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1 Introduction
A sentential connective ⋆ is said to be univocal, relative to a formal system F for a
sentential logic containing ⋆ iff any two connectives ⋆1 and ⋆2 which satisfy the same F
rules (and axioms) as ⋆ are such that similar formulas involving ⋆1 and ⋆2 are inter-
derivable in F .1 To be more precise, suppose ⋆ is a unary connective. Then ⋆ is univocal
relative to F iff for any ⋆1 and ⋆2 satisfying the same principles as ⋆ in F , we have
⋆1α ⊢F ⋆2α. And, if ⋆ is binary, then ⋆ is univocal relative to F iff for any ⋆1 and ⋆2
satisfying the same principles as ⋆ in F , we have α ⋆1 β ⊢F α ⋆2 β. In order to illustrate
this definition of univocity, it is helpful to begin with a simple historical example.

It is easy to see that the conditional → is univocal, relative to Gentzen’s (intuitionistic
and classical) natural deduction systems LJ and LK [5]. In both of these systems, if we
suppose there are two conditionals (→1 and →2) satisfying Gentzen’s introduction and
elimination rules for →, then we can quickly prove that α →1 β ⊢ α →2 β, as follows:

1
α α →1 β (→1 E)

β (→2 I)1.α →2 β

Similar straightforward derivations may be found in order to prove that the connectives
∧, ∨, ⊥ and ¬ are each univocal, relative to Gentzen’s system LJ (proofs omitted).

Also, it is well known, as Gentzen himself observed in [5, §5], that LJ and LK have
the same derivations as the Hilbert systems for intuitionistic and classical sentential logic
(LHJ and LHK). That is Γ ⊢LJ α iff Γ ⊢LHJ α; and, Γ ⊢LK α iff Γ ⊢LHK α.

In this context, it is natural to ask whether the conditional and the other connectives
are also univocal, relative to the Hilbert systems for intuitionistic and classical sentential
logic (LHJ and LHK). This is what will be considered in what follows.

We begin by reminding the reader of the axiomatic systems LHJ and LHK. The
system LHJ consists of modus ponens, plus the following ten axiom schemata:
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(LHJ1) β → (α → β),
(LHJ2) (γ → (α → β)) → ((γ → α) → (γ → β)),
(LHJ3) α → (β → (α ∧ β),
(LHJ4) (α ∧ β) → α,
(LHJ5) (α ∧ β) → β,
(LHJ6) (α → γ) → ((β → γ) → ((α ∨ β) → γ)),
(LHJ7) α → (α ∨ β),
(LHJ8) β → (α ∨ β),
(LHJ9) (α → β) → ((α → ¬β) → ¬α),
(LHJ10) ¬α → (α → β).

One nice feature of LHJ is that the fragments of LHJ can be picked out simply by
selecting those axioms which contain the connectives in question. This is not so for the
system LHK, which has all ten axioms of LHJ plus the following eleventh axiom:2

(LEM) α ∨ ¬α.

Famously, this extension of LHJ is non-conservative. The implicational fragment of
LHK contains theorems not derivable in LHJ — specifically, Peirce’s Law, that is,

(P ) ((α → β) → α) → α.

One can easily obtain the implicational fragment of LHK by adding (P ) to the implica-
tional fragment of LHJ. But, it would be preferable for our purposes to adopt a Hilbert
system for classical sentential logic that allows us to easily extract all of the fragments
of classical logic (just by selecting the axioms containing those connectives), as can be
done with LHJ. To that end, we will adopt the following alternative (equivalent) ax-
iomatization as our classical, Hilbert system LHK. It differs in two ways from LHJ in
the axioms containing implication and negation. Specifically, our LHK replaces (LHJ9)
and (LHJ10) with the following two axioms:

(LHK9) (¬β → ¬α) → (α → β),
(LHK10) ((α → β) → α) → α.

Thus, our system LHK consists of modus ponens, plus the ten axioms LHJ1–LHJ8,
and LHK9 and LHK10. Because our LHJ and LHK share these first eight axioms, we
will refer to these axioms sometimes as LHJ1–LHJ8 and sometimes as LHK1–LHK8,
depending on what formal system(s) we are discussing in the context. Moreover, although
the resulting axiomatization is now redundant (as LHK10 follows from LHK1, LHK2,

2This is Gentzen’s way of obtaining LHK from LHJ. Another equivalent option is to replace LHJ10

with the double-negation axiom ¬¬α → α. This alternative is also non-conservative, of course, since
Pierce’s Law is also not derivable in the implication-negation fragment of LHJ.
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and LHK9), we can now simply speak about a fragment of LHK as involving only those
axioms of LHK that contain the connectives appearing in the fragment in question.

In Section 2, we will discuss questions of univocity of connectives in (fragments of)
LHJ. In Section 3, we will discuss questions of univocity of connectives in (fragments
of) LHK. In Section 4, we will discuss questions of univocity of connectives in some
alternative formal systems for classical sentential logic that use the Sheffer stroke.

2 Univocity in Hilbert Systems for Intuitionism
2.1 Non-Univocity of the Intuitionistic Conditional
Interestingly, the conditional is not univocal, relative to the usual Hilbert systems for the
implicational fragment of intuitionistic logic. More precisely, we have the following.

Theorem 1. There exist conditionals →1 and →2 such that (a) both conditionals satisfy
the laws of the implicational fragment LHJ→ of LHJ; but, (b) α →1 β ⊬ α →2 β.

This result was known since at least 1962 (see [15, p. 430]) where a four-element
counter-model is presented (see below). We recently discovered the following three-
element counter-model.3

→1 1 2 3
1 1 2 2
2 1 1 1
3 1 1 1

→2 1 2 3
1 1 2 3
2 1 1 3
3 1 2 1

So, in this model, the (sole) designated value is 1 (i.e., all and only formulas assigned the
value 1 by the model are theorems of the logic defined by these 3-valued characteristic
matrices). Inspection of the model reveals that (a) both conditionals satisfy modus ponens
and axioms LHJ1 and LHJ2; but, (b) 2 →1 3 ⊬ 2 →2 3, since 2 →1 3 is assigned the
designated value 1, but 2 →2 3 is assigned the non-designated value 3.

In fact, a stronger result was established by Smiley [15]. As it turns out, the con-
ditional is not univocal, relative to LHJ as a whole. That is, even if two conditionals
→1 and →2 satisfy all of the laws of LHJ, it will still not generally be the case that
α →1 β ⊢ α →2 β.

Theorem 2. There exist two conditionals →1 and →2 such that (a) both conditionals
satisfy all the laws of LHJ; but, (b) α →1 β ⊬ α →2 β.

3Following Smiley [15], the sole designated value in all of our matrices will be 1 (all the values greater
than 1 will be non-designated). Moreover, all of the matrices reported in this paper will be normal in
Smiley’s sense. That is, the matrices do not make a distinction between values which has no eventual
effect on the designation status of any compound in which subformulas with those values differ (in modern
terminology, all of our matrices are reduced). We have made extensive use of automated theorem-proving
and model-finding software (e.g., Prover9 & Mace4 [9], Otter [10], and Vampire [8]) to find and verify
the derivations and models reported in this paper. Specifically, we were able to perform exhaustive
searches with Vampire and Mace4, which is how we know that the counter-models presented here are the
smallest possible. Input files for each of the results reported in the paper are available upon request.
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Proof. In this case, four-element counter-models are required. Here is the model Smiley
reports in [15, p. 430].4

→1 1 2 3 4
1 1 2 3 4
2 1 1 1 4
3 1 1 1 4
4 1 1 1 1

→2 1 2 3 4
1 1 2 3 4
2 1 1 3 4
3 1 1 1 4
4 1 1 1 1

∧ 1 2 3 4
1 1 2 3 4
2 2 2 3 4
3 3 3 3 4
4 4 4 4 4

∨ 1 2 3 4
1 1 1 1 1
2 1 2 2 2
3 1 2 3 3
4 1 2 3 4

1 2 3 4
¬ 4 4 4 1

Inspection of the model reveals that (a) both conditionals satisfy modus ponens and
axioms LHJ1–LHJ10; but, (b) 2 →1 3 ⊬ 3 →2 3, since 2 →1 3 is assigned the designated
value 1, but 2 →2 3 is assigned the non-designated value 3.

Remark. Theorem 2 implies that the axiomatic presentations of all substructural logics
(see [12, §2.3] for a survey) have non-univocal conditionals.

2.2 Univocity of the Other Intuitionistic Connectives
The other connectives are univocal, relative to LHJ. For each connective, we will prove
a corresponding positive theorem to establish this.

Theorem 3. If two conjunctions ∧1 and ∧2 each satisfy the laws of the implication-
conjunction fragment LHJ→,∧ of LHJ, then α ∧1 β ⊢ α ∧2 β.

Proof. Here is a derivation of α ∧1 β ⊢ α ∧2 β, where MP is modus ponens.

1. α ∧1 β Assumption
2. α 1, LHJ4, MP
3. β 1, LHJ5, MP
4. β → (α ∧2 β) 2, LHJ3, MP
5. α ∧2 β 3, 4, MP

4Strictly speaking, Smiley was interested not in the question of whether the intuitionistic conditional
is univocal (relative to LHJ); but, rather, whether any two conditionals satisfying the laws of LHJ
must be synonymous, where p and q are synonymous just in case they are inter-substitutable in all
contexts (i.e., if, for any propositional function ϕ, ϕ(p) ⊢ ϕ(q)). Of course, if p and q are synonymous,
then p ⊢ q (just let ϕ(x) = x). So, univocity (of, e.g., u →1 v and u →2 v) follows from synonymy. In
general, the converse does not hold, i.e., there are some sentential logics in which the converse fails. Such
logics are said to have non-congruential consequence relations [6, §3.3]. But, in intuitionistic logic LHJ
and classical logic LHK, univocity does entail synonymy, since both of these logics have congruential
consequence relations (i.e., they both support general replacement theorems [7, §26]).
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The strategy here is to eliminate ∧1 and then introduce ∧2. A similar strategy will work
for the other connectives as well.

Theorem 4. If two disjunctions ∨1 and ∨2 each satisfy the laws of the implication-
disjunction fragment LHJ→,∨ of LHJ, then α ∨1 β ⊢ α ∨2 β.

Proof. Here is a derivation of α ∨1 β ⊢ α ∨2 β.

1. α ∨1 β Assumption
2. α → (α ∨2 β) LHJ7

3. β → (α ∨2 β) LHJ8

4. (α ∨1 β) → (α ∨2 β) 2, 3, LHJ6, MP(×2)
5. α ∨2 β 1, 4, MP

Here, we first introduce ∨2 and then eliminate ∨1.

Theorem 5. If two negations ¬1 and ¬2 each satisfy the laws of the implication-negation
fragment LHJ→,¬ of LHJ, then ¬1α ⊢ ¬2α.

Proof. Here is a derivation of ¬1α ⊢ ¬2α.

1. ¬1α Assumption
2. α → ¬2α 1, LHJ10, MP
3. α → α Theorem of LHJ→

4. ¬2α 2, 3, LHJ9, MP(×2)

Here, we omit the derivation of step 3, which is a well-known theorem of the implicational
fragment LHJ→ of LHJ.

3 Univocity in Hilbert Systems for Classical Logic
It follows from the results in Section 2.2 that the connectives ∧,∨,¬ are univocal, relative
to (the relevant fragments of) LHK. The only remaining questions involve the univocity
of the conditional in (fragments of) LHK. Here, there are two positive results and two
negative results. We begin with the negative results.

Theorem 6. The conditional is non-univocal, relative to the implication-conjunction
fragment LHK→,∧ of LHK.5

Proof. In this case, four-element counter-models are required. Here is one.

→1 1 2 3 4
1 1 2 2 2
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1

→2 1 2 3 4
1 1 2 3 4
2 1 1 3 3
3 1 2 1 2
4 1 1 1 1

5It is a corollary of Theorem 6 that → is non-univocal, relative to the implicational fragment of
LHK→ of LHK. In that case, three-element counter-models exist. In fact, the model we reported above
(Theorem 1) will suffice for this purpose (as →1 and →2 in that model also satisfy Peirce’s law).
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∧ 1 2 3 4
1 1 2 3 4
2 2 2 4 4
3 3 4 3 4
4 4 4 4 4

Inspection of the model reveals that (a) both conditionals satisfy modus ponens and
axioms LHK1–LHK5; but, (b) 2 →1 3 ⊬ 2 →2 3, since 2 →1 3 is assigned the designated
value 1, but 2 →2 3 is assigned the non-designated value 3.

Theorem 7. The conditional is non-univocal, relative to the implication-negation frag-
ment LHK→,¬ of LHK.

Proof. In this case, six-element counter-models are required. Here, we report an eight-
element counter-model.6

→1 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 1 1 1 5 5 5 1 5
3 1 7 1 6 5 6 7 5
4 1 1 1 1 1 1 1 1
5 1 2 3 2 1 7 7 3
6 1 3 3 3 1 1 1 3
7 1 3 3 8 5 5 1 8
8 1 7 1 7 1 7 7 1

→2 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 1 1 3 5 5 7 7 3
3 1 2 1 6 7 6 7 2
4 1 1 1 1 1 1 1 1
5 1 2 1 2 1 2 1 2
6 1 1 3 3 3 1 1 3
7 1 2 3 8 3 2 1 8
8 1 1 1 7 7 7 7 1

1 2 3 4 5 6 7 8
¬ 4 5 6 1 2 3 8 7

Inspection of the model reveals that (a) both conditionals satisfy modus ponens and
axioms LHK1, LHK2, and LHK9; but, (b) 2 →1 3 ⊬ 2 →2 3, since 2 →1 3 is assigned
the designated value 1, but 2 →2 3 is assigned the non-designated value 3.

Remark. Theorem 7 implies that many axiomatic presentations of classical logic —
dating all the way back to Frege’s Begriffsschrift [4] — have non-univocal conditionals.

Theorem 8. The conditional is univocal, relative to the implication-disjunction fragment
LHK→,∨ of LHK.

Proof. Here is a derivation of α →1 β ⊢ α →2 β.

1. α →1 β Assumption
2. α ∨ (α →2 β) Theorem of LHK→,∨

3. α →1 (β ∨ ((α →1 β) →1 (α →2 β))) Theorem of LHK→,∨

4. (α →2 β) →1 (β ∨ ((α →1 β) →1 (α →2 β))) Theorem of LHK→,∨

5. β ∨ ((α →1 β) →1 (α →2 β)) 2, 3, 4, LHK6, MP

6We prefer this counter-model to the six-element counter-models we initially discovered for the follow-
ing reason. These eight-element models allow one of the conditionals (→1) to satisfy the laws of Boolean
algebra. This is analogous to Smiley’s 4-element matrices (from Theorem 2, above), in which one of the
two conditionals (→2) satisfies the laws of Heyting algebra.
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6. β →2 (α →2 β) LHK1

7. (α →2 β) ∨ ((α →1 β) →1 (α →2 β)) 5, 6 LHK6, MP
8. (α →2 β) →1 ((α →1 β) →1 (α →2 β)) LHK1

9. (α →1 β) →1 (α →2 β) 7, 8, LHK6, MP
10. α →2 β 1, 9, MP

We omit the derivations of steps 2, 3, 4, which are theorems of the implication-disjunction
fragment LHK→,∨ of LHK. In particular, note that steps 2 and 3 hold by Peirce’s Law.
In order to derive steps 7 and 9, we have also made use of the fact that α → α is a
theorem of LHK→.

Theorem 9. The conditional is univocal, relative to the implication-conjunction-negation
fragment LHK→,∧,¬ of LHK.

Proof. This is a corollary of Theorem 8. Because we are in the implication-conjunction-
negation fragment of classical logic, we can now define a disjunction connective (which
will satisfy all of the LHK disjunction laws, relative to both →1 and →2) in terms of
negation and conjunction, as α∨β =df ¬(¬α∧¬β). Then, we can apply the same strategy
that we used above to demonstrate α →1 β ⊢ α →2 β in our proof of Theorem 8.

4 Univocity in Classical Systems with Sheffer’s Stroke
4.1 Univocity in Hilbert Systems Using Sheffer’s Stroke
Nicod [11] was the first to develop a formal system N for classical sentential logic using
(only) Sheffer’s stroke (|). He presented a Hilbert system, which uses the following single
rule of inference:

(D) From α | (β | γ) and α, infer γ.

Various sets of axioms have been shown to be complete for classical sentential logic, in
the presence of rule (D) [14]. We will adopt Nicod’s original 23-symbol single axiom,
that is,

(N) (α | (β | γ)) | ((ϵ | (ϵ | ϵ)) | ((δ | β) | ((α | δ) | (α | δ)))).

In other words, the system N consists of the single rule D and the single axiom N . The
question of univocity is a simple one in this context. And, as it happens, we have the
following negative result.

Theorem 10. The Sheffer stroke is non-univocal, relative to Nicod’s Hilbert system N.

Proof. In this case, four-element counter-models are required. Here is one.

|1 1 2 3 4
1 2 1 4 3
2 1 1 1 1
3 4 1 4 1
4 3 1 1 3

|2 1 2 3 4
1 4 3 2 1
2 3 3 1 1
3 2 1 2 1
4 1 1 1 1
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Inspection of the model reveals that (a) both strokes satisfy D and N ; but, (b) 1|12 ⊬ 1|22,
since 1 |1 2 is assigned the designated value 1, but 1 |2 2 is assigned the non-designated
value 3.

4.2 Univocity in Gentzen Systems Using Sheffer’s Stroke
We know of two Gentzen systems for classical sentential logic including Sheffer’s stroke
(|). One is due to Read [13], and the other is due to Zach [16]. In both systems, the
Sheffer stroke is univocal, and this is our final theorem.

Theorem 11. The Sheffer stroke is univocal, relative to both Read’s Gentzen system SC,
and Zach’s Gentzen system NS.

Proof. Here is a derivation of α |1 β ⊢SC α |2 β.

α |1 β
1
α

1
β (|1E)

α |2 β (|2Ic)1
α |2 β ∨ ⊥

2
α |2 β

2
⊥ (⊥E)

α |2 β (∨E)2
α |2 β

And, here is a derivation of α |1 β ⊢NS α |2 β.

α |1 β
1
α

1
β (|1E)⊥ (|2I)1

α |2 β

Remark. It may seem surprising that the ⊥-rule is not used in our derivation in Zach’s
system (of α |1β ⊢NS α |2β). But, something completely analogous happens when proving
the univocity of negation, relative to Gentzen’s original systems. To wit:

1
α ¬1α (¬1E)⊥ (¬2I)1¬2α

Acknowledgements. Rodolfo C. Ertola-Biraben is grateful to Xavier Caicedo for useful
discussions. Both authors are indebted to an anonymous referee of this journal, who
provided very detailed and helpful comments on an earlier version of the paper.

8



References
[1] Belnap, N. (1962). Tonk, Plonk and Plink. Analysis, 22(6), 130–4.

[2] Caicedo, X. and Cignoli, R. (2001). An algebraic approach to intuitionistic connec-
tives. The Journal of Symbolic Logic, 66(4), 1620–1636.

[3] Ertola-Biraben, R. (2009). On univocal connectives. Logic and Logical Philosophy,
19(1), 5–13.

[4] Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens. Halle: Nebert.

[5] Gentzen, G. (1969). Investigations into logical deduction. The collected papers of
Gerhard Gentzen, North Holland, pages 68–131.

[6] L. Humberstone. (2011). The connectives. MIT Press.

[7] S. Kleene. (1952). Introduction to metamathematics, North-Holland.

[8] Kovács, L. and A. Voronkov. First-Order Theorem Proving and Vampire. In N. Shary-
gina and H. Veith (Eds.), Computer Aided Verification, Springer LNCS 8044, 1–35.

[9] McCune, W. Prover9 and Mace4. URL: http://www.cs.unm.edu/~mccune/prover9/.

[10] McCune, W. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263,
Argonne National Laboratory, Argonne, USA, 2003.

[11] Nicod, J. (1917). A reduction in the number of primitive propositions of logic. In
Proceedings of the Cambridge Philosophical Society, 19(1917), 32–41.

[12] F. Paoli. (2002). Substructural Logics: A Primer. Springer.

[13] Read, S. (1999). Sheffer’s stroke: a study in proof-theoretic harmony. Danish Year-
book of Philosophy, 34(1), 7–23.

[14] Scharle, T. (1965). Axiomatization of propositional calculus with Sheffer functors.
Notre Dame Journal of Formal Logic, 6(3), 209–217.

[15] Smiley, T. (1962). The Independence of Connectives. The Journal of Symbolic Logic,
27(4), 426–436.

[16] Zach, R. (2016). Natural deduction for the Sheffer stroke and Peirce’s arrow (and
any other truth-functional connective). Journal of Philosophical Logic, 45(2), 183–197.

9

http://www.cs.unm.edu/~mccune/prover9/

	Introduction
	Univocity in Hilbert Systems for Intuitionism
	Non-Univocity of the Intuitionistic Conditional
	Univocity of the Other Intuitionistic Connectives

	Univocity in Hilbert Systems for Classical Logic
	Univocity in Classical Systems with Sheffer's Stroke
	Univocity in Hilbert Systems Using Sheffer's Stroke
	Univocity in Gentzen Systems Using Sheffer's Stroke


