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Abstract: This paper will present two contributions to teaching introductory 
logic. The first contribution is an alternative tree proof method that differs 
from the traditional one-sided tree method. The second contribution combines 
this tree system with an index system to produce a user-friendly tree method 
for sentential modal logic.

1. Introduction

This paper will present two contributions to teaching introductory logic. 
The first contribution is an alternative tree proof method that differs 
from the traditional one-sided tree method from Smullyan 1968 and 
popularized in Jeffrey 1967.1 Jeffrey initially presents the tree method 
as a more efficient means of searching for counterexamples, which is 
a semantic endeavor.2 The tree system properly understood, however, 
is not merely a more efficient semantic mechanism for producing 
counterexamples but rather a fully sound and complete syntactic proof 
system for sentential logic (SL) and predicate logic (PL).

Trees, both traditional and the alternative we present below, differ 
from other popular proof systems such as natural deduction in various 
ways, some of which may be advantageous depending on the profes-
sor’s aims. With trees, there are not different proof strategies, for 
example direct or indirect. At least in the sentential setting, the order 
of rule application doesn’t matter to the success of the proof, though 
in some cases it may count for or against its elegance. There is only 
one rule to deploy on each well-formed formula (wff). The tree system 
doesn’t require the student to build a strategic sense to look ahead in 
the proof to craft a strategy. If a professor is interested in building 
such a strategic sense, then natural deduction would be a natural proof 
system. The tree system might seem “mindless,’’ but if the instructor is 
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interested in featuring the syntax-semantics distinction, this is precisely 
what is needed, especially as more computer science students enroll in 
our courses. The instructor could explain how it would be relatively 
straightforward to program a mindless computer to deploy the tree 
system (at least for SL) while it might not be so straightforward to do 
the same with natural deduction.

The alternative tree system we present in this paper accrues the 
benefits of the traditional tree system, including soundness and com-
pleteness, yet adds more. Very roughly, the basic differentiating feature 
of this system is that a diagrammatic feature of trees—the regions of 
right and left—play a crucial role. In particular, the right-hand side 
of tree paths plays a role that is played by the negation sign in more 
traditional trees—that of denying a claim. That the system relies on 
the semantically indeterminate notions of left and right helps reinforce 
the syntax-semantics distinction. We present the system and further 
explain its merits in §2.

The second contribution of this paper, presented in §3, is a new 
tree system for propositional modal logic. This system combines the 
just-described two-sided tree system with a way of keeping track of the 
accessibility relation on the tree itself—without arrows or an annota-
tion column—with indices. Gary Hardegree, in an unpublished modal 
logic textbook that employs natural deduction proofs,3 first proposed, 
as far as we are aware, the index system we employ. We modify the 
index system and deploy it in the context of trees. The main innova-
tion of this section of the paper will be this index system combined 
with trees—the index system doesn’t necessarily have to combine with 
two-sided trees.

2. Two-sided Trees

2.1 Two-Sided Trees for SL and PL

We’ll be testing whether the expression ⌜Γ ⊢ φ⌝ is correct, where Γ 
is a set of wffs, and φ is a single wff.4

Here is the method for constructing a two-sided tree. To start, we 
place the wffs in Γ on the left and φ on the right of a line. Here, note 
that adding outside parentheses and negating φ is not required as with 
traditional trees.

Two-Sided Trees for Sentential Logic, Predicate
Logic, and Sentential Modal Logic

Figure 1:

Γ
⋮ ⋮

φ

Figure 2:

φ
⋮ ⋮

φ

×

1

Figure 1
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We develop a tree by applying the rules stated below, some of which 
require branching and others which do not. A path of a tree closes when 
the same wff appears on both the left and right of a path. We then close 
that path, without any further development, and place an ‘×’ below it:

Two-Sided Trees for Sentential Logic, Predicate
Logic, and Sentential Modal Logic

Figure 1:

Γ
⋮ ⋮

φ

Figure 2:

φ
⋮ ⋮

φ

×

1

Figure 2

The vertical ellipses represent various wffs and branching that can 
intervene between φ on the left and right.

•	 Teaching note: We tell the students that if they have φ on 
one side and can trace from φ only upwards or sideways 
(without picking up the pencil) and find φ on the other 
side, that branch closes.

Here are the rules, where lower-case, italicized, Greek letters range 
over arbitrary wffs:

Figure 3a

Figure 3:

Negation

¬φ

⋮ ⋮

φ

¬φ

⋮ ⋮

φ

Branching

φ ∨ψ
⋮ ⋮

φ ψ

φ & ψ
⋮ ⋮

φ ψ

φ → ψ
⋮ ⋮

φ ψ

Non-branching

φ & ψ

⋮ ⋮
φ

ψ

φ ∨ψ

⋮ ⋮
φ

ψ

φ → ψ

⋮ ⋮
φ

ψ

Figure 4:

φ → ψ

ψ¬φ

2
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Figure 3b

A tree path is fully developed if and only if it is closed or no more 
rules can be applied without duplication. An entire tree is fully devel-
oped just in case every path is fully developed. If every path closes, 
we have a closed tree and thus Γ ⊢ φ. If the tree is fully developed 
and at least one path is open, then Γ ⊬ φ.

•	 Teaching note: As with traditional trees, to close paths ef-
ficiently, we apply non-branching rules before branching.

2.1.1 Merits of the System
Here are a few merits of the just-presented system:

The system is fully decompositional. With two-sided trees, every 
application of a rule only results in wffs that are strictly smaller than, 
in terms of the number of operators, the wff to which the rule was 
applied. This differs from the traditional tree system. For example, in 
that system, when we apply the conditional rule, on one branch, we 
add a negation:

Figure 3:
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Figure 4

Two-sided trees have the separation property. Two-sided trees have 
a property referred to in philosophical logic as separation, the property 
of a proof system such that a proof of a wff only involves the operators 
involved in that wff.5 This property is related to the fully decomposi-
tional point: as the reader can verify, the rules for any given wff don’t 
involve operators not in that wff. This is unlike, as we’ve just seen, 
the rule for the conditional in traditional trees, which involves nega-
tion. Briefly, the reason that this is important, as Humberstone (2000: 
357–58) explains, is that, given that in this context validity and prov-
ability go hand in hand, there will be tension between (a) the plausible 
view that the rules governing connectives exhaust their meanings, and 
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that (b) validity is a function of logical vocabulary. A wff containing 
only some set of connectives, say just the conditional in the theorem 
⌜((φ → ψ) → φ) → φ⌝ (Peirce’s Law) will only be provable with appeal 
to the rules for ‘→’ and ‘¬’ with a traditional tree. But then, Peirce’s 
Law isn’t valid solely in virtue of the conditional if the meaning of 
the conditional is determined by negation as well.

Relatedly, there are no “derived” rules in the two-sided tree system. 
For example, in the traditional tree system we need rules to decompose 
operators that negation govern. For example:

Figure 5

In the two-sided system, in the equivalent situation, we simply move 
the wff that the negation governs, i.e., ⌜φ → ψ⌝, from the left side to 
the right side and then deploy the arrow-on-right rule:

Figure 5:
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Figure 6

Scheffer and Peirce Strokes don’t require negation.6 Relatedly again, 
given the full decompositionality, we can add rules for the Peirce 
and Scheffer Strokes to the two-sided tree system that don’t require 
negation to state the rules. The rules for the Scheffer (up-arrow) and 
Peirce (down-arrow) strokes in the traditional tree system would look, 
respectively, as follows:

Figure 7

It is impossible to state the rules for these strokes in the traditional 
tree system without recourse to negation in the statement of the rule.
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The two-sided tree rules for Scheffer and Peirce look as follows:
Scheffer:

Figure 5:
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Figure 8

Peirce:
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Figure 9

•	 Teaching note: A group project with which one of the 
authors has had great success is, after the class is famil-
iar with the two-sided tree system (this also works for 
one-sided trees), to have the students come up with the 
appropriate rules for the above operators from their truth 
tables. This also works for other operators, such as the bi-
conditional, or even exotic operators, such as the operator 
⌜φ ↚ ψ⌝, which has the same truth table as ⌜¬(ψ → φ)⌝.

These two strokes may seem like arcane symbols, but teaching 
them, especially in an upper-division setting, is useful for a couple of 
reasons. First, many computer science students will be familiar with the 
strokes via their study of logic gates. Second, and more important, is 
the issue of expressive completeness. A common way to begin an ad-
vanced logic course is by first investigating the idea of an expressively 
complete set of connectives—a set of connectives that can represent 
any truth function. We show with conjunctive and disjunctive normal 
forms that we can express every truth function with {‘¬’, ‘∨’, ‘&’}, and 
then we show with de Morgan’s laws that just {‘¬’, ‘∨’} or {‘¬’, ‘&’} 
will suffice. Finally we surprise the class by telling them that just the 
Scheffer or just the Peirce stroke is expressively complete. We could, 
we tell the class, just get by with only one of them. But once we get 
to the syntactic proof section of the course, this doesn’t turn out to 
be true on a traditional tree system since it is impossible to state the 
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strokes’ rules without recourse to negation. Furthermore, a comment 
that we’ve made during the expressive completeness section is that the 
more parsimonious the set of connectives in our system, the simpler 
the meta-theory. In particular, the soundness proof for any tree system 
proceeds via clauses for each rule in one’s system, and that, with the 
expressive completeness of the strokes, we could have just one rule 
justification. But this isn’t right since those rules’ statements make 
reference to extraneous operators, viz., negation.

The system again reinforces the syntax-semantics distinction. Fi-
nally, we wish to reinforce the idea that the two-sided tree system helps 
the instructor focus on the syntax-semantics distinction. This system 
again employs the semantically indeterminate notions of right and left, 
and we could easily rebuild an alternative system by switching the 
roles. We can teach the system without any reference to the meanings 
of the connectives, and this being the case, we could teach the system 
for both SL and PL before teaching their respective semantic sections.

2.1.2 Illustrative Problems
(1) {‘P’, ‘P → Q’} ⊢ ‘Q’:

Figure 10

(2) {‘¬P ∨ Q’, ‘¬Q’, ‘R → P’} ⊢ ‘¬R’

Figure 10:

Figure 11:

Figure 12:

4

Figure 11
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(3) ⊢ ‘(A → B)∨(B → C)’

Figure 12

Notice that no indirect strategies are needed here—just three steps 
corresponding to each major connective.

2.2 Two-Sided Trees for PL

For PL, we introduce four new rules, two for each quantifier. Where 
lowercase, italicized, Greek variables range over arbitrary wffs, a 
bolded ‘x’ is a metalinguistic, schematic letter for object-level variables, 
and where ‘𝛼’ is an individual constant:

Figure 10:

Figure 11:

Figure 12:

4

Figure 13

A few notes: For universal on the left and existential on the right, if 
there are no names on that path, use any name. Universals on the left and 
existentials on the right can be reused. These rules are stated in terms of 
fully developing a tree. When we’re doing proofs to show that some single 
turnstile claim holds, we strategically instantiate universals on left and 
existentials on right after performing the other two rules, when relevant.

Figure 13:

∃xφ

⋮ ⋮
φ(α/x)

for some α that is new to that path

∃xφ

⋮ ⋮
φ(α/x)

for every name letter on that path

∀xφ

⋮ ⋮
φ(α/x)

for every name letter on that path

∀xφ

⋮ ⋮
φ(α/x)

for some α that is new to that path

Figure 14:

5
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2.2.1 Illustrative Problems
(4) ‘∃x(Fx ∨ Gx)’ ⊢ ‘∃xFx ∨ ∃xGx’

Figure 13:
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Figure 14

(5) ‘∀y∃x(Fx ∨ Gy)’ ⊢ ‘∃x∀y(Fx ∨ Gy)’
Figure 15:

Figure 16:
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Figure 17

System Restriction on accessibility Characteristic thesis
K No restriction ◻(φ → ψ) → (◻φ → ◻ψ)
D Serial ◻φ →◇φ
T Reflexive ◻φ → φ
B Reflexive and Symmetric ◇◻φ → φ
S4 Reflexive and Transitive ◻φ → ◻◻φ
S5 Reflexive, Symmetric, and Transitive ◇◻φ → ◻φ

6

Figure 15

The line indicates that ‘∃x∀y(Fx ∨ Gy)’ has been reused to close 
a branch.
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3. Two-Sided Trees for Sentential Modal Logic (SML)

This section presents, with an aim at popularizing, a way of keeping 
track of accessibility relations on a tree with an index system due to 
Gary Hardegree. This system has a few merits:

•	 Indices are fully syntactic objects. Because of this, there 
is no aspect of the proof system that contains semantic 
information. This is unlike the popular system of Girle 
2000, which contains an annotation column that contains 
semantic information—i.e., it explicitly keeps track of 
accessibility relations. Again, this gives the instructor 
another opportunity to stress the syntax-semantics distinc-
tion, and the rules for manipulating indices are couched 
in terms of concatenation rules that computer science 
students are often familiar with.

•	 The index system differs in some ways from the arrow 
system of another popular modal logic textbook—Garson 
2006. Garson’s system visually makes clear the various 
accessibility relations, and it may be easier to recover 
such facts while looking at a student’s proofs. The index 
system, on the other hand, requires less semantic thought 
while in the midst of the proof, and it is clearer how one 
could write a computer program for the index-tree system.

Two-sided SML trees will resemble two-sided trees for SL, with the 
addition of modal operators. In addition to this, we append an index 
to every wff on the tree that represents the world at which that wff is 
evaluated. We’ll start by introducing the index system.

3.1 The Index System and Different Modal Systems

An index is a sequence of numerals that is a compound name for a 
possible world. We always start every wff on the tree from the index 0, 
we don’t skip numerals, and every index ends with a unique numeral. 
As we’ll see below, the rules for ‘◇’ on the left and ‘□’ on the right 
always generate new worlds. So for example, if we’re at 0 and we use 
◇-out on the left on ⌜◇φ⌝, and 1 is available, then we place φ at 
01 on the left. The system is best introduced via example. Below is a 
sequence of indices displayed as a tree. I use a tree because the system 
is similar to a matronymic/patronymic naming system.
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Figure 16

We have a principle that governs accessibility for every system of 
modal logic:

Tree accessibility principle: When one world generates another, 
the generated world is accessible from the generating world.

The analogue in terms of indices is as follows:
Index dependency and accessibility: If m is a decedent from i, 

then m is accessible from i.
So, e.g., 0147 is accessible from 014, which is accessible from 01, 

which is accessible from 0.7 We can then specify the historically im-
portant modal systems by giving restrictions on indices. Each of these 
systems comes with a characteristic thesis. Here are those important 
systems along with the characteristic thesis of each system.
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Figure 17

We’re now in a position to state the rules for SML.

3.2 Rules for Two-Sided SML trees

We update our closure rule so that a wff on the left and right at the 
same world closes a branch. Where a bold ‘w’ ranges over indices:
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Figure 20

◻ on L ,◇ on R out: K ◻/◇φ(i) φ(i+m) (old)
◻ on L ,◇ on R out: D ◻/◇φ(i) φ(i+m) (new)
◻ on L ,◇ on R out: T ◻/◇φ(i) φ(i)
◻ on L ,◇ on R out: B ◻/◇φ(i+m) old φ(i)
◻ on L ,◇ on R out: 4 ◻/◇φ(i) φ(i+m+ ...+n) (old)
◻ on L ,◇ on R out: 5 ◻/◇φ(i+m) old φ(i+n) (old)

7

Figure 18
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The SL rules will stay the same with a world index appended to 
each wff. E.g., if you have ⌜¬φ⌝ at w on the left—i.e., ⌜¬φ(w)⌝—you 
move ⌜φ(w)⌝ to the right to deploy the negation-on-left rule. Where 
“new” refers to a new numeral, here are the rules for the modal opera-
tors (where a bold ‘v’ also ranges over indices):

Figure 19

We generate our various modal logic systems with different restric-
tions on ‘□’ on left and ‘◇’ on right. In the following ‘i’ ranges over 
a sequence of numerals and ‘m’, ‘n’ range over numerals.
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Figure 20

Each system has some combination of □-out-on-left/◇-out-on-
right rules:
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Figure 21

The best way to illustrate this system is to prove the characteristic 
thesis within each system.

3.3 Proofs of Characteristic Theses

In the following, we use lowercase, italicized Greek letters for arbitrary 
SL wffs. We append an italicized, bracketed world index to each wff. 
There will be some comments and arrows on the proof to illustrate 
which rule we’re using but are not part of the proof proper.

K proof:

Figure 21

System Rules
K K rule
D K + D rules
T K + T rules
B K + T + B rules
S4 K + T + 4 rules
S5 K + T + B + 4 + 5 + rules

Figure 22:

Figure 23:
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System Rules
K K rule
D K + D rules
T K + T rules
B K + T + B rules
S4 K + T + 4 rules
S5 K + T + B + 4 + 5 + rules

Figure 22:
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8

Figure 22
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D proof:

Figure 21

System Rules
K K rule
D K + D rules
T K + T rules
B K + T + B rules
S4 K + T + 4 rules
S5 K + T + B + 4 + 5 + rules

Figure 22:

Figure 23:
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Figure 23

T proof:

Figure 24

The final □-out on the left is the T rule.
B proof:

Figure 24:

Figure 25:

Figure 26:
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Figure 25

The final □-out on the left is the B rule.

Figure 24:

Figure 25:

Figure 26:
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S4 proof:

Figure 24:

Figure 25:

Figure 26:
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Figure 26

S5 proof:

Figure 27

Figure 27:
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Notes

1.	 We know of no textbook that employs the system we explore in this paper, although 
the system is not new: Michael Perloff was teaching the system in the 1990s.

2.	 Jeffrey refers to them as “truth trees”—with truth being, of course, a semantic 
notion.

3.	 See https://courses.umass.edu/phil511-gmh/MAIN/IHome-4.htm.

4.	 Our system allows for any combination of a set of wffs, a single wff, or the empty 
set on either, or both, sides of the single turnstile. Any such single turnstile expression is 
correct just in case the tree closes. Thus, for example, ⌜Γ ⊢⌝, in our system, says that a 
two-sided tree with the wffs in Γ on the left closes. Some of the semantic analogues are 
familiar: ⌜⊨φ⌝, where φ is a single wff, says that φ is a tautology. Less familiar, perhaps, 
are the following. ⌜⊨Γ⌝ says that there is no interpretation in which all the sentences 
in Γ are false. ⌜Γ⊨⌝ says that Γ is an inconsistent set of wffs. ⌜φ⊨⌝ says that φ is a 
contradiction.
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5.	 See Bendall 1978: §2.

6.	 These are often called “nand” and “nor,” respectively.

7.	 Some technicalities. First, officially, a set of indices is admissible iff the set is 
non-empty; every sequence begins with 0, has a unique terminal element, and numerals 
aren’t skipped; and is closed with respect to predecessor relation so that if 01 is in the 
set, so is 0, and so on. Second, in the tree, if 0369 had a descendent, that decedent would 
be 036910, which may seem confusing, but (a) this rarely comes up, and (b) is parsable 
with close attention to the nature of these sequences.
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