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1. Introduction 

Science, technology and ethics are all forms of information. They also depend for 

their workings on information. Furthermore, there exist sciences, technologies, and 

ethics of information. So it seems that it is information all the way up and all the way 

down. To disentangle some of the main relations between these different aspects of 

information, it will be helpful to start with a simple example. 

Monday morning. You turn on the ignition key of your car, but nothing 

happens: the engine does not even cough. Unsurprisingly, the red light of the low 

battery indicator is flashing. After a few more attempts, you ring the garage and 

explain that, last night, your wife forgot to switch off the lights of the car – it is a lie, 

you did, but you are too ashamed to confess it – and now the battery is flat. You are 

told that the instruction manual of your car explains how to use jump leads to start the 

engine. Luckily, your neighbour has everything you need. You follow the instructions 

and drive to the office. 

This everyday episode provides enough details to illustrate the many ways in 

which we understand one of our most important resources: information. The 

information galaxy is vast, and in this article only two of its main regions will be 

explored: information as content and information as communication. The reader 

interested in knowing more on the philosophical analysis of the concept may wish to 

consult Hintikka and Suppes [1970]; Hanson [1990]; Dretske [1999] and Floridi 

[2003].  

 

2. Information as Content 

It is common to think of information as consisting of data (Floridi [2004a]). An 

intuitive way of grasping the notion of “data” is to imagine an answer without a 

question. Ultimately, data may be described as relational differences: a 0 instead of a 

1; a red light flashing; a higher or lower charge in a battery.  

To become information, data need to be well-formed and meaningful. “Well-

formed” means that data have been put together correctly, according to the rules 

(syntax) of the chosen language. For example, the booklet shows the batteries of the 
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two cars placed one near the other, not one on top of the other. “Meaningful” means 

that the data must also comply with the meanings (semantics) of the chosen language. 

So the booklet makes sure that the pictures are immediately recognisable. 

When meaningful and well-formed data are used to talk about the world and 

describe it, the result is semantic content (Bar-Hillel and Carnap [1953]; Bar-Hillel 

[1964]). Semantic content has a twofold function. Like a pair of pincers, it seeks both 

to pick up or “about” a situation, a fact, or a state of affairs f, and to model or describe 

f. “The battery is flat” carves and extracts this piece of information – that the battery 

of the car is flat – and uses it to model reality into a semantic world in which the 

battery is flat. Whether the work done by the specific pair of pincers is satisfactory 

depends on the resource f (realism) and on the purpose for which the pincers are being 

used (teleologism). Realistically, “the battery is flat” is true. Teleologically, it is 

successful given the goal of communicating to the garage the nature of the fault. “The 

battery is flat” would be realistically false and teleologically unsatisfactory if it were 

used e.g. to provide an example of something having a smooth or even surface. 

 

2.1. Information as True Semantic Content 

True semantic content is perhaps the most common sense in which information may 

be understood (Floridi [2004a]). It is also one of the most important, since information 

as true semantic content is a necessary condition for knowledge. Some elaboration is 

in order. First, the data that are going to constitute information allow or invite certain 

constructs and resist or impede some others. Data in this respect work as constraining 

affordances. Second, data are never accessed and elaborated independently of a level 

of abstraction (LoA). A LoA is like an interface, which establishes the scope and type 

of data that will be available as a resource for the generation of information (Floridi 

and Sanders [2004]). “The battery is what provides electricity to the car” is a typical 

example of information elaborated at a driver’s LoA. An engineer’s LoA may output 

something like “12-volt lead-acid battery is made up of six cells, each cell producing 

approximately 2.1 volts”, and an economist’s LoA may suggest that “a good quality 

car battery will cost between $50 and $100 and, if properly maintained, it should last 

five years or more”. Data as constraining affordances – answers waiting for the 

relevant questions – are transformed into information by being processed semantically 

at a given LoA (alternatively: the right question is associated to the right data always 

at a given LoA).  
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Once information is available, knowledge can be built in terms of justified or 

explained information (one knows that “the battery is flat” not by merely guessing 

rightly, but because one sees the red light of the low battery indicator flashing and one 

perceives that the engine does not start), thus providing the basis of any further 

scientific investigation. The fact that data count as resources for information, and 

hence for knowledge, rather than sources is a constructionist argument against any 

representationalist theory that interprets knowledge as a sort of picture of the world.  

When some semantic content is false, this is a case of misinformation (Fox 

[1983]). And if the source of misinformation is aware of its nature, one may speak of 

disinformation, e.g. “my wife forgot the lights on”. Disinformation and 

misinformation are ethically censurable but may be successful teleologically: tell the 

mechanic that your wife left the lights on last night, and he will still be able to provide 

you with the right advice. Likewise, information may still fail to be teleologically 

successful; just imagine telling the mechanic that your car is out of order.  

 

2.2. Instructional Information 

True semantic content is not the only type of information. The booklet, for example, 

also provides instructional information, either imperatively – in the form of a recipe: 

first do this, then do that – or conditionally, in the form of some inferential procedure: 

if such and such is the case do this, otherwise do that. Instructional information is not 

about f and does not model f: it rather constitutes or instantiates f, that is, it is 

supposed to make f happen. The printed score of a musical composition or the digital 

files of a program are typical cases of instructional information. So the latter clearly 

has a semantic side. And semantic and instructional information may be joined in 

performative contexts, such as christening – e.g. “this ship is now called HMS The 

Informer – or programming – e.g. as when declaring the type of a variable. Finally, 

the two types of information may also come together in magic spells, where semantic 

modelling is confused with instructional power and control. Yet, as a test, one should 

recall that instructional information does not qualify alethically (from aletheia, the 

Greek word for truth). In the example, it would be silly to ask whether “only use 

batteries with the same rated voltage” is true or false.  
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2.3. Environmental Information 

When you turned the ignition key, the red light of the low battery indicator flashed. 

You translated the flashing into (a) semantic information: “the battery is flat”; and (b) 

instructional information: the battery needs to be charged or replaced. However, the 

flashing of the indicator is actually an instance of environmental information.  

Environmental information may be described as “natural data”: it requires two 

systems a and b to be coupled in such a way that a’s being (of type, or in state) F is 

correlated to b being (of type, or in state) G, thus carrying for the observer the information 

that b is G (Barwise and Seligman [1997] provide a similar analysis based on Dretske [1999]). 

The correlation is usually nomical (it follows some law). It may be engineered – as in the 

case of the low battery indicator (a) whose flashing (F) is triggered by, and hence it is 

informative about, the battery (b) being flat (G). Or it may be natural, as when litmus – a 

colouring matter from lichens – is used as an acid-alkali indicator (litmus turns red in acid 

solutions and blue in alkaline solutions). Other typical examples include the correlation 

between fingerprints and personal identification, or between the age of a plant and its 

growth rings.  

One may be so used to see the low battery indicator flashing as carrying the 

information (that is, meaning) that the battery is flat to find it hard to distinguish with 

sufficient clarity between environmental and semantic information. However, it is important 

to recall that environmental information may require or involve no semantics at all. It may 

consist of correlated data understood as mere differences or affording constraints. Plants (e.g. 

a sunflower), animals (e.g. an amoeba) and mechanisms (e.g. a photocell) are certainly 

capable of making practical use of environmental information even in the absence of any 

(semantic processing of) meaningful data. Figure 1 summaries the main distinctions 

introduced so far.  
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Fig. 1 The taxonomy of information 

 

2.4. Five Types of Information 

A few more details may now be added. First, it is worth stressing that the actual 

format, medium and language in which information is encoded is often irrelevant. The 

same semantic, instructional and environmental information may be analog or digital, 

printed on paper or viewed on a screen, in English or in some other language. Second, 

so far it has been implicitly assumed that primary information is what is in question: 

things like the red light of the low battery indicator flashing, or the sentence “the 

battery is flat” spoken over the phone. But recall how you discovered that the battery 

was flat. The engine failed to make any of the usual noise. Likewise, in Silver Blaze, 

Sherlock Holmes solves the case by noting something that has escaped everybody 

else, the unusual silence of the dog. Clearly, silence may be very informative. This is 

a peculiarity of information: its absence may also be informative. When it is, the 

difference may be stressed by speaking of secondary information.  

Apart from secondary information, three other typologies are worth some 

explanation, as they are quite common (the terminology is still far from being 

standard or fixed, but see Floridi [1999b]). Metainformation is information about the 

nature of information. “‘The battery is flat’ is encoded in English” is a simple 

example. Operational information is information about the dynamics of information. 

Suppose the car has a yellow light that, when flashing, indicates that the car checking 

system is malfunctioning. The fact that the light is off indicates that the low battery 

indicator is working properly, thus confirming that the battery is indeed flat. Finally, 
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derivative information is information that can be extracted from any form of 

information whenever the latter is used as a source in search of patterns, clues, or 

inferential evidence, e.g. for comparative and quantitative analyses. From someone’s 

credit card bill concerning the purchase of some petrol one may derive the 

information of her whereabouts at a given time. 

 

3. Information as Communication  

Very little has been said so far about information in the communication sense of 

transmission of a message (Cherry [1978]). In the example, it is time to take into 

consideration the telephone call to the garage.  

Some features of information are intuitively quantitative. Information can be 

encoded, stored and transmitted. One also expects it to be additive (information a + 

information b = information a + b) and non-negative. Similar properties of 

information are investigated by the mathematical theory of communication (MTC, 

also known as information theory, for an accessible introduction see Jones [1979]).  

MTC was established by Claude E. Shannon (Shannon and Weaver [1949 rep. 

1998]) with the primary aim of devising efficient ways of encoding and transferring 

data. Its two fundamental problems are the ultimate level of data compression (how 

small can a message be, given the same amount of information to be encoded?) and 

the ultimate rate of data transmission (how fast can data be transmitted over a 

channel?). To have a sense of the approach, let us return to our example. 

The telephone communication with the mechanic is a specific case of a 

general communication model, described in Fig. 2.  
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Fig. 2 The communication model 

 

You are the informer, the mechanic is the informee, “the battery is flat” is the message 

(the informant), there is a coding and decoding procedure through a language 

(English), a channel of communication (the telephone system) and some possible 

noise. Informer and informee share the same background knowledge about the 

collection of usable symbols (the alphabet). 

MTC treats information as only a selection of symbols from a set of possible 

symbols, so a simple way of grasping how MTC quantifies raw information is by 

considering the number of yes/no questions required to guess what the informer is 

communicating. When a fair coin is tossed, one question is sufficient to guess whether 

the outcome is head (h) or tail (t). Therefore, a binary source like a coin is said to 

produce 1 bit of information. A 2-fair-coins system produces 4 ordered outputs: <h, 

h>, <h, t>, <t, h>, <t, t> and therefore requires two questions, each output containing 

2 bits of information, and so on. In the example, the low battery indicator is also a 

binary device: if it works properly, it either flashes or it does not, exactly like a tossed 

coin. And since it is more unlikely that it flashes, when it does, the red light is very 

informative. More generally, the lower the probability of p the more informative the 

occurrence of p is (unfortunately this leads to the paradoxical view that a 

contradiction – which has probability 0 – is the most informative of all contents, 

unless one maintains that, to qualify as information, p needs to be true Floridi 

[2004b]).  
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Before the coin is tossed, the informee does not “know” which symbol the 

device will actually produce, so it is in a state of data deficit equal to 1 (Shannon’s 

“uncertainty”). Once the coin has been tossed, the system produces an amount of raw 

information that is a function of the possible outputs, in this case 2 equiprobable 

symbols, and equal to the data deficit that it removes. The reasoning applies equally 

well to the letters used in your telephone conversation with the mechanic.  

The analysis can be generalised. Call the number of possible symbols N. For N 

= 1, the amount of information produced by a unary device is 0. For N = 2, by 

producing an equiprobable symbol, the device delivers 1 unit of information. And for 

N = 4, by producing an equiprobable symbol the device delivers the sum of the 

amount of information provided by coin A plus the amount of information provided 

by coin B, that is 2 units of information. Given an alphabet of N equiprobable 

symbols, it is possible to rephrase some examples more precisely by using the 

following equation: log 2 (N) = bits of information per symbol.  

Things are made more complicate by the fact that real coins are always biased, 

and so are low battery indicators. Likewise, in your conversation with the mechanic a 

word like “batter” will make “y” as the next letter almost certain. To calculate how 

much information a “biased” device produces, one must rely on the frequency of the 

occurrences of symbols in a finite series of occurrences, or on their probabilities, if 

the occurrences are supposed to go on indefinitely. Once probabilities are taken into 

account, the previous equation becomes Shannon’s formula (where H = uncertainty, 

what has been called above data deficit):  symbol)per  (bits log
1

i

N

i
i PPH ∑

=

−=

The quantitative approach just sketched plays a fundamental role in coding 

theory, hence in cryptography, and in data storage and transmission techniques, which 

are based on the same principles and concepts. Two of them are so important to 

deserve a brief explanation: redundancy and noise. 

Redundancy refers to the difference between the physical representation of a 

message and the mathematical representation of the same message that uses no more 

bits than necessary. It is basically what can be taken away from a message without 

loss in communication. Your mentioning of your wife as the person responsible for 

the flat battery was redundant.  

Compression procedures work by reducing data redundancy, but redundancy 

is not always a bad thing, for it can help to counteract equivocation (data sent but 
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never received) and noise (received but unwanted data, like some interference). A 

message + noise contains more data than the original message by itself, but the aim of 

a communication process is fidelity, the accurate transfer of the original message from 

sender to receiver, not data increase. The informee is more likely to reconstruct a 

message correctly at the end of the transmission if some degree of redundancy 

counterbalances the inevitable noise and equivocation introduced by the physical 

process of communication and the environment. This is why, over the phone, you said 

that “the battery is flat” and that “the lights were left on last night”. It was the “by 

whom” that was uselessly redundant. 

MTC is not a theory of information in the ordinary sense of the word. The 

expression “raw information” has been used to stress the fact that in MTC information 

has an entirely technical meaning. Two equiprobable “yes” contain the same quantity 

of raw information, no matter whether their corresponding questions are “is the 

battery flat?” or “is your wife missing?”. Likewise, if one knows that a device could 

send with equal probabilities either this whole encyclopaedia or just a quote for its 

price, by receiving one or the other message one would receive very different 

quantities of data bytes but only one bit of raw information. Since MTC is a theory of 

information without meaning, and (information – meaning) = data, mathematical 

theory of data communication is a far more appropriate description than information 

theory.  

MTC deals not with semantic information itself but with messages constituted 

by uninterpreted symbols encoded in well-formed strings of signals, so it is commonly 

described as a study of information at the syntactic level. This generates some 

confusion because one may think the syntactic vs. semantic dichotomy to be 

exhaustive. Clearly, MTC can be applied in ICT (information and communication 

technologies) successfully because computers are syntactical devices. It is often 

through MTC that information becomes a central concept and topic of research in 

disciplines like chemistry, biology, physics, cognitive science, neuroscience, the 

philosophy of information (Floridi [2002]; Floridi [2004a]) and computer ethics 

(Floridi [1999a]). 
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