
CHAPTER V 

ARTIFICIAL INTELLIGENCE: A LIGHT APPROACH 

1. GOFAI 

Artificial Intelligence is an old dream and a fairly young discipline, which has developed since 
the late 1950s as an interdisciplinary branch of computer and cognitive sciences aiming at 
computational models of human cognition. In its strongest version, the one which was 
predominant for at least the first two decades of its history and is now often labelled GOFAI 
(Good Old-Fashioned Artificial Intelligence), AI worked on the theoretical basis for the 
construction of software and hardware, and hence computers and robots, whose behaviour may 
eventually be at least comparable, if not superior, to the behaviour characterising intelligent 
human beings placed in similar circumstances, e.g. recognising one’s car among many others in 
the street, driving it to the supermarket safely but at a reasonable speed, parking it successfully, 
remembering to lock it carefully and inferring that one will not be able to drive it back home if 
one has left the keys inside when slamming the last door, so one has better call his wife. 

To achieve its goal, GOFAI attempted to steer a middle course between  
1. rationalist dualism, (Cartesianism) according to which  

1.1. intelligence is completely independent from the presence of a biological body—and 
therefore it would be in principle implementable by other “bio-bodiless” and a-social 
(stand-alone) forms of cognitive systems, which may not have a biological brain or 
any interaction with other intelligent beings, for example God, angels, ghosts and 
computers—but 

1.2. intelligence is also wholly mind-dependent, thus requiring a personal, psychological 
inner life (the individual “I”) so evolved that a vegetable, a machine or even an animal 
can never achieve it; and  

2. materialist monism according to which  
2.1. intelligence is nothing else but a complex property of a physical body 

(epiphenomenalism = mental processes are secondary effects accompanying, and 
being caused by, physical brain processes in such a way that asymmetric causal 
relations can link brain states with other brain states and brain states with mental 
states, but not vice versa)—and therefore it would be in principle implementable by 
other forms of equally embodied cognitive systems, including animals, extraterrestrial 
beings and computers—but as such  

2.2. intelligence is also a direct manifestation of life and cannot be disjoined by the whole 
physical behaviour, bodily experience and natural interaction of a living organism 
both with other living organisms and with its concrete environment within the world, 
something an engineered machine can never achieve. 

The first half of each position is favourable to GOFAI, while each second half makes it 
unfeasible. As a solution, GOFAI accepted a controversial form of  
3. computational materialism, not unlike Hobbes’, according to which intelligence is 

biologically body-independent and stand-alone, as in (1.1), but also completely mind-
independent, as in (2.1), and therefore it is in principle implementable by a brainless, 
mindless and lifeless cognitive system enjoying no psychological or bodily experience nor 



any interaction with other similar systems.  
The only way GOFAI could make (3) a consistent position and support its “computational 
materialism” was to endorse the following reduction: 
4. intelligence = ratiocination = symbolic processing = computation 
and adopt, as a criterion of normative assessment, some form of  
5. functional behaviourism, whose most well-known version is represented by Turing's test. 
Programs are formal representations of states and states-transitions. In principle, they are 
executable by any kind of computational “engine”. Thus, effective computation is indeed mind-
independent and can be implemented by any non-biological stand-alone hardware whose 
performances can then be evaluated by a purely behaviouristic method. The problem is that for 
over thirty years GOFAI insisted that (4) was not a reduction but an equation, thus forgetting 
that intelligence is an utterly individual property, that there are no two intelligent minds 
identical to each other, that intelligence also evolves as an eminently social phenomenon within 
a cultural milieu to which we contribute but that is and remains largely independent of 
ourselves, that a fully developed intelligence requires some powerful semiotic medium which is 
also socially based, and that not even mathematical thinking can ever be reduced to algorithmic 
operations, let alone less formalisable processes. It thus committed what Peirce described as a 
“malignant heresy”:  

[...] first, nothing of importance can be deduced from a single premise, and secondly, from two 
premises one sole complete conclusion can be drawn. [...] This couple of heresies, being married 
together, legitimately generates a third more malignant than either; namely, that necessary 
reasoning takes a course from which it can no more deviate than a good machine can deviate from 
its proper way of action, and that its future work might conceivably be left to a machine—some 
Babbage’s analytical engine or some logical machine (of which several have actually been 
constructed). C. S. Peirce, Collected Papers, vol. 4, paragraph 610-611 

Research in AI developed as if thinking and behaving intelligently were just synonymous to 
algorithmic computing, while backgrounds conditions, experiences (feelings, inspirations, 
passions, intuitions, insights, education, know-how, imagination, sensibility, common sense, 
taste, aspirations, bodily sensations, consciousness, communication, fears, desires, etc.) and 
social interactions were not all essential components of an individual's unique intelligent life. 
Human ability to deal with the world intelligently was seen to be fully and exclusively 
dependent on human ability to think rationally about the world, and rational thought was seen 
to be identical with stand-alone, symbolic processing and hence with effective computation. 
Since GOFAI's regulative ideal was Star Trek 's Lt. Comdr. Data, it achieved little but crude 
caricatures of human intelligence behaviour, and one may wonder what would have happen to 
the GOFAI research program without the huge military funding—we are talking about 
hundreds of millions of dollars—that for decades have been made available for strong AI 
projects, some of which were either aiming at the construction of weapons or directly weapons-
related (this is the sense in which some AI projects can raise substantial moral questions in 
Computer Ethics, in terms of improper, wasteful or even dangerous applications). 

2. Turing’s Test 

The birth of GOFAI can be dated to the opening of the Dartmouth Summer Research Project on 
Artificial Intelligence organised by John McCarthy (the developer of LISP, one of AI’s most 
popular programming languages) in 1956, but it was Alan Turing who had set up the whole 
agenda for GOFAI several years before (all quotations are from Turing’s “Computing 



Machinery and Intelligence”). Turing reduced the question “can machines think?”—which he 
rightly believed (but too many have since then forgotten) “to be too meaningless to deserve 
discussion”—to a famous “imitation game”, now known as Turing’s Test: 
TT) take a human interrogator IN, a digital computer C and a woman W, place the latter two in 
separate rooms and make sure they can both communicate with IN only via email (Turing's 
teleprinter). IN can now ask both C and W all sorts of questions. If IN fails to discover the 
correct identity of the two interlocutors on the basis of their answers, then C and W are 
obviously incapable of showing a sufficiently different behaviour.  
IN's questions are the input of the system, W's and C's answers its output and the test aims to 
show the possibility of intelligent machines by applying a weaker version of Leibniz's Law of 
the identity of indiscernibles: if, ceteris paribus, significant differences between W's and C's 
outputs are indiscernible then W and C are interchangeable, that is, given the same input, the 
range of outputs a human and a digital processor can generate is such that it makes the 
differences between the two insufficient for purposes of unmistakable recognition.  

Turing Test amounts to an operational criterion to establish the intelligence of a machine. 
Turing himself thought that  

in about fifty years it will be possible to program computers [...] to make them play the imitation 
game so well that an average interrogator will not have more than 70% chance of making the right 
identification after five minutes questioning. 

In a superficial way, he was over pessimistic; in a more significant sense, he was definitely 
wrong. Already around 1964-1967, Joseph Weizenbaum had written and tested a program, 
called ELIZA, consisting of a language analyser and a set of instructions enabling the machine 
to “improvise” around a certain topic, mocking, for example, the behaviour of a 
psychotherapist. A person, let us say IN, could “converse” in English with ELIZA through a 
typewriter. The reference to Eliza Doolittle, the character in G. B. Shaw’s Pygmalion, was not 
accidental: functions of feedback assured that the program could also “learn” to speak 
increasingly well. ELIZA was a masterpiece in deception. Here is an example of a typical 
conversation with a young woman, as reported by Weizenbaum himself (Computer Power and 
Human Understanding): 

YW: Men are all alike 

ELIZA: IN WHAT WAY? 

They are always bugging us about something or other 

CAN YOU THINK OF A SP ECIFIC EXAMPLE? 

Well, my boyfriend made me come here 

YOUR BOYFRIEND MADE YOU COME HERE 

He says I’m depressed much of the time 

I’M SORRY TO HEAR YOU ARE DEPRESSED 

It’s true. I am unhappy 

DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY? 

I need some help, that much seems certain 



WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP? 

Perhaps I could learn to get along with my mother 

TELL ME MORE ABOUT YOUR FAMILY 

etc. 

ELIZA could carry on similar conversations forever, and indeed, it played this special imitation 
game so well that people “dialoguing” with the program soon became emotionally involved and 
tended to anthropomorphise it. After a short time, some practising psychiatrists even thought it 
might grow into a nearly completely automatic form of psychotherapy. To Weizenbaum’s 
greatest surprise, a large number of people seemed to believe that ELIZA was somehow 
intelligent. Yet, the software only implemented a limited number of instructions that allowed it 
to fake a conversation by associating simple questions, standard platitudes or just slightly 
modified repetitions to particular patterns of input. It was cruising on automatic pilot, as it 
were, using standard phrases and stereotypes to maintain a state of apparently true interaction—
anyone who has dined at a formal meeting or College high table knows very well what this 
means—but it did not even count as an expert system, for it embodied no knowledge database, 
and could not be described as being intelligent in any significant sense of the word. 
Nevertheless, it seems it could pass a decent version of Turing’s test. Something had gone 
wrong.  

3. Four Limits of Turing’s Test 

Although it cannot be the task of this brief section to provide a full assessment of the 
philosophical and technical implications of Turing’s test, it is useful to analyse four of its 
shortcomings because the history of GOFAI can then be conveniently summarised as the failure 
to overcome them.  
a) The mimetic ambiguity.  
Turing’s test is deceptively simple, but a moment of reflection suffice to make one wonder 
what it really purports to establish. Does TT show that C’s and W’s answers can become 
indistinguishable from each other because the former’s resemble the latter’s, or rather because 
the latter’s cannot really differ from the former’s anymore? The second claim is virtually 
uncontroversial but also much less interesting than the first: a TT would simply be any 
irreversible process through which a sufficient loss of information makes the sources of the 
outputs no more distinguishable or re-identifiable, in the same way as we cannot reconstruct the 
complex and different inputs of two logic gates from their identical, simple outputs. Turing 
himself wrote that  

the idea behind digital machines may be explained by saying that these machines are intended to 
carry out any operations which could be done by a human computer. The human computer is 
supposed to be following fixed rules [...] we may suppose that these rules are supplied in a book, 
which is altered whenever he is put on to a new job. He has also an unlimited supply of paper on 
which he does his calculations.  

Ideally, a meticulous and patient scribe, a kind of tireless idiot savant, provided with an 
unlimited amount of time and stationery, could do everything any Turing machine or classical 
computer can do. That in most cases he would arrive too late or not understand what he is 
doing—as this is the case with Searle’s Chinese room example, in which the scribe successfully 
operates on Chinese symbols he does not understand—is explicitly not the point addressed by 



TT. Nobody can justifiably disagree about the possibility of a computing scribe, but then, isn’t 
this enough to explain why IN is unable to establish whether C and W are (i) two computers, 
(ii) two persons acting as two computers, or (iii) a mixed couple, one of which is a computer 
and the other one has no option but to act as if he were one? From the way in which Turing sets 
up his test: 
• only written communication 
• possibly only yes/no questions (“We are of course supposing for the present that the 

questions are of the kind to which an answer ‘Yes’ or ‘No’ is appropriate”) 
• no critical questions requiring C’s or W’s personal approach, such as “What do you think 

of Picasso?” (this is Turing’s example)  
• no context-sensitive questions and hence irrelevance of the environment  
• no symmetrically interactive dialogue, since W and C cannot ask questions but only answer 

them, cannot exchange their roles nor can C and W be asked to pretend to be other 
“people” (it may be argued that a computer can mimic some human behaviour, but a human 
being can mimic any behaviour, no matter how badly) 

• no linguistic-pragmatic context (can a computer master the rules of Grice’s conversational 
implicature, whereby a sentence that literally means p is actually used to communicate a 
message other than p?) 

the lack of significant differences between W’s and C’s answers may well be caused by the 
downgrading of the human agent to the level of the computer, rather than vice versa. TT would 
be a “blurring machine”, aiming at showing the possibility of W’s human stupidity rather than 
C’s artificial intelligence, especially if we also endorse (b). 
 
b) The reductionist assumption.  
TT-conditions are so constraining that all intelligent behaviour of both C and W is strictly 
reduced to symbolic processing tasks. No pattern or sound recognition skills are taken into 
account, for example, since C would not be able to appreciate the difference between Guernica 
and The School of Athens. Is this restriction truly irrelevant when the general conclusion that  

We may hope that machines will eventually compete with men in all purely intellectual fields. 

is formulated on its grounds? Prima facie, it would seem obvious that “purely intellectual 
fields” encompass much more than just the capacity to handle well-formed strings of symbols 
according to finite sequences of instructions. Indeed, one may even argue that the latter 
capacity is not central to many intellectual skills. In either case, the test is not sufficiently 
cogent to support the much more substantial conclusion drawn by Turing. Things get even 
worse once we bring to light (c). 
 
a) The linguistic fallacy.  
TT presupposes that IN, W and C all speak and understand the same language, otherwise they 
would not be capable to play a convincing part in the test. This is clear if one recalls that, to 
introduce TT, Turing presents first another version of the test, in which the actors are a man and 
a woman, and IN is shown to be unable to discover the sex of his interlocutors. Of course, the 
language in question must be so powerful, rich and hence “natural” as to allow a satisfactory 
level of conversation between IN and W and provide no clues about the artificial nature of C. 
Let us call such a language TT-adequate. To be TT-adequate, the linguistic-semiotic skills of C 
already presuppose an intelligent agent, whose behaviour is superior not only to that of a 
brainless coelenterate such as a jellyfish, but also of mammals such as dolphins and 
chimpanzees, which are known to be able to learn only an extremely limited range of linguistic 



skills, insufficient to pass the test. There follows that the very mastering of such skills by C 
already counts as a significant instance of a fully-grown human intelligence. After all, it is since 
Plato that the process of thinking is described dialectically as inner discourse rather than 
mathematically. It was only Hobbes who later suggested a comparison with computing, under 
the influence of the Cartesian revolution: 

For seeing life is but a motion of limbs, the beginning whereof is in some principal part within, why 
may we not say that all automata (engines that move themselves by springs and wheels as doth a 
watch) have an artificial life? For what is the heart, but a spring; and the nerves, but so many 
strings; and the joints, but so many wheels, giving motion to the whole body, such as was intended 
by the Artificer? [Leviathan, Introduction] […] WHEN man reasoneth, he does nothing else but 
conceive a sum total, from addition of parcels; or conceive a remainder, from subtraction of one 
sum from another: which, if it be done by words, is conceiving of the consequence of the names of 
all the parts, to the name of the whole; or from the names of the whole and one part, to the name of 
the other part. And though in some things, as in numbers, besides adding and subtracting, men 
name other operations, as multiplying and dividing; yet they are the same: for multiplication is but 
adding together of things equal; and division, but subtracting of one thing, as often as we can. These 
operations are not incident to numbers only, but to all manner of things that can be added together, 
and taken one out of another. […]In sum, in what matter soever there is place for addition and 
subtraction, there also is place for reason; and where these have no place, there reason has nothing 
at all to do. […] For reason, in this sense, is nothing but reckoning (that is, adding and subtracting) 
of the consequences of general names agreed upon for the marking and signifying of our thoughts; I 
say marking them, when we reckon by ourselves; and signifying, when we demonstrate or approve 
our reckonings to other men. [Leviathan, Chapter 5] 

Consider now the following example. One day, some fascists went to see Picasso. Referring to 
Guernica, they asked him: “did you do it?”, he replied “No, you did”. Apparently, the reply 
was good enough to save Picasso any further trouble. Would a computer be able to understand 
a similar dialogue? It would have to, if its language is to be TT-adequate, but if C is granted 
such a degree of linguistic competence surely the test loses all its probatory value, as it is 
simply begging the question: technically speaking, full linguistic competence is recognised to 
be an AI-complete problem, i.e. a problem whose solution presupposes a solution to the “strong 
AI problem”, namely the synthesis of a human-level intelligence. Therefore, it would be 
equally valid to argue that, since C cannot have a behaviour as intelligent as W’s it cannot be 
granted fluency in any TT-adequate language. In each case, a processor capable to master a 
natural language well enough to play TT will also show a sufficiently intelligent behaviour. The 
problem then becomes whether we can justifiably assume that C is already fluent in a TT-
adequate language. The answer must be in the negative, of course, unless one wishes to 
maintain only that it is logically possible that C may come to master a TT-adequate language. 
In which case, the whole test comes to be based on (d). 
 
a) The modal indeterminacy.  
Turing’s test shows that “carbon chauvinism” is unjustified: thinking machines are logically 
possible—there is nothing contradictory in the hypothesis that a brain may not have a neuro-
physiological nature but an electro-mechanical one, or that a machine may be able to speak a 
natural language properly—hence GOFAI cannot be ruled out as being impossible in principle, 
yet this is very far from establishing that silicon intelligence is also even vaguely plausible, 
likely to evolve, or empirically feasible. The distinction is crucial, but it is often overseen. It is 
one thing to prove that doing p involves no contradiction (hence it is logically possible), take 
for example the possibility of guessing the whole list of all the single figures indicating how 
many people used the London underground per day since it was first open, and an utterly 



different thing to infer that doing p is therefore possible, without further qualifications. 
Miracles, such as living forever, though extremely improbable can still count as logically 
possible, it is just that nobody in these days is inclined to develop scientific theories on their 
likelihood. Now, Turing presented TT only as the basis for a conjecture. He honestly 
recognised he had no positive arguments in favour of the actual possibility of GOFAI, only 
negative ones against its critics. Consequently, he was able to show that it was a mistake to 
consider non-biological intelligence logically impossible. In computer science, however, 
indirect proofs of purely logical possibilities bear no weight, for only constructive methods are 
truly effective and after so many failures there seems to be some clear evidence that true AI 
may not be empirically feasible for all practical purposes. The reply may be that GOFAI 
projects just need more time to develop. So here is an argument against GOFAI empirical 
feasibility that relies on the complexity of the algorithms required by any real AI application 
and the standards of reliability that we have come to expect in all other areas of engineering. 
Given the incidence of faulty software (ironically, we are used to pay for updated versions, 
which are not necessarily better, often only because we are sold software whose bugs had still 
to be discovered; this is so true that software is one of the few common goods that is not 
usually provided with a warranty, thus showing all its potential unreliability) and how 
increasingly prone to failure are computers the more sophisticated they become (how many 
times did your computer crashed in the last six months?), it is unlikely that AI system will ever 
become sufficiently reliable. Testing and debugging—attempting to detect, specify and 
eliminate the possible causes of programs’ malfunctions— is not a science, is a Sisyphist art, 
for a bug-free software is almost a contradiction in terms. The more complex a software has to 
become, to cope better with a larger variety of evolving tasks, the higher is the occurrence of 
serious programming errors (a serious bug does not generate some misbehaviour, is the end of 
any behaviour, like a stroke). Unfortunately, the scale of combinational complexity of any non-
trivial software (programs with more than 100,000 lines of code; consider that automatic teller 
are often run by software containing more than 700,000 lines of code, and common software 
for Windows can easily contain more than 500,000 lines of codes) is so high, that errors cannot 
be exhaustively detected (let alone fully fixed) by means of empirical tests, for the latter require 
time-resource, and the computational complexity of the software in question is so great—a 
complex software can exists literally in billions of discrete states, each state could be the source 
of an error and hence a catastrophical failure in the Greek sense of the word, i.e. a sudden 
collapse—that we soon run out of it (the process requires amounts of time longer than the life 
of the universe to be feasible). Of course, a completely foolproof debugging universal program 
D would be able to determine whether any application A terminates successfully, for all initial 
situations, but trying to prove that D is possible would be equivalent to trying to prove that 
there is a program that solves the halting problem, and we have seen in chapter two that this is 
impossible. The empirical fallibility of software is here to stay. Errors detection is a matter of 
dedicated testing programs, which are not in themselves error-proof and may or may not 
discover all the main faults of the software in question. Once some bugs are discovered, and 
this often happens only thanks to the extended use by millions of users, still because of the 
complexity of the original software, the probabilities of introducing new severe errors when 
debugging it are known to be so high, that  it has become common practice to correct only the 
smallest possible fraction of the original errors, and then, rather than tampering further with the 
software, warn users of any other discovered risky circumstances in which the software may 
not work properly, in the same way as every drug indicates its potential contraindications, i.e. 
the potential negative results that may be caused by the complexity of its interactions with the 



body of the patient and other secondary effects. Now a GOFAI application requires software so 
complex (billions of lines of code) that it would be “undebugable” in principle, and therefore 
never absolutely reliable in practice. Mad computers behaving erratically could become a 
reality. To have some idea of the scale of the problem consider that the computerised system of 
the space shuttle contains ca. 25,500,000 lines of code, whose development required some 
22,100 man-years, but that the whole computer system it is not even vaguely close to what 
would be a fully artificial brain such as 2001’s Hal. Currently, there are no existing techniques 
that deliver software of fully warranted quality and reliability. The solution may lie in the 
development of error-proof programming languages and programming techniques, and much 
more powerful tools for software verification and derivation (derivation is verification on-the-
fly, a method of showing that the software works properly while is being written), but much as 
both areas may bring fruitful results in the future, verification and derivation programs can 
currently handle software of only very modest size, and none of the two approaches is likely to 
eliminate the substantial problem. For verification, if applied consistently, would limit to much 
the freedom of the programmer to the point of becoming a serious hindrance to any high-
quality GOFAI application, while derivation can only succeed in limiting the damages but 
never eliminate the chance of some catastrophic dormant bug. 

4. The Application-areas of AI 

GOFAI developed as the project of empirical research that aimed to make Turing’s claims 
come true. It was based on questionable assumptions—the logical possibility of non-biological 
intelligence—and not very realistic expectations, so it could not succeed in his most ambitious 
plans, despite the huge amount of human and financial resources to which it helped itself. This 
does not mean that AI has not achieved remarkable results. In the course of its attempts to 
construct a TT-adequate computer that could perform tasks usually supposed to require some 
form of human intelligence, research in artificial intelligence has come to be organised around 
the following main areas:  
1. Theorem proving.  
Historically, this is the first and most successful application of AI and yet, in so far as decision 
procedures are known for the theorems in question, as in the case of propositional logic 
theorems, most scientists and philosophers would not consider it real AI, since such theorems 
could also be proved by a well-constructed windmill or our dull (“brainless”) scribe. On the 
other hand, theorems for which no mechanical procedures are known result much more 
intractable, and non-computable solutions are based on ad hoc algorithms designed by human 
experts and intelligent programmers. So much so that when the latters are no longer available, 
as it is often the case after some time, if there is no documentation and the software needs to be 
updated it is easier to start again from scratch then try to interpret what the experts had in mind 
and actually did. 
2. Game playing.  
In this case too, games for which a decision procedure is known, such as noughts and crosses 
(tic-tac-toe) or draughts (checkers) are easily implementable, but will hardly be considered 
instances of full artificial intelligence. Other board games, such as chess or monopoly, require 
databases and the discovery and application of heuristic procedures, i.e. rules of thumb and 
general problem-solving techniques. The issue then becomes an empirical one and needs to be 
further analysed, as we shall see in a moment. 
3. Information processing. 



This is perfectly achievable in terms of processing of strings of symbols, such as in word-
processing, mathematical programs, parsing software or statistical applications, as we saw in 
chapter four. When understanding is in question then see (6).  
4. Planning for robot behaviour via means-ends analysis.  
Means-ends analysis is a computing technique in AI to achieve goals by formulating plans. The 
system implements a plan, constituted by a sequence of actions, and the sequence is constructed 
by comparing the goals that each action achieves (means) with the goals and action predictions 
that must be achieved (ends). This is perfectly achievable as long as the environment and the 
tasks are limited and can be fully formalised. We shall discuss this point more in full later in the 
chapter. 
5. Expert analysis and advice in applied fields, such as medical diagnosis.  
This is feasible as long as the expectations are moderate. For example, in medicine, expert 
systems have been developed that analyse the disease symptoms, medical history, and 
laboratory test results of a patient, and then suggest a variety of possible diagnosis to the 
doctor. 
6. Fluency in a natural language (building a system that can understand and speak a written 

and spoken natural language as well as a human being).  
Some restricted sectors of a natural language or specific formal languages, languages with 
identified meaning in fixed contexts, can be understood and processed by machines. There are 
programs that enable a computer to generate grammatically correct sentences, to establish links 
between data inputs/outputs and concepts, to recognise written or spoken information and to 
produce summaries, answer specific questions, or redistribute information to users interested in 
specific areas of this information. However, interpretation and fluency in a natural language is a 
human activity par excellence that our present computers will never achieve. The use of a 
natural language is a constantly evolving ability, which is made possible by, and is intrinsically 
rooted in, our complex experience of a physical and psychological life and on our being human 
agents interacting with the world from inside a human body, within a specific human society 
and a determined culture. Above all, being able to use a language means being able to shape the 
world of experience. TT takes the possibility of a computer’s linguistic proficiency for granted, 
but while phonetic and graphical features (the physical aspect) and lexical and syntactic aspects 
(the logical structure) of natural languages have been subjected to formalisation rather 
successfully and there are hopes that they may be fully controlled by a computerised system, 
semantics and hermeneutics, i.e. the problems of meaning, understanding and interpretation, 
have remained largely intractable and appear to be beyond any translation on terms of functins 
effectively computable by a Turing Machine. Here it is important to recall that a promising 
program of research in applied computational linguistics, namely statistical semantics (roughly 
speaking, the computer suggests the most reasonable meaning of a word W by analysing the 
most consistent system of N words forming a cluster around W), shows the limits of GOFAI (in 
this case the full simulation of human language competence) and the value of a more pragmatic 
approach to AI in the area of automatic translation of unrestricted texts and in the area of 
computer understanding and generation of natural language and hence human-computer 
communication. Computers cannot master a language like a human being, but software systems 
can greatly simplify the work of human translators and improve our present interfaces. One 
may easily think of a number of successful applications such as voice recognition programs, 
automatic grammar checkers for word processing software, intelligent email filters and routers, 
text classification systems, systems for information extraction from semi-standardised texts and 
so forth. 



7. Informal, non-deductive reasoning and universal problem solving.  
This would require computers to be able to argue or reason, to hold and defend views. It is a 
largely intractable problem without resort to human intelligence and ad hoc programming.  
8. Visual and acoustic perception and pattern recognition.  
Pattern recognition systems are currently able to classify data (patterns) thanks to either 
statistical information, extracted from the patterns themselves, or a priori labelling information 
provided as previous input. They consist of three basic components: 
• a sensor, which collects the data to be described/classified  
• a feature-extraction mechanism, which computes symbolic or numeric information from 
the collected data, usually using one or more of the following approaches: statistical (or 
decision theoretic), syntactic (or structural), or neural. The statistical approach is based on 
statistical characterisations of patterns, assuming that the patterns are generated by a 
probabilistic system. The syntactic approach is based on the structural interrelationships of 
features. Neural pattern recognition employs the neural computing paradigm that has emerged 
with neural networks (we shall discuss pattern recognition more in details in section 9.2) 
• a classification or description scheme, which describes or classifies the pattern, relying on 
the extracted features. The classification or description scheme is usually based on the 
availability of a set of patterns that have already been classified/described (groups of 
measurements or observations, defining points in an appropriate multidimensional space). A 
learning strategy based on training sets of a priori labelling patterns is characterised as 
supervised, but learning can also be unsupervised when the system itself extracts the patterns 
from the statistical regularities of the observed data.  
Perceptual tasks (the acquisition, classification or description of observations) are, in different 
ways, performed by all forms of life, but have proved to be very difficult for digital machines, 
except in fully formalisable instances. In particular, computer vision (building a system that can 
see as well as a human) remains a recalcitrant problem, despite its military importance (note 
that for a missile “pattern recognition” really means “target individuation”). 
9. Experience, common sense, self-consciousness, introspection, awareness of and 

detachment from time-space situations, knowledge, understanding, sense of pertinence, 
insight, judgement, evaluation, imagination, feelings, taste, intentionality, interpretation.  

These are all largely intractable phenomena, since it is still unclear whether and how 
knowledge—as opposed to data— and other cognitive or mental states may be analysed in such 
a way that a computer could be said to “understand” or “feel” something and hence apply its 
“understanding” or “insight” to relevant cases with at least some good common sense. We shall 
see that this is an extreme case of the kind of problems addressed by knowledge engineers 
when designing knowledge representation and automatisation systems, and devising general 
rules and algorithms for the automatic recognition of meaningful and relevant information, in 
connection with large database. 
10. Self-reproducing and self-learning.  
Both seemingly intractable. Intelligence appears to have its own entropy: below a certain 
threshold, a system is able to construct only a range of more simplified systems, whereas a 
brilliant child can have very dumb parents. As for self-learning, when understood as a general 
capacity, comparable to that of a child, AI systems as we know them have proved to be 
incapable of achieving it. A Universal Turing Machine is an “innate” and “orthodox” machine: 
unable to learn by dialoguing with the environment, it can nevertheless deal with situations that 
sufficiently approximate its internal microworlds, as long as this does not require to behave 
heredoxly, i.e. in a way that is neither random nor in accordance with pre-established patterns 



of rules or instructions, but adequate to the novelty of the situation. 

5. The Conditions of Possibility of AI and the Paradox of GOFAI 

Based on the previous analysis, the crucial conditions that make AI projects more or less 
successful can be conveniently summarised under five headings: 
a) EFFECTIVE COMPUTABILITY (see chapter two). 
b) EPISTEMIC INDEPENDENCE, i.e. whether either no knowledge/understanding is relevant, or 

all relevant knowledge/understanding that is presupposed and required by the successful 
performance of the intelligent task, can be discovered, circumscribed, analysed and made 
fully manageable through computable processes. 

c) EXPERIENCE-INDEPENDENCE, i.e. whether either the task is based on universal and 
“timeless” instructions carried out by the system, or all practical experience, both relevant 
as a background condition and necessary for the successful performance of the intelligent 
task, can be discovered, circumscribed, analysed and made fully manageable through 
computable processes. 

d) BODY-INDEPENDENCE, i.e. whether either the intelligent task can be performed by a 
disembodied, stand-alone intelligence, or all “perceptual intelligence”, both relevant as a 
background condition and necessary for the successful performance of the intelligent task 
can be discovered, circumscribed, analysed and made fully manageable through 
computable processes. 

e) CONTEXT-FREEDOM, i.e. whether either the context is irrelevant, or all relevant 
information concerning the context within which an intelligent task is performed, and 
which indeed make the task intelligent, can be discovered, circumscribed, analysed and 
made fully manageable through computable  processes. 

Points b/e state that a classical computer can cope with intelligent tasks, which necessarily 
require knowledge, experience, bodily involvement and social interaction with the context 
when performed by a human being, only by internalising all relevant data, i.e. by transforming 
the strongly constrained domain of application into a microworld subject to Leibniz's law of 
pre-established harmony. The specific construction of a microworld “within” a computerised 
system represents a combination of ontological commitments that programmers are both 
implicitly ready to assume when designing the system and willing to allow the system to adopt. 
A computer is always trapped within a microworld. The broader its ontological environment, 
the less obvious is the spectrum of ontological preclusions engendered by the system,  the 
easier it is for the user to be caught within its limits of scope and domain, the more difficult it 
becomes to realise the inflexibility of the machine’s real ontological commitments and apparent 
interactions. There are many cases, however, as when we try to implement common sense 
notions, linguistic skills or learning abilities, in which intelligence proves to be an ontologically 
diatopic property, that is a general way of behaving and thinking flexibly, constructively and in 
dynamical interconnection with the surrounding reality, which is not bounded to a specific and 
constrained area of application. In these cases, to satisfy conditions b/e, the internalisation 
would require the computer to be nothing less than potentially omniscient, i.e. to have a 
database containing at least all the rules for generating, and taking into account, all possible 
microworlds. The paradox behind GOFAI appears then obvious: the better a task fulfils 
conditions (a)/(e)—as this is often the case in domains of application which are the result of 
constructions out of explicit rules (board games, well known fields of mathematics, specific 
databases, etc.)—the more easily it can be “stupefied” and hence the more feasible the relevant 



AI project becomes, but then the less we also are inclined to connote as necessarily  intelligent 
the agent (not the task) capable to perform it. A good example is provided by a machine 
capable to demonstrate theorems in propositional logic. On the other hand, the less a task fulfils 
such conditions—the more sensitive and “open” a task is to completely occasional novelties, 
requiring non-formalised, non-procedural creative thinking, grasping of the appropriate context, 
mastering of the relevant information, possession of the right experience, enjoyment of a bodily 
involvement, social interactions, inventiveness, sensibility, intuition, understanding, linguistic 
skills and so on—the more the agent capable to perform it is expected to be truly intelligent, but 
then the less feasible the relevant AI project becomes. Clearly, as the nature of intelligent tasks 
ranges from the total “stupefiability” of games such as noughts and crosses or draughts, to the 
complete openness of abilities such as mastering a natural language and laughing to a good 
joke, the development of successful AI projects becomes a matter of degrees and of empirical 
trial and error. What a computer can do empirically, not just in principle, is a practical question, 
whose answer depends on the nature of the specific task under examination and on whether 
there may be efficient methods to analyse it in such a way as to make factors (a)/(e) sufficiently 
liable to an AI treatment. GOFAI committed the mistake of considering, a priori, the whole 
spectrum of intelligent tasks as its own domain, because it started from the wrong end of it, 
namely Turing’s assumption that C is already capable to manage a TT-adequate language. 
Contrary to Strong AI, Light-AI (LAI) places itself more pragmatically at the other, “stupid” 
extreme of the spectrum, and tries to advance as far as it is empirically feasible towards its 
“open” end. The perspective is radically different and so it is the approach to what an 
“intelligent system” could be like.  

6. From GOFAI to LAI 

GOFAI endorsed Turing’s suggestion that, since a single machine should be able to cover the 
whole spectrum of intelligent tasks, the best thing for it was to simulate the only other “engine” 
capable of a similar undertaking, namely the brain/mind. However, GOFAI was not only 
mimetic, it also set things upside-down. To see why it is useful to draw an analogy with the 
history of flying machines. It was wrong, if natural, to think that, could humanity one day fly, it 
would have done so somehow like Ikarus, using a sort of flapping wings. As long as 
aeronautics tried to construct bird-like vehicles, however, it did not score a single success. To 
become truly achievable, the task, flying from one place to another, had to be detached from the 
particular manner in which birds performed it and pursued in ways more amenable to 
engineering solutions, thus adopting a functionalist approach: 
• identification of a set F of relevant functions performed by the system S1 
• abstraction of F from the specific nature of the system S1 
• identification of the necessary and sufficient conditions C for the implementation of F 
• implementation of C by means of a new system S2, capable to perform the relevant 

functions listed in F. 
Since GOFAI could start from an ideal prototype, i.e. a Universal Turing Machine, the mimetic 
approach was also sustained by a re-interpretation of what human intelligence could be. Thus, 
in Turing’s paper we read not only that  

i) digital computers must simulate human agents,  
but also that  

ii) they can do so because the latter are, after all, only complex processors (in Turing’s 
sense of being UTMs).  



The suggestion was that all (at least seemingly) cognitive entities (AI applications, people and 
other living organisms) are computational systems in the “effective” sense of computation seen 
discussed in chapter two, which carry out their operations by manipulating symbols and 
transforming, through sequences of internal steps, static input representations (patterns of 
activity) into other static output representations. It is as if, having constructed a mongolfier 
while trying to enable man to fly like a bird, one had decided to fill all birds with hot air or 
hydrogen to make sure any flying system behaved uniformly like a balloon. A neat solution, yet 
completely wrong. As I have argued in chapter two, even if the brain is a “computing machine” 
this does not mean that it is necessarily comparable to a classical computer (i.e. a Universal 
Turing Machine), so (ii) above is at least controversial. Although we need to remember that 
GOFAI developed in a context in which crude IQ tests were very popular, it is still surprising to 
see how an empirically minded culture could then be taken so astray by its materialist project of 
a thinking machine to forget that the physical nature of the brain does not prove that it 
functions, technically speaking, like a binary data-processor with a program following sets of 
pre-determined instructions establishing how strings of symbols need to be processed 
sequentially by logic gates, that there are no ultimate reasons to believe that intelligence is a 
brain rather than a mental feature and that “mind” is just another word for “brain”, and finally, 
that human knowledge and understanding do not resemble information processing phenomena 
very much. Attempts to shift the paradigm in favour of parallel, interactive, complex, digital, 
analog, networked or quantum systems show how unsatisfactory the GOFAI picture is. The 
generic possibility of modelling the brain as an input-process-output device, often useful for 
explanatory purposes, was confused with its actual nature and the failure of GOFAI was then 
the failure of a rather primitive, epistemological model of human intelligence.  

7. The Cartesian Nature of LAI 

LAI has slowly risen as a phoenix from the ashes of GOFAI. While the latter attempted to 
“stupefy” the mind assuming an elementary computational model of the brain itself, and hence 
was bound to fail, the former aims to re-model the specific tasks in question according to the 
logic and functions of the machine (“stupefication” of the process), so it has been far more 
successful. The point is that LAI is constructionist, not mimetic. It recognises that the same 
tasks can be accomplished equally well in completely different ways and that the difficulty lies 
in discovering whether, given a specific task, there is a “computer-way” to accomplish it 
satisfactorily. Therefore, it attempts to engineer problem-oriented applications that do not 
necessarily simulate but rather emulate (do often better, although differently) what a human 
being could achieve in the same situation. We do not want a program that can mechanically 
prove a logic theorem exactly as a human being, because we do not need either the latter's 
mistakes and distractions, or his or her insights and intuitions. The problem of images 
recognition provides a useful example. Infrared radiations are electromagnetic radiations of 
wavelength between about 0.75 micrometers and 1 millimetre. All bodies above the absolute 
zero of temperature absorb and radiate infrared radiations, which are invisible to the human 
eye. Above a certain threshold, we perceive infrared radiation as heat, but a computer can 
easily process infrared wavelengths well below such threshold and show them on a screen as 
just additional colours. Thus, infrared radiation is used in many fields such as medical 
photography and treatment, chemical analysis, military applications and astronomy. It is a 
“smart”, LAI computing solution that solves a problem GOFAI found intractable. 

Both GOFAI and LAI endorse a Cartesian-like problem-solving procedure but only the latter 



is correctly definable as Cartesian in spirit. Like Descartes, but unlike GOFAI, LAI rejects the 
feasibility of a thinking machine capable to clone human intelligence. Nothing could be more 
illuminating and contrary to Turing's project than the following statement: 

We can certainly conceive of a machine so constructed that it utters words, and even utters words 
which correspond to bodily actions causing a change in its organs (e.g. if you touch it in one spot it 
asks what you want of it, if you touch it in another it cries out that you are hurting it, and so on). 
But it is not conceivable that such a machine should produce different arrangements of words so as 
to give an appropriately meaningful answer to whatever is said in its presence, as the dullest man 
can do. Secondly, even though such machines might do some things as well as we do them, or 
perhaps even better, they would inevitably fail in others, which would reveal that they were acting 
not through understanding but only from the disposition of their organs. For whereas reason is a 
universal instrument which can be used in all kinds of situations, these organs need some particular 
disposition for each particular action; hence it is for all practical purposes impossible for a machine 
to have enough different organs to make it act in all the contingencies of life in the way in which 
our reason makes us act.” Descartes, Discourse on the Method. 

The possibility of increasing the number of “stupefiable” tasks, together with the radically 
constructionist (non-mimetic), non-materialist and Cartesian nature of LAI, explain some of the 
specific successes and orientations of LAI and clarifies an important mistake often made in the 
anti-AI literature. We shall first concentrate on the latter to introduce the former. 

8. Deep Blue: a Cartesian Computer 

Computers cannot play chess better than a Great Master: even a critic of GOFAI as acute as 
Dreyfus has made the mistake to argue for such a view. Today it is easy to point out that, by 
defeating Kasparov, IBM’s Deep Blue has cleared the grounds from all remaining doubt. The 
problem with Dreyfus’ or other similar approaches did not lay in the inadequate understanding 
of the game or its phenomenological analysis, but in 
i) treating all AI approaches as necessarily mimetic,  
ii) considering conditions (a)/(e) analysed above as inevitably “binary”, i.e. either fulfillable or 

not, while they are “analog”, i.e. subject to degrees and therefore to cumulative satisfaction, 
and hence  

iii)  undervaluing the fact that, in each chess game, the whole context, elements, facts, rules, 
memory of the past moves, problems, heuristic strategies and evaluations, etc. make up a 
logical model which, though extremely vast, is very well-defined (entities, their properties 
and mutual relations, legal and illegal moves are all fully determined and nothing is left to 
chance), can be analysed in discrete terms (board games are digital and not analog as ball 
games) and hence subjected to progressive data processing.  

It is true that a Great Master may well have a holistic and visual approach to the game, based 
on intuition, insights and inexpressible experience, but this is irrelevant to non-mimetic AI, 
since a computer may play chess better than any human being without even slightly simulating 
any human process of thinking, very much in the same sense in which we can fly faster than 
any bird. Likewise, it is true that there are tasks, such as understanding a natural language or 
translating from one to another, which remain beyond the possibility of a machine, for they are 
too “open”, but chess, being a limited game, is not one of them, and can have its (a)/(e) features 
subjected to a gradual and increasing fulfilment. In order to play chess decently, a computer 
cannot compute all possible combinations, since the number of alternatives to be explored is 
approximately 1044 (this is known as combinatorial escalation; to have some clue about the size 
of the number, you may recall that the number of protons and neutrons taken together in the 



whole universe is often estimated to be 1080), but it does not need to, for it is usually sufficient 
to combine three essential operations:  
• generate static lists of legal moves, i.e. board positions, restricting the number of moves 

(the depth of the search, technically known as the size of the search space, is usually five 
moves, i.e. ten ply, which already generates half a quadrillion moves on the average) to a 
relative small number that enables it to produce a reply in a reasonable amount of time. 
There are additional methods to limit the scope of the search and hence improve its depth;  

• assess the value of a particular series of moves by means of evaluation functions—that is 
assign numeric values to each given board position on the basis of a set of features, such as 
material or positional advantage, strong attack, control of the board, development, etc.—
and/or a minimax strategy that attempts to maximise one’s gain and minimise the 
opponent’s, and finally 

• choose the move that yields the highest value.  
The first operation is a function of mere computable power, the second contains heuristic 
strategies based on what can be learnt from the experience of great players and implemented in 
terms of rule of thumb, such as ways of evaluating gambits. There are four basic chess values 
that a computer must consider before deciding on a move: material, position, king safety and 
tempo. The performance of such operations is obviously subject to improvements through time, 
at least because they can be supported by a constantly enriched knowledge database of millions 
of opening games, which have fully codified the first 15/20 best strategic moves for each game, 
endgames and played games. On the whole, a better “stupefication” of the game is 
progressively achieved. Once this is combined with a dramatic improvement in the hardware—
Deep Blue is a RISC System/6000 Scalable Power parallel System (SP) high-performance 
computer—and an obvious increase in the machine’s capacities to calculate variations—the 
system contains 256 chess-specific processors working in parallel to partition and solve a 
chess-board problem, each one capable of searching two to three million positions per second, 
so that Deep Blue can calculate 50 to 100 billion moves within 3 minutes—it becomes perfectly 
reasonable to expect that computers will soon be undefeatable. Of course, this does not mean 
that we shall stop playing chess, for after all we still play a fully computable game such as 
draughts, nor does it make Deep Blue any more intelligent than ELIZA. Here is a nice 
quotation from the people who constructed it: 

Does Deep Blue use artificial intelligence? The short answer is No. Earlier computer designs that 
tried to mimic human thinking haven't been very good at it. No formula exists for intuition. So 
Deep Blue's designers have gone 'back to the future'. Deep Blue relies more on computational 
power and a simpler search and evaluation function. The long answer is No. 'Artificial Intelligence' 
is  more successful in science fiction than it is here on earth, and you don't have to be Isaac Asimov 
to know why it's hard to design a machine to mimic a process we don't understand very well to 
begin with. How we think is a question without an answer. Deep Blue could never be a HAL-2000 
(the prescient, renegade computer in Stanley Kubrik's 2001) if it tried. Nor would it occur to Deep 
Blue to “try”. Its strengths are the strengths of a machine. It has more chess information to work 
with than any other computer, and all but a few chess masters. It never forgets or gets distracted. 
And it's orders of magnitude better at processing the information at hand than anything yet devised 
for the purpose. 'There is no psychology at work' in Deep Blue, says IBM research scientist Murray 
Campbell. Nor does Deep Blue 'learn' its opponent as it plays. Instead, it operates much like a 
turbocharged 'expert system', drawing on vast resources of stored information (for example, a 
database of opening games played by grandmasters  over the last 100 years) and then calculating the 
most appropriate response to an opponents move. Deep Blue is stunningly effective at solving chess 
problems, but it is less 'intelligent' than the stupidest person. It doesn't think, it reacts. And that's 
where Garry Kasparov sees his advantage. Deep Blue applies brute force aplenty, but the 
“intelligence” is the old-fashioned kind. Think about the 100 years of grandmaster games. Kasparov 



isn't playing a computer, he's playing the ghosts of grandmasters past. That Deep Blue can organise 
such a storehouse of knowledge—and apply it on the fly to the ever-changing complexities on the 
chessboard—is what makes this particular heap of silicon an arrow pointing to the future. (from: 
http://www.chess.ibm.park.org/deep/blue/faqs.html#ai) 

If a comparison is in order then, we may borrow a term from the military context and say that 
Deep Blue is only “smarter” than ELIZA is because it can stupefy more. As a test of the value 
of our interpretation it is reassuring to find John McCarthy, one of the fathers of AI, complain 
that Deep Blue has very little to do with strong AI. I would add that it is precisely in this 
distance that lies the condition of possibility of its success. 

9. The Success of LAI 

Defenders of GOFAI sometimes argue that the threshold of intelligence is constantly and 
unfairly retreated whenever a machine is shown to be able to reach it, yet it should be clear now 
that the complaint is unjustified. It is not that some intelligent tasks, like playing chess, no 
longer enjoy their intellectual status, but rather that they are discovered to be also amenable of 
successful computational treatment. As a human being, one will always need some intelligence 
to play chess well, but as a machine, one can spare it completely. The possibility of a LAI 
treatment does not diminish the value of a task, it enriches it of a new dimension. The success 
in game playing shows that a better philosophy also means better results. A program is found to 
have more chances to succeed if the problem it deals with is carefully defined, the tasks it 
performs are reduced to sequences of special-purpose heuristic procedures and repetitive 
instructions, and the context of application is severely restricted to a sufficiently small possible -
world, consisting of stereotypical situations and standard cases, that is to a microworld in which 
relevance, significance and utterly total novelties are either absent, successfully constrained or 
fully pre-determined by the programmer. Thus, in each of the ten fields listed in section four, 
LAI approaches the problem of devising smart machines by attempting to improve one or more 
of the five (a)/(e) conditions. LAI projects aim to extend the scope and sophistication of tasks 
amenable to computation by means of fuzzy logic systems, artificial neural networks, parallel 
computing and quantum computing; to extend the number of knowledge and practical-
experience sensitive tasks performable by a computer by means of knowledge engineering and 
expert systems; and to extend the number of body-sensitive tasks performable by a computer by 
means of robotics. Combinations of such solutions—together with the development and 
improvement of new algorithms and the elaboration of increasingly large database, which 
provide a computer with enough information about the task-environment so that the 
performance of the task itself becomes as context-free as possible (i.e. the computer is able to 
construct a model of everything which is relevant)—may help to devise ad hoc machines or 
programs that can cope successfully with an increasing variety of well-specified context-
sensitive tasks. In this chapter we shall have a brief look at each field, focusing on some of their 
features that are conceptually most interesting. 

9.1. Fuzzy logic systems 

Fuzzy logic (FL) can be interpreted as a superset of Boolean logic (BL). It is common to 
explain this relation by saying that BL associates only 2 truth-values to any wff (well-formed 
formula) P(x), i.e. {0,1}, so that in BL any wff has a discrete or “crisp” alethic form, i.e. it is 
either completely false or completely true, depending on whether or not x satisfies P, whereas 



FL employs the concept of “partial truths” to establish how far x satisfies P, that is continuous 
or fuzzy truth values between the Boolean 0 and 1 (note that such values should not be taken 
for probabilities, since they do not need to sum to one, have no forecasting significance and do 
not refer to the statistical strength of evidence supporting the assertion that x satisfies the 
property P). Although such terminology is slightly misleading, the distinction is intuitive. We 
can now make it a little more precise by referring to a few basic notions of set theory. 

Suppose Σ is a non-empty set (Σ ≠ {}) whose members {x1,...,xn} need to be assessed 
according to whether or not they satisfy a property P. In BL, we can construct a new set in 
terms of a mapping ∆BL: Σ a {0, 1} from members of Σ to members of the set {0,1}. The 
mapping is formally defined as a function µBL(x): Σ a {0,1}, which is called the membership 
function of ∆BL, and this clarifies why one often speaks of the function or of the resulting set 
interchangeably. The function µBL(x) generates a set ∆BL of ordered pairs <x, y>, such that  
1. ∆BL is a subset of the Cartesian product Σ × {0,1}, which satisfies the property of being 

equipotent with respect to Σ (there is one and only one ordered pair in ∆BL for each element 
of Σ and vice versa) 

2. ∀x∀<x, y>(x ∈ <x, y> → x ∈ Σ), the formula means that every x in any <x, y> is a 
member of Σ 

3. ∀y∀<x, y>(y ∈ <x, y> → y ∈ {0,1}) 
4. 0 = non-membership 
5. 1 = membership 
6. y = 0 ↔ ¬P(x), that is y = 0 if and only if x does not satisfy the property P 
7. y = 1 ↔ P(x).  
The set ∆BL = {(x, µBL(x)), x ∈ Σ} is a Boolean set, out of which we can construct the set 
consisting of all interpretations of x in any <x, y> ∈ ∆BL which are not associated with y = 0 or, 
which is equivalent (and this shows the binary nature of BL), that are associated with y = 1. ΓBL 
is a “crisp” subset of Σ (ΓBL ⊆ Σ) consisting of all members of Σ which satisfy the property P. 
Obviously, the truth-value of the statement x ∈ ΓBL is equivalent to the truth-value of P(x) and 
can be established by checking each member of ∆BL. The statement is true if the second element 
of the ordered pair is 1, and the statement is false if it is 0. A similar analysis can now be 
extended to FL.  

Suppose that Σ ≠ {}, Σ = {x1,...,xn} and that each x in {x1,...,xn} needs to be assessed 
according to the degree in which it satisfies the property P. In FL, we can construct a new 
“fuzzy” set in terms of a mapping ∆FL: Σ a [0,1] from members of Σ to members of the set of 
some numeric values in the range of real numbers [0.0, 1.0]. On the basis of the membership 
function µFL(x): Σ a [0,1], µFL(x) generates a set ∆FL of ordered pairs <x, y> that is similar to 
∆BL as far as properties 2,4,5,6 above are concerned, but now every y in <x,y> can be a real 
value from the closed interval [0,1], so that: 
1. ∆FL is a subset of the Cartesian product Σ × [0,1] which may or (more often) may not be 

equipotent with respect to Σ (Σ is referred to as the universe of discourse for the fuzzy 
subset ∆). 

Note that, although y in <x, y> can take any value in the range of real numbers [0.0, 1.0], this 
does not mean that, given a specific model for FL, there is actually an infinite number of 
interpretations of y available, since each system always sets up a finite range of values for y 
approximate to n decimals. 
Formula (3) for BL becomes now 
3. ∀y∀<x, y>(y ∈ <x, y> → y ∈ [0,1]) 
and formula (7) for BL becomes now 



7. (y = 1 → P(x)) ∧ (P(x) → 1 ≥ y > 0) or, more simply, 1 ≥ y > 0 ↔ P(x). 
This means that, in FL, the two values 0/1 are only the low and upper bound of the set, so while 
they are still used to represent “complete” non-membership/membership, a selection of values 
in between is used to represent what are in fact degrees of possession of a certain property, but 
may be called, for the sake of simplicity, “intermediate degrees of membership” or “degrees of 
truth”. No actual “fuzzification” of truth is in question, however, and this becomes clear once 
we realise that 
• contrary to what is sometimes stated in the literature, neither ∆BL nor ∆FL is a proper subset 

of Σ; only ΓBL ⊆ Σ and ΓFL ⊆ Σ 
• while in BL both ΓBL and ∆BL are “crisp”, and hence we can use them interchangeably, in 

FL only ∆FL may be considered fuzzy and only in the sense of having been constructed by 
means of a mapping from members of Σ to a selection of real values from 0 to 1 whenever 
the cardinality of the selection > 2 

• strictly speaking, and hence more correctly, even in FL ΓFL remains crisp, since it is still the 
case that x is or is not a member of Γ, no matter to what degree x does satisfy the property 
P. ΓFL consists of all interpretations of every x in any <x, y> which are not associated with 
y = 0, and the non-binary but multivalued nature of FL is shown by the fact that, contrary to 
what happens in BL, this is not equivalent to saying that ΓFL consists of all interpretations 
of every x in any <x, y> which are associated with y = 1. It is still the case, however, that 
ΓBL consists of all members of Σ which satisfy, to some degree greater than 0, the property 
P. Obviously, the truth-value of the statement x ∈ ΓBL is still equivalent to the truth-value 
of P(x) and can be established by checking each member of ∆BL. The statement is true 
whenever 0 < y ≤ 1, and false if y = 0.  

To define FL as the logic underlying modes of reasoning which are approximate rather than 
exact, to assume that the importance of fuzzy logic derives from the fact that most modes of 
human reasoning, and especially common sense reasoning, are intrinsically approximate, and to 
declare that BL cannot satisfactorily describe “humanistic” problems, all this means to have 
misunderstood both logics. It is natural to translate “it is true that the flower is fairly red” into 
“it is fairly true that the flower is red” because, working with a natural language in an informal 
context, it is often unclear to what degree a flower satisfies the property of being red, but in a 
formal language and a mathematical domain capable of sharp precision, the former equivalence 
is a syntactic fallacy, which simply misunderstands the scope of the adverb. Hence, in a fuzzy 
set an object can have numerous different membership values or “grades”, but it is only for the 
sake of simplicity that we speak of degrees of truth or membership when referring to the alethic 
values of P(x). What is fuzzy is not the alethic value of P(x), but the property P, which is 
satisfied by x to a y degree that can be made as precise as one needs. To have a less 
mathematical analysis, you may try to think of degrees of falsehood. You will soon perceive the 
absurdity of the whole idea of a Negative FL. 

Since in FL the truth-functional values of P(x) give the precise degree up to which P is 
satisfied by x, for any wff ϕ it is possible to generate a formal calculus by adopting, for 
example, the following definitions of the set theoretic operations and logic operators 
(henceforth I simplify out notation by leaving the specification FL implicit): 
• (∆ = {}) ↔ ∀x (x ∈ Σ → µ(x) = <x, 0>) 
• (∆A = ∆B) ↔ ∀x (x ∈ Σ → µA(x) = µB(x)) 
• ∆A' = 1 – µ(x), which is equivalent to 
• (¬ ϕ) = 1.0 – (ϕ) 
• ∆A ⊆ ∆B ↔ µA(x) ≤ µB(x) 



• (∆C = ∆A ∪ ∆B) → (µC(x) = MAX (µA(x), µB(x))), which is equivalent to 
• (φ  ∨ ψ) = MAX ((ϕ), (ψ)) 
• (∆C = ∆A ∩ ∆B) → (µC(x) = MIN (µA(x), µB(x))), which is equivalent to 
• (ϕ ∧ ψ) = MIN ((ϕ), (ψ)) 
• (ϕ → ψ) = 1.0 – MIN (ϕ, 1.0 – ψ) 
If the truth values are restricted to {0,1} then clearly the truth tables of the special FL in 
question are exactly as BL’s. This is known as the extension principle: any result in BL can be 
obtained in FL by restricting all fuzzy membership values to {0,1} and FL, as described above, 
i.e. as a multivalued logic, is interpretable as a generalisation of classical set theory and 
standard two-valued logic. If more than 2 values are admitted, then in FL some properties of 
BL, most notably the law of excluded middle, idempotency and distibutivity, acquire different 
interpretations, depending on the specific axiomatisation adopted. To give a trivial example, to 
keep BL and FL as close as possible one would have to define a tautology not as any wff which 
is always true, but rather as any wff which is never false, so that (ϕ ∨ ¬ϕ) is a tautology both in 
BL, where its value is always 1, and in FL, where the value of MAX(ϕ, ¬ ϕ) = the value of 
MAX(ϕ, 1.0 – ϕ) and the latter is always necessarily greater than 0. This set of “tautologies” in 
FL is called the support of a fuzzy set. 

For a less formal approach, consider now the following case. Suppose we take the universe 
of discourse Σ to be 10 people in a classroom. The property B = “being born in Oxford” is 
“crisp” or digital: the set ∆ will consist of ten ordered pairs <x, y>, where x is the name of a 
person in the class and y is either 0 or 1, and Γ will contain only people who are B, i.e. names 
associated with 1. If we consider now the property C = “living close enough to Oxford”, we see 
immediately that C is necessarily “fuzzy” or analog: the “fuzzy” set ∆ will still consist of ten 
ordered pairs <x, y>, but while x is the name of a person in the class as before, y takes now 
different real values from 0 or 1, depending on our way of assessing the distance of each 
person’s accommodation from the city centre. The resulting set Γ, however, still consists of 
names of people who simply satisfy the property C, the difference being that they can now be 
ordered according to the value of the associated y, i.e. according to the degree in which they 
satisfy the property C. Oxford University Regulation, for example, states that undergraduates 
must live within six miles of the city centre, hence our values will range from “distance from 
the centre > 6 miles” = 0 (if John lives more than 6 miles from the centre he does not satisfy C) 
to “distance from the centre = 0” = 1 (if Mary lives in the centre she satisfies C completely), 
with other students living x miles from Oxford for x < 6 all counting as members of Γ, although 
ordered according to the degree in which they satisfy C.  

Fuzzy logic was first introduced by Lotfi Zadeh to treat fuzzy concepts in natural languages. 
It begun as a typical project in GOFAI, based on the classic mimetic assumptions, and as such 
it remained for a long time little more than a promising theory. Only once it underwent the 
usual transformation common to many other GOFAI ideas did it become a successful 
component of advanced technology. FL applications are becoming increasingly popular 
especially, but not only, in control systems which deal with inherently analog processes—
processes that move through a continuous range of values, generate fuzzy data and cannot be 
easily modelled by linear analysis—and are usually implemented by means of digital 
processors capable of dealing only with well-defined numeric values, though “fuzzy” 
processors are also available. Very schematically, a typical fuzzy system consists of three 
components or logical stages: 
a) input stage 
A set of membership functions {µ1(x),...,µn(x)} makes possible the fuzzification of the source 



data, i.e. the conversion of a crisp value into a fuzzy value by associating the inputs x with 
values of y. We have seen that the logical form of each membership function is µm(x): Σ ma 
[0,1], where Σ consists now of a collection of source data {x1,...,xn} provided by input devices 
such as sensors, switches, thumbwheels, etc., while both the range of values {y[0,1]1,...,y[0,1]n} 
between [0,1] to be associated with each member of Σ, and the number of functions (the value 
of m in µm(x) and ma) hence of the resulting fuzzy sets, are specified by the system according 
to previously established requirements. Note that membership functions are often n-
dimensional (e.g. a 3-dimensional membership function may map data from sex, age and 
qualification to profession). The result of the input stage is a “fuzzified” set ∆ of ordered pairs 
{<x1,y[0,1]>,...,<xn, y[0,1]>}. Example: a car antilock braking system (ABS) directed by a fuzzy 
logic controller (FLC). To achieve a smooth slowing down of the car, the controller needs to 
provide precise operational instructions to the ABS based on information concerning the nature 
of the surface (wet, dry, greasy, etc.), the speed of the car (mph), the brake temperature and 
many other variables in the system. All variables change gradually from one state to the next 
and in each case the continuous transition cannot be easily governed by means of slightly 
arbitrary thresholds, which would result in a discontinuous and abrupt change whenever the 
input value overcame that threshold. So a FLC may be adopted, which defines the input of each 
variable using some membership function µ(x) in such a way that the input variable's state, i.e. 
the y in <x, y>, loses value in one membership function while gaining value in the next. For 
example, at any one time, the y of the brake temperature will usually be in some degree part of 
two membership functions: 0.7 nominal and 0.3 warm, or 0.6 nominal and 0.4 cool, and so on.  
b) processing stage. 
A set (usually dozens) of inferential rules {R1,..., Rn} of the form “IF a certain specified pattern 
of data occurs THEN perform the specified action”, generates another fuzzified set Ω from the 
fuzzified set ∆. The entire set of rules is usually known as a rulebase or knowledge base and the 
program which determines the rule fireability, selects rules for firing and executes the 
consequent instructions is called an inference engine. In each rule, whose logical form is ∆ 
n→ Ωn, ∆ is the antecedent provided by the fuzzified input reached in the input stage (a), and Ω 
is the consequent, an equally fuzzified output established on the basis of a computation of the 
values y[0,1] in {<x1,y[0,1]>,...,<xn, y[0,1]>}. Usually, rules have complex antecedents, constructed 
by connecting several values using the FL operators as defined above. For each n in ∆ n→ Ωn 
the inference engine invokes the N relevant rule and generates a specific, fuzzified result 
usually involving some linguistic variables, such as “negative high, negative low, zero, positive 
low, positive high”, for assessment. Hence, the antecedent describes to what degree the rule 
applies, while the conclusion assigns a membership function to each of one or more output 
variables. Rules can be solved in parallel in hardware or serially in software. There are several 
different ways to define the result of a rule, i.e. to determine the value of the output as a 
function of the rule premise's computed degree of truth, such as the MIN inference method we 
have seen above when discussing the AND operator, and the PRODUCT inference method. A 
second stage involves the COMPOSITION of all the fuzzy subsets assigned to each output 
variable, which are finally combined together to form a single fuzzy set Ω. Rules for 
COMPOSITION are usually MAX or SUM. We have seen the MAX composition when 
discussing the OR operator, the SUM composition constructs the combined output by taking 
the pointwise sum over all of the fuzzy subsets assigned to the output variable by the inference 
rule. Again, at each passage the appropriate N rules are specified according to previously 
established requirements. Example: having fuzzified its input, the FLC now elaborates the 
operative instructions for the ABS on the basis of a set of rules such as: if the brake temperature 



is WARM and the speed is NOT VERY FAST then the degree in which brake pressure 
increases is MODERATE. 
c) output stage. 
In the output stage, the system may need to convert the combined fuzzified results provided by 
(b) back into crisp variable which is now the representative value corresponding to the specific 
control value to be implemented. This is known as defuzzification, and it is not always 
necessary, since there are systems that can cope with fuzzy set. There are many techniques of 
defuzzification, but two of the most common methods are the CENTROID, which is based on 
the selection of the centre of gravity of the fuzzy set, and MAXIMUM methods, whereby one 
of the variable values, at which the fuzzy set has its maximum y, is chosen as the crisp value for 
the new output variable. Example: the FLC defuzzifies the output of the set of rules to provide 
a specific “crisp” instruction to the ABS, such as the actual brake pressure expressed by a 
single numeric value. 

Fuzzy control systems are designed empirically, following the usual trial and error methods 
and adopting precisely that “stupefication” strategy that we have seen to characterise LAI. A 
detailed analysis and precise documentation of the system's operational specifications, inputs, 
outputs, rulebase and defuzzification methods (if required) is essential, and is followed by tests. 
Given its empirical adaptability, fuzzy logic can be fruitfully employed whenever a system is 
difficult to model, e.g. because it is the result of the experience of a human being, or where data 
and processes with continuous values are common. Since FL simplifies the design complexity, 
while often improving control performance, it also reduces the design development cycle and 
simplifies the implementation of the system (FL controllers can be based on cheap sensors and 
low-resolution analog-to-digital converters), thus making the latter process less expensive. 
Moreover, FL systems are intrinsically easily upgradable by adding new rules. All this explains 
the success of FL controllers. Unfortunately, the latter seems to have spread three erroneous 
conceptions.  

As regarding the philosophy of fuzzy logic, we have already discussed the misleading idea 
of “degrees of truth” and “degrees of membership”: a logic of fuzzy values is not, strictly 
speaking, a theory that is itself intrinsically fuzzy. As Schroedinger once wrote, “there is a 
difference between a shaky or out-of-focus photograph and a snapshot of clouds and fog 
banks”. Nor is FL a logic that deals with ambiguity, vagueness or confusion, unless the latter 
words are superficially used to refer to continuous, degree or analog values as opposed to 
discrete, binary values. Truly ambiguous, vague or confused information—not only sentences 
like “perhaps I do not like it as much as I should, or maybe I do, after all”, which immediately 
appear to lack a definite context-free meaning, but also sentences that are semantically or 
syntactically ambiguous like “when she met us she thought we were going to the pub”, which a 
computer could interpret in 13 different ways—remains so unless it is further regimented and, 
in case, a fuzzified logic, wrongly understood as a theory of degrees of truth, could only make 
them irremediably ambiguous, vague or confused by isomorphically adapting itself to it. In 
database jargon this is sometimes called the GIGO rule (Garbage In, Garbage Out). 

As regarding the philosophy of fuzzy technology, some people seem to believe that FL is the 
first method that allows the precise and reliable computation of continuous quantities, as if 
infinitesimal calculus had not been devised. It is true that FL controllers can efficiently replace 
traditional PID (proportional-integral-derivative) control systems in areas such as consumer 
electronics, industrial robotics, automation, information systems, diagnosis and other expert 
systems (DBMS, Information Retrieval), in pattern recognition, in connection with neural 
networks (Image Processing, Machine Vision) and in decision support systems, but the reason 



is not because FL controllers allow us to do something utterly new, but rather because PID 
controllers, though highly reliable and effective, require sets of differential equations to define 
the system response to its inputs, which are extremely more difficult to formulate. 
Consequentially, PID systems are very demanding in terms of processing power and memory, 
may not be as effective as systems based on empirical rules such as FL controllers, and are 
certainly more expensive and much less flexible and adaptable. It is an obvious case of 
technological evolution, rather than revolution, and perhaps it would be useful to adopt the 
logic of fuzziness even when interpreting the development of fuzzy technology. 

Finally, in the philosophy of artificial intelligence there seems to be a tendency to attribute 
FL’s success to the alleged fact that somehow it resembles/captures, much better than BL does, 
the way in which human beings reason, take decision and solve problems on the basis of certain 
but “approximate” data. It is the old mimetic postulate of GOFAI that often permeates the less 
technical and more “philosophish” interpretations of FL. Thus, supporters of FL systems may 
misinterpret the latter in terms of brain/mind-mimetic functions or reality-isomorphic 
properties, and hence expect FL to be able to solve problems whose intractability does not 
depend on the kind of mathematical logic employed. Surfing the Internet one may come across 
views according to which FL will make possible the construction of  

Vast expert decision makers, theoretically able to distil the wisdom of every document ever written. 
Sex robots with a humanlike repertoire of behaviour, Computers that understand and respond to 
normal human language. Machines that write interesting novels and screenplays in a selected style, 
such as Hemingway's. Molecule-sized soldiers of health that will roam the blood-stream, killing 
cancer cells and slowing the ageing process 

or that “the first fuzzy logician was the Buddha”. This is nonsense, or better science fiction of 
the worst kind combined with a pinch of deeply misunderstood spiritualism. It is evidently true 
that in our minds we rationally conceptualise our experience of the world according to a logic 
which may often be described as fuzzy—so much so that it is worth formalising such logic into 
a more precise calculus—but the resulting calculus should not be mistaken for a reliable 
description of the ways in which we actually perceive the world, think and perform intelligent 
tasks. To the objection that no human being seems to be conscious of any process of 
fuzzification, rule-based analysis and defuzzification of the information in her or his 
possession, the reply can only be that all this must then take place at a sub-conscious level, but 
the subconscious is a land where only psychoanalysts and metaphysicians dare to fly. It is off-
limit to computer scientists, and as epistemologists we should probably be content to 
acknowledge that, although the logic may change, Boole’s hope that it shall one day describe 
the Laws of Thought is as hard to fade as and mankind's useless efforts to make it come true. 

9.2. Artificial Neural Networks 

Fuzzy set theory maps elements of an object space into a space of n > 2 membership values. 
Now, such non-linear mapping can be variously parameterised and can also be fruitfully 
combined with artificial neural networks (ANN).  

Although there exist a lot of different approaches to ANN technology, and hence many 
specific implemented systems that can be very unlike each other, at the core of neural 
computation we find the concept of distributed, adaptive and non-linear computing so, as a 
general introduction, it may be sufficient to present an ANN (also called artificial neural 
system, connectionist architecture, parallel distributed processing and neuromorphic system) as 
a multiprocessor computing system, which can be logically described as a matrix of 



• a finite set of individual nodes {PE1,..., PEn}, working as processing elements (also known 
as units, processors or neurons), whose function is to map patterns of inputs into patters of 
outputs, and  

• a finite set of asymmetric (unidirectional) relations {C1,..., Cn}, working as communication 
channels connecting members of {PE1,..., PEn}, whose function is to enhance or inhibit the 
transmission of patterns of signals by increasing or decreasing their numeric weight (also 
called strength). The bigger the weight, the greater the effect a connection has in 
determining whether or not the relevant PE will fire (be activated). 

The processing power of an ANN consists in its capacity to adapt to, or learn from, a set of 
training patterns by dynamically adjusting the weight of its inter-PE connections on the basis of 
a non-linear, parallel processing of specified inputs, and according to a pre-established 
proportional difference between the desired output and the actual output. Depending on how 
{C1,...,Cn} is implemented, the topology of an ANN may vary from fully connected to sparsely 
or just locally connected but, formally speaking, ANNs’ graphs usually are not even weakly-
connected, i.e. they satisfy the formal property ¬(∀x∀y ((x∈{PE1,...,Pen} ∧ y∈{PE1,...,Pen}) → 
(Cxy ∨ Cyx))). Hence, ANNs have fixed hierarchical structures: disjoint subsets of 
{PE1,...,PEn} are rigidly ordered into multiple layers from ground-input to top-output level, 
with inter-layers and infra-layer connections. Since layers are numerable, and their order 
always includes an input layer IL, n ≥ 0 hidden layers HL and an output layer OL, and both IL 
and OL are inevitable, a common way to classify ANNs is by referring to the number of their 
HLs (usually, a ANN has several HLs). 

PEs may have a small amount of local memory, they operate only on local data, each 
working in parallel with other PEs, usually asynchronously. They may act just as a simple 
threshold discriminator but, more often, a PE employs a threshold function—typically a 
sigmoid or logistic function—which makes possible to regulate the PE activation for output, in 
the following way. Each PE can take many inputs having different weightings but provides 
only one output which depends on the inputs. When a pattern of signals is received by its input 
connections with a sufficient weight, a PE “fires”, i.e. maps the input modified by the 
interconnection weight into another pattern of signals, generating a further output and 
interconnection weight. In order to do so, the PE processes the input and interconnection 
weight by a summation function (typically a weighted summation) to yield a sum that is passed 
to a nonlinearity called a transfer function (typically a sigmoid). The output of the nonlinearity 
is the output of the PE, which is sent, through output connections, to another PE. Hence the 
operations of each PE are fully determined by the network structure (cardinality and 
organisation), the connection weights, the inputs received from other PEs belonging to no 
higher layers via the connections, and finally its own threshold function. The mathematical 
functions determining the processing behaviour of {PE1,...,PEn} are embedded in the network 
and, although they can vary depending on the specific tasks and needs in question, they are not 
subject to constant adaptation while the network is working. What make an ANN flexible are 
the different degrees (which may be fuzzified) of weight that its internal connections are 
capable to acquire in the course of the mapping process. Thus, ANNs are not programmed to 
perform a specific task “top down” but “learn by example” (bottom-up organisation) how to 
process a particular input satisfactorily, before they are employed in an application. To cope 
with another task, they need to be retrained. 

The process of training a neural network involves the following stages: 
1. the untrained network is presented with carefully selected patterns of typical input data 
2. the network maps the data into an initial pattern of output data 



3. the network adjusts the weights of its connections using a variety of functions and 
according to how much the resulting output patterns differ from what they are expected to 
be. A training file is developed, consisting of data for each input node and the desired 
response for each of the network's output nodes. The adjustment of the weights is a matter 
of trial-and-error, does not follow rigidly programmed instructions and involves no 
software programming.  

4. step (3) is repeated for many typical input patterns, so that the actual output of the network 
converges with the desired (by the trainer) output.  

5. when the gap between actual output and desired output falls below a pre-established (by the 
trainer) threshold of accuracy, the training process is complete, the network operates 
satisfactorily and is ready to be used as a predictive or diagnostic tool, to process new 
selections of the kind of input patterns for which it has bee trained. 

Depending on their methods of data processing and training, ANNs can be classified as 
• feedforward , when they have no feedback and simply associate inputs with outputs.  
This type of ANNs is normally used for simple pattern recognition. 
• recurrent, when they implement feedback relations needed in order to create a dynamic 

system that will produce the appropriate pattern.  
This type of ANNs is normally used for pattern reconstruction. 
• supervised, when they require a human trainer to tune the ANN to the desired output. 
The most widely used supervised ANNs are known as Back Propagation ANNs. They are 
multilayered, feedforward networks which are trained using an error criterion. The network's 
output is compared with the desired output to produce an error measure; then an algorithm 
“backpropagates” the error from the output PE to the input PE iteratively in order to adjust the 
weights increasingly well so as to reduce the error. The network is trained by repeating this 
process many times. Once the error parameter has decreased below a specified optimal 
threshold, the network is said to have converged and its training is complete. Back Propagation 
ANNs are used for classification and prediction tasks. Hopfield networks and Boltzmann 
networks are special types of multi-layer ANNs characterised by improved algorithmic 
features.  
• self-organising, when they can learn to identify structures in the data by adapting 

automatically in response to particular types of inputs, according to pre-established 
requirements.  

The most widely used self-organising ANNs are known as Kohonen and they are networks in 
which the PEs compete with each other for the “right” to respond to an input pattern. They are 
trained with unsupervised algorithms that can cluster patterns of data into families on the basis 
of measured attributes or features (as philosophers, we would say “family resemblance”), 
serving as inputs to the algorithms. Self-organising ANNs can be used for pattern discovery 
tasks. 

Since ANNs are multiprocessor computer systems, in principle they can process any 
function computable by a Turing Machine or Von Neumann machine (VNM). Furthermore, we 
have seen in chapter two that there are mathematical models of ANN that are much more 
powerful than TMs, the so-called Super Turing Machines, and it has been shown that neural 
networks can be classified into an infinite hierarchy, depending on their different computing 
capabilities. However, in practice, implemented networks face enormous difficulties when 
dealing with problems involving symbolic processing and memory resources (e.g. number 
crunching), while they are much more successfully employed to simplify many computational 
processes involving patterns of data that would be virtually intractable by ordinary computers. 



In particular, networks can be extremely useful whenever large amount of structured data form 
patterns—not necessarily sensory patterns, such as a picture, but also logical structures, as this 
is for example the case with statistic or sampling models—which are then available as training 
input, and when there are classification or mapping needs (clustering and synthesising data, 
forecasting) that cannot easily be satisfied by the elaboration of computable algorithms or 
efficient heuristic rules. Since networks “learn” from their examples, they are tolerant of some 
imprecision and can generate models effectively even from noisy data, without having to 
discover possible constructive algorithms.  

To summarise, the functions and advantages of ANNs are: 
1. they can map patterns of data by adapting their structures to input examples 
2. they can generalise patterns of data thanks to (1) 
3. they can deal with multi-variable, non-linear clusters of data 
4. they can deal with noisy, distorted, imprecise and incomplete input data when doing (1)/(3) 

(but recall the GIGO rule: unclear, uncertain, vague data are not subject to fruitful 
mapping) 

5. they can do (1)/(4) according to specified problem-solving requirements, either by training 
or automatically (self-organisation) 

6. they can require advanced mathematical solutions—at least to determine the state function 
(e.g. the summation function), the transfer functions (e.g. sigmoid function) and the 
training algorithm (e.g. back-propagation)—but no software programming to do (1)/(5). It 
is common to formulate such a property by saying that ANNs do not require algorithms, 
but we have just seen that this is slightly misleading. ANNs approach problem solving 
tasks in a different way than software-based computers, which follow sets of instructions 
and hence require programs in order to perform their computations, but ANNs still require 
increasingly sophisticated mathematical functions to perform their tasks successfully. 

7. they have a relatively short development time because of (6) 
8. they can operate at high speed 
9. they can be implemented on parallel hardware for even greater speed of operation 
10. they can be employed in real time operations because of (8)/(9) 
11. they have some fault tolerance and are subject to graceful degradation (a partially damaged 

network may still perform some of its essential tasks satisfactorily) because of their 
architecture and the redundancy in their information coding.  

There follows that their conditions of applicability are: 
a) the problem to be dealt with can be expressed as a mapping problem (necessary) 
b) sufficient samples of typical sources of data to be mapped are available (necessary) 
c) tolerance for errors and context sensitivity is required 
d) the problem allows no computable algorithmic solution or only algorithmic solutions that 

are too complex or difficult to formulate. 
And their areas of application are: 
• pattern recognition, detection and reconstruction 
• data classification and generalisation 
• functional prediction/projection (conclusions are generalised for new patterns from past 

patterns) 
• system modelling of physical processes for which there are no algorithmic interpretations 

or algorithmic interpretations are too complex and difficult to be found 
• control problems, where the input variables are measurements used to control an output 

actuator, and the network learns the control function. 



More practically, some real-world, typical applications of ANN technology include: voice and 
visual recognition, spectra identification, chemical structures, biomedical instrumentation, 
medical diagnosis, credit rating (loan risk evaluation), forecasting of future sales, investment 
analysis, where predictions can be attempted on the basis of patterns provided by past data, 
market performance, economic indicators, writing recognition (especially signature 
verification, when new signatures need to be compared with those stored), signal processing 
and compression, automatic control and monitoring, production requirements, quality control, 
oil & gas exploration. 

The history of ANN has not always been so successful. Its “prehistory” can be identified 
with cognitive associationism, whose first roots Hobbes thought could be traced back as far as 
to Aristotle. It is one of the chief, unifying traits of the empiricism’s conception of the mind. 
Simplifying, the mind is conceived as devoid of any innate knowledge but endowed with the 
capacity of forming ideas by manipulating basic sensory experiences (sensations). At the end of 
the nineteenth century, the development of what is now called neuropsychology led to a 
plausible, very general account of how some mental processes might be underpinned by the 
interactions of neurons in the brain. The brain began to be mapped and functions to be 
localised. In this context, it became increasingly clear that the behaviour of nerve cells is at 
least also determined by their chemio-electrical excitation, and that an excited cell can “fire” 
and thus cause the neurons to which it is connected to become excited as well. It was then 
further suggested, more controversially, that associations might be formed between two cells 
when they tend to become excited simultaneously. In 1943, the neurophysiologist Warren 
McCulloch and the logician Walter Pitts—inspired by Ramon y Cajal’s theory of the neurone 
structure, by Charles Scott Sherrington’s theory about the excitatory/inhibitory synapses and by 
Alan Turing’s work on computing machines—proposed an abstract mathematical model of the 
first artificial PE. Their aim was to discover how a brain might engage in logical reasoning and 
how this psychological functioning might be explained on a neurophysiological basis. Different 
configurations of McCulloch-Pitts artificial neurons were found to be able to perform the same 
logical operations that are carried on by a Turing machine. Later, Frank Rosenblatt developed a 
model of network of McCulloch-Pitts artificial neurons capable to respond to different patterns, 
which he called “perceptrons”. ANN applications begun to be envisaged since the late 1950's, 
but 1969, in a famous book entitled Perceptrons, Marvin Minsky and Seymour Papert showed 
that there were a number of specific patterns that Rosenblatt's networks, having no hidden 
units, could not model. They further claimed that this limitation probably made connectionist 
networks inappropriate as models of human cognition. There followed more than a decade of 
stagnation of research in the field. Perceptrons were limited in scope and too demanding in 
terms of resources even to solve simple pattern recognition problems such as horizontal/vertical 
line discrimination. Interest in ANN grew again only in the eighties, once parallel architectures 
and mathematical algorithms became sophisticated enough for general applications. In 
particular, the recovery of the whole program of research, the so-called Neo-connectionism, 
was possible thanks to developments in the study of multi-layered networks, an extension of 
Rosenblatt's original design that can overcome the limitations of the former by means of back-
propagation algorithms, formulated in 1986 by David E. Rumelhart and Jay L. McClelland. 
Their Parallel Distributed Processing: Explorations in the Microstructure of Cognition is 
unanimously recognised as the starting point of the contemporary renewed fortune of ANN 
technology and applications. 

Even this sketchy summary is sufficient to show that ANN technology has achieved its 
successes only because it has abandoned its initial, mimetic ambitions and has endorsed a 



purely engineering approach. ANNs are collections of mathematical structures with the ability 
to modify their format. They can be designed as computer models, but when they are 
implemented they often are software simulations rather than hardware systems, so that while a 
BNN is always “a piece of hardware” an ANN could be nothing more than a sub-routine 
written in C, which typically will have been automatically generated by a neural net 
development kit. Their design and modelling is driven by and tested against technological aims, 
and the construction of powerful analytical tools to solve a variety of practical problems is 
pursued by developing more efficient mathematical algorithms and architectures that can easily 
be transferred to silicon chips. Interestingly, the more they evolve, the less “biologically 
plausible” ANNs seem to become. This is not a problem, since Neo-connectionism in computer 
science is a successful technology that is not concerned with physiological or psychological 
phenomena in BNNs and should not be confused with either neurophysiological, cognitive or 
philosophical theories. Of course, connectionism is also a neurobiological theory and a standard 
model of the brain and its functioning, but the fact that neurobiological connectionism is a 
successful program of research does not mean that ANNs must have a significant relevance for 
neurobiology, or that LAI could really benefit from a good understanding of information 
processing in BNNs. As we shall see in a moment, the more we understand them the more we 
realise that biological networks have little to do with artificial ones, and if we exclude the 
handy use of some common terminology—which may also be rather misleading sometimes—it 
is often remarked that all ANNs have in common with BNNs is a couple on “Ns” in their 
labels. Understandably, however, successes in computing and neurobiological connectionism 
have given rise to new hopes for an equally successful, yet old-fashioned “mimetic 
connectionism” in cognitive science and in the philosophy of mind, and this despite the anti-
mimetic orientation of technological Neo-connectionism, the non-technological nature of 
neurobiological connectionism, and the fact that actual ANNs work increasingly well precisely 
because they do not try to mimic biological nets anymore. The contradiction is obvious, and 
attempts to overcome it often leads to a number of popular mistakes. What follows is a small 
“gallery of errors”. 
a) What ANNs can do. 
In the “pro-mimetic” literature, artificial networks are often claimed to be “biologically 
plausible” because they show at least the following major “biological features”:  
1. they can derive meaning from complicated or imprecise data 
2. they are capable of abstraction 
3. they can formulate prediction about possible future events 
4. they are highly adaptive, and can mimic the human brain's most powerful ability, namely 

that of pattern recognition.  
However, none of these anthropomorphic claims is actually supported by the technology in 
question: 
1. ANNs are useful complex tools for mapping patterns of data, but whether the latter are 

meaningful or not, and what their plausible meaning may be, remains up to the human user 
to establish. This also applies to the post hoc discovery of how a network has managed to 
generate the “meaningful” data it has achieved. 

2. ANNs’ capacity to discover structural generalisations and similarities between different 
patterns is sometimes overemphasised in a way which reminds one of Locke’s simplistic 
yet erroneous theory of how universal ideas are “constructed” out of an elementary process 
of abstraction. Not only a network is not a magic hat out of which one may get utterly new 
information that is not already present in the training examples—ANNs are not 



epistemically creative, and whatever information they can obtain from the data it must be 
already encoded in the data—but the process of artificial as well as biological abstraction of 
similar features shared by a set of individual examples, while certainly capable of leading 
to the construction of a more general model (cf. Locke's universal idea), it is always 
already based on the assumption that all members of the set in question do share such 
similar features, since we need a well-defined membership rule to construct the initial set. 
In other words: a network may reconstruct the face of a burglar out of a limited number of 
snapshots, only if (i) the relevant features of the person are actually captured by the pictures 
and (ii) the latter are all of the same person. Two silly requirements that are easily 
forgotten.  

3. ANNs can only provide projections from previous data, they do not “interpret” the future.  
4. ANNs are highly adaptive only as a type of technology but not as tokens. Each individual 

ANN stores “experiential knowledge” of the right way of mapping its patterns 
isomorphically, i.e. as a particular matrix of PEs and connection weights which represents 
the “solution” to a problem. Hence, each individual ANN is always a dedicated system, 
which is capable to map different kinds of patterns of data only if it is completely re-
trained, but a new training means the loss of the old format (to have more flexible ANNs 
the best thing to do is to combine their technology with programming algorithms which can 
store and retrieve specific formats of “ANN-matrices”). One may think of the famous piece 
of wax in Descartes’ hands. As a kind of substance the wax is highly malleable, meaning 
that a piece of wax can take any shape we may fancy, yet the same piece of wax can take 
only one shape per time. Finally, it is plainly wrong to say that pattern recognition is the 
human brain's most powerful ability, but even if it were, ANNs do not mimic it. To 
understand why, we need to consider the next two popular errors. 

b) ANNs learn as human beings do.  
This mistake should already be clear from what has been said above, but let us consider a 
couple of examples from the standard literature. First case: a 4-inputs PE is trained to fire when 
the input is 1111, and not to fire when the input is 0000. After applying the generalisation rule 
the PE will also fire when the input is 0111, 1011, 1101, 1110 or 1111, it will not fire when the 
input is 0000, 0001, 0010, 0100 or 1000, and when any other input is present, such as 1001, it 
will produce a random output. Second case: we digitally input a photographic image for a 
neural network to identify, “guessing” which circuits to fire to recognise the photograph and 
output the correct answer. In both cases, we train the ANN by strengthening (resistance turned 
down) the connections between individual PEs when the task is performed correctly and 
weakening them (resistance turned up) if the task is performed incorrectly. In both cases, the 
neural network can “learn from its mistakes” and give more accurate output with each 
repetition of the process. Now, if a person should behave in the way just described we would be 
very worried indeed, and rightly so for more than one good reason. Firstly, neither a human 
brain nor a human being needs to be trained necessarily in an iterative way to learn to recognise 
a pattern, e.g. the shape of a new, strangely looking, revolving door in order, to be able to 
evaluate whether one can pass through it. Secondly, not even Augustine—despite what 
Wittgenstein writes—held a naive theory of merely ostensive learning. Most of our cognitive 
organisation of the world surrounding us seems to require much more than mere exposure to 
spatial patterns, since it is usually associated at least with experiential memory, expectations, 
interaction, education and language, and is the result of a constructionist conceptualisation. 
Besides, human experience has the intrinsic propensity to become atomic. Two human beings 
do not recognise a particular pattern in the same way: one will immediately (non-inferentially) 



perceive a television screen, the other will immediately perceive a computer screen; one will 
immediately perceive a Triumph Spitfire 1300, the other only a car. The same individual, 
trained to recognise different types of cars, will have lost the capacity to see only vehicles. 
Thirdly, it is odd to be forced to remind to ANNs supporters that a human brain can learn an 
infinity variety of tasks, including recognising an extraordinary range of patterns, but none of 
them “erase” the previous ones, yet we have just seen that this is the case with ANNs matrices, 
whenever a network is trained with a new series of samples. ANNs are often praised for the 
massive parallelism of their computations, yet lacking short-term memories they are practically 
unable to do more than one thing at a time. Finally, there is a problem of levels of analysis. It is 
extremely unclear, not to say very confusing, whether people defending the similarities 
between artificial and biological learning processes are only limiting themselves to 
comparisons between an ANN and a brain, i.e. with the way in which neurons and synapses 
behave, or wish to extend their remarks to how people actually learn to recognise patterns. The 
often mentioned reference to a child learning to recognise the shape of a dog inclines one to 
suspect that the latter may be the unfortunate case, but then the absurdity is manifest, since one 
may learn to recognise the pattern of a graph, for example, by associating it with her favourite 
shape of cake, a round pie, and neurological, psychological and mental levels, if they are levels 
and not just independent phenomena, should not be confused. The point is not worth pursuing 
any further, but if a comparison cannot be avoided all together, then it is just a bit less 
misleading to compare ANNs training to the way in which photographic film is impressed by 
light. 
c) ANNs closely mimic the internal structure of the brain and they closely simulate its 
behaviour. 
A reply to the previous criticisms usually takes the form of a quick retreat and a counterattack. 
Artificial networks are indeed different from biological brains because they implement a much 
more simplified model. Nevertheless, the architecture and the processes are still very much the 
same, even if on a smaller scale, and by studying the former, we may learn a lot about the latter. 
This seems an odd muddle of mistakes. To begin with, the contrast between ANNs and BNNs 
is not a mere matter of scale or magnitude but essential, and current ANNs are not just 
incredibly simpler than BNNs, they are substantially different. What lies behind the opposite 
view is a combination of  
• some form of functional associationism about how mental contents come to be shaped 
• a structural atomism, according to which the whole has at most only amplified properties 

inherited from its components, and a grasping of the nature of the most elementary 
components will lead to a reconstruction of the properties of the whole, and  

• a methodological modularity, according to which the whole can be reconstructed piecemeal 
by a progressive combination of elementary components, and therefore functions that can 
be implemented correctly in a restricted domain can also be gradually enhanced until the 
domain eventually approaches the real-world in complexity and other features. 

But as the former tenet is too naive, so the latter two are exceedingly simplistic. A complex 
ANN may consist of hundreds, perhaps even thousands, of PE and connections, but compared 
to a brain it has the complexity of a grain of sand, and it is hard to see how such an 
impoverished type of knowledge representation system may give rise to higher-order concepts 
or intellectual activities. The brain consists of about one trillion (1012 = 1 thousand billions) 
neurons and a network of a thousand trillion (1015) of synapses (these are the ending parts of 
the axons). Now numbers here are not mere factors which allow us to grasp the nature of a 
BNN by simply multiplying by billions the features we find in an ANN. “Numerical 



advantage” is only another way of stressing the fact that systems have emergent as well as 
“submergent” properties: the former are not present in their parts but appear more and more 
distinctly only in whole combinations of them, the latter are present only in the parts and 
gradually disappear when the size of their bearers is scaled up, so “bigger” is usually equivalent 
to “different”. These emergent/submergent properties often represent what is really interesting 
in the system. The rich texture of a pencil stroke, the sponginess and taste of a cake, or the 
strength of an army are just a few simple cases of emergent properties; the lightness of a 
pebble, the brittleness of a sheet of paper and the actual computability of a problem are 
examples of submergent properties. Now, nobody would suggest that we may assess the 
strength of an army, for example, only by observing the strength of a single platoon, even if the 
platoon was exemplary, nor would anybody think of attributing to the whole army the mobility 
of a platoon. Yet, in the case of the present comparison, to look at ANNs as just smaller models 
of BNNs is like trying to reconstruct and understand the whole military history of World War II 
(mind that the relation is not yet correct, as there were only a few tens of millions of soldiers 
fighting) by looking at the behaviour of a platoon in a pacific island. Not only this is not a 
merely quantitative problem, it is above all a matter of completely different properties. An 
atomist and modular approach in the philosophy of mind may then lead to a few initial 
successes concerning some elementary functions, typically in the area of conscious perceptual 
experience, but is bound to fail when more general explanations are soon required. As Dreyfus 
has written, climbing a tree is not a first successful step towards reaching the moon, it is the end 
of the story.  

Secondly, although the life of the brain’s biochemical universe is still largely unexplored, we 
do know not only that neurons can promote, amplify, block, inhibit, and attenuate the micro-
chemio-electric signals which are passed on to them and through them, somehow like PE, but 
also that, contrary to PE, neurons are self-repairing and self-wiring, that there are many 
neurotransmitters of several different types (chemical agents that can transmit the activity of 
peripheral nerves onto their target organs) whose chemical properties, not just electrical 
intensity, deeply affect the behaviour of neurons; that the threshold membrane potentials in real 
neural networks are not completely plastic; and that they are probably not homogeneous 
processors. It turns out that even the platoon we are talking about belongs to a completely 
different army. The objection is often that, no matter how macroscopic the differences may be, 
after all we are still dealing with the same logical models, and it is at this abstract level of 
description that similarities between ANNs and BNNs can and should be appreciated. The best 
that can be replied is that nobody denies that, historically, neural computing was loosely 
inspired by investigations into modelling nervous system learning, nor indeed that a simplistic 
and rather superficial analogy concerning the very general structure of both ANNs and BNNs 
can be drawn. Like the brain, we have seen that ANNs can be thought of as consisting of inter-
connected neurons linked together by synapses and capable of firing electrochemical signals. 
What needs recognition is the crucial fact that this is as far as the analogy is actually worth 
pursuing, especially once we realise that, with a bit of effort, a logical model of London’s 
traffic lights system could be provided on the same basis. Some people seem to forget that there 
is a very wide variety of different types of ANNs, and that if a model, and not just one 
particular type of ANN, must be elected as the proper interpretation of the brain (is the brain a 
Kohonen net, a simple Back-propagation network, a Hopfie ld network, a Boltzmann network or 
what else?), then its logical description needs to be so generic to become, in the end, 
uninformative. 
d) Symbolic vs. Connectionist approach is an ultimate alternative. 



The success of ANNs is often explained on the basis of a philosophical assumption: if ordinary 
VNMs are not able to perform some intelligent tasks, most notably pattern recognition, this is 
because they lack the kind of structure and functioning we find in biological neural networks. 
By reproducing more closely the physical architecture of the brain—it is further argued—it will 
become possible to simulate brain functions increasingly well. From what has been said so far, 
it should be clear that such a view is mistaken because ANNs are not sufficiently similar to 
BNNs and because pattern recognition can be done successfully on conventional computers 
too, although writing the software is more difficult and time consuming, and the system will 
generally have a slower response. The symbolic approach—sometimes also called “classic”, 
according to which the brain is just a physical symbol system, i.e. a mechanism for interpreting 
and manipulating formal representations—and the connectionist approach to GOFAI competed 
with each other for some time only because they were both mimetic, i.e. they both tried to 
device the ultimate, unified theory of the brain, a goal that admitted only one winner. One may 
recall, for example, that the aim of McCulloch and Pitts was to show that an ANN could 
implement a Turing machine. But we know that neither a VNM nor an artificial neural network 
is necessarily meant to be a model of the brain or simulates closely enough its functioning, and 
that symbolic, software-based computers and connectionist, artificial neural networks offer 
only different approaches to computing that, contrary to popular belief, are not in competition 
but complement each other. So much so that ANNs are normally implemented on conventional 
computers and the latters are often used to supervise the neural network in order to perform at 
maximum efficiency. It turns out that a statement such as “artificial networks are better models 
of the brain than conventional algorithmic computers” is not very helpful, for there is no such 
an alternative. Both approaches can share the questionable, mimetic view that the brain is a 
special instantiation of a computing machine. 

Much more could be said on the topic, but I hope that the previous discussion has 
sufficiently clarified the main issues. There is no good reason to believe that ANNs and BNNs 
have necessarily anything more to share than a general conceptualisation of their models. The 
construction of ANNs was inspired by the discovery of the densely interconnected, parallel 
structure of the brain, and the construction of neuromorphic systems was an actual program of 
research when GOFAI was still thought to be possible. It failed. Today, actual ANNs do not 
work successfully because they mimic the brain’s structure and functioning, and the context of 
discovery should not be confused with the context of justification, nor taken together with the 
technological success of ANNs as a good reason to defend “mimetic connectionism” in 
philosophy or in cognitive science. The construction of ANNs does not need and can perfectly 
afford to ignore any further “neural inspiration”. As for “cognitive connectionism”, in so far as 
it supports the general view that cognitive functions depend, as emerging properties, on neuro-
chemical events distributed throughout the brain in processing elements linked by neural 
connections, its position is perfectly safe, if perhaps philosophically uninteresting. But when 
cognitive connectionism moves further, and attempts to reduce higher order mental states, 
including consciousness and feelings, to such neural distribution, modelling the “sub-
conceptual” level of description of cognitive processes using methods offered by technological 
ANNs, then it loses all neurological realism and much of its scientific value, opening the path 
to all possible speculations. ANNs do not resemble BNNs closely enough to attribute to such an 
isomorphism their successful performances, and technological interesting applications will 
more easily escape out attention as long as we shall waste our resources trying to clone an 
electronic model of the brain to simulate its intelligent behaviour. 



9.3. Parallel Computing 

ANN technology can be interpreted as a branch of parallel computing. As such, it is hardly the 
most successful, for the alternative, represented by CPU-based applications, is the most 
promising development of computing in the close future.  

Suppose you are in a magic castle. All rooms have one-way doors that allow you to move 
only in one direction. There is a treasure in the castle, and your intelligent task is to discover it. 
It is a search problem (where is the treasure?) which can easily be transformed into a decision 
one (is the treasure in room 1? Is it in room 2? etc.). The solution can be achieved by going 
through each room (the problem space) systematically. You would be acting as a vector. You 
may be lucky, and find the treasure in one of the first few rooms you visit, or indeed the magic 
castle may be so big that you shall never enter the right room. How can you improve your 
chances to discover what you are looking for? The options are few:  
1. run as fast as possible from one room to the other 
2. improve the direction of your searches, e.g. walking through the corridors looking inside the 

rooms without entering into them 
3. ask Merlin to scale down the castle and make it as well-structured as possible. The number 

of rooms remains the same, but they are now small and placed in neat rows, so options 1 and 
2 become even more efficient. 

Of course, the system castle/treasure/hunter is just a very simplified analogy of a classic 
computer. We have seen that VNMs have remained conceptually the same since the first were 
invented. The real difference is made by our abilities to exploit their computational powers 
more and more successfully. Present computers have faster clock, use better algorithms and 
have increasingly efficient architectures, while nanotechnology has greatly reduced the measure 
of their circuits. Is this an endless process, that will allow us to find any treasure more and more 
quickly, or is there something that shall escape our search for ever? Some reasons for 
pessimism are evident. There are physical boundaries to how many logic elements can be 
packed into smaller and smaller volumes and clocked at higher and higher frequencies, and 
strategies (1) and (3) face the physical constraints represented by the speed of light and atomic 
extension (the value of research in optical computers—standard VNMs capable to process very 
fast pulses of light instead of slower pulses of electricity—can better be appreciated from this 
perspective). Indeed, one may reckon that our technology is not very far from running against 
them. Strategy (2), however, offers a different perspective. Software development is largely a 
matter of human ingenuity and there is no theoretical boundary to the number of new 
algorithms that can be devised, or to the extent they can be further improved. This explains why 
(2) can also lead to a fourth solution of our treasure-problem:  
4. you may plan your search by organising a team of treasure hunters, e.g. by assigning a floor 

to each one of them. 
This is known as parallel computing, and it is made possible by algorithms and procedures that 
can efficiently network and orchestrate multiple processors to execute parts of the same 
program simultaneously. The conceptual strategy is “Fordist” in nature, hence simple and 
powerful: the physical constraints, to which the computational power and the maximum 
execution speed of a machine are subject, can partly be overcome if long and difficult 
instructions, constituting a single computing task (vectorial analysis), are broken down into 
smaller and easier instructions, which can then be more quickly executed independently from 
each other by a series of collaborating PEs, working simultaneously as components of a single 
parallel processing computer (PPC). 

A common way to introduce a simple model of a PPC is by considering it a multicomputer, 



based on the Von Neumann model of computation—a number of CPUs, connected together 
into a network, access instructions and data from their own memories and execute different 
sub-tasks serially—or an abstract model of a parallel multiprocessor, called PRAM (Parallel 
Random Access Machine), in which identical processing units can access any element of a 
commonly shared memory in the same amount of time. More generally, we may say that a PPC 
consists of  
1. a set (from hundreds to thousands) of central processing units (often termed, in this case too, 

PE, processing elements) with a high computational rate, using a large and fast memory 
(either local or shared) 

2. high speed interconnection network and/or bus connections linking the PEs. Traffic among 
the PEs may be more or less intense, since, depending on the architecture, the PEs may run 
independently of each other, possibly under the control of another processor, or may need to 
co-ordinate themselves constantly, and 

3. special algorithms (often written in Fortran77, C, and C++) required to carry on the 
organisation and synchronisation of “parallel tasks”, i.e. the temporal co-ordination and 
execution of the logically discrete sections constituting the computational work.  

If any more “intelligent” tasks will be performable by our future computers this is very likely 
because of our improved capacities to make them work in teams. What cannot be sufficiently 
stupefied to become manageable by a single Von Neumann machine may be a joke for an army 
of them. And yet, a word of warning is in order. For it would be a mistake to assume that 
nothing can resist the “parallel force” of a PPC. We shall return to this problem in the next 
section. Here, we need to recall that, when evaluating the advantages of parallel computing, 
four essential factors must be taken into account, and these are sufficient to show the limits of 
any PPC. 
i) The appropriate nature of the problem to be solved. 
Not all computational problems are “parallelisable”, i.e. suitable to logical partition of tasks, or 
such that they can really benefit from it. Problems that either lack a structured solution or have 
only a vectorial solution (a concatenated solution with a serial structure in which there is a 
rigid, linear dependence between tasks, whose order of execution affects the results of the 
overall computation), present no logical features that a parallel system can fruitfully exploit. 
They can still be processed by a PPC, but their relative speedup (the ratio between real time of 
serial execution and real time of parallel execution) is equal to 1. Compare two typical 
examples: the computation of the potential energy for each of several thousand independent 
conformations of a molecule and then of the minimum energy conformation is a parallelisable 
problem; the computation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of the formulae 
F0 = 0; F1 = 1; Fn+2 = Fn+1 + Fn, for n ≥ 0 allows only a linear approach. In this case, a PPC 
would be no more useful than a standard computer. 
ii) The appropriate nature of the parallel architecture used to treat (i) 
Suppose we are dealing with a fruitfully parallelisable problem, such as our treasure decision 
problem. What kind of parallel architecture is best suited to treat it? Parallel computing 
functions can be implemented in several ways. Flynn's classical taxonomy—based on the 
combination of the number of instructions, which can be executed at a time, and the number of 
data (data streams) on which a computer can operate at a time—distinguishes between four 
classes: 
1. SISD (Single Instruction and Single Data Stream) 
This is the traditional model of a sequential computer (VNM), such as the simple PC discussed 
in chapter two, in which instructions are executed one by one, on a unique series of data 



retrieved from memory. Note that if a SISD machine needs to perform the same instruction on 
many different data, then it must fetch the same instruction many times, once for each datum. 
Things get even worse when there are loops that force the machine to execute many 
instructions for each piece of data. Because of this architecture, an ordinary VNM can perform 
much more slowly than the arithmetic unit is capable.  
2. SIMD (Single Instruction and Multiple Data Streams) 
This multiprocessor machine is one of the typical models of a PPC: all PEs execute the same 
instruction (search for the treasure) synchronously, but on their own data (in different series of 
rooms) retrieved from their own local memory, under the control of a supervising CPU.  
3. MIMD (Multiple Instruction and Multiple Data Stream) 
This is the typical multiprocessor model of a PPC, in which synchronisation is no longer a 
necessary requirement, and each PE can execute different instructions on their own data, and 
communicate asynchronously whenever needed. 
4. MISD (Multiple Instruction and Single Data Stream).  
This is not an implemented model of computation.  
Another standard classification of parallel systems, based on memory and communication 
models, results orthogonal to Flynn's:  
a) SM (Shared Memory) system, in which multiple PEs access and use the same global 

memory, communicating very rapidly via common memory locations, so that a PE writes 
to a location, and the other reads from it.  

b) DM (Distributed Memory) system, in which each PE has its own local memory, and 
communicate (more slowly than in (a)) with other PEs by creating and sending data packets 
(messages) which are received and used by another PEs. DM systems are therefore also 
known as “distributed memory, message passing systems”.  

Combinations of (2)/(3) and (a)/(b) give rise to hybrid models and, more significantly, to shared 
memory MIMD systems and distributed memory MIMD systems. Now, different parallel 
architectures may be more or less appropriate to solve different parallel problems, depending 
on the “granularity” of the latter, i.e. the amount of computation that can be done in parallel 
tasks. Granularity of parallelism ranges from fine to coarse. If the granularity is fine, then the 
latter has a high degree of modularity (its solution can be reduced to a large but still finite series 
of sub-tasks, each of them rather small in terms of number of instructions and execution time) 
and requires a low degree of distributed computational power (only a limited amount of 
computational power is needed to carry on each sub-task); if the granularity is coarse, then the 
degree of modularity of the problem is low and the required degree of distributed 
computational power is high (the solution can be reduced to a rather small series of sub-tasks, 
and each of them can be solved concurrently but using a large amount of computing power). 
Clearly, the more finely grained a problem is the greater the potential for parallelism and hence 
speed-up are and the better it can be computed by means of a SIMD system, whereas the more 
coarsely grained it is, the more a MIMD system will be suited. However, the finer the 
granularity, the greater the parallel overheads (time wasted in running parallel tasks as opposed 
to execute computational instructions) of I/O tasks, synchronisation and communication latency 
(time wasted by a PE waiting for messages to be sent/received; this is not to be confused with 
bandwidth communication overhead, which refers to the rate at which data are exchanged 
between PEs), while risks of other serial bottlenecks (chains of instructions that must 
necessarily be executed one after the other), negative load imbalance (an uneven distribution of 
work among parallel tasks resulting in some PEs being idle while waiting to begin the next 
computational instructions) and even deadlocks (all tasks waiting to receive data, but no one 



sending them) increase.  
iii) The specific elaboration of appropriate algorithms to match (i) and (ii). 
Even if a problem can be successfully parallelised by exploiting the right architecture, parallel 
methods still require the elaboration of specifically designed algorithms. Everyone is 
acquainted with the difficulties inherent in co-operative problem solving, which usually need a 
clear assignation of tasks and a rather firm division, if not a hierarchy, of responsibilities. 
Likewise, detailed and precise instructions for partitioning the overall problem into separate 
tasks and allocating tasks to processors are vital. Methodologically, parallel software should 
then satisfy four conditions:  
• modularity (the partition of complex tasks into more simple sub-tasks components) 
• high concurrency (capacity of parallel multitasking) 
• high scalability (capacity to maintain a satisfactory performance when the number of 

processors involved increases), and  
• (possibly) high locality (maximum reduction of time spent in send/receive processes in 

favour of read/write processes), since access to data stored in local (same PE) memory is 
less time-consuming than access to data stored in remote (different PE) memory. 

iv) The efficiency of the parallelisation (low degree of overhead) and the upper limit of 
parallelisation. 
There are limits to how far a problem can be fruitfully treated by a multiprocessor system and 
the boundary of efficient parallelisation is well formulated by Amdahl's Law (named after Gene 
Amdahl): if 1.0 denotes the whole computational task, and S is the fraction of the computation 
task that is intrinsically sequential (at least the unparallelisable I/O stage), then 1.0 – S is the 
fraction of the computation that can be parallelised, and the ideal, maximum degree of speedup 
achievable using N processors is given by the ratio 1.0/(S + (1.0 – S)/N). Of course, Amdahl’s 
Law ignores all other real-life factors, but it is already useful to clarify two facts. Firstly, the 
speedup tends, but can never be equal to 10, the more processors we employ in our system, 
since every computational problem has a sequential component that will eventually limit the 
speedup of its parallelised version. Secondly, and more interestingly, there is an optimum 
threshold of costs/benefits beyond which adding more processors is no longer worthwhile. For 
example, assuming that the problem is 90% parallelisable, that S = 0.1, and that a system has 
• 5 processors, we will have an ideal speedup = 1.0/(0.1 + (1.0 – S)/5) = ca. 3.57 
• 50 processors, we will have an ideal speedup = 1.0/(0.1 + (1.0 – S)/50) = ca. 8.47 
• 500 processors, we will have an ideal speedup = 1.0/(0.1 + (1.0 – S)/500) = ca. 9.82. 
Clearly, the effective jump is from 5 to 50 processors, while adding another 450 processors is 
exceedingly expensive and does not speed up the performance of the system significantly. 
More technically, the slope of the function can be directly related to the degree of scalability of 
a parallel system, to which the addition of more processors (additional CPUs are added to 
absorb the increased transaction volume or more complex processes) yields a proportionate 
increase in parallel speed-up. More trivially, two people working on the same task are much 
better than one, but three may not make a big difference, while four may be a hindrance. 

In the short history of computing, parallel technology is a relatively new phenomenon. In 
1982 two Cray-1 supercomputers linked in parallel (the Cray X-MP) proved to be three times 
faster than a single Cray-1, and the year after Thinking Machines Corp. and Ncube begun to 
promote parallel processing as a commercially viable solution. Because of their power, PPCs 
are also sometimes known as supercomputers while they have also been denoted by the 
expression high performance computers because of the HPCC program (High Performance 
Computing and Communications) launched by the US Government in 1991, although in both 



cases the expressions included other systems not necessarily based on parallel architectures. In 
1997, only one of the top twenty fastest supercomputers relied on a vectorial approach, all the 
others were parallel processors. This advancement in parallel computing caused the USA to 
become once again the leading country in a sector which had been dominated by the Japanese 
industry since 1990: sixteen of the supercomputers in question were built by American 
companies, only four in Japan. 

This short history does not mean that the advantages of a PPC are either marginal or unclear. 
On the contrary, given the same computational power, it is already becoming more cost-
effective to produce a PPC using a number of fairly fast but inexpensive processors, whose 
cumulative memory can also be very large, than a PC based on the last Intel model. 
Interestingly, dual-processor capability was already a required feature for entry-level 
workstations during the first quarter of 98. A dual-processor PC has a motherboard that 
contains two CPUs and is designed to run an OS such as Windows NT, which supports 
symmetric multiprocessing (SMP). SMP is a multiprocessing, scalable architecture in which 
two or more CPUs, connected via a high-bandwidth, share the same memory and hence the 
same programs, and are managed by the same OS in a roughly non-hierarchical way (“roughly” 
because one of the CPUs is still responsible for the booting procedures). The presence of more 
than one CPU may improve fault resilience—the system may still be able to work with only 
one processor available—and obviously boosts the performance of the system, since 
applications can be run by the several processors interchangeably, and all multithreaded 
applications, multitasking or concurrent operations are parallelisable and can be executed 
simultaneously. This is not yet full parallelism, for software is not specially written for 
multiprocessors computers, but it certainly represents an interesting step towards it. 

In a world more and more pervaded by digital networks, it is to be hoped that PPCs will be 
able to take advantage of the growing distributed computational power that is becoming 
increasingly available. It is already possible to device a networked computer as a PPC, rather 
than just a dumb terminal. Distribute computing and the possibility to concentrate 
computational resources on important computational problems is one of the next crucial 
challenges of ICT. PPCs address the possibility of scaling up some computational problems 
(solving bigger problems in the same time) rather than just speeding them up (solving the same 
problems in less time). This means widening the possibilities for computational applications. I 
remarked in chapter one that numerical models and simulations are a fundamental complement 
to theory and experimentation in engineering and scientific research and have become crucial 
also for the development of entertainment products. Computational inquiry is more and more 
often employed in the study or reproduction of all sorts of phenomena that are either too 
complex (e.g. because of the time scale), expensive or dangerous to be dealt with directly, 
through realistic physical experiments. The number of fields of application is constantly 
increasing, and include what have been identified, within the HPCC project, as the “Grand 
Challenges”, fundamental problems in science and engineering, with potentially broad social, 
political, and scientific impact, that can be advanced by applying high performance (including 
massively parallel) computing resources: 

 
1. Computational Chemistry (CC)—parallelise key chemistry codes that permit researchers to study 
environment problems, using techniques such as self-consistent field (SCF), second order many-
body perturbation theory (MP2), and Configuration Interaction (CI) codes.  
2. Computational Structural Biology—develop methods for modelling components of genomes and 
a parallel programming environment for structural biology. 



3. Mathematical Combustion Modelling (MCM)—develop adaptive parallel algorithms for 
computational fluid dynamics and apply these methods to key problems in commercial burner 
design. 
4. Quantum Chromodynamics Calculations—develop lattice gauge algorithms on massively parallel 
machines for high energy and particle physics applications 
5. Oil Reservoir Modelling—construct efficient algorithms for parallel systems to model fluid flow 
through permeable media for better oil recovery methods from wells. 
6. The Numerical Tokamak Project—develop and integrate particle and fluid plasma models on 
MPPs as part of a study of Tokamak fusion reactors. 
7. Global Climate Modelling (GCM)—develop and implement versions of large-scale atmosphere 
and ocean general circulation models for MPPs. 
8. Groundwater Transport and Remediation (GTR)—design and implement a multiphase 
groundwater transport code with interface tracking, fracture flow, microtransport; and 
9. First Principles Simulation of Materials Properties—develop scalable parallel algorithms for 
performing local density approximation simulations of materials to novel properties for the 
Materials Properties Grand Challenge (MPGC).  
At the end of FY 1996, Phase I of the GC program was terminated. An RFP was published for 
Phase II of the program with project starts early in FY 1997. The intent and grant procedures of 
Phase II are similar to Phase I but the projects now incorporate a infrastructural component to 
insure that the projects have the computational resources to complete their proposed goals. 
(from http://www.ccic.gov/pubs/imp97/48.html) 

 
This is a list that standard literature on the topic easily extends to include the improvement of 
services such as airline scheduling, mutual fund management, or video-on-demand; 
environmental modelling of past and potential pollution in air and ground; car crash simulation; 
integrated design and manufacturing systems; design of new drugs for the pharmaceutical 
industry by modelling new compounds; simulation of electromagnetic and network properties 
of electronic systems, and so forth. These numerical models, simulations and applications 
require a tremendous amount of computing power which goes well beyond the resources of 
traditional sequential computing systems and can be provided only by massively parallel 
computing systems (MPPS), capable to complete more than three teraflops (three trillion 
floating-point operations per second). As a result, it is easy to predict that the next era of 
computing is going to be dominated by parallel technology. There remains a major, 
methodological problem, however, which is widely acknowledged but that only time will solve. 
For decades, the whole world of computer science and technology has focused on 
monoprocessor architectures. All that work needs now to be re-considered. There is a great 
need of scientific and technological research on software, operating systems, programming 
languages, algorithms, applications, hardware implementations, programming tools and 
methods and other standards for parallel computing. This probably the greatest of all challenges 
faced by PPC technology. 

It may not be a long time before PPCs shall be as common as PCs, and one may wonder 
whether by then the philosophy of mind will have been influenced by the new computational 
model of not-ANN parallel processing as much as it has been by Turing machine, neural 
network, and the now-fashionable quantum computer models.  

9.4. Computational Complexity 

When searching our magic castle, in the previous sections, we have noticed that strategies 
(1)/(4) are still insufficient to solve all theoretically computable problems. To understand why, 
we need to introduce a few more technical explanations.  



A computational problem P has a descriptive and a computational complexity. The 
descriptive complexity of P is a precise indication of the “semiotic” costs incurred in the 
description of P in some logical formalism, in terms of amount of symbolic resources required 
by the codification of P. The computational complexity of P connotes its degree of difficulty, 
and it is a precise indication of the costs incurred in the computation of the solution of P. It is 
calculated  in terms of amount of resources employed by an algorithm A—or, equivalently, by 
a Turing machine TM implementing it—to complete its task and solve the problem, 
independently of the programming language in which the algorithm is written. Both forms of 
complexity are mathematically related, but in this context we can concentrate only on 
computational complexity. 

We know already from chapter two that the main resources used by a computer are time and 
memory space, so when we talk about the computational complexity of P we may either refer to 
its  
• space complexity (SC) = the amount of storage memory required by TM to run A and solve 

P 
• time-complexity (TC) = the amount of time required by TM to run A and solve P.  
Given SC and TC, the overall complexity of a problem can be classified according to the rate of 
growth of the memory space and time required to solve it. Now, time complexity is usually 
taken to be more important because space is re-usable, so let us limit further our attention to TC 
only. 

TC is calculated in terms of number of time steps that the algorithm takes, as a function of 
the problem size, and for the worst case input. In chapter two, we saw that the size of the data 
to be manipulated by an algorithm to solve a problem can be quantified in terms of number of 
symbols and length of tape used by TM as input. Assuming that n gives the measure of the 
length of the data input x to be computed by TM to solve P, we can organise computable 
problems into classes depending on their n. The standard way of describing complexity classes 
is by classifying formal languages Ls that can represent decision problems and can be 
recognised (i.e. solved) by a TM, but in this context we may adopt a more informal approach. 
Let us suppose that A is a specific algorithm for solving a particular class of problems C and 
that TMA is a Turing machine implementing A. We know that TMA must perform a certain 
number of operations O on its x data to solve P ∈ C before it halts (if TMA does not halt then O 
remains undefined, see the halting problem in chapter two) or, more briefly, that O(TMA, x). 
The complexity function fA(n), for all non-negative integers n, gives now an upper bound on the 
maximum number of elementary operations that TMA needs to perform on x of size n to solve 
P. This gives us 
• the complexity function: fA(n) = max (O(TMA, x) for |x| = n).  
The complexity function indicates the running time of the algorithm A, but does it also indicate 
the time-complexity of the corresponding class of problems C? Not yet, because there can be 
several known algorithms {A1,…,Am} and therefore TMs for solving the same class of 
problems. Since they may have different degrees of efficiency, the time-complexity of C or (for 
the sake of simplicity) C complexity must be defined as being equivalent to the lowest degree 
of complexity of the best algorithm, among all known algorithms devised to solve C, based on 
the data input set x that results in the longest possible time, that is 
• TC(P) = min (f1(n),…, fm(n)).  
The formula indicates how the number of operations required for the solution of P may vary 
depending on n according to the most efficient algorithm. For example, if the best algorithm to 
solve P has complexity TC = n2 this means that, when the size of the data input of P doubles, 



the solution requires at most four times as many operations. We say at most because, as in the 
magic castle, the computer could find the solution before, hence the function sets only the 
upper bound, the highest degree of bad luck, as it were, indicating the worst case complexities.  

Of course, if we assume that TMA halts and hence that O does not remain undefined, then 
fA(n) is bounded, either polynomially or exponentially. To understand how, let us organise best 
algorithms and corresponding problems into a hierarchy of classes having increasing degrees of 
complexity. We can start from 
1. the class of polynomial-time complexity problems (P) 
These are problems which require algorithms whose time-complexity increases in constant, 
linear or at most polynomial relation with the size of the input x. A polynomial is an algebraic 
expression consisting of a sum of terms each of which is a product of a constant and one or 
more variables or indeterminates raised to a non-negative integral power. If there is only a 
single variable y, the general form is given by a0y

n + a1y
n-1 + a2y

n-2 + … + an-1y + an, for 
example 2y4 + 3y3 + 5y + 7. When the highest power of y (i.e. the degree deg of the 
polynomial), is 0 we have a constant time-complexity function, when deg = 1 we have a linear 
function, for deg > 1 (in the given example d = 4) we have a polynomial function. In each case, 
since the number of elementary operations required by TM to solve P with a data input x of size 
n—that is, the function (O(TMA, x) for |x| = n)—increases with n no more rapidly than a 
polynomial in n, the algorithm implemented by TM is said to be executable in polynomial time 
and the problem itself to have a polynomial complexity. The number of operations is never 
larger than some constant multiple c of n raised to some fixed power k, that is O ≤ c × nk, so the 
complexity of problems in the class P grows slowly enough to make the corresponding 
algorithms usually computable by a deterministic Turing machine (or perhaps a group of them) 
efficiently in a reasonable time. As an elementary example, you may think of an algorithm to 
find the treasure as ƒ (n) = 5R, where 5 is the number of boxes to be searched in each room and 
R the number of rooms. Increases of R will not cause the complexity of the problem to escalate 
beyond control. Algorithms for problems in P are said to be polynomially bounded and 
efficient for run-time. 

If TM is a nondeterministic Turing machine—that is, it consists of a guessing TM that writes 
a guessed solution on the basis of some arbitrary internal algorithm, and a deterministic TM 
that evaluates in polynomial time the guesses by a 1 or a 0, to check if the solution is correct—
we can speak of  
2. the class of nondeterministic polynomial-time complexity problems (NP) 
This is the class of problems for which we can check solutions in polynomial time by a 
nondeterministic TM. The number of steps required by TM to check  a solution of an NP 
problem is still a polynomial function of the size of the input. Without the NP class, many 
algorithms that are statistically tractable would not be considered computable within a 
reasonable (i.e. polynomial) time on the basis of (1) simply because of the limits affecting the 
linear process of a deterministic TM.  

Among NP problems, we find two important classes  
3. the class of nondeterministic polynomial-time hard complexity problems (NP-hard) 
these are problems for which there is a polynomial time reduction to NP-complete  problems, 
and 
4. the class of nondeterministic polynomial-time complete complexity problems (NPC or NP-

complete)  
NP-complete  problems are the most difficult problems in NP. If a problem is NP-complete  
then it requires an exponential time and is extremely unlikely (though it has not been proved) 



that there is an efficient algorithm to solve it in polynomial time. Two famous NP-complete 
problems are the  
• Travelling Salesman Problem 
a salesman wishes to perform a tour of a given number of cities, calling at each city once and 
only once and travelling the minimum total distance possible, and  
• William Hamilton’s problem in graph theory 
given a n-vertices graph—a collection of vertices and edges G (V,E)—we wish to discover 
whether there is a Hamiltonian circuit in G (the calculation of the presence of a cycle of edges 
in G, i.e. a linear path, through which every n ∈ V is visited once and only once).  
In terms of computational complexity, both problems are demonstrably equivalent.  

A problem P1 is said to be a member of the NPC class if and only if any other problem Px in 
NP can be functionally reduced to it in polynomial time (Px < =p P1). Of course, if a member of 
NPC could be proved to be functionally reducible to a problem in P this would prove the more 
general result NP = P. Whether this equation is correct represents one the most important open 
problem in Computational Theory. So far, it is known that P ⊆⊆  NP but all attempts to prove 
that NP = P have been unsuccessful. This is often, though not necessarily, interpreted as 
evidence that no NP-complete problem is actually P-solvable, so that P ≠ NP and  NP ⊃ P. 
This remains only a reasonable conjecture. 

Problems in P or NP are sufficiently economical in terms of resources required for their 
solutions. This is no longer the case for NPC problems. More generally, computable problems 
for which no polynomially bounded algorithm is known, such as the NPC problems, but can be 
solved by exponentially bounded algorithms, belong to a higher order class of intractable 
problems, i.e. 
5. the class of exponential time algorithms EXP, whose complexity increases according to a 

function that raises x to the power of its argument, i.e. ƒ n = xn.  
Suppose one needs to make 5R operations to discover the treasure, where R is still the number 
of rooms in the castle. The algorithm will be O(5R), and for any extra room Morgan Le Fay 
adds to the castle to hide her treasure one will have to carry on an exponentially higher number 
of operations.  

Is there any way we may solve problems of class EXP via strategies (1) and (3) (running 
faster and scaling down the space)? We have seen that the answer is in the negative. Now that 
we know what a NPC or EXP problem is, we can describe intractable problems as problems 
which have no polynomial time solutions. There are completely intractable problems, i.e. 
problems that cannot be solved by any algorithm, such as the halting problem, Hilbert’s tenth 
problem (solvability in integers of an arbitrary polynomial equation P = 0 with integral 
coefficients) or the several problems of “tiling the plane”. In chapter two, we have defined them 
as undecidable . Then there are decidable  but intractable problems, which are solvable in 
principle, but cannot be solved in polynomial time even if we use a nondeterministic system 
with the ability to pursue an unbounded number of independent computational sequences in 
parallel. We define these problems as non-deterministically intractable. Contrary to 
polynomial-time problems, exponential-time problems are non-deterministically intractable and 
their solutions become very quickly impractical even for reasonably small values. One of the 
most significant examples is the problem posed by the prime factorisation of integers. In 
chapter two, we encountered the multiplication of two primes 149 × 193 and the factorisation 
of their product 28757. We can now say that multiplication belongs to P, while factorisation 
belongs to EXP. A five digits number may require an hour work to be factorised by trial and 
error, and although there are some good algorithms for relatively small integers, less than 120 



decimal digit long, a 240-digit integer would already require billions years to be factorised by 
the fastest algorithms available. This owning to the fact that all universal algorithms devised so 
far for a “Newtonian” system have exponential complexity. The amount of time they need in 
order to find the prime factors of a number grows as an exponential function of the size of the 
number and very quickly the problem becomes computationally intractable, not in principle 
(recall the unbounded resources of a TM), but in practice. This is why systems for data 
encryption rely on factoring algorithms. No matter how far we improve the speed and the 
architecture of our present hardware, there is no way a classical computer can discover, in a 
reasonably short time, the factors that break the code if the number in question is a few 
hundreds digits long. The potential growth of the computational performances of our present 
hardware is constrained by the laws of physics. Time is a finite resource, and computable 
problems which demand too much of it are bound to remain forever unprocessable by 
monoprocessor machines, even if we know how to reach a solution, simply because there is not 
enough time to compute it. You may think of such problems as very far planets that we know 
how to locate but shall never be able to visit, even if a whole colony of human beings was 
willing to travel for thousands of years.  

The treasure in the castle can be beyond your reach. Or so it seems. For, on the one had, we 
may hope that strategies (2) (improving the algorithms being used) and (4) (parallel computing) 
will allow us partly to overcome some of our hardware limits. After all, nobody has proved that 
there can be no polynomial-time algorithm for the factoring problem. On the other hand, there 
is one more radical strategy, concerning (1) and (3), which still needs to be taken into account. 
Conditions (1)/(4) try to improve the time-consuming nature of our search. In exploring the 
castle, we rely on the same basic sequential logic that determines the physical constraint of 
classic computers. The key-word in classical computing is therefore sequential time, no matter 
whether it is shortened by spreading it over a number of parallel processors. Computational 
problems with an exponential-time degree of complexity prove that there is a physical limit to 
how far the chronological features of the hardware of a Turing machine working sequentially 
can be improved. But if hardware results constrained by physics, we may need to change the 
former (parallel computing) or the latter. Imagine you could step out of the castle and have a 
look at it as if you had a plan in front of you. You could see immediately where the treasure is, 
and get it at once, no matter how many rooms are there. Quantum computing attempts to step 
outside the physical limits of our standard computers and build a machine which may enjoy 
such an external perspective, i.e. a discrete, non-deterministic Turing machine in which the 
physico-topological features of the hardware have been completely transformed. In theory, this 
means trying to overcome the constraints limiting our present Newtonian systems to take 
advantage of features offered by quantum systems. Stepping outside is a space move and the 
new key-word becomes quantum states. More in details, this requires a radically new way of 
codifying data and a new way of processing them. 

9.5. Quantum computing 

Conceptually, the architectures of a conventional and a quantum computer do not really differ: 
QCs are Quantum TMs that implement algorithms that obey the laws of quantum physics. Data 
are uploaded as registers, which are then processed via logic -gates operations to achieve the 
desired computation under the control of an algorithm, and the results of the computation are 
encoded as further data registers until the output is finally made available to the user. The 
essential difference is precisely in the physics of the whole process. A conventional computer 



encodes, stores and processes discrete n-data registers according to a Newtonian-like physics 
which allows each bit of data to be only in a fully determined, definite state at a time. Hence a 
conventional bit is either 0/off or 1/on and can represent only a single value. A quantum 
computer QC, on the other hand, exploits the possibility of quantum states of atomic particles 
to store data registers in a definable  but still undetermined quantum superposition of two states 
at the same time. The two logical states (known as “eigenstates”) are represented by |1> and 
|0>, and a quantum bit (qubit) is a two-level system that can be set in any superposition |ψψ> of 
these two coexisting states: 
• |ψψ> = c0|0> + c1|1> 
Now the coefficients ci can vary, but we may simplify here by adopting the formula a|0> + 
b|1>, where the coefficients a and b (represented by complex numbers) are the amplitudes of 
each state normalised constants (so that a + b = 1), and can roughly be thought of as indicating 
the probability that the qubit will be found in that state (in other words, you can read a|0> as 
roughly meaning “there is an “a” number of chances that the qubit will be found in the 0 
state”). This does not mean that a qubit has only a statistical existence, as some intermediate 
value between 0 and 1, or that it can be fuzzified. A qubit is actually in both the 0-state and the 
1-state simultaneously, although possibly to different extents, which can be viewed as 
probabilities quantified by the amplitudes. It is a vacillating monad of information, and it is 
only once its state is observed or measured that it invariably collapses to either 0 or 1. This 
natural phenomenon of superposition, physically present in quantum-mechanical two-level 
systems such as spin-1/2 particles or two level atoms, is strongly counter-intuitive, for common 
sense find it difficult to grasp how a qubit could be in two opposite states simultaneously. 
Unfortunately, conceptual explanations often prove even more incredible and metaphysically 
obscure than the factual explanandum they try to rationalise or make sense of. In this context, 
the philosophy student may perhaps take advantage of her acquaintance with Hegel’s dialectics 
and look at quantum superposition |ψψ> in terms of Aufhebung (sublation), a process whereby 
contradictory positions are reconciled in a higher unity by being both annulled and preserved 
(aufgehoben) in their synthesis at the same time (an Hegelian example is finite and infinite in 
the synthesis of the absolute). Once qubits are introduced as “aufgehoben” data units, the next 
step is to consider quantum logic gates that may perform Boolean-like operations upon 
quantum-mechanical superpositions of states, to generate other superpositions and eventually 
the desired output. Special logic gates have to be devised to control the interaction between 
qubits and generate coherent change in their states. Having modified the very physics of 
information storage, the implementation of a probabilistic logic of computation of amplitudes 
must also be adopted. Quantum gates for logical operations such as NOT and XOR on qubits 
are perfectly possible mathematically. The desired output of quantum computations is obtained 
through the measurement of the quantum mechanical probability amplitudes of the resulting 
qubits. Superposition, atomic interference to modify the state of qubits, quantum gates and 
operations on amplitudes finally make possible a QC whose computations involve two or more 
different qubits. A QC can now be described as an exponential, non-deterministic Turing 
machine. To understand its extraordinary computational power, let us compare two data-
registers machines searching for a particular pattern among all possible combinations of 8 bits. 
A conventional 8-bit register computer can only operate sequentially on one of its 256 possible 
states at a time (28, all the 8-digits sequences that can be obtained from combinations of 0s and 
1s). To prepare each state of a Newtonian register of n states a classical computer needs n 
operations. Take now an 8-qubit register QC. Let us assume, for the sake of simplicity, that the 
amplitudes of the superposition of each qubit are such that measurement of the qubit will result 



in the |0> state with a “probability” of 0.5, and the |1> state also with a “probability” of 0.5. We 
can “load” the quantum register in polynomial time to represent all 28 states simultaneously, 
because n elementary operations can generate a state containing 2n possible states. Each of the 
256 combinations has an equal probability of turning up with each measurement, and a single 
QC can now perform 28 operations at once, sifting through all the qubit patterns 
simultaneously. This is known as quantum parallelism, as opposed to standard parallel 
computing. In theory and simplifying a little, the elementary parallel system introduced in 
section 9.3 as a network of Von Neumann machines would have to co-ordinate 28 PEs to 
achieve the same result in one operation. Having the whole matrix of 28 states in front of itself 
in one operation, a QC can explore all possible solutions of the problem simultaneously. 
Constructive and destructive interferences with the qubits suppress irrelevant patterns and 
enhance those interesting, and the QC finds the particular pattern it is searching for in only one 
computation. We have stepped outside the castle and found the treasure in a moment, by 
looking at the map, as it were.  

The larger its register, the more exponentially powerful a QC becomes, and a QC with a 
register of 64 qubits could outsmart any network of supercomputers. Quantum computers, if 
physically implemented, would then represent utterly new types of machines, qualitatively 
alternative to our present VNMs. They could perform massively parallel computations, not by 
organising many processors working in tandem, but thanks to a quantum processor which 
would operate on coherent superpositions of qubits simultaneously. We can even speculate 
about the computational power of a network of QCs and quantum super-parallelism. QC could 
solve, in polynomial time, problems that we have seen require an exponential time to an 
ordinary computer. This also includes the prime number factorisation, as Peter Shor proved by 
developing in 1994 the first quantum-mechanical algorithm for factoring efficiently. Thanks to 
Shor algorithm, a QC with the same clock speed of an ordinary PC could break the keys of any 
factoring-based cryptosystem, such as the widely used RSA, in a few seconds, while the 
problem remains simply intractable for the PC itself. Owning to the crucial importance of such 
a practical application, Shor's algorithm has had a remarkable impact and since its appearance, 
it has prompted a sudden increase of interest in quantum computing.  

Quantum computing is a very young discipline. In 1981, Paul Benioff was among the first to 
apply quantum theory to computing problems, devising a quantum-mechanical simulation of a 
Turing machine. The year after, Richard P. Feynman addressed the possibility of a new 
quantum dynamics for computers that could mimic the behaviour of any finite physical object. 
In 1985, David Deutsch devised a Turing-like conceptual model of a QC, proving that there is a 
“universal QC” which can compute anything that a finite machine obeying the laws of quantum 
computation can compute. Deutsch’s important proof provides us with a “quantum” equivalent 
of Turing Theorem for UTM: there exists a universal quantum Turing machine that can 
simulate any given quantum Turing machine with only a polynomial slow-down. Since the 
eighties then, the relationship between information theory and quantum mechanics has become 
increasingly clearer, together with the potential advantages of a QC and the formidable 
engineering problems associated with its physical implementation. The potential advantages are 
intuitive. Such great computational power may force us to re-think the very concept of 
problems complexity. Not only would QCs make present applications in cryptography, based 
on factoring difficulties, obsolete, they would also provide new means to generate absolutely 
secure cryptosystems (based on wavefunction collapse) and, more in general, transform into 
trivial operations statistical computations that are of extraordinary complexity. Physicists could 
then use QCs as powerful new modelling tools to investigate quantum physics hypotheses and 



phenomena that are computationally too complex for our present technology. 
Unfortunately, the difficulties in building an actual QC may turn out to be insurmountable. 

“Newtonian computing” is based on the fact that topological resources (space, location, 
stability of physical states etc.) are not a major problem, time is. Quantum computing deals 
with the chronological difficulties of Newtonian computing by means of an ontological shift in 
the theory of complexity. The relation between computational time and space is inverted (time 
becomes less problematic than space) if it is possible to transform quantum phenomena of 
superposition, which are short-lasting and uncontrollable at a microscopic level, into quantum 
phenomena that are sufficiently long-lasting and controllable at a macroscopic level to enable 
computational processes to be implemented. Quantum computation is achievable only if this 
ontological shift becomes empirically feasible, and this in turn is possible only if we can design 
and build a technology that can  
a) lower the technological level at which we can successfully control quantum phenomena. 

This includes the scalability of technical devices; 
b) extend the time-length of the quantum phenomena supporting the computation. This means 

contrasting the decay process, by which a quantum system dissipates energy in the 
environment, caused by the coupling of the system with the environment; 

c) allow a QC to interact with quantum phenomena indirectly (any direct approach affects the 
nature of its reference) without causing their decoherence. To perform a successful 
quantum computation, a QC needs to maintain a coherent unitary evolution of the quantum 
phenomena involved until the computation is completed. The destruction of the coherent 
state is known as the phenomenon of decoherence and refers to the high propensity of 
quantum states to lose their superposition properties—what I have described as their 
aufgehoben equilibrium—through mutual interaction within the system;  

d) satisfy (a)/(c) on a sufficiently large scale to generate a quantitatively usable amount of 
computational power.  

Without (a)/(d) there can be no efficient quantum computations, but it is doubtful whether each 
requirement can actually be satisfied to a satisfactory degree and, if so, whether the increasing 
implementations of these requirement are mutually compatible. The difficulty of the overall 
task of building a QC is shown by the fact that we seem to be running close to wishing a 
contradiction come true: quantum phenomena should retain their properties and yet modify 
them. We know that QCs are theoretically possible: the modellisation of virtual quantum 
machines has determined the development of research during the last decade. But so far the 
possibility of quantum computing has been proven only mathematically, and in practice no 
elementary QC with the computational power of a pocket calculator has yet been built or shown 
to be realistically implementable. Constructing a QC may be as possible as balancing a hair on 
the head of a needle in a hurricane: nothing contradictory in it, but only God could do it. Down 
on earth, engineering a real QC means solving enormous difficulties concerning: 
• the construction of reliable quantum gates 
• the generation of a sufficient amount of qubits 
• the “safety” of the qubits (complete isolation of quantum registers from the environment)  
• the measurement of the output-qubits.  
Wherever a quantum dichotomy/superposition can be generated there lies a potential QC, and 
several techniques have been devised to create actual qubits, based either on light polarised in 
two perpendicular directions and hence photons interaction (in theory, photons passing through 
a stream of caesium atoms could form the basis of a XOR logic gate), on atoms’ spins, or more 
often on cold, trapped ions (atoms with missing electrons, often of Calcium) modified via a 



pulse of laser light, which can switch the ion from one energy level to the other. Computation 
could be performed by a series of laser pulses directed at two levels of one ion. In some cases, 
the technology in question has already been well-developed, e.g. in high-precision 
spectroscopy, yet the whole process remains so delicate (each pulse would have to operate 
without exciting any third level, or affecting any of the adjacent ions) and difficult that only a 
few laboratories in the world have the scientific and technological resources to set up such 
atomic-scale experiments and, so far, only the creation of a few qubits has proved to be 
possible (the limit, at the moment of writing, is a ion trap housing at most 6 ions). 
Unfortunately, a working QC would need thousands of ions, vibrating in synchrony, and even if 
genetic difficulties could be solved, the construction of a QC may still result an impossible task 
because of a QC’s extreme sensitivity to noise. A quantum system needs to be totally shielded 
from all interactions with any phenomenon outside itself. Two nearby transistors can switch on 
and off independently and without any major problem caused by the environment or their 
mutual influence, but a qubit is a exceedingly fragile creature, whose safety is granted only if 
absolutely nothing happens to it. It cannot be touched by an air molecule, no light must shine 
on it, it cannot enter into unpremeditated relations with other qubits, indeed it cannot even be 
close to other qubits or prematurely measured, for in each of these cases the disturbed qubit 
stops being in superposition, vacillates no more and settles into a definite digital state, making 
the whole computation useless. You can then compare a QC to a machine which attempts to 
tunnel at light speed billions of very fragile crystal spheres (the zeros) and exceedingly unstable 
detonators (the ones) through extremely bumpy channels. Would the computer be able not to 
break any one of them? Obviously not, that is why some device to assess the calculation 
reliability and some process for automatic error correction, similar to those used by ordinary 
computers, are being investigated also for the construction of a QC. The redundancy approach 
is roughly that already adopted by Von Neumann himself: each qubit that needs to be 
“protected” from errors is entangled into a bundle with other qubits whose only task is to work 
as body-guards, as it were, and make sure the boss-qubit reaches the end of the process safely. 
To some extent, when an error occurs (decoherence), its presence and impact can be computed 
and the original piece of information still rescued. To stick to the analogy, a customer buys 12 
crystal glasses but you send her 24, just to be sure she is very likely to get at least the right 
number, if no more. In this case too, some steps have been made towards workable solutions. 

Computer science will be increasingly the field where mathematics, nanotechnology, 
chemistry and physics interact, but whether QCs will ever become a new brand of desktops is 
hard to say. After all, research into biological computing using large-molecule systems or 
enzymes as memory registers has already proved to be not impossible, but absolutely 
impractical, and has been abandoned. For the close future, pessimism about real QC seems to 
be equally justified: given the exponential timescale of decoherence phenomena, it may not be 
possible to build a QC beyond the 10-qubit system, but then, who can predict what will happen 
in a hundred years? New major breakthroughs in the treatment of superpositions, such as 
present work done on quantum magnetic phenomena, or in the construction of better materials 
may come to solve the present difficulties. Knowledge of quantum physical phenomena is still 
limited for utter pessimism to be fully justified. Liquid QC is a good example. The most 
promising results (a QC that can add 1 + 1, literally) have been obtained by abandoning the 
assumption that the quantum medium has to be tiny and isolated from its surroundings and 
using instead “seas of molecules” (the famous cup of coffee) to store the information. In a 
magnetic field, each nucleus within a molecule spins in a certain direction, which can be used 
to describe its state (e.g. spinning upwards = 1 and spinning downwards = 0) and Nuclear 



Magnetic Resonance (NMR) can then be used to detect these spin states, while bursts of 
specific radio waves can flip the nuclei between spinning states. 

Being equally in doubt, in 1997/8 DARPA funded a 5 million dollar Quantum Information 
and Computing Institute for investigating quantum computing and its applications. $s may not 
be sufficient to make something real, but have the extraordinary power of making one feel it 
possible. All that can be said with some confidence, at the present time, is that work on QCs 
has been already fruitful for both disciplines involved, so the funds may not be wasted: 
computer scientists working on the physical constraints of conventional machines have 
provided new insights into innovative forms of calculation, error correction and data 
compression, while physicists have been able to investigate powerful ways of engineering and 
controlling quantum effects. The by-products and spin-offs of quantum computing may well 
result more important and useful than the project of research that is generating them, at least in 
the close future. 

The usual question now, before moving to the next section: are we quantum computers? The 
mimetic temptation is constantly lurking and has not spared some philosophers and scientists 
working in the field. The technology and the physics change, but the conceptual attitude 
unfortunately does not, nor do the problems affecting it. In a very vague sense, clearly we are 
“quantum beings”. Since quantum physics appears to govern all physical systems at the 
microlevel, it must also be supposed to regulate our lives as physical bodies in the world. In the 
same vague sense, then, we are also “Newtonian beings” at the macrolevel, mostly made of 
water (H2O makes up about 70% of the human body). Yet, none of us would try to explain the 
physical mechanics of Brutus’ arm stabbing the body of Caesar by working on the level of 
interaction of masses of H2O. It seems equally odd that we should try to explain the motivations 
of the former and the ambitions of the latter by looking at sub-atomic levels of energy 
superpositions. A perfectly satisfactory description of a computer can be given in terms of a 
universal Turing machine following algorithms to manage strings of binary symbols, but in the 
case of an individual, a reliable description can only be given in terms of conscious being, not 
of biological machine. Of course, the organisational level matters, but it also matters whether it 
is more important the component or the composite result. Quantum computing has been allied 
both to computational and non-computational view of the brain, yet analysis of consciousness 
according to one or the other model seems to follow a neo-Galenic approach1 whose possible 
advantage, on the connectionist approach, is that of advancing a step further into the analysis of 
the atomic components making up a brain. No matter whether quantum neurophysiology is 
correct, a philosophy of mind based on it seems to be a further step in the wrong, top-down 
direction towards the explanation of human intelligence. Looking at a single platoon was 
insufficient to explain the behaviour of the whole army. Checking now the deeds of a single 
soldier will only make things worst. 

9.6. Expert Systems, Knowledge Engineering and Formal Ontologies 
                                                 

1 According to Galen, the great Greek physician, the human body was composed of four kinds of fluid: 
phlegm, blood, choler (yellow bile) and melancholy (black bile). Physical and mental characteristics 
were explained by different proportions of humours in individuals. An excess of phlegm gave rise to a 
“phlegmatic”, or calm, temperament and was associated with water; too much blood caused a 
“sanguine”, or passionate temperament and was associated with air; excess of yellow bile was behind a 
“choleric”, or irascible temperament and was associated with fire; and of black bile caused a 
“melancholy”, or depressive, one, associated with earth. An imbalance of the humours could supposedly 
be treated by a corresponding diet. 



An expert system (ES) is a software application that can solve, or give advise on, a well-
defined domain of problems in a particular field, thus performing problem-solving tasks that 
otherwise may either be impossible or, more often, would require the intervention of a human 
expert. To achieve such a seemingly intelligent behaviour as well as, if not better than a human 
expert, an ES usually relies on 
1. a knowledge base (KB), i.e. a stored collection of topic -oriented knowledge appropriate to 

perform problem-solving tasks in a particular fie ld, such as medical diagnosis, insurance 
planning or investment analysis. The knowledge base of an ES may represent the rules and 
experience used by an expert to deal with problems in a particular field 

2. an inference engine, which generates an output of 
solutions/advises/answers/recommendations integrating and interpreting inputs represented 
by (1) and by further data provided by the end user.  

3. a interface for the I/O procedures required by (2). 
For an ES “knowledge” is a set of facts, linguistically equivalent to declarative sentences 
assumed to be true, together with a set of inferential rules capable to generate new facts from 
existing ones. The KB incorporates both relevant data (knowledge-that) and experiences 
(know-how) that have to be gained from experts and made fully explicit. Once collected, both 
types of information are converted into the format and sequence needed by the computer to 
answer the question or solve the problem. The inference engine contains a set of algorithms, 
known as universal production rules, which embody the general problem-solving methods and 
heuristic strategies determining the actions to be performed in each case. They have the logical 
form of an inference: condition ⇒ action, where the “condition” contains a series of patterns 
specifying the data that cause the rule to be applicable, and the “action” is a set of operations to 
be performed when the rule results applicable. These general inference rules should not be 
confused with the topic-oriented rules that are stored in the application domain, as instances of 
know-how. The inference engine automatically matches data against condition-patterns, and 
establishes which of them are satisfied and hence which specific rules are applicable. The 
proper actions are then performed sequentially, so that the ES may add or remove data during 
the process, thus further affecting the number of rules applicable. The process continues until 
there are no more conditions satisfied and rules to be applied and the output-solution can be 
issued. The interaction between end user and ES is normally via question-answer scenarios, and 
this explains why a friendly interface is important. By entering new data, or simply selecting 
pre-established alternatives from a list, the end user provides the problem-input. The program 
normally keeps on asking questions until it has reached a conclusion, which may then be a 
single suggestion or a list of alternatives, possibly arranged in order of likelihood.  

Although no taxonomy is yet widely accepted, through the typology of end-users and 
knowledge bases, ESs can be distinguished into: 
• AES (aid ES), which are meant to help experts to reach a solution. These are often “goal 

driven”: given a goal, e.g. a hypothesis to be falsified, the ES process the available data to 
reach it. 

• RES (replacement ES), which are supposed to interact directly with the layman, replacing 
the human expert. These are often “event driven”: the ES is activated and reacts to data 
provided by the user, by answering queries and solving problems.  

• dynamic vs. static ES, depending on whether the KB remains unchanged during the whole 
course of the problem solving session, or varies in both depth and breadth in connection 
with the process 

• KBS (knowledge-based system). This is the case when the ES contains mainly instances of 



knowledge-that, for example all reference materials available in a field, rather than know-
how acquired by interviewing experts. A KBS is a program for relevant data mining and 
database queries that can also be used to extend the knowledge base itself of an ES. 

There are many techniques, especially in the business sector, that may often be included in an 
ES: 
• CBR (Case Based Reasoning) systems, a problem solving technique that can compare and 

match similar patters of information, representing previous and current situations or cases, 
and suggest courses of actions based on previously solved occurrences. It is useful where 
heuristic knowledge is not available, and it is also the natural way for an expert to describe 
his or her knowledge through examples, stories or cases. 

• CP (Constrained Programming) systems that are used to solve complex problems, which 
contain very large number of variables that can result in a combinatorial explosion when 
conventional programming techniques are used, for the most efficient allocation of 
resources. They use specialised “pruning” techniques that can constrain the problem space 
to a manageable extension. A CP does not always reach the optimum solution, but the 
advantage is that the proposed solution is usually effective arrived at in a fraction of the time 
required by an exhaustive, conventional search. 

The “intelligent behaviour” of a ES depends as much on the quality of the data stored in its KB 
as on the logic, encoded in its inferential engine, that controls the application of the relevant 
rules. Expert systems are often described as being roughly equivalent to human experts, but in 
practice an AES may perform well above and a RES well below the level of an individual 
expert. This is why the former may include numeric simulation models, while the latter should 
be as user-friendly as possible and designed to interact with potential end users who posses 
only ordinary mathematical and computing skills.  

The advantages of ESs are many: 
• they can help to analyse and hence acquire a better grasping of human expert knowledge 
• they can help to individuate, store, maintain, preserve, disseminate and reproduce expert 

knowledge 
• their knowledge bases can be progressively increased, corrected and updated, although 

sometimes this implies having to resort to computer programming  
• their logic is readily available: ES can explain why further data are needed, how and why 

certain conclusions were reached, they can describe the reasoning process through back-
traces and handle levels of confidence and uncertainty. This is extremely important for the 
assessment of the results of a session, for it helps to control the value and correctness of the 
system’s conclusions 

• they have uniform behaviours: comparably similar problems will always receive 
comparably similar solutions. This means that an ES may make the same mistakes 
indefinitely, but will have no psychological or other human bias. 

• depending on the complexity of the software and the size of the KB, their implementation 
may require powerful yet still conventional hardware. 

• they are easy to develop using specialised software tools, called ES shells. Shells contain an 
inference mechanism (backward chaining, forward chaining, or both), they require data to 
be entered according to a specified format, and may include a number of other facilities, 
such as tools for writing hypertext, for devising friendly user interfaces, for interfacing with 
external programs and databases and so forth. 

However, some of the short-comings of ESs are equally significant, and should make clear 
why, again, commercial and scientific implementations of ES are the result of a LAI 



methodology: 
• ES are not universal but have only a narrow domain of “competence” and, as in the case of 

ANN, their flexibility is a type, not a token property 
• they can be brittle, i.e. unable to cope with problems that stretch their rules 
• they are non-creative and can hardly learn from past experiences and mistakes with 

sufficient flexibility 
• they cannot resort to common sense knowledge (see the examples provided under the 

Cycorp entry in the webliography) 
• may easily incorporate erroneous rules or badly defined knowledge. 
Failure to acknowledge such limits has helped to spread a number of mistaken ideas about ES, 
three of which are of philosophical interest and should be corrected as follows. 
1) Only some kinds of problems are amenable to ES treatment. 
ES literature often expresses contempt for the poor expert. She is usually unable to define her 
skills, experiences and knowledge in such a way as to make them subject to formal analysis by 
the knowledge engineer and translatable into a logical structure suitable to digital elaboration. 
Yet, the truth is that ESs can handle successfully only a limited range of well-defined problems 
or set of initial factors, that can be symbolically represented and whose solutions imply a 
selection from a definable group of choices and decisions based on logical steps. Broadly 
speaking, problems that concern not only information management but involve, for example, a 
reasonable degree of understanding of the issues at stake, are not amenable to ES solution. 
2) ES techniques do not resemble human logic in their implementation.  
ES strategies may, but do not have to, resemble what expert practitioners actually do. Problem-
solving competence qualifies as know-how, hence as practical knowledge. However, practical 
knowledge is not readily exportable and importable, for it varies deeply, depending on the 
nature of the subject performing the action. Your knowledge-how to play tennis is utterly 
different from mine and above all from the knowledge-how that a robot would need to achieve 
the same result. Hence, to cope with a domain of problems ES techniques need not be like, and 
actually often differ from what an expert would do in the same situation, although the aim is to 
reach at least the same result, if not a better one. It is interesting to note that knowledge 
engineers, being aware of the problem, have devised what is known in the literature as “the 
telephone text” to determine if a problem is amenable to an ES solution. If expert and end-user 
can solve a problem via a telephone exchange, then an ES program is probably feasible. The 
mental experiment is clearly a version of Turing’s test. As a positive method, however, it is 
utterly unreliable. A politician and an economist may solve a number of problems over the 
telephone, or indeed by email, simply because they rely on a vast amount of commonly shared, 
yet implicit knowledge, that may not be suitable to sufficiently explicit formalisation. The test 
is effective only as a negative method: if expert and end-user cannot solve a problem by a 
telephone exchange then an ES program is very likely to be unfeasible as well. 
3) ES and fuzzy logic: confusion again. 
The reader may have noticed the strong similarity between an ES and a fuzzy system, and 
indeed many ESs today are based on fuzzy logic. Fuzzy rule -based ESs can cope with degrees 
of uncertainty and satisfaction of the stated conditions through several methods, including 
certainty factors associated to rules and user data input, probabilistic inferences and most 
significant results of tests; yet again, utterly ambiguous, vague or confused knowledge remains 
useless (recall the GIGO rule). This is why the logical analysis preceding the implementation of 
an ES is the most difficult stage. In this case too, the myth of a system capable to cope with 
severe lack of information is to be abandoned. 



Knowledge engineering is the branch of computer science that designs ES, translating what 
needs to be done by a virtual expert system into what can effectively be achieved by a real 
program. If we are able to do some exercise in problem-solving procedures when discussing 
parallel computing, in knowledge engineering we can learn how to describe application 
domains by means of what are technically called, only a bit misleadingly from a philosopher’s 
perspective, formal ontologies. 

According to a widely accepted approach, the development of an ES includes 5 highly 
interrelated and interdependent stages. If we concentrate only on the methodological and 
conceptual aspects, these can be roughly summarised thus:  
1. Identification, usually in collaboration with domain experts, of all the specific problems (the 

problem space) to be dealt with by the ES and hence of the kind of KB and inference engine 
required. 

2. Conceptualisation of the problem space (knowledge base design). This implies determining 
the whole set of concepts and objects assumed to exist in the domain identified in (1), their 
relevant properties, the relations holding among them, the processes in which they may be 
involved and hence the corresponding control mechanisms of the actions and interactions 
underlying the problem-solving tasks. The conceptualisation represents the initial stage in 
the construction of a formal ontology. 

3. Formalisation of (2) into a logic program (knowledge acquisition and knowledge base 
construction), which transforms knowledge structures, problems, inference rules, control 
strategies and information flow into formal representations. The conceptualisation is 
specified into a formal ontology (see below) in this stage. 

4. Implementation of (3) into the language of the development shell and realisation of a 
working prototype. 

An ES can be implemented using standard programming language like C or Visual Basic; 
languages specifically designed for AI applications, like LISP, which we have seen provides 
special tools for manipulating lists of objects that have been found to be an underlying aspect of 
human reasoning, or PROLOG, which provides an inference engine; or by using expert system 
shell. A shell not only comes with an inference engine, so that the knowledge engineer only 
needs to supply the relevant knowledge, but it also provides reasoning tools such as  
• rules for inferring new facts  
• demons which constantly check the current status of the ES, and activate if a set of 

conditions are met 
• when-needed methods. If the ES needs some data, a when-needed method for those data 

activates to obtain it from the user of the ES 
• when-changed methods. If key data in the ES change, this method activates and performs 

necessary actions relevant to that change. 
5. Testing of (4), including verification of accuracy. 
Epistemologically, the most interesting stages are the second and the third, and two points are 
worth remarking upon, before we address the ontology issue. Firstly, working ESs are 
sometimes constructed by starting from what they can really do, that is the problems they can 
successfully handle, rather than the needs of the end users. This is the result of a clear 
understanding of the distinction between problems that are amenable to ES treatment and 
problems that result untreatable, but it also clarifies why the end users may often be 
dissatisfied. It is the task of the knowledge engineer to keep the right balance between ES 
capacities and users’ expectations. Secondly, as far as the intelligent behaviour of an ES is 
concerned, clearly the design and construction of the KB and the inference engine exploit the 



experts’ know-how and the knowledge engineer’s capacities. An ES should then be understood 
as a sort of interactive archive of procedural and factual knowledge and not been confused with 
GOFAI projects. 

Looking now at the construction of an ES from the perspective of the design of the 
knowledge base rather than of the problem-solving tasks, stages (1)/(3) can be made more 
specific by comparing them to the three stages through which knowledge representation (KR) 
in a declarative language is achieved: 
1. selection of a domain of discourse or application domain, which can be referred to by using 

the concept of possible world  (PW). By a PW I mean here a consistent scenario constituted 
by a set of entities with their properties and, possibly, their inter-relations and processes. It 
may but usually does not have to be already instantiated 

2. conceptualisation (that is, an abstract, informal and simplified view) of the PW we wish to 
represent formally. A conceptualisation encompasses a description of the concepts 
appropriate to, and the entities assumed to exist in PW, together with their properties, 
(possibly) the processes to which they are subject and, above all, the relations holding 
among them. The set of entities populating the PW is called the universe of discourse (note 
that this is often taken to be the truly first stage of KR). 

3. a specification of the conceptualisation of the PW by means of a formal ontology Ω, which 
explicitly regiments the abstract conceptualisation into a logical model. The model may then 
become a concrete data structure amenable to processing. A formal ontology provides  

• a vocabulary, i.e. a mapping from the names of the entities in the universe of discourse to 
representational terms (the names of the defined entities, for example classes, instances, n-
ary relations, functions, and individual constants). The terms thus represent the subject-
oriented knowledge representation primitives of the ontology 

• a semantics, i.e. a set of definitions of the univocal meanings of the representational terms 
(the properties of the entities), based on other terms (simple equations), on conservative 
introductions (non-informative definitions of semantically empty labels) or “contentful” 
axiomatic postulates. 

• a syntax, i.e. a set of axioms describing the actual or possible functions and mutual relations 
among the terms, that fully regulate their correct uses. 

More intuitively, formal ontologies provide a vocabulary of formal concepts with a description 
of the mutual relations and of the ways in which they can be correctly used to represent, and 
(possibly) share, domain-oriented knowledge bases. An ontology Ω, together with a predicate 
logic establishing the vocabulary of logical symbols, their syntax and semantics, may then be 
understood as representing the language of KR and the basis for the construction of an expert 
system.  

Ontologies were initially developed only as part of KB designs, but they clearly have 
enormous potentialities as mapping tools for repositories of organised knowledge in any 
context where it is important to have a full and explicit documentation of the domain of 
discourse, as Intel’s WAVE project demonstrates (see the webliography). This pragmatic 
perspective must be kept in mind to understand three exigencies. Capturing and representing 
domain-oriented knowledge are two essential stages in the construction of any ES. 
Unfortunately, both processes are difficult, time consuming and therefore expensive. 
Consequently, while many shells are available for developing production rules systems, 
realising the ontology from scratch remains one of the major costs in building an ES. The 
solution is to design ontologies that may be both upgradable  and reusable , so that it becomes 
possible to maintain, increase, correct and improve them easily through time and import/export 



them across different projects. For example, the legal ontology of an ES dealing with human 
rights could be imported within the medical ontology of an ES dealing with patients’ rights in a 
hospital and new concepts, developed within the medical ontology, could be reused to upgrade 
the legal ontology. Knowledge sharing is of utmost importance for any collaborative project but 
cannot be based only on reusability: inter-operability, based on interactive communication by 
way of message-passing, is equally vital. Special-purpose ESs can communicate with each 
other only if they can commit themselves to the same ontologies. A sharable  ontology is 
therefore designed to allow such a degree of commitment, on the side of intelligent agents 
(groups of people and/or programs, including ES and other KB systems), as to make their 
efficient interoperability unproblematic. An ontology that allows future development 
(upgradable), inclusion into another ontology (reusable) and communication with other 
ontologies (sharable) is a open ontology, which minimises knowledge waste and redundancy, 
enhance collaboration and can be used both as an open catalogue of the subject domain and as 
an open vocabulary through which co-operating agents can interact. An ontology that satisfies 
all these conditions can be defined as canonical. 

It was only in the nineties that “green” methodologies that minimise waste and maximise 
reusability were adopted to promote standard KR languages and protocols for the construction 
of canonical ontologies. In this, a fundamental role has been played by the analysis of the 
concept of ontological commitment. 

An ontological commitment is the procedural commitment to an ontology Ω and must be 
distinguished from a commitment of an ontology Ω to a particular methodology. Literature on 
the topic often oversees this distinction, so in this context I shall restrict the use of the technical 
expression to the former case only, and speak of Ω-commitments in the latter. We have seen 
that an ontological commitment consists in the explicit acceptance of an ontology among a 
community of intelligent agents. Now, recognition of degrees of commitments may be a purely 
“behaviourist” matter, for it refers only to the description level of the “epistemic” actions of an 
agent (knowledge-level) and not to the description level of its internal structure (the symbol-
level representation used in the agent’s internal knowledge base). According to such a 
behaviourist approach, two agents are said to be committed to the same ontology if and only if 
their observable actions are consistent with the definitions provided in the ontology. Although a 
plurality of heterogeneous agents may not refer to exactly the same ontology Ω, if they are 
committed to one they are capable to use a minimal vocabulary to pose logical queries and 
make logical assertions that are consistent with the description of the PW in question. If the 
actions of two agents are only Ω-consistent and the two agents cannot yet interoperate through 
Ω successfully because they commit themselves to comple tely different areas of Ω, then the 
two agents are said to be only minimally committed to Ω. If they can also interoperate by 
exchanging queries and assertions, then they are said to be also Ω-interoperative and maximally 
committed to Ω. The case of two or more agents sharing exactly the same ontology Ω is then 
only a specific case of maximal commitment, which grants that their inter-operability is 
complete. 

Ω-commitments have attracted less attention than ontological commitments but are of 
comparable importance. They can be organised into five types, and every intelligent agent 
shows a particular attitude about each of them, either explicitly or implicitly. 
a) particularists vs. universalists. Libraries of specific ontologies are usually constructed 
bottom up, by looking at particular domains of discourse. For example, the library of 
Ontolingua (see the webliography) contains ontologies such as 3D-Tensor-Quantities, Abstract-
Algebra, Basic -Matrix-Algebra, Bibliographic-Data, Chemical-Crystals, Chemical-Elements. 



On the other hand, it is also possible to construct general ontologies top down. This was the 
project carried on by the Cyc (see webliography), which attempted to construct an ontology of 
common-sense knowledge about the world that could then lead to more specific local 
ontologies. From the perspective of LAI, a “particularist” approach is to be preferred, for it 
grants almost immediate applicability and, when developed by a “green” methodology, ensures 
the modularity of the achievements. However, since specific levels of abstraction may vary 
depending on what the ontology is used for, and since, in terms of inclusion into another 
ontology, the more abstract an ontology is the more likely it will be reusable by other projects, 
it may be worth attempting to develop complete and coherent core ontologies (see Valente and 
Breuker’s online article in the webliography) by means of a combination of top-down and 
bottom-up approaches, working at levels which are higher than the “particularist” yet lower 
than the “universalist”, as in the case of canonical ontologies concerning whole fields such as 
medicine or computer engineering domains.  
b) Platonist constructionism vs. nominalist constructivism. After (1), the next commitment is to 
the specific PW that needs to be conceptualised and “canonically ontologised”. Note that here 
an a priori nominalist commitment regarding the existence of PW and its entities is probably 
harmful. Although physically instantiated PWs may presumably receive particular attention, a 
more tolerant, Platonist approach seems preferable, and knowledge engineering, being driven 
by real-world demands, has already included the ontologisation of non-physical domains as 
well, as the few examples from Ontolingua mentioned above already suffice to prove. In a 
Platonist ontology with a constructionist approach, existence is equated to static 
representability, hence to logical consistency, both internal (stand-alone) and with respect to the 
system (networked), so the construction of a possible entity as a set of properties which are not 
contradictory in either respects is perfectly acceptable and constitutes the fundamental criterion 
for ontological admission. Philosophically, it is the objective consistency of a set of entities that 
makes possible the performance of subsequent actions. In a nominalist ontology with a 
constructivist approach, on the contrary, existence is equated either to actual existence, 
physically experienceable by a subject, or to algorithmic feasibility (perhaps via the analysis of 
a dedicated Turing machine) and dynamic provability again by a subject, so “merely” non-
contradictory entities do not yet qualify for an ontological treatment. Philosophically, it is the 
range of subjective doings that settles the limits of what may count as being. However, since 
for an intelligent agent its own objective (agent-independent) ontology, with its description of 
the entities and their mutual relations, is all there is and represents the condition of possibility 
of any further actions, and since it is at least immaterial whether the objects in question are 
postulated as possible, identified as real, or accepted as finitely constructible, a Platonist-
constructionist approach is not only viable but also preferable, for it allows a wider class of 
ontological libraries. In other words, ontologies are designed to support practical needs and a 
constructionist policy allows to satisfy more of them. For scholarly problem-solving tasks, an 
ontology of Shakespearean characters may well be as acceptable and useful as an ontology of 
printed editions of Shakespeare’s works, while a mathematical ontology will be easier to handle 
if the law of excluded middle and proofs by means of reductio ad absurdum are available.  
c) substance vs. function. The third commitment is to the type of conceptualisation of the PW to 
be adopted. In principle, a conceptualisation could also be function-centred but in practice, it is 
usually object-centred. This is in line with the commitment in favour of a consistency-based 
ontology, made in (b), and influences both the range of possible ontologisations in (d) and the 
kind of logic adopted for their design in (e).  
d) static vs. dynamic types of ontologies. Consistency-based PW and object-centred 



conceptualisations tend to generate static ontologies, based on structures of entities, class of 
entities, n-ary relations and functions. Dynamic processes are left implicit, translated into 
relations or functions, or often disregarded. One may wonder whether things could not be 
improved. 
e) the many logics of a formal ontology. What logic is more suitable for the design of an 
ontology and hence for KR? Ontologies appear to be usually committed to classic first-order 
predicate logic (a two-values logic including the law of bivalence), but second-order logic and 
non-standard or deviant logics (such as modal logic, n-values logics and fuzzy logic) may also 
be taken into consideration in the future, at least for representative needs, if not for inferential 
requirements. It must be remarked that reluctance towards the use of deviant logics has often 
stemmed from nominalist attitudes, such as Quine’s, which we have already remarked to be 
unjustified in this context (see (b)). 

The previous Ω-commitments can be summarised by saying that the philosophy of canonical 
ontologies is constructionist and in line with a LAI approach, but that many methodological 
issues are still wanting further study and clarification. Some of the most interesting problems, 
either conceptual or methodological, concern 
• the logic of formal ontologies, including the study of the relations among sets of ontologies 

and of the diachronic development of ontologies 
• the possibility of a standard, ontological “interlingua” that may work as an ontological 

foundation of domain-oriented canonical ontologies 
• the distinction and investigation of meta-ontologies (ontologies of ontologies) vs. 

ontological “super theories”, i.e. general and abstract ontological tools such as set theory, 
mereology, topology, graph theory, systems theory, first and second order logic and modal 
logic 

• the exploration of ways in which problems posed by the typically multi-faceted character of 
ontologies (the presence of several viewpoints on one and the same domain of discourse, 
think for example of your role as an entity in the ontology of your institution and in the 
ontology of your cricket team) could be solved 

• the relation between formal ontologies, conceptualisations and taxonomic criteria 
(categorisation) of possible worlds 

• the expansion of ontologies as to include causal, procedural and spatio-temporal languages, 
to mention only a few.  

In working on similar problems, epistemology and knowledge engineering can be of mutual 
assistance. In epistemology, it is to be hoped that, on the one hand, we may be able to exploit 
the methodology of formal ontologies to study conceptual systems as well as to develop 
libraries of ontologies of ideas treated as artefacts/entities, and that, on the other hand, we may 
avail ourselves of the conceptual apparatus of formal ontology to articulate a general theory of 
critical constructionism, including the literary constructionism outlined in chapter four. In 
knowledge engineering, epistemological and methodological analyses may provide further 
conceptual clarifications and explanations to improve the present status of the field and help to 
design better applications. In 1996, in the presentation of the “Ontological Engineering 
Workshop: Objectives and Background”, it was remarked that 

Ontological engineering currently is a craft rather than a science. [...] In workshops and in the 
published literature, ontologies are called important or indispensable in designing and building 
knowledge-based systems and in facilitating sharing and reuse of knowledge resources. It is evident 
that quite a number of research groups are building ontologies. It is less clear what design decisions 
are taken and how they contribute to the success (or failure) of the ontologies developed. Thus the 
danger of making the same mistakes over and over again is as real as the danger of inventing the 



wheel at several places simultaneously. Development of an ontology is a laborious and therefore 
costly process. The field would profit immensely if we could learn from each other's successes and 
failures. One way to lay down the do's and don’ts is in the form of systematic design practices. 
With so many groups working on the subject, it is possible to gather experiences and start 
articulating systematic design practices. (from 
http://wwwis.cs.utwente.nl:8080/kbs/EcaiWorkshop/objective.html) 

Obviously there is plenty of useful work that philosophically minded engineers and 
mathematically minded philosophers can do together in this field. 

9.7. Robotics Cybernetics and Artificial Agents 

CHEAP LABOR. ROSSUM'S ROBOTS. ROBOTS FOR THE TOPICS. 150 DOLLARS 
EACH. EVERYONE SHOULD BUY HIS OWN ROBOTS. DO YOU WANT TO CHEAPEN 
YOUR OUTPUT? ORDER ROSSUM'S ROBOTS.  

One of the many ads on Internet? Not at all. These famous lines come from Karel Capek’s 
play Rossum's Universal Robots, which opened in Prague in January 1921. They contain the 
first occurrence of “robot”, a term coined by Capek and his brother from the Czech word 
“robota”, which literally means “forced work or labor”, coming from the Latin “robor” 
(“power”, “force”). The play is staged in a factory that builds artificial agents. The plot centres 
around the conversion of such workers into military forces that eventually take over the factory 
and exterminate the whole of humanity. The end leaves open whether the robots, which have 
lost the necessary know-how to reproduce themselves, may be on their way to become more 
human.  

Philosophically rich and controversial, R.U.R. was unanimously acknowledged as a 
masterpiece since its appearance, and has become a classic of technologically dystopian 
literature. The neologism “robot” was, among other things, greatly successful. Already in 1924, 
we find that the Soviet Union propaganda film Aelita became also known as The Revolt of the 
Robots. Twenty years later, the young Isaac Asimov, who was born in Russia in 1920 and was 
well-acquainted with Capek’s terminology, introduced the word “robotics” in English, to 
indicate the scientific study and application of robots (Runaround, 1942). 

Born as science-fiction terms, in the last thirty years the concepts of “robots” and “robotics” 
have gradually come to be widely accepted in the scientific community and have merged with 
cybernetics, a term coined by Norbert Wiener from the Greek word “kybernetes” (“steersman” 
or “governor”) to indicate the interdisciplinary science of communication, control and 
regulatory properties of complex, interacting systems, both biological and mechanical. 
Cybernetics developed during World War II as the investigation of the techniques and 
automatic-control mechanisms by which information is transformed into desired performance 
and then information concerning the actual results of the performance is made available to the 
system itself to determine its future course of action, through control mechanisms for feedback 
and self-correction. Theoretically, cybernetics had a much wider scope of scientific interests 
than robotics, for it could be viewed as the general science of systems of communication and 
control, both in living organisms and in machines, capable to acquire, process, communicate 
and employ information to perform practical tasks, but in its technical applications, as a branch 
of automation engineering, it has gradually become hardly distinguishable from it. 

Whether the fruit of a robotic or cybernetic approach, artificial agents are a very old fantasy. 
The ultimate ideal in the mechanisation of production is the perpetual motion machine: a 
machine that could produce more useful work or energy than it consumes, or a machine that, 
once set in motion, would be at least 100% efficient at converting energy into work and hence 



could continue to be in motion indefinitely, without requiring any further input of energy. The 
first and second law of thermodynamics have proved both such projects to be impossible. 
Similarly, the ultimate ideal in the automatisation of action is the intelligent automaton, an 
artificial agent having its own power source, designed to be able to behave and respond to the 
environment independently of, and as intelligently as any other ordinary human agent. For 
some time, computer science has tried to make this hope come true, yet since the eighties there 
seems to be a tacit acceptance that the GOFAI project has failed too. In this case, however, 
there are no laws, comparable to those of thermodynamics, stating that forms of non-biological 
intelligence are impossible, so robots shall always count as possible entities in principle. 

Mechanical automata are known to have been engineered as toys, or more often imagined as 
fictional creatures, for thousands of years and in utterly different cultures. Today, artificial 
agents can be distinguished into four families: 
1) androids 
2) cyborgs 
3) robots 
4) webbots 
The order in the taxonomy is not merely alphabetic but also conceptual and technological.  

The word “androi” in ancient Greek meant “men”, and androids (or simply “droids”) are 
biogenetically engineered agents, composed entirely of organic substance. They are mimetic, 
human-like models, such as Frankenstein’s, Rossum’s and the famous NEXUS 6 Replicants 
that are to be “retired” by Deckard/Harrison Ford in Blade Runner. In the film, replicants differ 
from humans only in that they are emotionally immature, cannot help being completely self-
controlled or lack any empathy. In one draft of the script we are told that a body is recognised 
to be that of a replicant only after 2 hours autopsy. As with Frankenstein’s and Rossum’s 
creatures, problems arise when the replicants begin to acquire a fully-human nature. For 
example, the new prototype Rachael is endowed with experimental memory that provides her 
with a past as a background for her emotions. She takes for granted the fact that she is human. 
Conceptually, androids are the first and most natural kind of artificial agents ever conceived. 
Technologically, they belong to the realm of science fic tion and philosophical mental 
experiments. 

CYBernetic ORGanisms (Cyborgs) are partly human and partly mechanical agents. 
Although Wiener himself did not discuss the actual physical merger of living organisms and 
machines, their design originate from the field of cybernetics, and their actual possibility was 
suggested by Manfred Clynes and Nathan Kline, two NASA scientists who coined the word 
“cyborg” to refer to the potential advantages of altering, replacing or augmenting the body of 
astronauts with exogenous components to make life in space more comfortable. In a generic 
way, many people could qualify as “cyborgs”, having parts of their body replaced or 
augmented by prosthetic devices, false teeth, mechanical heart valve, contact lens, artificial 
bones, or dependent on mechanisms such as pacemakers and automatic biochemical pumps. In 
a more fictional sense, however, a true cyborg is an agent who has had his or her central 
nervous system mechanically or digitally tampered. In theory, we could imagine having 
memory chips implanted in our brain and directly consultable “from within”. Anyone could 
become a walking encyclopaedia and never forget dates or telephone numbers. More seriously, 
research in artificial ears and eyes—miniature video camera wired to an electrode array 
implanted in the visual cortex of certain blind people—has been in progress for some time. Of 
course, the immense technological problems concern the way in which the biological neural 
network and the various mechanisms in question may be interfaced. So far cyborgs have 



remained either poor human beings with a slightly improved body or fictional characters. 
With the robots we enter in the realm of the technologically feasible. R.U.R.’s robots are, in 

our terminology, androids, but the tension between biochemical reproduction and mechanical 
invention is already present even in the play. The old Rossum is a scientist who wishes to prove 
that a human being can be constructed in a laboratory. Although his techniques are different, 
his philosophy is as materialist and mechanist as Dr Frankenstein’s. Contrary to the latter, in 
the play he is said to have failed in all his attempts to create a perfect human being. The young 
Rossum, his son who overtakes his project, is a pragmatic engineer, whose only aim is to 
provide cheap labour force. His new robots are still biochemically-based, but lack any human 
features not directly useful for the performance of their industrial tasks, in short any emotional 
life. It is tempting to view the two Rossums as personifications of GOFAI and LAI 
respectively; and in so far as the former holds a mimetic and materialist perspective, while the 
latter limits himself to a task-oriented approach, the comparison may partially hold. Its obvious 
limit, of course, lies in the overall idea of a carbon-based form of artificial and intelligent life. 
Real robots represent the merger of mechanical automata and computerised control systems. 
They do not take on a rather useless human appearance, such as Star Trek  Data, and at most 
they may vaguely resemble a limb, as in the case of industrial arms. 

According to a fairly broad definition, a robot is any automatic machine that can be 
programmed to perform a variety of manual tasks, involving moving and handling objects, 
which would require some intelligence when performed by a human being. The problem with 
this definition is that it would fit even a washing machine: washing one’s socks requires some 
intelligence, and the task is successfully achieved by the machine in its own way. Only an 
artificial agent would wash a pair of socks by quickly rotating them one way and another in a 
lot of hot water and soap for about an hour, but there is nothing intrinsically wrong with the 
procedure. However, we do not consider washing machines and dish washers authentic robots. 
Why? Because they create the environment with which they can interact. A washing machine is 
in fact a whole microworld within which a particular task, and only that task, becomes 
achievable. It does not actually interact with the same environment in which we find ourselves 
as bodies, nor is it ready to cope with novelties coming from it. On the contrary, this is what 
computer-controlled industrial arms try to achieve, at least to some interesting extent. 

To interact with its environment (work envelope) successfully, an industrial robot needs to 
be able to reach any possible point P in its space. The basic directions of movement in space are 
4: up and down, side to side, forward and backward and rotation, and we say that the arm has 1 
degree of freedom for each direction a joint can go. Now, any P can be described by a set of 3 
Cartesian coordinates {x, y, z} and an arm can reach any P only if it has at least 6 degrees of 
freedom. The human arm enjoys 7 of them, for the shoulder has 3 (up-down, side-to-side, 
rotation) the elbow 1 (up-down) and the wrist another 3 (up-down, side-to-side, rotation), while 
jointed-arm robots can have from a minimum of 6 (in this case they are like a human arm, 
except for the rotation of the shoulder) up to 20. The structure of a basic 6-degrees jointed-arm 
robot consists in: 
• a digital controller, i.e. a computer that coordinates the movements of the mechanical arm 

and may network the robot with other digital devices 
• an end effector, not necessarily resembling a human hand, suited for a specific task. It 

could even be a simple screwdriver and may be replaceable with other tools. 
• sensors that can provide some feedback to the robot, keep it informed about the 

environment’s and its own state and thus correct its movements if they deviate from the 
programmed patterns.  



• an arm made of joints and links, whose task is to position the end-effector and sensors 
according to the instructions provided by the controller 

• a drive, that is an engine that drives the links into their desired position. 
Similar robots are the outcome of the merger of the industrial revolution and the information 
age. In 1956, George Devil and Joseph Engelberger, known as the father of robotics, formed 
“Unimation” the world's first robot company. Their vision was to construct industrial robots 
that could be integrated into a factory in the same way as business machines were part of an 
office. Five years later, General Motors adopted the first robot-worker, and in 1997, thanks to 
the advancement in microelectronics, there were almost half a million robots in the world, a 
number that was likely to increase. Industrial robots are more efficient than human workers, at 
least under three aspects: improved management control and productivity, no loss in continuous 
performance, consistent high quality production, and thus they are more competitive. They can 
do jobs that would be too dangerous, boring, repetitive or unhealthy for human beings, thus 
improving the quality of life and of working conditions. In addition, they can help to lower the 
price of manufactured goods through the implementation of highly automated assembly lines.  

Most robots are still only sophisticated variations of the model illustrated above; almost all 
of them are used in the car industry, in electronics factories, aircraft manufacturing, warehouses 
and laboratories, but it is likely that in the future a wider variety of robotised agents will 
become more common in other contexts as well. Along this process, a more consistent adoption 
of a LAI approach will probably result essential. Our present industrial robots are nothing more 
than microcomputer-controlled manipulators, entirely pre-programmed. Their mechanical arms 
are trained by physically moving them through the required motions, so that the controller can 
record all the movements and repeat them precisely. More generally, all kinds of robots, 
including mobile ones, lack independent processing of information on a wide scale, they are not 
creative or innovative, can take at most a very limited number of decisions, do not learn or 
significantly improve their behaviour through repeated trial and error, and have very little 
adaptability (as in the case of artificial neural networks, robots’ adaptability is mainly a type, 
not a token feature). To make things worst, professional robots can cost anything between 
$50,000 and $200,000. Yet none of the previous factors is sufficient to prove that they may not 
become as common as refrigerators or cars, artefacts which share with robots all the previous 
limits if not more (their price is very likely only a consequence rather then a cause of their 
small diffusion, and may dramatically decrease in time, like that of cars). The problem seems 
rather one of general strategy. Robots flawlessly perform specific  jobs; there are a lot of jobs 
that we may like them to do for us, from cutting the grass in the garden to cleaning the carpet or 
driving our car home when we are too tired or have enjoyed an extra glass of wine. The 
question is that we still need to find a way to adapt the performance of such jobs to the capacity 
of our present or potential robots. We all wish to play the role of the “Sorceror's Apprentice”, 
but like Mickey Mouse we have not yet been capable to transform tasks, which would require 
our intelligence to be performed successfully, into stupid tasks a robot may safely take care of, 
no matter whether less economically than us (the washing machine example) and perhaps even 
better than we do. On the one hand, there is a need to rethink the methods whereby something 
can be done: consider how differently the washing machine operates from a human being. On 
the other hand, we need to transform the environment in which the task is performed and adapt 
it to the robots’ capacities. Only when gardens will be shaped and modified so as to make 
possible for a robot to cut the grass, and streets will be constructed to allow robotised buses to 
travel fast and safely will the relevant robots become a commodity. It is the environment of a 
robot that can become a bit more artificial, a contrived microworld in which objects, properties, 



relations and events are as narrowly and explicitly defined in advance as possible. 
Two final considerations may now be in order. The first is about a social issue. Robots are 

often viewed as a cause of unemployment, yet this is a superficial mistake, for more than one 
reasons. Firstly, there are less than 500,000 robots currently active in the world and, in many 
cases, they are doing jobs that human beings should not or could not do anyway. Secondly, 
robotics has generated quite a number of new professions and jobs in other areas. Finally, in 
case the problem would not be represented by a robotised, job-less society, but by a society in 
which job-less people cannot live comfortably. Having a job, as opposed to having a practical 
activity or interest, is hardly a human need. It is an unfortunate necessity. Ask any student who 
has not yet become a workaholic. In so far as a robotised society produces more wealth and free 
time and both resources are fairly distributed among its members, we may all wish to take our 
holidays and let our mechanical fellows work for us. This is a typical philosophical statement, 
one may object. The reply is that at best, this is a social and political issue to be solved. At 
worst, it can only be a sheer utopian fantasy, not a dystopia. The second consideration is 
ethical. In the philosophy of robotics we do not normally wonder whether we may be 
mechanical agents, but rather whether robots may ever achieve a human status. Intelligence, 
consciousness, emotional life, bodily experience, communication skills and social relations are 
usually, if variously, recognised as the essential elements that would transform a robot into a 
person, and the possible acquisition of such properties, besides firing some idle speculations, 
unmasks a more interesting, master-slave dialectic that seems to affect more generally our 
entire conception of co-operation and interaction with other entities, no matter whether 
artificial, animal or human. Robots are the equivalent of slaves. It is indicative that in Star Wars 
both R2D2 and C3PO are realistically viewed as friendly servants enjoying no rights. Now, 
masters wish to have autonomous agents (animals, slaves, robots, employees, assistants etc.) 
capable to perform intelligent tasks on their behalf and possibly independently of their constant 
intervention. Intelligent “agenthood” is therefore intimately connected with the notion of 
delegation, which inevitably brings with itself trust, accountability and responsabilisation. 
Necessarily then, the more the master delegates the agent, the more the latter needs to become 
independent and autonomous, the more likely it is that the master may lose control over it. Loss 
of control may then imply three different risks. On the one hand, the agent may not perform its 
task satisfactorily or as well as the master would have done in its place. This is not a major 
problem, as long as the master is able to regain control of the task in question or fix the 
problems. On the other hand, if the agent performs its tasks perfectly well, the master may 
become wholly dependent on the agent (think of the boss without his secretary, the robotised 
factory without its robots, the professor without her teaching assistant) thus reversing the 
positions; or finally, even without dependency, the agent may, in any case, become completely 
autonomous and free itself from the master (so far this is possible only among human beings). 
The master is at least vaguely aware of such a dialectic and, in order not to allow the agent to 
become completely autonomous of himself, establishes rules that enables him to retain some 
essential control over the agent’s behaviour and well-being. In robotics, Asimov translated such 
rules into his famous 4 laws:  
0) A robot may not injure humanity, or, through inaction, allow humanity to come to harm.  
1) A robot may not injure a human being or, through inaction, allow a human being to come 

to harm, unless this would violate a higher order law.  
2) A robot must obey the orders given it by human beings except where such orders would 

conflict with a higher order law.  
3) A robot must protect its own existence as long as such protection does not conflict with a 



higher order law. 
The laws are clearly the master’s rules and are far from being “robotically correct”. Now, in 
human societies similar laws are not written, but this is precisely the advantage to deal with 
intelligent agents, they grasp them on the fly when the get their first job, so you do not have to 
codify explicit instructions to make them understand the rules of the game. A careful study of 
our behaviour towards robots’ actions not only is epistemologically relevant to our 
understanding of perception and agenthood, it may also result significant to increase our 
grasping of the rules governing social structures and interactions.  

Industrial robots have deeply affected their working environment to make possible their 
successful interactions. The industrial architecture of robotised factories is very different from 
the industrial architecture of “human” factories. This is reasonable. The more compatible an 
agent and its environment become, the more likely it is that the former will be able to perform 
its tasks efficiently. Let us define as “ontological enveloping” the process of adapting the 
environment to the agent in order to enhance the latter’s capacities of interaction. We have seen 
that, presumably, home robots will have to prompt a higher degree of ontological enveloping to 
become everyday tools. Are there robots working in a totally enveloped environment? The 
answer is in the positive. We call them webbots. 

Webbots are a new class of software, as one may easily guess from the origin of the word 
(WEB+roBOTS, the term is also used by html authoring tools, such as Microsoft FrontPage, to 
describe applications that allow simple interactive components to be added to Web pages 
without coding any instructions). Broadly speaking, webbots can be described as body-less, 
fully-digital robots, situated within a cyberspace (it could be the digital space of your hard disk, 
of a company’s Intranet or the global space of the Internet) that operate interactively on another 
agent's behalf (usually a single end user, but it could be a laboratory, another webbot, etc.) and 
can only act on other digital entities in the same space, though they themselves can be operated 
upon from without, by a human agent, and may “migrate” from one space to another, like any 
other software. They usually include a NLP (natural language system) interface for access. 
Webbots can for example search and query their environment, interact with it over time by 
performing information-based tasks that have been assigned to them by other agents, and thus 
pursue a large variety of different goals. A webbot may be an IRC or MUD program (a Robo-
Sysop) that provides some useful service, such as preventing random users from adopting 
nicknames already adopted by others, or simply chatting with you when nobody else is online, 
like Julia (how would you feel if you were to discover that the Internet fascinating patner with 
“whom” you had a rather gallant conversation was “only” a chatterbot?). Alternatively, it may 
be a cartoon that speaks to the human user and acts as a guide or teacher, or a Web program 
(sometimes also known as crawler or spider) that automatically explores the cyberspace to 
retrieve documents, thus making possible search engines. A webbot may simply be an utility 
that constantly keeps clean, compressed and virus-free the hard disk of your computer. 
Webbots can be personalised to satisfy one’ requirements, and this is a step forward with 
respect to the lack of flexibility shown by other intelligent agents. Predictably, the same webbot 
will in the future be able to perform a wide variety of completely different tasks, instantiating 
real token-flexibility. Their tasks are often humble, but they are getting increasingly more 
substantial, and have started being employed in many business applications in the financial, 
manufacturing, retailing, e-commerce and travel industries. Their future includes didactic and 
ludic applications. Cyberspaces would be far more chaotic and polluted places without them. 
Webbots’ power lies in the total ontological envelopment of their environment, for they are 
made of the very same digital stuff cyberspace consists of, and in the uniformity of their tasks, 



all information-based. Their potentialities have just begun to be exploited, but they already are 
one of the most successful application of LAI.  

10. The Limits of LAI 

At this point we should resist the temptation to assign no boundary to what LAI may be able to 
achieve in the future. The remarkably ingenious efforts made to transform a computer into 
something smarter than a mere electronic Abacus have always had the great advantage of being 
cumulative, but must remain subject to the conceptual limits of the technology in question. The 
“intelligence” of a computer lies all in its capacity to detect and process a relation of difference 
(usually, but not necessarily, binary), and proceed inferentially on its basis. It is an 
extraordinary capacity in itself, and a very powerful one too, when it is associated with the right 
logic—one can do a lot of extraordinarily complex mathematics or win a chess game with a 
Master just by carefully exploiting it—but whenever conditions (a)/(e) (computability, 
epistemic-independence, experience-independence, body-independence and context-freedom) 
are substantially unfulfilled, it nevertheless remains completely insufficient to emulate even the 
elementary intelligence of a guide dog or a sheepdog, which grasps and deals primarily with the 
relata themselves. We must not forget that only under specially regimented conditions can a 
collection of detected relations of difference concerning some empirical aspect of reality 
replace direct experiential knowledge of that aspect of reality. Computers may never fail to read 
a bar code correctly, but cannot explain the difference between a painting by Monet and one by 
Pizarro. More generally, mimetic approaches to AI are not viable because knowledge, 
experience, bodily involvement and interaction with the context have all a cumulative and 
irreversible nature. For a human being (but the same may be extended to other animals), to 
know how to speak a language or demonstrate a theorem is not equivalent to mastering the 
whole sum of instructions required to perform well the specific task in question, nor does it 
consist in establishing a one-to-one relation between skilled capacities to do x and the correct 
list of instructions to do x. Any acquisition of a special skill or experience or capacity by a 
human being means the loss of a particular virginity. Once we have learnt how to read, we no 
longer see letters but words, and through education not only we no longer hear sounds but 
melodies, we also soon loose the capacity to hear a melody just as any melody, without 
perceiving it as classic music and then baroque music and then Handel’s Messiah or our 
national anthem. Every step forward also means a loss. Human knowledge does not simply 
accumulates, it growths within a personal, social and cultural context, and it is always 
synthetic. There follows that, if an intelligent task can be successfully performed only on the 
basis of knowledge, experience, bodily involvement, interaction with the environment and 
social relations no alternative, non-mimetic approach is available, and any strong AI project is 
doomed to fail. To think otherwise, to forget about the non-mimetic and constructive 
requirements constraining the success of a computable approach, is to commit what we may 
call the Σ fallacy and believe that, since knowledge of a physical object, for example, may be in 
general described as arising out of a finite series of perceptual experiences of that object, then 
the former is just a short notation for the latter and can be constructed extensionally and 
piecemeal, as a summation. 

Given the nature of LAI, it is not surprising that it has come to acquire a much less 
ambitious approach than GOFAI’s. Indeed, the pragmatic approach shown by contemporary 
trends in LAI let one foresee that, rather than generating new forms of intelligence, AI is and 
will remain a fruitful source of technological innovations only insofar as human intelligence 



will be able to enlarge the number of processes that can be sufficiently “stupefied” to be carried 
on by a digital device. The failure of GOFAI is very far from entailing the impossibility of 
machines that can help us to think better, more efficiently and less expensively, or avoid us 
tiresome tasks. The major advantage of computer in most commercial and real-life applications 
lies in their remarkable capacity to perform routine functions quickly, endlessly and fairly 
reliably. The millions of computers working all over the world perform tasks that require rigid 
repetition of fixed sequences of instructions without complaint or fatigue, without intelligence 
of any sort. The view that I have tried to defend is that contemporary AI should be aiming at 
the creation not of a non-biological form of Autonomous Intelligence, but of an Augmented 
Intelligence, ours, and that future projects should be developed with an eye to such concept of a 
human, machine-aided intelligence. The failure of computational materialism has left us with 
the problem of explaining the genesis and nature of human intelligence and mental life, but it 
seems better and more honest to admit our ignorance and present lack of explanations than to 
endorse a wrong theory. 


