relations: a dyadic relation R on a set A is reflexive if and only if, for every a ∈ A, aRa; R is

transitive if and only if, for every a, b, c ∈ A, if aRb and bRc then aRc. At least since the work

of Tarski [49], it is commonplace to say that logical consequence is both reflexive and transitive.

Yet, single-conclusion consequence relations such as |=CL are strictly speaking neither, because

they are not relations on a single set, and so they are not even the kind of thing that can have

these properties. (When we say that they are reflexive and/or transitive, we mean that they satisfy

some principles resembling reflexivity and/or transitivity to a greater or lesser extent—for instance,

the restrictions of these properties to sentences). Multiple-conclusion consequence relations, on the

other hand, are relations on a single set, so they could be reflexive and transitive in principle. Now,

typically, consequence relations inducing a disjunctive reading of conclusions are neither transitive

nor reflexive, while consequence relations inducing a conjunctive reading of conclusions are both.

In particular, we have:

Fact 2. The following properties hold for cCL and do not hold for dCL:

(i) Γ J Γ, for every Γ.

(ii) If Γ J ∆ and ∆ J Σ, then Γ J Σ, for every Γ,∆ and Σ.

To exemplify the negative claims, we have that (i) ∅ ̸|=dCL ∅, and (ii) {p} |=dCL {p, q} and

{p, q} |=dCL {q}, but {p} ̸|=dCL {q}. Certainly, dCL satisfies some properties resembling re-

flexivity and transitivity; for instance, reflexivity restricted to non-empty sets, and transitivity as

encoded by the properties

(iii) If Γ J ∆, A and A,Γ J ∆, then Γ J ∆, for every A,Γ,∆

(iv) If Γ J ∆, A and A,Σ J Π, then Γ,Σ J ∆,Π, for every A,Γ,Σ,∆,Π

(These properties are the semantic counterparts of the sequent rules known as ‘additive cut’ (Cut+)

and ‘multiplicative cut’ (Cut×) respectively.) Now, cCL satisfies (iii) and (iv) as well. Indeed, Rip-

ley [42] distinguishes other eleven properties resembling transitivity that dCL satisfies, and cCL

satisfies them all. Hence, even when we focus on non-relation-theoretic variations of transitivity,

cCL is not any less transitive than dCL.

Another interesting difference between the conjunctive and the disjunctive approaches concerns

the behaviour of the empty set, ∅. It is standard to assume that a disjunction with no disjuncts is

always false (for it never has a true disjunct); in other words, letting
∨

(Σ) be the disjunction of all
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the things in Σ, we have that
∨

(∅) is a logical falsehood. Dually, a conjunction with no conjuncts

is always true (for it never has a false conjunct); letting
∧

(Σ) be the conjunction of all things in

Σ, we have that
∧

(∅) is a logical truth. Given these assumptions, under the disjunctive approach,

∅ turns out to be a kind of cyclothymic character: it plays different inferential roles depending on

where it appears in the argument. When it is the set of premises, it works as a logical truth, in

the sense that it only entails logical truths; when it is the set of conclusions, it behaves as a logical

falsehood, in the sense that it only follows from logical falsehoods. Graphically, we have:

∅ |=dCL A iff ⊤ |=dCL A

A |=dCL ∅ iff A |=dCL ⊥

Under the conjunctive approach, in contrast, ∅ is a more temperate fellow. It is read as
∧

(∅) no

matter what; thus, it always behaves as a logical truth:

∅ |=cCL A iff ⊤ |=cCL A

A |=cCL ∅ iff A |=cCL ⊤

It follows that A |=cCL ∅ for every A. And the two claims above still hold when we replace ‘A’

with ‘Γ’. Hence, cCL is a system where ∅ follows from any set whatsoever!

In view of this, the reader may perhaps wonder why cCL is not trivial. The answer concerns

the property of monotonicity. A multiple-conclusion consequence relation J is monotone if and

only if it satisfies the properties

(v) If Γ J ∆, then Σ,Γ J ∆, for every Γ,∆,Σ

(vi) If Γ J ∆, then Γ J ∆,Σ, for every Γ,∆,Σ

(These properties are the semantic counterparts of the sequent-rules of ‘left weakening’ (LW) and

‘right weakening’ (RW), respectively.) Monotonicity is often thought to encode the non-defeasible

character of deductive reasoning. dCL satisfies both (v) and (vi), and so is monotone. cCL

satisfies (v) but not (vi); to exemplify, {p} |=cCL {p} but {p} ̸|=cCL {p, q}. This explains why

cCL is not trivial, even though Γ |=cCL ∅ for every Γ. The failure of (vi) should not be taken as a

deductive weakness of the system, however, or as evidence that it models defeasible reasoning only.

First and foremost, under the conjunctive approach, (vi) intuitively says that, whenever certain

conjunction follows from our premises, adding some additional conjuncts delivers a conjunction

that also follows. But this of course is not the case in general. Thus, (vi) is not reasonable in

this context, and it should not be taken to encode the non-defeasibility of deductive reasoning.

Secondly, there are some limitative results concerning the properties of reflexivity, transitivity and

monotonicity:

Fact 3. Let J⊆ P(L) × P(L)

(a) If J is reflexive and monotone, then it is trivial.

(b) If J is transitive, monotone, and there are at least two sets ∆ and Γ such that ∅ J ∆ and

Γ J ∅, then J is trivial.

Proof. (a) Reflexivity gives ∅ J ∅; by monotonicity we get Σ J Π for arbitrary Σ and Π. (b) By

monotonicity, from ∅ J ∆ and Γ J ∅ we get ∅ J Γ ∪ ∆ and Γ ∪ ∆ J ∅, respectively; transitivity

gives ∅ J ∅, and monotonicity again delivers Σ J Π for arbitrary Σ and Π.
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Thus, having all these properties at once was never a realistic goal to start with. dCL gives up

both reflexivity and transitivity. cCL only gives up (one of the sides of) monotonicity.

Related to monotonicity is the property

(vii) If Γ J ∆,Σ, then Γ J ∆, for every Γ,∆,Σ

(This is the counterpart of a sequent-rule sometimes called ‘right anti-weakening’ (RaW).) This

property is satisfied by cCL, but not so by dCL. This is perfectly reasonable, given the informal

reading that validity receives in these systems.

What we already said implies that cCL and dCL are contralogics of one another, that is, there

are arguments that are valid in cCL but not in dCL and vice versa:

Fact 4. A ver

(a) |=cCL ̸⊆ |=dCL (e.g. {p} |=cCL ∅ but {p} ̸|=dCL ∅)

(b) |=dCL ̸⊆ |=cCL (e.g. {p} ̸|=cCL {p, q} but {p} |=dCL {p, q})

Nevertheless, dCL and cCL are both what is known as counterparts of CL; this means that they

coincide with CL in single-conclusion arguments:

Fact 5. Γ |=CL C iff Γ |=dCL {C} iff Γ |=cCL {C}

Systems CL and dCL are compact, in the sense that whenever a set Γ entails something, there

is a finite subset Γ′ of Γ that entails that very thing. Now, cCL is not compact in this particular

sense. To see this, consider the set PV of all propositional variables of L. Clearly, PV |=cCL PV.

However, there is no finite subset PV′ of PV such that PV′ |=cCL PV. Luckily, cCL is compact

in the following slightly amended way:

Fact 6. Γ |=cCL ∆ just in case, for each finite subset ∆′ of ∆ there is some finite subset Γ′ of Γ

such that Γ′ |=cCL ∆′.

(The result follows easily by Fact 1, Fact 5 and the compactness of CL.) And this version of

compactness seems entirely reasonable from the perspective of the conjunctive approach.

We have seen that conjunctive conclusions differ from disjunctive conclusions in that they are

compatible with the common idea that logical consequence is reflexive and transitive. I will argue

later that this has some relevant philosophical consequences. For the time being, it must be

noticed that, as a counterpart of this difference (or perhaps, a price to be paid for it), disjunctive

conclusions exhibit certain expressive richness that conjunctive conclusions lack.6 Arguably, one

of the major advantages of dCL is that its consequence relation displays some well-known and

elegant symmetries. If Γ is a set of formulas, let ¬Γ be the set {¬A : A ∈ Γ}. Then, in dCL we

have the following equivalence

Γ J ∆ if and only if ¬∆ J¬Γ (1)

and more in general,

Γ J ∆, A if and only if ¬A,Γ J ∆

A,Γ J ∆ if and only if Γ J ∆,¬A
(2)

6I thank an anonymous referee of this journal for encouraging me to address this point.
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Now, statement (1) seems to express a generalised form of contraposition. Statements in (2), in

turn, seem to express the equivalence that exists in classical logic between proving (refuting) a

sentence A and refuting (proving) its negation ¬A. All these claims appear to capture something

central about the classical notion of consequence. Moreover, they make possible the formulation

of certain proof systems such as, for instance, one sided sequent calculi. However, they all fail

for cCL: for (1), we have {p, q} |=cCL {q} but {¬q} ̸|=cCL {¬q,¬p}; for (2), we have, first,

{¬p} |=cCL {¬p} but ∅ ̸|= {¬p, p}, and second, {p} |=cCL {p} but ∅ ̸|= {p,¬p}. Hence, one

might say that the framework of conjunctive multiple conclusions is expressively weaker than the

framework of disjunctive multiple conclusions, and in particular, it fails to express some central

properties of classical consequence.

I think that the objection is correct, and that it pinpoints a potential limitation on the applica-

tions of the conjunctive reading of conclusions. Having said that, I point out that in cCL we still

have some ways of expressing the facts about classical consequence mentioned in the objection.

Let us officially stipulate that
∧

(∅) = ⊤ and
∨

(∅) = ⊥. Consider the following statements:

Γ J ∆, with Γ,∆ finite if and only if ¬
∧

(∆) J ¬
∧

(Γ) (1∗)

Γ J {A ∨B : B ∈ ∆} if and only if ¬A,Γ J ∆

A,Γ J ∆ if and only if Γ J {¬A ∨B : B ∈ ∆}
(2∗)

It’s easy to check that

Fact 7. Equations (1∗) and (2∗) hold for cCL.

When both premises and conclusions are read conjunctively, (1∗) obviously expresses contraposi-

tion. With (2∗) things are less obvious; but notice that it has the special cases

∅ J A ∨ ⊥ if and only if ¬A J ⊥
A J ⊥ if and only if ∅ J ¬A ∨ ⊥

Modulo the meanings of ⊥ and ∨, these statements arguably express the idea that to prove (refute)

a statement and to refute (prove) its negation are similar businesses in classical logic.

One evident drawback of (1∗) and (2∗) is that, unlike (1) and (2), they use object linguistic

conjunction and disjunction. In a way, these connectives make explicit an application of the De

Morgan laws that remains implicit in (1) and (2) as read in dCL. To see this, take {p, q} J {r, s}
as the left hand side of (1); the operational reading of this in dCL is p ∧ q J r ∨ s; contraposition

gives us ¬(r ∨ s) J ¬(p∧ q), and then the De Morgan laws deliver ¬r ∧¬s J ¬p∨¬q, which is the

operational reading in dCL of {¬r,¬s} J {¬p,¬q}. Either way, the appeal to these constants in

(1∗) is problematic, for two reasons; first, we might want to work in a language that lacks them;

second, (1∗) cannot be generalised to infinite Γ and ∆.

If we complicate things a bit, and allow ourselves to use collections of validity claims, we can

avoid using conjunction and disjunction. Let Σ⊤ stand for Σ if Σ is non-empty, and for {⊤}
otherwise. Consider the following statements:

Γ J ∆ if and only if
Γ⊤/{A},¬B J ¬A
for A ∈ Γ⊤ and B ∈ ∆⊤

(1∗∗)

Γ,¬B J A, for B ∈ ∆⊤ if and only if ¬A,Γ J ∆

A,Γ J ∆ if and only if Γ,¬B J ¬A, for B ∈ ∆⊤ (2∗∗)
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While the proofs are less self-evident (and the reader can cheerfully skip them), we still have

Fact 8. Equations (1∗∗) and (2∗∗) hold for cCL

Proof. Equation (1∗∗). Left to right. Suppose Γ |=cCL ∆ and consider any A ∈ Γ⊤ and B ∈ ∆⊤.

Assume v assigns 1 to ¬B and to everything in Γ⊤/{A}. Then v assigns 0 to B, and thus

B ̸= ⊤, and hence B ∈ ∆. It follows that v assigns 0 to something in Γ. Hence, Γ ̸= ∅,

which implies Γ = Γ⊤. Thus, v assigns 0 to something in Γ⊤. But by assumption v assigns 1 to

everything in Γ⊤/{A}. Hence, v assigns 0 to A, and thus 1 to ¬A. Right to left. Suppose that

Γ⊤/{A},¬B |=cCL ¬A for each A ∈ Γ⊤ and B ∈ ∆⊤. Assume v assigns 1 to everything in Γ,

and consider any B ∈ ∆. Clearly, v assigns 1 to everything in Γ⊤. Since Γ⊤ ̸= ∅, there is at

least one A ∈ Γ⊤ such that v assigns 1 to A, and thus 0 to ¬A. It follows that v assigns 0 to ¬B,

and thus 1 to B. Equation (2∗∗). We show the uppermost biconditional. Left to right. Suppose

Γ,¬B |=cCL A for each B ∈ ∆⊤. Suppose v assigns 1 to ¬A and to all formulas in Γ. Then for

each B ∈ ∆, v assigns 0 to ¬B, and hence 1 to B. Right to left. Suppose ¬A,Γ |=cCL ∆. Consider

any B ∈ ∆⊤. Assume v assigns 1 to ¬B and to all formulas in Γ. Then v assigns 0 to B, and

thus B ̸= ⊤, and hence B ∈ ∆. It follows that v assigns 0 to ¬A or to some formula in Γ. But

by assumption v assigns 1 to all formulas in Γ. Hence it assigns 0 to ¬A, and thus 1 to A. The

lowermost biconditional is established by similar reasoning.

Arguably, modulo the meanings of ⊥ and ⊤, (1∗∗) and (2∗∗) still encode the target phenomena.

However, now the evident drawback of these properties is that they appeal to the object linguistic

expressions ⊤ and ⊥. Which brings us directly to what might be the core, most basic expressive

limitation of the framework with conjunctive conclusions: it has no means to say, without using

object-linguistic resources, that a sentence A is refutable. In dCL, the fact that A is refutable is

encoded in the claim

A J ∅

but this claim tells us absolutely nothing about the logical status of A in cCL. Alongside with

the behaviour with respect to reflexivity and transitivity, this is, arguably, the most conceptually

relevant difference between the conjunctive and the disjunctive approaches to multiple conclusions,

in general, and between cCL and dCL in particular.

2.2 Proofs

In this section I will provide a sequent calculus for cCL. In a nutshell, I will take a system for

single-conclusion classical logic CL, and show how to extend it with appropriate rules for multiple

conclusions. A disclaimer is in place: I do not contend that the resulting calculus is the best we

can do, either in proof-theoretic or in philosophical terms. The goal is just to provide one possible

calculus for classical logic where conclusions are read conjunctively, which is something that, as far

as I know, is already new to the literature. The quest for nice(er) calculi with conjunctive multiple

conclusions is an interesting enterprise, but one that must be left for future work.

Throughout this section, Γ,∆,Σ, ... stand for multisets of formulas of L.7 Formally, they are

functions from L to the set N of natural numbers. Intuitively, they are lists with multiplicity but

7We could have used sets in our proof-theory as well. But we choose to use multisets to avoid certain (solvable)
complications that, as shown by Negri and von Plato [31], the use of sets brings about.
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without order, and Γ(A) is the amount of times that formula A occurs in Γ. The root set of Γ,

denoted by |Γ|, is the set {A ∈ L : Γ(A) > 0}; we write A ⊏− Γ as a shorthand for A ∈ |Γ|. A

multiset is finite just in case its root set is finite. Γ is a submultiset of ∆ just in case Γ(A) ≤ ∆(A)

for every A. The multiset union of Γ and ∆, denoted by Γ,∆, is the multiset where each A

occurs Γ(A) + ∆(A) times. We use ∅for the empty multiset—as opposed to ∅, which denotes the

empty set. Officially, we use square brackets to describe multisets by extension; so, [A,A,B] is the

multiset containing two occurrences of A, one of B and nothing more. Occasionally, however, we

omit the brackets on multisets with just one formula occurrence; so, Γ, A stands for Γ, [A].

We define a sequent as a pair of finite multisets of formulas of L, and we denote the sequent

⟨Γ,∆⟩ as Γ ⇒ ∆. Below, we find the sequent-rule counterparts of the various semantic properties

alluded to in the previous subsection:

Ref
Γ ⇒ Γ

Γ ⇒ ∆, A A,Γ ⇒ ∆
Cut+

Γ ⇒ ∆

Γ ⇒ ∆ ∆ ⇒ Σ
Tr

Γ ⇒ Σ

Γ ⇒ ∆, A A,Σ ⇒ Π
Cut×

Γ,Σ ⇒ ∆,Π

Γ ⇒ ∆
LW

A,Γ ⇒ ∆
Γ ⇒ ∆

RW
Γ ⇒ ∆, A

Γ ⇒ ∆, A
RaW

Γ ⇒ ∆

We say that a sequent Γ ⇒ ∆ is valid in cCL just in case |Γ| |=cCL |∆|. A rule is sound in cCL

just in case, for each of its instances, if the premise-sequents are all valid, the conclusion-sequent

is valid. We adopt similar definitions for CL and dCL. It is easy to check that, of the rules above,

all but RW are sound in cCL, and all but RaW, Ref and Tr are sound in dCL.

Our single-conclusion calculus will be the one given by Negri and von Plato [30, p. 114]. We

write A/B for a formula that is either A or B, and p for an arbitrary propositional variable.

Definition 2. The calculus SCL is determined by the following rules:

Id-at
p,Γ ⇒ p

A,Γ ⇒ C B,Γ ⇒ C
L∨

A ∨B,Γ ⇒ C

A,B,Γ ⇒ C
L∧

A ∧B,Γ ⇒ C

A → B,Γ ⇒ A B,Γ ⇒ C
L→

A → B,Γ ⇒ C

L⊥ ⊥,Γ ⇒ A

Γ ⇒ A/B
R∨

Γ ⇒ A ∨B

Γ ⇒ A Γ ⇒ B
R∧

Γ ⇒ A ∧B

A,Γ ⇒ B
R→

Γ ⇒ A → B

p,Γ ⇒ C ¬p,Γ ⇒ C
Lem-at

Γ ⇒ C

Calculus SCL is sound and complete for CL:

Theorem 9 (Negri and von Plato, p. 119). A sequent Γ ⇒ A is valid in CL if and only if it is

provable in SCL

One important remark about the calculus is that applications of Lem-at can be restricted in

derivations, as follows:

Fact 10 (Negri and von Plato, p. 120). If a sequent Γ ⇒ C is derivable in SCL, then it has a

derivation where Lem-at is applied only on subformulas of C.
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Since Lem-at is the only elimination rule of the calculus, it follows that if a sequent is derivable in

SCL, then it has a derivation with the subformula property—that is, a derivation whose formulas

are all subformulas of formulas in the end-sequent.

To obtain a calculus for cCL, we just add a pair of rules:

Definition 3. The calculus ScCL results from SCL by adding the rules

R ∅
Γ ⇒ ∅

Γ ⇒ ∆1 . . . Γ ⇒ ∆n
SM

Γ ⇒ ∆1, ...∆n

The intuitive readings of rules R ∅and SM are quite straightforward: the former says that the

empty multiset follows from any multiset whatsoever, and the latter says that, if one multiset

entails several others, then it entails their union.

Theorem 11. A sequent Γ ⇒ ∆ is valid in cCL if and only if it is provable in ScCL.

Proof. We leave soundness as an exercise, and prove completeness. So, suppose Γ ⇒ ∆ is valid

in cCL. If ∆ = ∅, then Γ ⇒ ∆ is provable by a single application of R ∅, and we are done. So,

suppose ∆ ̸= ∅. The fact that Γ ⇒ ∆ is valid in cCL means that |Γ| |=cCL |∆|. From this it

follows that, for every C ∈ |∆|, |Γ| |=cCL {C} (Fact 1), and thus |Γ| |=CL C (Fact 5), and thus

the sequent Γ ⇒ C is derivable in SCL (Theorem 9). Hence, suppose ∆ = [C1, ..., Cn]. The above

implies that there exists a sequence D1, ...,Dn such that each Di is a derivation in SCL of the

sequent Γ ⇒ Ci. Thus, we just merge together all these derivations as follows

D1

...
Γ ⇒ C1

· · ·
...

· · ·

Dn

...
Γ ⇒ Cn

SM
Γ ⇒ [C1, ..., Cn]

and obtain a derivation in ScCL of Γ ⇒ ∆.

One consequence of soundness and completeness (together with Facts 1, 5 and 10) is that in

ScCL applications of Lem-at can also be restricted:

Corollary 12. If a sequent Γ ⇒ ∆ is derivable in ScCL, then it has a derivation where Lem-at is

applied only on subformulas of formulas occurring in ∆.

(We leave the proof as an exercise for the reader.) Again, this implies that if a sequent is derivable

in ScCL, then it has a derivation with the subformula property.

Another consequence of soundness and completeness is that all the rules that are sound in cCL

are admissible in ScCL.8 Thus, for instance,

Corollary 13. Rules Ref, Tr, Cut+, Cut×, LW and RaW are admissible in ScCL.

Proof. We just prove the case of Cut×. Suppose sequents Γ ⇒ ∆, A and A,Σ ⇒ Π are both

provable in ScCL. By soundness, they are valid in cCL. By the fact that Cut× is sound in cCL,

sequent Γ,Σ ⇒ ∆,Π is valid in cCL as well. Then, by completeness, it is provable in ScCL. The

remaining cases are analogous.

8A sequent rule is admissible in a sequent calculus S if and only if, for each of its instances, if the premise-sequents
are all provable in S, the conclusion-sequent is provable in S.
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One worry that one might have about calculus ScCL concerns the fact that it only has two

rules (namely R ∅and SM) that feature multiple conclusions. On the one hand, this arguably

endows ScCL with a certain elegance, as the calculus proves complete for cCL while extending

SCL with rather minimal resources. On the other hand, however, it makes the calculus rather

odd from a philosophical standpoint. If the consequence relation that the calculus encodes allows

arguments with multiple conclusions, why would the rules for the logical constants not allow such

arguments? It seems desirable to have a calculus for cCL where the rules for the logical constants

allow multiple conclusions as well.

Luckily, such a calculus is at hand:

Corollary 14. The following rules are sound in cCL, and thus also admissible in ScCL:

Id-at+
p,Γ ⇒ Γ, p

A,Γ ⇒ ∆ B,Γ ⇒ ∆
L∨+

A ∨B,Γ ⇒ ∆

A,B,Γ ⇒ ∆
L∧+

A ∧B,Γ ⇒ ∆

A → B,Γ ⇒ ∆, A B,Γ ⇒ ∆
L→+

A → B,Γ ⇒ ∆

L⊥+

⊥,Γ ⇒ ∆

Γ ⇒ ∆, A/B
R∨+

Γ ⇒ ∆, A ∨B

Γ ⇒ ∆, A Γ ⇒ ∆, B
R∧+

Γ ⇒ ∆, A ∧B

A,Γ ⇒ [C1, ..., Cn]
R→+

Γ ⇒ [A → C1, ..., A → Cn]

p,Γ ⇒ ∆ ¬p,Γ ⇒ ∆
Lem-at+

Γ ⇒ ∆

Let S+
cCL be the calculus that results from replacing, in ScCL, each single-conclusioned rule R

with its multiple-conclusioned counterpart R+. By the above corollary, calculus S+
cCL proves no

more sequents than ScCL. By the fact that each of the mentioned Rs is just a special case of the

corresponding R+, calculus S+
cCL also proves no less sequents. That is to say, S+

cCL is also sound

and complete for cCL.

Another source of worries has to do with the rules of cut, Cut+ and Cut×. Corollary (13)

establishes the admissibility of these rules in ScCL by means of a semantic argument—which relies,

remember, on the fact that these rules are sound in cCL. For many purposes, however, it is often

useful to have a direct, syntactic proof of their admissibility. But calculus ScCL has two rules, R ∅
and SM, whose form is quite different from what we are used to see in the literature on sequent

calculi; hence, it is not obvious that these rules do not ‘mess’ with the procedures that the usual

proofs of cut admissibility employ. To dispel such a worry, in the Appendix I lay down purely

syntactic proofs of the admissibility of Cut+ and Cut× in ScCL.

One important application of cut-free sequent calculi is to enable purely syntactic proofs of

consistency. However, proofs of this sort typically rely on the fact that sequent ∅⇒ ∅is invalid,

and this sequent is valid in cCL. So, one may also worry that, in a framework with conjunctive

multiple conclusions, purely syntactic proofs of consistency are not available. But the worry is

unfounded. The consistency of ScCL can be proven by purely syntactic means. First, one shows

that ScCL is consistent (viz. it does not prove any sequent of the form ⇒ A ∧ ¬A) if and only if

sequent ⇒ ⊥ is not derivable. Then, one goes on to show that in ScCL no derivation of ⇒ ⊥ can

exist. Intuitively, this is because ⇒ ⊥ can only be obtained in one of the following two ways:

11



...
p ⇒ ⊥

...
¬p ⇒ ⊥

Lem-at ⇒ ⊥

...
⇒ ⊥ R ∅⇒ . . .

R ∅⇒
SM ⇒ ⊥

But in each case, at least one of the premises can only be obtained using Lem-at or SM again,

which leads to an infinite regress. Thus, purely syntactic proofs of consistency can still be obtained

in our framework (although in a slightly different way).

Calculus ScCL does have one shortcoming, however. If we formulate it in a first order language

and extend it with the usual rules for the quantifiers, then the resulting system, call it Sfo
cCL, is not

complete for the first-order version of cCL; rather, it is a system where propositional connectives

are classical but quantifiers are intuitionistic—so, for instance, we cannot prove ∃xAx ∨ ¬∃xAx

for arbitrary A.9 There are a couple of possible reactions. One option would be to take Sfo
cCL

and, in the rule of excluded middle, drop the restriction that the formula being eliminated should

be atomic. The problem with this strategy is that, although the resulting system is complete, it

makes some variants of cut derivable,10 and it is not clear if applications of excluded middle can

be restricted in derivations in some meaningful way. Another, more radical option would be to

start from some altogether different calculus for first-order, single-conclusion classical logic, and

then add rules R ∅and SM to that calculus. For instance, one could take the system given by

Boolos [4, p. 183]. The issue with that particular system is that it is a natural deduction calculus

in sequent style (viz. it has elimination rules for the connectives), and this could be less than satis-

factory for some purposes. All in all, the proof theory of first-order classical logic with conjunctive

multiple conclusions is to be developed, and I take it to be an interesting topic of research for

future work.

3 Natural Language Arguments

Arguably, one of the most important applications of logical systems is to describe and/or prescribe

the way in which we deductively reason and/or ought to reason in natural language; in other words,

to model our everyday reasoning. In this section I claim that the conjunctive approach to multiple

conclusions is useful in this respect.

In the philosophy of logic, most authors take sides with tradition and claim that arguments in

natural language have exactly one conclusion:

The vice of the idea of multiple conclusion arguments is that it seems completely foreign

to the evidence of the arguments we see in practice. (Beall and Restall [1, p. 13].)

The rarity, to the point of extinction, of naturally occurring multiple conclusion argu-

ments has always been the reason why mainstream logicians have dismissed multiple-

conclusion logic as little more than a curiosity. (Rumfitt [44, p. 79].)

(See also [15, 22, 43, 48, 51].) Some have challenged this attitude, and argued that in natural

language we sometimes find arguments with multiple conclusions [39, 46] or, at least, logical con-

stants whose adequate formalisation requires a multiple conclusion framework [14]. Both sides

in the debate, however, share a key implicit assumption, namely, that multiple conclusions are

9I thank an anonymous reviewer of this journal for bringing this matter to my attention.
10A sequent rule is derivable in a sequent system S just in case, for each of its instances, the conclusion-sequent

is provable in the system that results from S by adding the premise-sequents as new axioms.
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to be read disjunctively.11 I drop that assumption, and argue that, at least when conclusions

are read conjunctively, there are arguments in natural language whose most natural and simple

formalisation involves multiple conclusions.

My starting observation is simple. In English, it makes perfect sense to say things as

(1) Such and such predictions follow from such and such hypothesis.

(2) What you said entails the following set of statements: A1, A2, ..., An.

(3) This theoretical standpoint has a series of undesirable consequences

It is clear that, were these fragments to be formalised using multiple conclusions, those conclusions

should be read conjunctively. Hence, I next consider some objections against the idea that they

can be plausibly formalised using multiple conclusions.

The most immediate objection is that the above fragments can be formalised just as well using

a conjunction as the only conclusion; therefore, multiple conclusions are dispensable. For starters,

it should be noted that, if this objection is convincing, then an analogous one applies to multiple

conclusions under the disjunctive reading: they can be explained away by means of disjunctions.

Setting this aside, there are several answers to the objection.

The first one is that, sometimes, to formalise using sets is more faithful to the speaker’s intention

than to formalise using a conjunction. For instance, let us precisify (3) as follows:

(3*) Hard determinism has a series of undesirable consequences, namely, the nonexistence of moral

responsibility, the lack of individual autonomy, and a depressing fatalism.

and compare this with

(3**) Hard determinism has a series of undesirable consequences, namely, the nonexistence of moral

responsibility, a depressing fatalism, and the lack of individual autonomy.

There are at least some contexts of utterance in which the difference between (3*) and (3**) seems

entirely irrelevant. To avoid unnecessary logical manipulations of object linguistic constants, in

such contexts it seems reasonable to formalise both fragments using a set of conclusions instead

of a single conclusion of conjunctive form. While non-decisive, the point should not be very

controversial: it is for similar considerations that, often, when we face an argument with prima

facie many premises, we formalise it using a set of premises rather than a conjunction thereof.

Secondly, it is true that, in our setting, conjunction and multiple conclusions are equivalent in

the following sense:

Γ J A,B,∆ iff Γ J A ∧B,∆

But this happens only because we work in classical logic; in many non-classical systems, the

equivalence will break. For instance, consider any logic where conjunction has a non-standard

behaviour in that it violates simplification (A ∧ B J A/B) or adjunction (A,B J A ∧ B).12

Suppose also that in this logic validity is defined as preservation of designated value, following the

general template that we can extract from Definition 1:

11A note to avoid confusion. In the terminology of Steinberger [48], those who favour the so-called bilateralist
reading of multiple-conclusion consequence (where Γ ⇒ ∆ is read as “It is incoherent to accept everything in Γ and
deny everything in ∆”) do not have a disjunctive reading of conclusions. But they do have such a reading in our
usage of words, because they work with systems where validity can be paraphrased as per the disjunctive approach.

12There are many logics where conjunction is non-standard in this sense. Just to give a couple of examples,
adjunction fails in Jaśkowski’s [27] discussive logic as well as in non-falsity logic NFL (Shramko [47]), whereas
simplification fails in paraconsistent weak Kleene logic PWK (Haldén [26]).
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Γ J ∆ just in case, for every relevant interpretation, if all the things in Γ have desig-

nated value, all the things in ∆ have designated value.

where Γ and ∆ are sets. Then, conjunction and structural comma will come apart in this logic, for

the definition of validity just given imposes on the comma the structural renderings of simplification

(A,B J A/B) and adjunction (A,B J A,B). The point is that conjunctive multiple conclusions

are not in general reducible to mere conjunctions.

Thirdly, infinite collections of conclusions are not expressible with ordinary conjunctions. And

we sometimes use arguments with prima facie infinite conclusions, as when we say

(4) The Peano axioms entail all formulas of the form t + 0 = t.

(5) This theory of physic entails all the sentences of the language

Perhaps, the objector could insist by appealing to infinite conjunctions. But the formulation of

infinite conjunctions requires set-theoretical vocabulary anyway; hence, it does not contribute to

economise on expressive resources. For instance, let us try to formalise (5). Let T be the relevant

theory, and L our language. With multiple conclusions, we can write

T |= {A : A ∈ L}

If we restrict ourselves to single conclusions, we have to write

T |=
∧
{A : A ∈ L}

In both cases we will need the machinery of set-theory. Thus, why don’t we allow multiple conclu-

sions from the outset?13

Fourth and last. If the above reasons do not convince the reader, then they may also lack good

reasons to admit multiple premises. Now that our reading of multiple premises and conclusions

is similar, reasons that justify the former tend also to justify the latter, and vice versa. Also

arguments with prima facie many premises could be formalised with a conjunction as the only

premise. If the reader is consequent, they should opt for such a formalisation. But I doubt that

this would be pleasing for them.

The second possible objection to my proposal runs as follows. If an argument in natural

language appears to have multiple conclusions, then it is just an abbreviation of multiple different

arguments, one for each of the apparent conclusions. In particular, when a speaker asserts that Γ

entails ∆, and ∆ is understood conjunctively, what the speaker means is the universal statement

“Γ entails C for each C in ∆”. This picture builds on some suggestions by Cintula and Paoli [9].

This objection is more plausible, but its significance is rather limited. To begin with, if it is

convincing, then again there is an analogous objection that affects multiple conclusions under a

disjunctive reading; indeed, Cintula and Paoli’s original argument is meant to give an eliminativist

account of those. Very roughly, the assertion that Γ entails ∆, where ∆ is read disjunctively, can

be understood as expressing the universal statement according to which each C in ∆ follows from

Γ together with the negations of the remaining things in ∆. Regardless of this, the objection is

again contestable.

First, it is true that, in our setting, the following ‘reduction’ holds:

13My last two answers develop some considerations made by Shoesmith and Smiley in their defence of disjunctive
multiple conclusions [46, p. 2].
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Γ J ∆ iff Γ J δ for each δ ∈ ∆

But again, whether some such result is available will depend on the details of the framework. For

instance, if a consequence relation J is defined on multisets rather than sets, then the obvious

reformulation of the reduction would be the following

Γ J ∆ iff Γ J δ for each δ ⊏− ∆

But this reduction could reasonably fail if J is meant to formalise resource-sensitive reasoning: we

could have, for example, [A] ̸J [A,A] but [A] J [A] (where, notice, the latter implies that [A] J [C]

for each C ⊏− [A,A]).14 The point is, now, that conjunctive multiple conclusions do not in general

merely abbreviate classes of single-conclusion arguments.

But even for those systems where the reduction can be done, it is hasty to conclude that

conjunctive multiple conclusions are just dispensable. First and foremost, when a speaker utters,

for instance, “Such and such predictions follow from such and such hypothesis”, or even “This

theory entails that one”, they do not make explicit use of any quantifiers—and they are not aware

of making any implicit use of quantifiers either. Hence, the most literal and simple way to model

their claim is by means of two collections of statements, say Γ and ∆, of which they are saying

that Γ J ∆. If we relinquish from multiple conclusions, and model the speaker’s utterance by

means of a universal quantification over a certain class of single-conclusion arguments, we make a

non-literal (or at least, a less literal) reading of what the speaker has said. Of course, non-literal

readings can have their advantages sometimes. But, all other things being equal, the more literal

reading is to be preferred.

For another thing, the reduction makes essential use of certain metatheoretical expressions such

as the indicative biconditional and the universal quantifier. Since these expressions pertain to the

metalanguage, they are preformal in that their usage is not regimented. Multiple conclusions allow

us to dispense with these expressions and thus give a more rigorous account of the logic regulating

fragments like (1) to (5)—and the interactions between these fragments. This increase in rigour

arguably brings about some epistemic gains. For instance, it enables a proof-theoretic decision

procedure for the validity of these fragments, and it allows a better analysis of the structural

properties that these pieces of reasoning display. These epistemic gains, I take it, provide further

reasons to formalise fragments (1) to (5) by means of multiple conclusions.

I conclude that, at least when conclusions are read conjunctively, we have good reasons to

admit that there are multiple conclusions in natural language. This makes conjunctive multiple

conclusions useful in the enterprise of modelling our everyday reasoning. To be clear, I have not

argued that in natural language there are no arguments with disjunctive multiple conclusions.

There may well be. For instance, one could try to mimic the reasoning from this section by

appealing to examples like “These facts entail the following set of possible scenarios”, “What you

said leaves the following possibilities open”, and so on. But following this line of thought escapes

the subject of this paper.

14A concrete example of a system where this happens is logic M L in Cintula and Paoli [9, p. 753].
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4 On Reflexivity and Transitivity

One of the major differences between the conjunctive and the disjunctive approaches has to do

with their policies towards the properties of reflexivity and transitivity: the disjunctive approach

induces failures of these properties, while the conjunctive one does not. In this section we will see

that this difference is tightly related to a number of aspects in which the conjunctive approach

seems to be more satisfactory than the disjunctive one. In Sect. 4.1, I claim that it allows a more

natural generalisation of logical equivalence from sentences to collections thereof. In Sects. 4.2

to 4.4, I claim that it gets along better with some of our best accounts of logical consequence,

namely, the ones based on preservation, on content inclusion, and on existence of a proof.

4.1 Generalising Logical Equivalence

The relation of logical equivalence is typically assumed to hold between sentences. But when

we work in a multiple-conclusion framework, the relata of logical consequence are collections of

sentences. Hence, it makes sense to ask what logical equivalence looks like when we generalise it

to collections as well.

In the single-conclusion framework, two sentences A and B are said to be logically equivalent

just in case they mutually entail each other, in symbols AL B. So, let us extend this stipulation

to the multiple-conclusion framework: two sets Γ and ∆ are logically equivalent just in case ΓL ∆.

Under this modest assumption, the disjunctive approach has some consequences that strike me as

highly counter-intuitive:

Case 1: Set {A,B} is logically equivalent to {A ∨ B}, but also to {A ∧ B}!

(In other words, {A,B} |=|=dCL {A ∨ B} and {A,B} |=|=dCL {A ∧ B}.) How can

the same set be logically equivalent to sentences that have different truth conditions

(or, more precisely, to sets that do not have the same models)?15

Case 2: The empty set, ∅, is logically equivalent to {A,¬A}, but not to itself!

(In other words, ∅ |=|=dCL {A,¬A} but ∅ ̸|≠|=dCL ∅.) If something entails an

inconsistent set, and classical logic is explosive, why does it not entail everything and,

in particular, why does it not entail itself?

Of course, these questions have clear technical answers. As for Case 1, sets {A,B} and {A ∨ B}
are logically equivalent because, although they do not have the same models, every model of the

latter assigns value 1 to at least one sentence in the former and vice versa; this is all we need to

have validity in dCL. As for Case 2, ∅ is not equivalent to itself because, although every model

assigns 1 to each of its sentences, no model assigns 1 to at least one of them; this precludes dCL

validity. But notice that these answers assume a disjunctive reading of multiple conclusions; hence,

they just beg the question in favour of this reading. Needless to say, none of the counter-intuitive

examples affects the conjunctive approach: in cCL, ∅L ∅ and {A,B} L̸ {A ∨B}.

Examples 1 and 2 have quite a bit in common. Indeed, they can both be explained by a single

fact about dCL, namely, that the system invalidates the following principle:

ΓL Σ ∆L Σ
Ax-1

ΓL ∆
15It is noteworthy that, as a special case of this example, we have that {A,¬A} is logically equivalent both to

{A ∧ ¬A} and to {A ∨ ¬A}, that is, both to a set without models and to a set without counter-models.
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The informal reading is: ‘If two things are logically equivalent to a third, they are logically equiv-

alent to one another’. Label ‘Ax-1’ honours the clear similarity with the first axiom of Euclid. In

Case 1, Γ is {A ∨ B}, ∆ is {A ∧ B}, and Σ is {A,B}. In Case 2, Γ and ∆ are both ∅, and Σ is

{A,¬A}. Both examples show that Ax-1 does not hold in dCL.

I submit that Ax-1 throws light upon an important aspect in which cCL is more akin to CL

than dCL is. In the single-conclusion framework, logical equivalence is defined for sentences, while

in the multiple-conclusion framework, it is defined for sets of sentences. Thus, in the cases of both

CL and cCL, logical equivalence is a genuine equivalence relation, that is, it is reflexive, transitive

and symmetric. This is not so, however, in the case of dCL; the explanation is that Ax-1 is a

necessary condition for a relation L to be an equivalence relation. The upshot is that there is

a sense in which the conjunctive reading of multiple conclusions is more faithful to the spirit of

single-conclusion consequence than the disjunctive reading is.

The sympathiser of the disjunctive approach could object. When we focus on sentences, the

relations of ‘having the same models’ and ‘entailing each other’ are coextensive: A has the same

models as B just in case AL B. As a consequence, logical equivalence can be defined in terms of

any of these relations, and the results will be the same. When we focus on sets, however, things

are different. The relations mentioned now come apart: there are pairs of sets that have the same

models, but do not entail each other (e.g. ∅ and ∅) and there are also pairs of sets that entail each

other in spite of not having the same models (e.g. {A,B} and {A∨B}). Thus, logical equivalence

cannot adjust to both relations at once. We must choose. And we have just seen that defining

logical equivalence in terms of mutual entailment runs into troubles. Hence, we should define it

in terms of sameness of models.16 This keeps the counter-intuitive examples at bay: now, {A,B}
and {A ∨B} are not logically equivalent, but ∅ and ∅ are.

The objection is relevant, since it provides a coherent picture where multiple conclusions are

read disjunctively and, yet, undesirable consequences are avoided. However, I do not think that

the position depicted is ultimately satisfactory; the reason is that it incurs in theoretical costs that

can be avoided. Under the conjunctive approach, the relations of ‘having the same models’ and

‘entailing each other’ are coextensive both for sentences and for sets. Also, the approach is not

prone to the counter-intuitive consequences that threaten the disjunctive reading. But then, why

pay the cost that the disjunctive reading supposes? Why break the symmetry between the notions

of logical equivalence for sentences and for sets, if this is not indispensable to save the data? I do

not see good answers in favour of the disjunctive approach.

4.2 Validity as Preservation

One of the (if not the) most established analysis of logical consequence in the literature tells us

that an argument is valid just in case it preserves certain property from premises to conclusion(s).

The property that is assumed to be preserved varies across logical systems and philosophical views;

it can be, e.g. truth or satisfaction, assertability, constructive provability or even evidence. For

concreteness, in what follows I assume the relevant property to be truth. Not much hinges on this,

however. My argument is quite general, and it aims to apply to most (if not all) explanations of

logical consequence as preservation.

16This is not the only option, though. As an anonymous reviewer rightly observes, the sympathiser of the
disjunctive approach could also say that two sets Γ and ∆ are logically equivalent just in case they entail the same
sets, viz. for every Σ, Γ J Σ if and only if ∆ J Σ. My answer to this proposal is similar to the reply I give below
to the proposal based on sameness of models.
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The starting point I would like to make is that the idea of ‘truth preservation’ suggests that

there is a pair of entities such that the first ‘transfers’ its truth to the second or, alternatively, the

second ‘inherits’ the truth of the first. Of course, this is metaphoric. But that should not be a

problem, since the very talk of ‘truth preservation’ is metaphoric as well. I am just positing further

informal conditions that should intuitively hold for the metaphor to make sense. Our guiding

question, then, will be the following: What are the entities between which truth is preserved in

valid arguments? Let J be any logical consequence relation. We will consider three options: that

J stands for consequence in CL, in cCL, and in dCL.

If J stands for consequence in CL, things seem quite straightforward. First, we stipulate that

a set of sentences is true just in case all of its sentences are true. Then, we note that, under

the usual reading of the semantics for classical logic (where 1 stands for ‘true’ and 0 for ‘false’),

the following obtains:

(Set-Fmla) Γ J C just in case, whenever Γ is true, C is true

Thus, we are justified in giving the next answer to our question: in valid arguments, truth is

preserved between the set of premises and the conclusion. Label ‘(Set-Fmla)’ stands for ‘Set-

Formula truth preservation’.

If J stands for consequence in cCL, no additional complications seem to arise. We stick to the

above stipulation, and note that the following obtains:

(Set-Set) Γ J ∆ just in case, whenever Γ is true, ∆ is true

Thus, we are justified in giving the answer: in valid arguments, truth is preserved between the

set of premises and the set of conclusions. The meaning of label ‘(Set-Set)’ is the expected one,

namely ‘Set-Set truth preservation’.

When J stands for consequence in dCL, however, things are way less obvious. To begin with,

the idea that truth is preserved between sets seems bound to failure. The reason is that there

seems to be no reasonable stipulation of what it means that a set of sentences is ‘true’ such that

(Set-Set) obtains. Suppose that we stick to the stipulation we entertained so far: a set of sentences

is true just in case all of its sentences are true. Then, (Set-Set) fails because {p} |=dCL {p, q}
but it is not the case that whenever al the sentences in {p} are true, all the sentences in {p, q}
are true. Suppose, alternatively, that a set of sentences is true just in case at least one of its

sentences is true. Then, (Set-Set) fails because ∅ ̸|=dCL {p ∧ ¬p} even though, whenever some

sentence in ∅ is true, some sentence in {p ∧ ¬p} is true (namely, never). Maybe, one could try

some more intricate stipulations; for instance, one could say something like this: “A set is true

in the premises of an argument just in case all of its sentences are true, and a set is true in the

conclusions of an argument just in case at least one of its sentences is true’. But this, I take it,

makes no philosophical sense at all. In general, I see no stipulation that satisfies Set-Set without

being horribly ambiguous or context-dependent.

Let us discard, then, the idea that in valid arguments truth is preserved between sets. Another

option that could come to mind is that in valid arguments truth is preserved between the set of

premises and some sentence in the set of conclusions. The problem with this proposal is that, for

it to be justified, the following should obtain:

(Set-Set⋆) Γ J ∆ just in case there is a C in ∆ such that, whenever Γ is true, C is true

Yet, this fact fails spectacularly in dCL; for instance, we have that ∅ |=dCL {p,¬p} but it is

neither the case that p is always true, nor that ¬p is always true. Indeed, (Set-Set⋆) fails in most
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of the logical systems I know of.17

The last, and most plausible answer that I could come up with runs as follows: in valid argu-

ments, truth is preserved between the sentence-translations of the sets of premises and conclusions.

Let us define the premise-sentence-translation of a set Σ, denoted by p(Σ), as
∧

(Σ∪{⊤}), and the

conclusion-sentence-translation of Σ, denoted by c(Σ), as
∨

(Σ ∪ {⊥}). Then, the justifying fact

for this position would be the following:

(Set-Set⋆⋆) Γ J ∆ just in case whenever p(Γ) is true, c(∆) is true.

Of course, this obtains for dCL as well as many non-classical systems. The problem I see with this

proposal is that, if we take seriously the idea that the relata of logical consequence are sets and,

moreover, we assume that logical consequence is to be explained in terms of truth preservation,

then it seems odd, at the very least, that the relation of truth preservation does not have sets

anywhere among its relata. In other words, under this proposal, sets can be arguably understood

as mere abbreviations: the genuine relata of logical consequence are not sets anymore, but the

sentences they abbreviate. But if this is the case, then the sympathiser of disjunctive multiple

conclusions has lost multiple conclusions (as well as multiple premises) along the way.18

I conclude that the conjunctive reading allows a simpler and more reasonable specification of

what are the entities between which truth is preserved in valid arguments. Arguably, the reason

for this has to do with the properties of reflexivity and transitivity. The very notion of preservation

seems to support these properties: any object a preserves its own features, and for any objects a, b

and c, if b preservers a certain feature P of a, and c preserves feature P of b, then c preserves feature

P of a. Since the disjunctive approach violates reflexivity and transitivity, it cannot account for

this plausible fact about the notion of preservation. Notice that I nowhere appealed to specificities

of the notion of truth. Hence, the above line of reasoning applies just as well to any other property

that one may think that is preserved in valid arguments.

4.3 Validity as Content Inclusion

Another venerable explanation of logical consequence maintains that an argument is valid just in

case the content of the conclusion is included in the content of its premises. The account can be

traced back to Aristotle and passes through Sextus Empiricus and most prominently Kant.19 In

the early 20th century, some logicians such as Carnap [6] and Popper [34] thought that classical

logic can be characterised in terms of content inclusion. As the discussion proceeded, however, a

broad consensus was reached that this is not the case. The reason, in a nutshell, is that classical

logic overgenerates valid arguments. In particular, it validates some arguments that allow the

occurrence in the conclusion of a subject matter that was not present in the premises, and this is

deemed incompatible with the idea that the content of the premises includes that of the conclusion.

The point was famously made by Parry [33]:

If a system contains the assertion that two points determine a straight line, does the

theorem necessarily follow that either two points determine a straight line or the moon

17One should not confuse (Set-Set⋆) with the disjunction property of intuitionistic logic. The mentioned property
holds for theorems (if A ∨ B is an intuitionistic theorem, then A is a theorem or B is a theorem) but not for valid
arguments (p ∨ ¬p entails p ∨ ¬p in intuitionistic logic, but it neither entails p nor ¬p).

18One may perhaps understand the argument of this subsection as an elaboration of the complaint made by
Gareth Evans (quoted in [46, 48]). One reading of Evans complaint is that, once disjunctive multiple conclusions
are properly understood, they are nothing more than single-conclusions in disguise.

19See Ferguson [16] for a nice summary.
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is made of green cheese? No, for the system may contain no terms from which ‘moon,’

etc., can be defined.

This is why, in the last decades, the literature on logics of content inclusion focuses mostly on non-

classical systems. Accordingly, I shall not restrict my attention to classical logic in this subsection.

Rather, I will make some general considerations that are relevant for (the multiple-conclusion

counterparts of) many systems.

Logics of content inclusion are usually developed in a propositional language and a single

conclusion framework. It is standard to impose on them a syntactic restriction that Parry called

the proscriptive principle:

(PP) Γ J A only if V ar(A) ⊆ V ar(Γ)

where V ar(Γ) is the set of propositional variables occurring as subformulas in Γ, and likewise for

A. The idea is that PP warrants that no novel subject matter appears in the conclusion of a valid

argument, and thus avoids the kind of problems that affected classical logic. The question arising

now is how we should extend PP to the multiple-conclusion framework.

I submit that, if the relata of logical consequence are assumed to be sets, then a natural answer

to this question is:

(PP⋆) Γ J ∆ only if V ar(∆) ⊆ V ar(Γ)

This warrants that no conclusion introduces a subject matter that is absent in the premises, and

thus allows us to read Γ J ∆ as saying that the content of ∆ is included in that of Γ. Under this

generalisation of PP, however, the disjunctive reading of conclusions runs into troubles. Arguably,

the relation of content inclusion is like that of preservation in that it supports reflexivity and

transitivity: any content a is included in itself,20 and for any contents a, b and c, if a is included

in b and b is included in c, then a is included in c. But the disjunctive approach will induce

counterexamples to this. First, for any plausible choice of J we will have ⊤ J̸ ⊥, which, by the

stipulation that
∨

(∅) amounts to ⊥ and
∧

(∅) amounts to ⊤, implies ∅ ̸J ∅. Second, for many

plausible choices of J we will have {p ∨ q} J {p, q} and {p, q} J {p ∧ q} (these validities do not

violate PP⋆); but of course we will also have {p ∨ q} ̸J {p ∧ q}. For the conjunctive reading of

conclusions, on the other hand, similar issues do not arise. For any reasonable choice of J we will

have ∅ J ∅, avoiding the first problem, and {p∨ q} J̸ {p, q}, avoiding the second one. Notice also

that since now ∅ behaves as ⊤ everywhere, we will also have that Γ J ∅ for any Γ; this is coherent

with a plausible interpretation of ∅, which is that it lacks any content.

One might perhaps object that, in a way, PP⋆ begs the question in favour of the conjunctive

approach. If the relation J is assumed to induce the disjunctive approach, then a different gen-

eralisation of the proscriptive principle should be imposed on it. For instance, Ciuni et. al. [10]

work with logics with disjunctive multiple conclusions that satisfy the restriction

(PP⋆⋆) Γ J ∆ only if V ar(∆′) ⊆ V ar(Γ) for some ∆′ ⊆ ∆

This warrants that there is a subset of the conclusions that does not introduce a subject matter

that is absent in the premises; thus, it allows us to read Γ J ∆ as saying that there is a subset

of ∆ whose content is included in that of Γ. However, I think that PP⋆⋆ is not a sufficiently

demanding generalisation of PP. It allows for the reappearance, at the structural level, of the kind

20Of course, I am working with a non-strict notion of content inclusion here. Strict notions of content inclusion
would justify non-reflexivity, and even require irreflexivity.
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of phenomena that motivated the abandonment of classical logic in the first place. For many

choices of J (for instance, the systems studied by Ciuni et al.) we will have validities such as

{p} J {p, q}. And I do not see why this is more innocuous than {p} J {p∨q}. If, following Parry’s

example, “Either two points determine a straight line or the moon is made of green cheese” does

not follow from “Two points determine a straight line” because the language of geometry might

not even have the means to talk about the moon, cheese and so on, then, by parity of reasoning, a

set comprising the statements “Two points determine a straight line” and “The moon is made of

green cheese” should not follow from the former of these two statements alone, for the very same

reasons. In a way, PP⋆⋆ allows us to extend logics of content inclusion to a multiple-conclusion

framework, but at the cost of giving up content inclusion.

4.4 Validity as Existence of a Proof

The philosophical standpoint known as logical inferentialism maintains that the meaning of logical

constants is determined by the rules that govern their behaviour. These rules are assumed to be

sound without further justification. Then, an argument is said to be valid if and only if there is a

proof that goes from the premises to the conclusion(s) and only uses sound rules of inference.21

Steinberger [48] already provided a battery of reasons to think that typical multiple-conclusion

systems (viz. systems inducing a disjunctive reading of conclusions) are not compatible with logical

inferentialism. Here, however, I will rehearse an independent argument that I made elsewhere [17],

which bears on the properties of reflexivity and transitivity. While there is no space to present the

argument in full here, I offer a brief sketch of how it goes.

We focus on the metalinguistic comma that is used to aggregate premises and/or conclusions.

In a nutshell, we present an analogy between, on the one hand, the comma as it behaves in systems

with disjunctive multiple conclusions, and on the other, Prior’s infamous connective tonk. As is

well-known, Prior [36] presents tonk as an alleged counterexample to logical inferentialism; the

idea is that the constant is meaningless or somehow illegitimate, and thus it is not the case that

any set of rules determines a meaningful or legitimate constant. The analogy we present shows

that tonk and the comma have much in common; indeed, the latter can be understood as nothing

more a structural incarnation of the former. Arguably, then, whatever philosophical story one has

to tell about tonk, there are good reasons to tell a similar story about the comma, and viceversa.

The first and most noticeable similarity between tonk and the comma stems from the rules

governing these expressions. tonk can be characterised by means of the rules22

A J B
L-tonk

C tonk A J B

A J B
R-tonk

A J B tonk C

The comma, in turn, can be characterised by means of the rules of left and right weakening, which

for the sake of the analogy we restate as follows:

Γ J ∆
L-Set

Σ,Γ J ∆

Γ J ∆
R-Set

Γ J ∆,Σ

where Γ,∆, ... are sets of sentences. It is apparent that these two pairs of rules are formally

identical: each rule for the comma results by taking the corresponding rule for tonk and uniformly

21I refer the reader to Murzi and Steinberger [29] for a gentle overview of inferentialism in general, and logical
inferentialism in particular.

22These are the usual rules for tonk (see e.g. [18, 40]) with the only difference that we restrict them to a
single-conclusion and single-premise framework.
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replacing arbitrary formulas with sets and tonk with the comma. Both expressions are introduced

as conjunctions on the left-hand side of the turnstile, and as disjunctions on the right-hand side—we

could say that they are ambiguous in a similar way.

A second important similarity concerns the pathological character that both tonk and the

comma display. It is well-known that tonk does not get along with the reflexivity and transitivity

of consequence. If J satisfies reflexivity and transitivity for formulas, then the rules of tonk

trivialise it:

A J A

A J A tonk B

B J B

A tonk B J B

A J B

Now, the comma does not get along with reflexivity and transitivity either. If J satisfies either

reflexivity for sets, or reflexivity for formulas and transitivity for sets, then the rules for the comma

make it trivial and quasi-trivial, respectively:

∅ J ∅
Σ J ∅
Σ J Π

A J A

Γ J A

Γ J Γ,∆

B J B

B J ∆

Γ,∆ J ∆

Γ J ∆

(where A ∈ Γ and B ∈ ∆). Thus, with slight variations, both tonk and the comma are incom-

patible with the consequence relation being reflexive and transitive.

The last parallel we will highlight here is that, indeed, tonk and the comma have been treated

likewise in the literature. A few attempts have been made to design logical systems where tonk is

admissible without triviality. Cook, for instance [12], defined a non-transitive but reflexive system

where the rules of tonk can be conservatively added. Fjellstad, however [18], convincingly argued

that a system for tonk should be both non-transitive and non-reflexive; the main reason is that,

in a sequent calculus containing an axiom of reflexivity, the rules of tonk fail to uniquely define

a connective—which undermines the idea that the calculus admits the addition of the connective

tonk, as opposed to a family of connectives.23 Now, of course, reflexivity and transitivity are the

key structural properties that fail in typical multiple-conclusion systems. Then, we could say that,

since Gentzen, our sequent calculi avoid triviality by means of the same kind of trick that we do

when we want to get away with tonk.

As we announced, the upshot of the analogy is that tonk and the comma are beasts of the

same blood, and indeed, the latter can be seen as a structural incarnation of the former. The

philosophical moral is that, whatever story we may have to tell about tonk, we should arguably tell

a similar story about the comma, and viceversa. In particular: some inferentialist follow the trace of

Belnap [2] and think that tonk is unacceptable only relative to certain background assumptions

about the notion of logical consequence.24 Those who follow this path may reject tonk and

welcome multiple conclusions at the same time, as long as they claim that our notion of consequence

is transitive and reflexive for formulas but not for sets. Many other inferentialist, however, follow

the traces of Prawitz [35] and Dummett [15], and think that tonk is unacceptable in an inherent

or absolute sense—the reason being that its rules are not in harmony.25 Those who follow this

23Roughly, a connective is uniquely defined in a calculus just in case it is intersubstitutable in inference without
loss of validity with any other connective that has formally identical rules. See Belnap [2] for the precise definition.

24See, for instance, Cook [12], Ripley [40] and Dicher [13].
25See, for instance, Read [38], Tennant [52] and Francez [20].
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path will have a much harder time justifying why the comma of typical multiple-conclusion systems

should not also be regarded as unacceptable.26,27 Absent some such justification, they seem forced

to part ways with typical multiple conclusions.

It goes without saying that conjunctive multiple conclusions are not subject to the kind of

analogy we discussed, for they are governed by entirely different patterns of inference.

4.5 Takeaway

When we talk about the reflexivity and transitivity of logical consequence, we usually have in mind

some non-relation-theoretic variants of these properties. In this section we have seen that proper

reflexivity and transitivity can be of philosophical significance; indeed, they seem to be tightly

related to some of our most entrenched ways of thinking about logical consequence.

5 Closing Remarks

In this paper, I explored some technical and philosophical aspects of an approach to multiple

conclusions that is often employed in mathematical logic, has recently been shown to be useful

in the conceptual justification of certain non-classical systems (namely, the non-contractive ones),

and yet, has gone largely unnoticed by the philosophical community. I defined and analysed

a presentation of multiple-conclusion classical logic where conclusions are read conjunctively. I

argued that we can find arguments with conjunctive multiple conclusions in natural language.

Lastly, I claimed that the fact that the disjunctive and the conjunctive approaches have different

policies towards reflexivity and transitivity has philosophical consequences; in particular, it is

related to various aspects in which the conjunctive reading seems to behave in a more satisfactory

way than the disjunctive one. I hope that the previous pages awaken the reader’s curiosity about

the structure, informal reading and explanation of our claims of logical consequence. After all,

following Tarski [50], “In considerations of a general theoretical nature, the proper concept of

consequence must be placed in the foreground”.
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Appendix

We provide syntactic proofs of admissibility of rules Cut+ and Cut× in ScCL.

Let us start with Cut+. The case of this rule is easy, because the move from its left premise-

sequent alone to its conclusion-sequent is already licensed by rule RaW. So, to show that Cut+ is

admissible in ScCL, it suffices to show that RaW is admissible.

Lemma 15 (Admissibility of RaW in ScCL). If Γ ⇒ ∆, A is provable in ScCL, then Γ ⇒ ∆ is

provable as well.

Proof. We define the height of a derivation as the number of nodes in its longest branch, minus 1.

We proceed by induction on the height of the derivation of Γ ⇒ ∆, A.

• Base step. The height is 0. Then Γ ⇒ ∆, A is an axiom. It follows that ∆ = ∅, and thus,

Γ ⇒ ∆ is just an instance of R ∅.
• Inductive step. The height is n > 0. There are two cases: (a) ∆ = ∅and (b) ∆ ̸= ∅. In

case (a), Γ ⇒ ∆ is again an instance of R ∅. In case (b), we can assume w.l.o.g.28 that the

target application of RaW has the following form:

Γ ⇒ ∆1, A Γ ⇒ ∆2 . . . Γ ⇒ ∆m
SM

Γ ⇒ ∆, A

Γ ⇒ ∆

Then we just permute the applications of SM and RaW:

Γ ⇒ ∆1, A

Γ ⇒ ∆1 Γ ⇒ ∆2 . . . Γ ⇒ ∆m
SM

Γ ⇒ ∆

and since the derivation of Γ ⇒ ∆1, A is of height at most n−1, the new application of RaW

is admissible by our inductive hypothesis.

Fact 16 (Admissibility of Cut+ in ScCL). If Γ ⇒ ∆, A and A,Γ ⇒ ∆ are both provable in ScCL,

Γ ⇒ ∆ is provable as well.

Proof. If Γ ⇒ ∆, A is provable, then Γ ⇒ ∆ is provable as well by the admissibility of RaW.

Now, let us turn to Cut×. In the case of this rule, we will rely on Negri and von Plato’s proof

that the following single-conclusioned version of cut is admissible in SCL:

Γ ⇒ A A,∆ ⇒ C
sc-Cut×

Γ,∆ ⇒ C
28Here and below, the ‘w.l.o.g.’ qualifications are because the respective derivations may have the premises of SM

in a different order. But we can always rearrange them to match the form depicted.
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Theorem 17 (Admissibility of sc-Cut× in SCL). If sequents Γ ⇒ A and A,∆ ⇒ C are provable

in SCL, then Γ,∆ ⇒ C is provable as well.

(The proof can be found in [30, p. 117]). We will also use two more preliminary results about

ScCL. First, LW is admissible in the system:

Lemma 18 (Admissibility of LW in ScCL). If Γ ⇒ ∆ is provable in ScCL, then A,Γ ⇒ ∆ is

provable as well.

Proof. We proceed by induction on the height of the derivation of Γ ⇒ ∆.

• Base step. The height is 0. Then Γ ⇒ ∆ is an axiom. A quick inspection of the axioms of

ScCL shows that A,Γ ⇒ ∆ must be an axiom as well.

• Inductive step. The height is n > 0. There are eight cases, corresponding to the last rule

applied in the derivation of Γ ⇒ ∆. We just consider the case of SM—the other rules are

dealt with similarly. In this case, the target application of LW has the form

Γ ⇒ ∆1 . . . Γ ⇒ ∆m
SM

Γ ⇒ ∆
A,Γ ⇒ ∆

Then we just permute the applications of SM and LW:

Γ ⇒ ∆1

A,Γ ⇒ ∆1 . . .

Γ ⇒ ∆m

A,Γ ⇒ ∆m
SM

A,Γ ⇒ ∆

and since the derivations of Γ ⇒ ∆1, ...,Γ ⇒ ∆m have all heights at most n − 1, by our

inductive hypothesis the new applications of LW are all admissible.

Second, system ScCL is conservative over SCL, in the sense that if a single-conclusioned sequent

is provable in the former, it was already provable in the latter.

Lemma 19 (Conservativity of ScCL). If a single-conclusioned sequent is provable in ScCL, then

it is also provable in SCL.

Proof. Take any single-conclusioned sequent Γ ⇒ C and suppose it is provable in ScCL. We

proceed by induction on the height of its derivation.

• Base step. The height is 0. Then Γ ⇒ C is an axiom of ScCL, and since it has a non-empty

set of conclusions, it must be also an axiom of SCL.

• Inductive step. The height is n > 0. There are two subcases.

(a) The last rule applied is a rule R of SCL. Then, the premises of this last rule application

are also single-conclusioned. Since their derivations are of height at most n − 1, by

inductive hypothesis it follows that they are provable in SCL. So, take their respec-

tive derivations in SCL, and extend these derivations by applying R. We obtained a

derivation of Γ ⇒ C in SCL.

(b) The last rule applied is SM. Then, w.l.o.g. we can assume that the last step of the

derivation has the following form:

Γ ⇒ C
R ∅

Γ ⇒ ∅ . . .
R ∅

Γ ⇒ ∅
Γ ⇒ C

Since the sequent Γ ⇒ C is single-conclusioned, and the height of its derivation is n− 1, by

inductive hypothesis it follows that it is provable in SCL. So, we are done.
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With the above preliminaries at hand, we are ready to prove our target result:

Theorem 20 (Admissibility of Cut× in ScCL). If sequents Γ ⇒ ∆, A and A,Σ ⇒ Π are provable

in ScCL, then Γ,Σ ⇒ ∆,Π is provable as well.

Proof. We call Γ ⇒ ∆, A and A,Σ ⇒ Π the ‘cut-premises’, and Γ,Σ ⇒ ∆,Π the ‘cut-conclusion’.

We define the cut-height as the sum of the heights of the derivations of the cut-premises plus 1.

The proof proceeds by induction on the cut-height.

• Base step. The cut-height is 1. This means that the cut-premises are both axioms. By

inspection of the axioms of ScCL we know that the target application of Cut× has one the

following forms:

Id-at
A,Γ′ ⇒ A A,Σ ⇒ Π

(a)
A,Γ′,Σ ⇒ Π

L⊥⊥,Γ′ ⇒ A A,Σ ⇒ Π
(b)

⊥,Γ′,Σ ⇒ Π

In subcase (a), the cut-conclusion can be obtained from the right cut-premise alone by a

number (perhaps 0) of applications of LW, which by Lemma 18 we know is admissible in

ScCL. In subcase (b), if the cut-premise A,Σ ⇒ Π is an instance of R ∅, then the cut-

conclusion is an instance of R ∅as well; and if A,Σ ⇒ Π is an instance of some other axiom,

then Π = {π} for some formula π, and the cut-conclusion ⊥,Γ′,Σ ⇒ π is an instance of L⊥.

• Inductive step. The cut-height is n > 1. There are two cases:

(a) Both cut-premises are single-conclusioned. In this case, by the conservativity of ScCL

(Lemma 19) we know that they are both provable in SCL. Then, by the admissibility

of sc-Cut× in SCL (Theorem 17) we know that the cut-conclusion is provable in SCL.

Lastly, by the fact SCL is a subsystem of ScCL, we know that the cut-conclusion is

provable in ScCL.

(b) At least one cut-premise is multiple-conclusioned. We just cover the subcase where

A,Σ ⇒ Π is multiple-conclusioned, since the other subcase is symmetric. Inspection of

the rules of ScCL shows that, if A,Σ ⇒ Π is multiple-conclusioned, then we can assume

that the target application of Cut× is of the form

Γ ⇒ ∆, A

A,Σ ⇒ Π1 . . . A,Σ ⇒ Πm
SM

A,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π

Then, we proceed as follows, where the rule applications marked with dashed lines are

to be performed only if ∆ ̸= ∅:

Γ ⇒ ∆, A A,Σ ⇒ Π1

Γ,Σ ⇒ ∆,Π1

Γ ⇒ ∆, A A,Σ ⇒ Π2

Γ,Σ ⇒ ∆,Π2
RaW

Γ,Σ ⇒ Π2 . . .

Γ ⇒ ∆, A A,Σ ⇒ Πm

Γ,Σ ⇒ ∆,Πm
RaW

Γ,Σ ⇒ Πm
SM

Γ,Σ ⇒ ∆,Π

The applications of RaW (if any) are warranted by the admissibility of this rule in ScCL

(Lemma 15). Also, it is easy to check that the new applications of Cut× are all of

cut-height at most n− 1; hence, they are admissible by inductive hypothesis.
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[8] P. Cintula, J. Gil-Férez, T. Moraschini, and F. Paoli. An Abstract Approach to Consequence

Relations. The Review of Symbolic Logic, 12(2):331–371, 2019. https://doi.org/10.1017/

S175502031900008X.

[9] P. Cintula and F. Paoli. Is Multiset Consequence Trivial? Synthese, 199(Suppl 3):741–765,

2021. https://doi.org/10.1007/s11229-016-1209-7.

[10] R. Ciuni, T. Ferguson, and D. Szmuc. Logics Based on Linear Orders of Contaminating

Values. Journal of Logic and Computation, 29(5):631–663, 2019. https://doi.org/10.

1093/logcom/exz009.

[11] R. Cook. Intuitionism Reconsidered. In S. Shapiro, editor, Handbook of the philosophy of logic

and mathematics, pages 387–411. Oxford University Press, 2005.

[12] R. Cook. What’s Wrong with Tonk(?). Journal of Philosophical Logic, 34(2):217–226, 2005.

http://www.jstor.org/stable/30226839.

[13] B. Dicher. Weak Disharmony: Some Lessons for Proof-Theoretic Semantics. The Review of

Symbolic Logic, 9(3):583–602, 2016. https://doi.org/10.1017/S1755020316000162.

[14] B. Dicher. Hopeful Monsters: A Note on Multiple Conclusions. Erkenntnis, 85(1):77–98, 2020.

https://doi.org/10.1007/s10670-018-0019-3.

[15] M. Dummett. The Logical Basis of Metaphysics. Harvard University Press, 1991.

[16] T. Ferguson. Meaning and Proscription in Formal Logic. Springer, 2017. https://doi.org/

10.1007/978-3-319-70821-8.

[17] C. Fiore. A Structural Tonk. Analysis, 2022. https://doi.org/10.1093/analys/anad049.

[18] A. Fjellstad. How a Semantics for Tonk Should Be. The Review of Symbolic Logic, 8(3):488–

505, 2015. https://doi.org/10.1017/S1755020314000513.

[19] J. M. Font. Abstract Algebraic Logic. An Introductory Textbook. College Publications, 2001.

[20] N. Francez and R. Dyckhoff. A Note on Harmony. Journal of Philosophical Logic, 41(3):613–

628, 2012. https://doi.org/10.1007/s10992-011-9208-0.

[21] N. Galatos and C. Tsinakis. Equivalence of Consequence Relations: An Order-Theoretic

and Categorical Perspective. The Journal of Symbolic Logic, 74(3):780–810, 2009. https:

27

https://doi.org/10.2307/3326862
https://doi.org/10.2307/3326862
https://doi.org/10.1093/logcom/exx001
https://doi.org/10.1093/logcom/exx001
https://doi.org/10.1017/S175502031900008X
https://doi.org/10.1017/S175502031900008X
https://doi.org/10.1007/s11229-016-1209-7
https://doi.org/10.1093/logcom/exz009
https://doi.org/10.1093/logcom/exz009
http://www.jstor.org/stable/30226839
https://doi.org/10.1017/S1755020316000162
https://doi.org/10.1007/s10670-018-0019-3
https://doi.org/10.1007/978-3-319-70821-8
https://doi.org/10.1007/978-3-319-70821-8
https://doi.org/10.1093/analys/anad049
https://doi.org/10.1017/S1755020314000513
https://doi.org/10.1007/s10992-011-9208-0
https://doi.org/10.2178/jsl/1245158085
https://doi.org/10.2178/jsl/1245158085


//doi.org/10.2178/jsl/1245158085.

[22] J. W. Garson. What Logics Mean: From Proof Theory to Model-theoretic Semantics. Cam-

bridge University Press, 2013.

[23] G. Gentzen. Untersuchungen Über das logische Schließen. Mathematische Zeitschrift, 39:176–

210 and 405–431, 1934–35.

[24] G. Gentzen. Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie.

Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, 4:19–44, 1938.

[25] I. Hacking. What is logic? The Journal of Philosophy, 76(6):285–319, 1979. https://doi.

org/10.2307/2025471.

[26] S. Halldén. The Logic of Nonsense. Lundequista Bokhandeln, 1949.
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