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Abstract 
An important lesson that philosophy can learn from the Turing Test and computer science more 
generally concerns the careful use of the method of Levels of Abstraction (LoA). In this paper, 
the method is first briefly summarised. The constituents of the method are “observables”, 
collected together and moderated by predicates restraining their “behaviour”. The resulting 
collection of sets of observables is called a “gradient of abstractions” and it formalises the 
minimum consistency conditions that the chosen abstractions must satisfy. Two useful kinds 
of gradient of abstraction – disjoint and nested – are identified. It is then argued that in any 
discrete (as distinct from analogue) domain of discourse, a complex phenomenon may be 
explicated in terms of simple approximations organised together in a gradient of abstractions. 
Thus, the method replaces, for discrete disciplines, the differential and integral calculus, which 
form the basis for understanding the complex analogue phenomena of science and engineering. 
The result formalises an approach that is rather common in computer science but has hitherto 
found little application in philosophy. So the philosophical value of the method is demonstrated 
by showing how making the LoA of discourse explicit can be fruitful for phenomenological 
and conceptual analysis. To this end, the method is applied to the Turing Test, the concept of 
agenthood, the definition of emergence, the notion of artificial life, quantum observation and 
decidable observation. It is hoped that this treatment will promote the use of the method in 
certain areas of the humanities and especially in philosophy. 
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1. Introduction 
In a previous work ({Floridi, 2008 #103}), I argued that the epistemological use of “levels of 
abstraction” (LoAs) in philosophical analysis represents a fundamental method, which I 
labelled the method of levels of abstraction. In that context, I clarified the nature and 
applicability of the method and defended its philosophical fruitfulness by using Kant’s classic 
discussion of the “antinomies of pure reason” as an example. I further supported the method 
by distinguishing it from three other forms of “levelism” based on (i) levels of organisation; 
(ii) levels of explanation and (iii) conceptual schemes, and showing its superiority. Still in that 
context, I addressed the problems of relativism and anti-realism allegedly affecting the use of 
the method. In this article, I intend to show how the method may be fruitfully applied to a 
selection of some long-standing philosophical problems. For the convenience of the reader, in 
section two, I summarise the method without presupposing any previous knowledge. In section 
three, I show how the method of abstraction may be profitably applied to several philosophical 
topics. In the conclusion, I briefly recall why the method can be useful in philosophical 
disputes. A final introductory comment before going to work: the reader interested in the topic 
of abstraction will probably find Colburn and Shute (2007) enlightening. They trace the 
connection between abstraction in mathematics and abstraction in computer science. They 
define mathematical abstraction in terms of information neglecting, while “computational” 
abstraction in terms of information hiding. While in this paper I shall speak more positively of 
computational abstraction in terms of information selecting, the idea is the same. In 
mathematics, abstraction is a matter of essentialism. In computer science it is not that one does 
know but chooses to ignore but, rather, that one chooses what may or need to be observable 
and hence knowable. In computer science, abstraction is a matter of constructionism. Hence, 
this paper might be read as sequel to Colburn and Shute (2007), which it complements by 
linking their discussion of mathematical and computational abstraction to the discussion of 
philosophical abstraction.  
 
2. The Method of Abstraction: a Quick Guide 
A reliable way to introduce the method of levels of abstraction (LoAs) is by clarifying first the 
basic concepts used to define LoAs and then show a few examples. 

As is well known, a “typed variable” is a variable qualified to hold only a declared kind 
of data:  
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Definition. A typed variable is a uniquely-named conceptual entity (the variable) and a set, 
called its type, consisting of all the values that the entity may take. Two typed variables are 
regarded as equal if and only if their variables have the same name and their types are equal as 
sets. A variable that cannot be assigned well-defined values is said to constitute an ill-typed 
variable (see the example below). 
 
When required, I shall write x:X to mean that x is a variable of type X. 

The notion of an “observable” is common in science, where it occurs whenever a 
(theoretical) model is constructed. Although the way in which the features of the model 
correspond to the system being modelled is usually left implicit in the process of modelling, it 
is important here to make that correspondence explicit. I shall follow the standard practice of 
using the word “system” to refer to the object of study. This may indeed be what would 
normally be described as a system in science or engineering, but it may also be a domain of 
discourse, of analysis, of conceptual speculation, or a purely semantic system (imagine for 
example, the system of Greek divinities). 

 
Definition. An observable is an interpreted typed variable, that is, a typed variable together 
with a statement of what feature of the system under consideration it represents. Two 
observables are regarded as equal if and only if their typed variables are equal, they model the 
same feature and, in that context, one takes a given value if and only if the other does. 
 
Being an abstraction, an observable is not necessarily meant to result from quantitative 
measurement or even empirical perception. The “feature of the system under consideration” 
might be a physical magnitude, but we shall see that it might also be an artefact of a conceptual 
model, constructed entirely for the purpose of analysis.  

An observable, being a typed variable, has specifically determined possible values. In 
particular:  

 
Definition. An observable is called discrete if and only if its type has only finitely many 
possible values; otherwise it is called analogue.1 
 

 
1 The distinction is really a matter of topology rather than cardinality. However, this definition serves our 
present purposes.  
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When working with the method of abstraction, one is interested in observables as a means of 
describing behaviour at a precisely qualified (although seldom numerical) level of abstraction; 
in general, several observables will be employed. Let us now consider a few simple examples. 
1) The design of a database is a special case of the definition of a collection of observables. In 
a database, an observable is called a key, its correspondence with reality is left implicit 
(although it is often reflected in the name) and its type is inferred from either the values it takes 
or from its declaration in the database programming language. The type “finite string of 
characters”, for instance, is frequently used, often being the most appropriate concrete method 
of description. Examples include names, addresses and such like. So too with an observable in 
general: it is sometimes preferable not to provide in advance all the possible outcomes (i.e. a 
type) but simply to define its type to consist of all finite sequences of characters, with each 
value equal to a character string. This definition reflects a decision to the effect that, although 
the observable is well-typed, its actual type is not of primary concern.  
2) Suppose Peter and Ann wish to study some physical human attributes. To do so Peter, in 
Oxford, introduces a variable, h, whose type consists of rational numbers. The typed variable 
h becomes an (analogue) observable once it is decided that the variable h represents the height 
of a person, using the Imperial system (feet and parts thereof). To explain the definition of 
equality of observables, suppose that Ann, in Rome, is also interested in observing human 
physical attributes, and defines the same typed variable but declares that it represents height in 
metres and parts thereof. Their typed variables are the same, but they differ as observables: for 
a given person, the two variables take different representing values. This example shows the 
importance of making clear the interpretation by which a typed variable becomes an 
observable. 
3) Consider next an example of an ill-typed variable. Suppose we are interested in the roles 
played by people in some community; we could not introduce an observable standing for those 
beauticians who depilate just those people who do not depilate themselves, for it is well-known 
that such a variable would not be well typed (Russell 1902). Similarly, each of the standard 
antinomies reflects an ill-typed variable (Hughes and Brecht 1976). Of course, we are at liberty 
to choose whatever type befits the application, and if that involves a potential antinomy then 
the appropriate type might turn out to be a non-well-founded set (Barwise and Etchemendy 
1987). However, in this paper we shall operate entirely within the boundaries of standard naive 
set theory. 
4) Gassendi provides another nice example. As he wrote in his Fifth Set of Objections to 
Descartes’ Meditations “If we are asking about wine, and looking for the kind of knowledge 
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which is superior to common knowledge, it will hardly be enough for you to say ‘wine is a 
liquid thing, which is compressed from grapes, white or red, sweet, intoxicating’ and so on. 
You will have to attempt to investigate and somehow explain its internal substance, showing 
how it can be seen to be manufactured from spirits, tartar, the distillate, and other ingredients 
mixed together in such and such quantities and proportions.” What Gassendi seems to have in 
mind is that observables relating to tasting wine include the attributes that commonly appear 
on “tasting sheets”: nose (representing bouquet), legs or tears (viscosity), robe (peripheral 
colour), colour, clarity, sweetness, acidity, fruit, tannicity, length and so on, each with a 
determined type. If two wine tasters choose different types for, say, colour (as is usually the 
case) then the observables are different, despite the fact that their variables have the same name 
and represent the same feature in reality. Indeed, as they have different types they are not even 
equal as typed variables. 

Information about how wine quality is perceived to vary with time – how the wine 
“ages” (Robinson 1989) – is important for the running of a cellar. An appropriate observable 
is the typed variable a, which is a function associating to each year y: Years a perceived quality 
a(y):Quality, where the types Years and Quality may be assumed to have been previously 
defined. Thus, a is a function from Years to Quality, written a: Time  Quality. This example 
shows that, in general, types are constructed from more basic types, and that observables may 
correspond to operations, taking input and yielding output. Indeed, an observable may be of an 
arbitrarily complex type.  
5) The definition of an observable reflects a particular view or attitude towards the entity being 
studied. Most commonly, it corresponds to a simplification, in which case nondeterminism, not 
exhibited by the entity itself, may arise. The method is successful when the entity can be 
understood by combining the simplifications. Let us consider another example. In observing a 
game of chess, one would expect to record the moves of the game.2 Other observables might 
include the time taken per move, the body language of the players, and so on. Suppose we are 
able to view the chessboard by looking just along files (the columns stretching from player to 
player). When we play “files-chess”, we are unable to see the ranks (the parallel rows between 
the players) or the individual squares. Files cannot sensibly be attributed a colour black or 
white, but each may be observed to be occupied by a set of pieces (namely those that appear 
along that file), identified in the usual way (king, queen and so forth). In “files-chess”, a move 

 
2 As the reader probably knows, this is done by recording the history of the game: move by move the state of each 
piece on the board is recorded – in English algebraic notation – by rank and file, as the piece being moved and the 
consequences of the move. 
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may be observed by the effect it has on the file of the piece being moved. For example, a knight 
moves one or two files either left or right from its starting file, a bishop is indistinguishable 
from a rook, which moves along a rank, and a rook that moves along a file appears to remain 
stationary. Whether or not a move results in a piece being captured, appears to be 
nondeterministic. “Files-chess” seems to be an almost random game. Whilst the “underlying” 
game is virtually impossible to reconstruct, each state of the game and each move (i.e. each 
operation on the state of the game) can be “tracked” with this dimensionally-impoverished 
family of observables. If one then takes a second view, corresponding instead to rank, we obtain 
“ranks-chess”. Once the two views are combined, the original game of chess can be recovered, 
since each state is determined by its rank and file projections, and similarly for each move. The 
two disjoint observations together, that is, “files-chess” + “ranks-chess”, reveal the underlying 
game. 
6) The degree to which a type is appropriate depends on its context and use. For example, to 
describe the state of a traffic light in Rome one might decide to consider an observable colour 
of type {red, amber, green} that corresponds to the colour indicated by the light. This option 
abstracts the length of time for which the particular colour has been displayed, the brightness 
of the light, the height of the traffic light, and so on. This is why the choice of type corresponds 
to a decision about how the phenomenon is to be regarded. To specify such a traffic light for 
the purpose of construction, a more appropriate type would comprise a numerical measure of 
wavelength. Furthermore, if we are in Oxford, the type of colour would be a little more 
complex, since – in addition to red, amber and green – red and amber are displayed 
simultaneously for part of the cycle. So, an appropriate type would be {red, amber, green, red-
amber}. 

With the previous examples in place, we are now ready to appreciate the basic concept of 
level of abstraction (LoA). Any collection of typed variables can, in principle, be combined 
into a single “vector” observable, whose type is the Cartesian product of the types of the 
constituent variables. In the wine example, the type Quality might be chosen to consist of the 
Cartesian product of the types Nose, Robe, Colour, Acidity, Fruit and Length. The result would 
be a single, more complex, observable. In practice, however, such vectorisation is unwieldy, 
since the expression of a constraint on just some of the observables would require projection 
notation to single out those observables from the vector. Instead, I shall base our approach on 
a collection of observables, that is, a level of abstraction: 
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Definition. A level of abstraction (LoA) is a finite but non-empty set of observables. No order 
is assigned to the observables, which are expected to be the building blocks in a theory 
characterised by their very definition. A LoA is called discrete (respectively analogue) if and 
only if all its observables are discrete (respectively analogue); otherwise it is called hybrid. 
 
Consider Gassendi’s wine example. Different LoAs may be appropriate for different purposes. 
To evaluate a wine, the “tasting LoA”, consisting of observables like those mentioned in the 
previous section, would be relevant. For the purpose of ordering wine, a “purchasing LoA” 
(containing observables like maker, region, vintage, supplier, quantity, price, and so on) would 
be appropriate; but here the “tasting LoA” would be irrelevant. For the purpose of storing and 
serving wine – the “cellaring LoA” (containing observables for maker, type of wine, drinking 
window, serving temperature, decanting time, alcohol level, food matchings, quantity 
remaining in the cellar, and so on) would be relevant. 

Not all values exhibited by combinations of observables in a LoA may be realised by 
the system being modelled. For example, if the four traffic lights at an intersection are modelled 
by four observables, each representing the colour of a light, the lights cannot in fact all be green 
together (assuming they work properly). In other words, the combination in which each 
observable is green cannot be realised in the system being modelled, although the types chosen 
allow it. Similarly, the choice of types corresponding to a rank-and-file description of a game 
of chess allows any piece to be placed on any square, but in the actual game two pieces cannot 
occupy the same square simultaneously. Some technique is therefore required to describe those 
combinations of observable values that are actually acceptable. The most general method is 
simply to describe all the allowed combinations of values. Such a description is determined by 
a predicate whose allowed combinations of values is called the “system behaviours”. 
 
Definition. A behaviour of a system, at a given LoA, is defined to consist of a predicate whose 
free variables are observables at that LoA. The substitutions of values for observables that 
make the predicate true are called the system behaviours. A moderated LoA is defined to consist 
of a LoA together with a behaviour at that LoA. 
 
Consider two previous examples. In reality, human height does not take arbitrary rational 
values, for it is always positive and bounded above by (say) nine feet. The variable h, 
representing height, is therefore constrained to reflect reality by defining its behaviour to 
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consist of the predicate 0 < h < 9, in which case any value of h in that interval is a “system” 
behaviour. Likewise, wine too is not realistically described by arbitrary combinations of the 
aforementioned observables. For instance, it cannot be both white and highly tannic. 

Since Newton and Leibniz, the behaviours of the analogue observables, studied in 
science, have typically been described by differential equations. A small change in one 
observable results in a small, quantified change in the overall system behaviour. Accordingly, 
it is the rates at which those smooth observables vary which is most conveniently described.3 
The desired behaviour of the system then consists of the solution of the differential equations. 
However, this is a special case of a predicate: the predicate holds at just those values satisfying 
the differential equation. If a complex system is approximated by simpler systems, then the 
differential calculus provides a supporting method for quantifying the approximation. 

The use of predicates to demarcate system behaviour is essential in any (nontrivial) 
analysis of discrete systems because in the latter no such continuity holds: the change of an 
observable by a single value may result in a radical and arbitrary change in system behaviour. 
Yet, complexity demands some kind of comprehension of the system in terms of simple 
approximations. When this is possible, the approximating behaviours are described exactly, by 
a predicate, at a given LoA, and it is the LoAs that vary; becoming more comprehensive and 
embracing more detailed behaviours, until the final LoA accounts for the desired behaviours. 
Thus, the formalism provided by the method of abstraction can be seen as doing for discrete 
systems what differential calculus has traditionally done for analogue systems. 

Likewise, the use of predicates is essential in subjects like information and computer 
science, where discrete observables are paramount and hence predicates are required to 
describe a system behaviour. In particular, state-based methods like Z (Hayes and Flinn 1993, 
Spivey 1992) provide notation for structuring complex observables and behaviours in terms of 
simpler ones. Their primary concern is with the syntax for expressing those predicates, an issue 
that will be avoided in this paper by stating predicates informally. 

The time has come now to combine approximating, moderated LoAs to form the 
primary concept of the method of abstraction. 

For a given (empirical or conceptual) system or feature, different LoAs correspond to 
different representations or views. A Gradient of Abstractions (GoA) is a formalism defined to 

 
3 It is interesting to note that the catastrophes of chaos theory are not smooth; although they do appear so when 
extra observables are added, taking the behaviour into a smooth curve on a higher-dimensional manifold. 
Typically, chaotic models are weaker than traditional models, their observables merely reflecting average or long-
term behaviour. The nature of the models is clarified by making explicit the LoA. 
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facilitate discussion of discrete systems over a range of LoAs. Whilst a LoA formalises the 
scope or granularity of a single model, a GoA provides a way of varying the LoA in order to 
make observations at differing levels of abstraction. For example, in evaluating wine one might 
be interested in the GoA consisting of the “tasting” and “purchasing” LoAs, whilst in managing 
a cellar one might be interested in the GoA consisting of the “cellaring” LoA together with a 
sequence of annual results of observation using the “tasting” LoA. 

In general, the observations at each LoA must be explicitly related to those at the others; to 
do so, one uses a family of relations between the LoAs. For this, one needs to recall some 
(standard) preliminary notation. 
 
Notation. A relation R from a set A to a set C is a subset of the Cartesian product A  C. R is 
thought of as relating just those pairs (a, c) that belong to the relation. The reverse of R is its 
mirror image: {(c, a) | (a, c)  R}. A relation R from A to C translates any predicate p on A 
to the predicate PR(p) on C that holds at just those c:C, which are the image through R of some 
a:A satisfying p  

PR(p)(c) = a: A R(a,c)  p(a) 
 
We have finally come to the main definition of the paper:  

 
Definition. A gradient of abstractions, GoA, is defined to consist of a finite set4 {Li | 0  i < n} 
of moderated LoAs Li, a family of relations Ri,j  Li  Lj, for 0  i  j < n, relating the 
observables of each pair Li and Lj of distinct LoAs in such a way that:  
1. the relationships are inverse: for i  j, Ri,j is the reverse of Rj,i  
2. the behaviour pj at Lj is at least as strong as the translated behaviour  

PRi,j(pi) pj  PRi,j(pi).     (1) 
and for each interpreted type x:X and y:Y in Li and Lj respectively, such that (x:X, y:Y) is in Rij, 
a relation Rxy  X  Y. 
 
Two GoAs are regarded as equal if and only if they have the same moderated LoAs (i.e. the 
same LoAs and moderating behaviours) and their families of relations are equal. A GoA is 
called discrete if and only if all its constituent LoAs are discrete.  

 
4 The case of infinite sets has application to analogue systems but is not considered here. 
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Condition (1) means that the behaviour moderating each lower LoA is consistent with that 
specified by a higher LoA. Without it, the behaviours of the various LoAs constituting a GoA 
would have no connection to each other. A special case, to be elaborated below in the definition 
of “nestedness”, helps to clarify the point.  

If one LoA Li extends another Lj by adding new observables, then the relation Ri,j is the 
inclusion of the observables of Li in those of Lj and (1) reduces to this: the constraints imposed 
on the observables at LoA Li remain true at LoA Lj, where “new” observables lie outside the 
range of Ri,j. 

A GoA whose sequence contains just one element evidently reduces to a single LoA. So 
our definition of “LoA” is subsumed by that of “GoA”. 

The consistency conditions imposed by the relations Ri,j are in general quite weak. It is 
possible, though of little help in practice, to define GoAs in which the relations connect the 
LoAs cyclically. Of much more use are the following two important kinds of GoA: “disjoint” 
GoAs (whose views are complementary) and “nested” GoAs (whose views provide 
successively more information). Before defining them some further notation needs to be 
introduced. We are now ready to appreciate the following definition of GoA: 
 
Definition. A GoA is called disjoint if and only if the Li are pairwise disjoint (i.e. taken two at 
a time, they have no observable in common) and the relations are all empty. It is called nested 
if and only if the only nonempty relations are those between Li and Li+1, for each 0  i < n1, 
and moreover the reverse of each Ri, i+1 is a surjective function from the observables of Li+1 to 
those of Li. 
 
A disjoint GoA is chosen to describe a system as the combination of several non-overlapping 
components. This is useful when different aspects of the system behaviour are better modelled 
as being determined by the values of distinct observables. This case is rather simplistic, since 
the LoAs are more typically tied together by common observations. 

A nested GoA (see Figure1) is chosen to describe a complex system exactly at each 
LoA and incrementally more accurately. The condition that the functions be surjective means 
that any abstract observation has at least one concrete counterpart. As a result, the translation 
functions cannot overlook any behaviour at an abstract LoA: behaviours lying outside the range 
of a function translate to the predicate false. The condition that the reversed relations be 
functions means that each observation at a concrete LoA comes from at most one observation 
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at a more abstract LoA (although the converse fails in general, allowing one abstract observable 
to be refined by many concrete observables). As a result the translation functions become 
simpler. 

 
Figure 1 Nested GoA with four Levels of Abstraction  

 
For example, the case of a traffic light which is observed to have colour colour of type {red, 
amber, green} is captured by a LoA, L0, having that single observable. If one wishes to be more 
precise about colour, e.g. for the purpose of constructing a new traffic light, one might consider 
a second LoA, L1, having the variable wl whose type is a positive real number corresponding 
to the wavelength of the colour. To determine the behaviour of L1, Suppose that constants red 
< red' delimit the wavelength of red, and similarly for amber and green. Then the behaviour of 
L1 is simply this predicate with free variable wl  
 

(red wl red')  (amber wl amber')  (green wl green'). 
 
The sequence consisting of the LoA L0 and the moderated LoA L1 forms a nested GoA. 
Intuitively, the smaller, abstract type {red, amber, green} is a projection of the larger. The 
relevant relation associates to each value c:{red, amber, green} a band of wavelengths 
perceived as that colour. Formally, R(colour,wl) is defined to hold if and only if, for each 
c:{red, amber, green},  
 

colour = c  c wl c'. 
 
In the wine example, a first LoA might be defined to consist of the variable “kind” having type 
consisting of red, white, rose under the obvious representation. A second LoA might be defined 
to consist of the observable “kind” having type  
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{stillred, sparklingred, stillwhite, sparklingwhite, stillrose, sparklingrose}. 
 
Although the second type does not contain the first, it produces greater resolution under the 
obvious projection relation. Thus, the GoA consisting of those two LoAs is nested.  

Those two important forms of GoA – disjoint and nested – are in fact theoretically 
interchangeable. For if A and B are disjoint sets then A and their union A B are increasing 
sets and the former is embedded in the latter. Thus, a disjoint GoA can be converted to a nested 
one. Conversely, if A and B are increasing sets with the former embedded in the latter, then A 
and the set difference A \ B are disjoint sets. Thus, a nested GoA can be converted to a disjoint 
one. 

Following the technique used to define a nested GoA, it is possible to define less 
restricted but still hierarchical GoAs. Important examples include tree-like structures, of which 
our nested GoAs are a special, linear case. 

For theoretical purposes, the information captured in a GoA can be expressed 
equivalently as a single LoA of more complicated type, namely one whose single LoA has type 
equal to the sequence of the LoAs of the complex interface. However, the current definition is 
better suited to application. 

Models are the outcome of the analysis of a system, developed at some LoA(s) for some 
purpose. An important contribution of these ideas is to make precise the commitment to a 
LoA/GoA before further elaborating a theory. This is called the method of abstraction. Three 
main advantages of the method can be highlighted here.  

First, specifying the LoA means clarifying, from the outset, the range of questions that 
(a) can be meaningfully asked and (b) are answerable in principle. One might think of the input 
of a LoA as consisting of the system under analysis, comprising a set of data; its output is a 
model of the system, comprising information. The quantity of information in a model varies 
with the LoA: a lower LoA, of greater resolution or finer granularity, produces a model that 
contains more information than a model produced at a higher, or more abstract, LoA. Thus, a 
given LoA provides a quantified commitment to the kind and amount of information that can 
be “extracted” from a system. The choice of a LoA pre-determines the type and quantity of 
data that can be considered and hence the information that can be contained in the model. So, 
knowing at which LoA the system is being analysed is indispensable, for it means knowing the 
scope and limits of the model being developed. 
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Second, being explicit about the LoA adopted provides a healthy antidote to 
ambiguities, equivocations and other fallacies or errors due to level-shifting, such as Aristotle’s 
“metabasis eis allo genos” (shifting from one genus to another), Ryle’s “category-mistakes”, 
and Kant’s “antinomies of pure reason”.  
 Third, by stating its LoA, a theory is forced to make explicit and clarify its ontological 
commitment. The ontological commitment of a theory is best understood by distinguishing 
between a committing and a committed component. A theory commits itself ontologically by 
opting for a specific LoA. Compare this to the case in which one has chosen a specific kind of 
car but has not bought one yet. A theory becomes ontologically committed in full through its 
model, which is therefore the bearer of the specific commitment. The analogy here is with the 
specific car one has actually bought. So LoAs commit a theory to types, while their ensuing 
models commit it to the corresponding tokens. 
 
3. Some Philosophical Applications 
The time has come to provide some philosophical applications of the method of Levels of 
Abstraction. 
 
3.1 Agents 
An agent can be thought of (Floridi and Sanders 2004) as a transition system (i.e. a system of 
states and transitions between them) that is interactive (i.e. responds to stimulus by change of 
state), autonomous (i.e. is able to change state without stimulus) and adaptable (i.e. is able to 
change the transition rules by which it changes state). However each of those properties, and 
hence the definition of agenthood, makes sense only at a prescribed LoA. For example, whether 
or not a rock is deemed to be interactive depends on the length of time and level of detail of 
observation. Over a long period, it erodes and hence changes state. By day it absorbs solar 
radiation which it emits at night. But with observables resulting from scrutiny over a period of 
ten seconds by the naked eye from ten metres, it can be deemed not to be interactive. If the 
LoA at which one observes it abstracts gravity and resistance, a swinging pendulum appears to 
be autonomous but neither interactive nor adaptive. By extending the LoA to incorporate air 
resistance, it becomes adaptive. By observing also the whistling sound it makes with the air, it 
becomes interactive. If a piece of software that exhibits machine learning (Mitchell 1997) is 
studied at a LoA which registers its interactions with its environment, then the software will 
appear interactive, autonomous and adaptive, i.e. to be an agent. But if the program code is 
revealed then the software is shown to be simply following rules and hence not to be adaptive. 
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These two LoAs are at variance. One reflects the “open source” view of software: the user has 
access to the code. The other reflects the commercial view that, although the user has bought 
the software and can use it at will, he has no access to the code. At stake is whether or not the 
software forms an (artificial) agent.  
 
3.2 The Turing test 
Turing (1950) took the crucial step of arguing that the ability to think (since called 
“intelligence”) can be satisfactorily characterised by means of a test, rather than by explicit 
definition. In retrospect, that step may seem a small one. After all, we are quite familiar with 
areas in which no explicit definition is possible or sensible. Society makes no attempt to 
characterise what it means to be an acceptable driver in terms of vision, response times, 
coordination, experience and other physical attributes. Instead, it relies on a driving test. 
Likewise, society does not attempt to define what it means for a school student to have reached 
an acceptable academic standard by the end of school; it relies on final school examinations. 
But incisive that step certainly must have been in view of the vast number of attempts (even to 
this day) to characterise intelligence explicitly. Opponents of Turing’s approach usually object 
that his test functions at the wrong LoA: perhaps it ought to include a component of creativity, 
of spontaneity, and so on. However, without concepts like those introduced above, it is very 
difficult to make one’s objections precise or defend Turing’s approach. It is therefore of 
considerable interest to see, first, how the Turing test can be expressed using phenomenological 
LoAs and, second, how it can be analysed using conceptual LoAs. 
 
3.2.1 Turing’s imitation game 
Let us start, as did Turing, by considering an imitation game, in which a man A and a woman 
B are placed in a room separate from an interrogator C, who communicates with each by 
teleprinter (these days replaced by computer). C puts questions to A and B, known only as X 
and Y. C’s task is to identify X = A and Y = B or, conversely, X = B and Y = A, by considering 
their responses. We might describe that scenario by taking a first, extremely abstract, LoA to 
reflect just the correctness of C’s identification. The LoA L0 consists of a single variable ans 
of type {right, wrong} which becomes an observable under the correspondence: ans takes the 
value right if C is correct and the value wrong if C is incorrect. In choosing this LoA, we are 
intentionally abstracting the actual answer (whether X was A or B), the questions and answers, 
response times, and so on in order to capture just the outcome of the imitation game. 
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We might reveal C’s actual identification by defining a second, disjoint, LoA L1 whose 
single variable, Z, is of type {(A,B), (B,A)} which is made into an observable under the 
correspondence that the first component of Z is the putative identity of X and the second 
component that of Y. Combining the two LoAs L0 and L1 gives a disjoint GoA. 

Of course, there are alternative approaches, which is why it is important to be precise about 
the one taken. We might have defined a GoA by replacing the LoA L1 with a LoA containing 
two observables, the first corresponding to the identity of X and the second corresponding to 
the identity of Y. That would be more involved, since each would have type {A, B} and we 
would have to moderate it with the behaviour that the values of X and Y differ. Our choice of 
L1 avoids the complication by building that behaviour into the type of Z. But with several 
observables, in general such moderating behaviours cannot be avoided. 

To model C’s questions, the addressees and their responses, we define a third LoA, L2. Let 
Q and R denote the sets of possible (well-posed) questions and responses respectively (an 
example where the type of text strings may be considered appropriate). Then each “question, 
addressee and response” triple is a variable whose type is the Cartesian product of Q, {X, Y} 
and R. It becomes an observable under the correspondence just established. The observable we 
seek now consists of a sequence (of arbitrary but finite length) of such triples, corresponding 
to the sequence of interactions in temporal order; and L2 contains that single observable. (An 
alternative would be to have an observable for the number of questions, an observable for each 
question and an observable for each response.) L2 can be added to either GoA T or T' to obtain 
a GoA which is still disjoint but has higher resolution. 

More detailed LoAs are possible and easy to define but, following Turing, we stop here 
having appreciated that any discussion of the imitation game may be accurately “calibrated”, 
according to its level of abstraction, with a GoA.  
 
3.2.2 Turing’s test 
In the Turing test, A is replaced by a “machine” (nowadays “computer”). Turing proposed that 
the question “Can machines think?” be replaced by the question: “Will the interrogator decide 
wrongly as often when the game is played like this as he does when the game is played between 
a man and a woman?”. These days,5 the test is normally stripped of its sex-specific nature and 

 
5For a summary of the Turing test today, and its incarnation in competitive form (the Loebner prize), see Moor 
(2001). 
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the interrogator is simply asked to determine the human from the machine. Appropriate GoAs 
are defined as above, but with A representing a computer and B a human. 

Although Turing did not make it explicit, the phrase “as often” in his description implies 
repetition of the test, and a conclusion reached by statistical analysis. Suppose that C initiates 
a pair of question/answer sessions of the type used in the imitation game. A list of questions is 
put to two situations, one containing a man and a woman, the other containing a machine and 
a woman. We suppose that the answers in the first situation are of type A1 and those in the 
second of type A2, thus avoiding here the question of whether or not A1 = A2. As before, C 
makes an identification. The appropriate LoA has type, call it J, equal to the Cartesian product 
of the type {(A,B), (B,A)} and the type of all sequences of elements of the type Q{X, Y} A1 
A2. 

The observable corresponding to repetition of that situation j times, though not necessarily 
with the same questions, has type consisting of the Cartesian product of j-many copies of type 
J, namely JJ. The LoA incorporating that observation plus the answer to the ultimate question 
is then the Cartesian product of the type JJ and the type {right, wrong}. Likewise, a more 
complex type can be constructed to reveal the nature of the statistical test; in this case too, let 
us follow Turing and overlook the details. 
 
3.2.3 Turing discussed 
The previous two sections have shown how to formalise the Turing test using 
phenomenologically motivated GoAs. But the method of abstraction can be used to discuss and 
compare variations on the test. Indeed it is difficult to imagine how such an analysis could be 
formulated without a concept equivalent to LoA. Now details of the LoAs need not be given 
as long as it is clear that they could be. 

Turing couched his test in terms of a single human interrogator. In the Loebner test, 
interrogation is provided by a panel of humans interacting via computer interface in real time. 
Alternatively the interrogator could be a machine; or instead of real-time interaction, a list of 
pre-arranged questions might be left, and the list of answers returned to the interrogator; or 
instead of serial questions and answers the interrogator might hold a “general conversation”. 
Each alternative modifies the power of the test. All can be formalised by defining different 
GoAs. The Turing test might be adapted to target abilities other than “thinking”, like 
interpretation of text, game playing, puzzle solving, spatial reasoning, creativity, and so on. 
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Contemplating the possible GoAs provides a way to formalise the variant test clearly and 
elegantly, and promotes simple comparison with contending treatments.  
 
3.3 Emergence 
The method of abstraction is ideally suited to the study of systems so complex that they are 
best understood stepwise, by their gradual disclosure at increasingly fine levels of abstraction. 
The study of such systems strikes at the heart of the following controversy: how does ultimate 
complexity arise in the stepwise approximation by simple systems? Gell-Mann (1994) has 
suggested calling the study of such phenomena plectics, and introduces it using an idea he calls 
granularity which is conveniently formalised by LoA.  

A key concept in such an approach to complex systems is that of “emergent behaviour”, 
that is, behaviour that arises in the move from one LoA to a finer level (see Hendriks-Jansen 
1989 for a discussion). In this section, I apply the method of abstraction to clarify that concept 
of emergence. In the next, I will shift one particular area in which emergence has received 
much attention, that of artificial life (ALife). 

Emergence, not surprisingly for such an important concept, can take various forms. It 
derives from the idea that, according to Hendriks-Jansen (1989, p. 283) “properties at higher 
levels are not necessarily predictable from properties at lower levels”. There “lower levels” are 
more abstract and “higher levels” more detailed or concrete. In this section we are concerned 
only with the idea of emergence, which is neatly captured using a GoA containing two nested 
LoAs. Let us consider an example first. 

The process of tossing a coin may be modelled abstractly with an observable outcome of 
type {head, tail} corresponding to the side of the coin that faces upwards after the toss. This 
LoA abstracts any other result (like the coin’s landing on its edge or becoming lost) and other 
features like manner of tossing, number of spins, time taken and so on. In particular, it models 
just one toss of the coin and so cannot account for the “fairness” of the coin, which would 
reveal itself statistically after a large number of tosses. Now, suppose that one wishes to model 
the repetition of that process with the explicit aim of discussing a coin’s fairness. We introduce 
a more concrete LoA, whose observables are: a natural number n, corresponding to the number 
of tosses of the coin, and a list of n values from {head, tail}, corresponding to successive tosses 
as modelled above. At this second LoA, we are able to make judgements (using standard 
statistics, for example) about the fairness of the coin, based on the frequency of the outcomes. 

This example demonstrates emergence as follows. In many repeated tosses of the coin, the 
more abstract model applies toss by toss, but does not allow frequency of outcome to be 
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observed, as it is in the finer model. We say that the notion of the coin’s fairness is emergent 
at the finer LoA. That situation can be formalised as follows. Suppose some system is under 
consideration using a nested GoA consisting of two LoAs. Suppose the more abstract LoA, A, 
is moderated by behaviour pA describing the abstract view of system and the more concrete 
LoA, C, is moderated by behaviour pC describing the concrete view. The abstract and concrete 
observables are related by the total and one-to-many relation RA,C. Recall that a behaviour of 
the system at LoA C is a triple of values for the observables of C that satisfies pC. 
 
Definition. A behaviour of the system at LoA C is said to be emergent (with respect to that 
nested GoA) if and only if its translation under the relation RA,C fails to satisfy pA. Emergence 
is said to hold in the GoA if and only if there is some emergent behaviour. 
 
There is frequently confusion about emergence. This is scarcely surprising, since without the 
notion of LoA, the various levels at which a system is discussed cannot be formalised. 
Emergence arises typically because the concrete LoA embodies a “mechanism”, or rule, for 
determining an observable, which has been overlooked at the abstract LoA, usually quite 
deliberately, in order to gain simplicity at the cost of detail. Frequently, the breakthrough in 
understanding some complex phenomenon has come by accounting for emergent behaviour; 
and that has resulted from considering the process by which it occurs, rather than taking a more 
static view of the ingredients involved. In the coin example, we have avoided incorporating 
any mechanism; but any of the multitude of pseudo-random number generators could be used 
to generate lists of head and tail and hence to account for the emergent phenomenon (Knuth 
1997). 

An interesting example of emergence is provided by quantum mechanics, according to 
which each action (other than the process of observation) is (unitary and hence) reversible. Yet 
when observations “in the large” are made of huge physical systems, in spite of the components 
of those systems obeying the laws of quantum mechanics, the laws of thermodynamics emerge: 
in spite of local reversibility, entropy increases.  

The majority of observables considered have been “static”. However operations constitute 
vital observables. Indeed, the importance of “process” may be indicated by the example of a 
sponge cake. With only the ingredients as observables (i.e. the amount of each ingredient) the 
sponge-like nature of the cake is, as many a novice cook has found, emergent. But if the manner 
of aeration (a variable indicating the aerating effect of bicarbonate of soda under the right 
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conditions) is also an observable, then sponginess is explicable. In other words, the behaviour 
of sponginess emerges at the finer level of abstraction only. 
 
3.4 Artificial life 
Attempts to define artificial life (ALife) have been no more successful than the attempts, both 
before and after Turing, to define “intelligence” explicitly. Having chosen a LoA L, one may 
propose that ALife with respect to L be defined to consist of all those entities observably 
indistinguishable under L from a live entity. A sensible “sanity check” on L is that the result 
does not depend on the particular species of life observed, provided that it is chosen with regard 
to the concept of life being explored. 

To give a rather coarse example, perhaps the most abstract observation possible of a 
population is its size: the number of members as a function of time. That is an observable of 
type “whole number” and it is well-typed provided that the population is finite and well defined. 
At this LoA, a population provides no more information than its size; there is no distinction 
between live populations, artificial populations and, for that matter, any set which varies in 
size. However, such a LoA is sufficient to support the well known Fibonacci model of 
population size per generation (Thompson 1992). It is already of some interest if one adds 
observables including the rates of birth, mortality, migration and harvesting. It then becomes 
sufficient, for example, to discuss age distribution across the population and for the 
management of pest populations, for the harvesting of natural populations, for the modelling 
of insect outbreaks, of interacting populations and so on (Murray 2003). Of course, at this LoA 
an observer from space might decide that cars are the dominant life form on parts of earth. A 
slightly finer LoA is that at which the location of individual members of a population is plotted 
against time (say in Oxford, every 24 hours). At this “spatial distribution” LoA humans are 
indistinguishable from ants, bicycles and books: all move around, are created and destroyed. 
(Were it not for copyright regulations, books might also be “cloned”.) The method of 
abstraction seems to apply well to summarise, clarify and facilitate the comparison of existing 
contributions. One important approach has been that of Langton (1996), which extends the 
biological notions of genotype and phenotype to gtype and ptype respectively so that those 
terms apply equally to ALife. Gtype refers to a low-level implementation mechanism, 
behaviour or LoA whilst a ptype refers to a higher-level behavioural structure or LoA that 
emerges as a result of those mechanisms interacting. Langton discusses the subtleties of 
inferring the latter from the former. His model provides an important instance of the use of a 
GoA containing two interfaces, one for gtype observables and the other for ptype observables. 
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3.5 Quantum observation 
It is remarkable that the disparate disciplines of quantum mechanics and social anthropology 
share a fundamental feature: in each, observation automatically involves interference. 
Observing a quantum or anthropological system is possible only at the expense of a change to 
the system. By contrast, the definition of observable introduced above makes no assumptions 
about how the entity is (capable of being) measured (effectively) in practice. In this section I 
address this issue.  

In quantum mechanics, “observable” means something much more restricted than the 
sense in which I have used it here. There, it is to be distinguished from state that is posited to 
exist in order to explain the frequency with which observables take their values. Such “beables” 
(Bell 1987) are, for the method of abstraction, also observables as is, for that matter, the 
frequency with which an observable takes on its values. The latter might be regarded as 
unachievable in practice since any finite number of readings can achieve only an approximation 
to it. But that need be of no concern to us. Our only requirement is that an observable be well-
typed. When desired, the stricter “observation as measurement” from quantum mechanics can 
be modelled as a certain kind of observation in the sense introduced in this paper: the change 
in behaviour associated with an “observation as measurement” event is simply specified to 
conform to the uncertainty principle. The same holds for the constraint of quantum mechanics 
that only certain (i.e. commuting) observables may be measured simultaneously: whilst two 
events, say A and B, may be observed independently, their simultaneous observation constitutes 
a third event, AB say, with the different behavioural consequences dictated by quantum 
mechanics. 
 
3.6 Decidable observation 
In the theory of computation an observable is called decidable, or effective, if and only if its 
behaviour is given by a computable function. For example it is known to be undecidable 
whether or not a program terminates i.e. there is no algorithm for its determination (Boolos et 
al. 2002). No assumption about the decidability of an observable should be made, for the 
following reason. The field of Formal Methods within Computer Science (Hoare and He 1998) 
concerns itself with the mathematical specification and development of information systems. 
Typically a specification embodies a twofold constraint: the required program must conform 
to such-and-such a functional specification and terminate. Without the last conjunct, 
undesirable programs, which execute forever, never yielding a result, might be allowed (in 
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some models of computation). But such a specification is no more than a behaviour phrased in 
terms of observables for input, output (appearing in the functional specification) and 
termination (appearing in the second conjunct). And we have just seen that termination cannot 
be assumed to be decidable. The consequence of allowing an observable to be undecidable is 
that some ingenuity is required to prove that an implementation meets a specification phrased 
in terms of its observables: no program can possibly achieve that task in general.  
 
5. Conclusion 
In this paper, I have summarised the method of abstraction and applied it to the study, 
modelling and analysis of phenomenological and conceptual systems. I have tried to show its 
principal features and main advantages. The method clarifies implicit assumptions, facilitates 
comparisons, enhances rigour and hence promotes the resolution of possible conceptual 
confusions. I have argued that, for discrete systems, whose observables take on only finitely-
many values, the method is indispensable. Its limitations, on the other hand, are those of any 
typed theory. Use of LoAs is effective in precisely those situations where a typed theory would 
be effective (where it is possible or desirable). Introduction of LoAs is often an important step 
prior to mathematical modelling of the phenomenon under consideration. But even when that 
further step is not taken, introduction of LoA remains a crucial tool in conceptual analysis. Of 
course, care must be exercised in type-free systems, where the use of LoA may be problematic. 
Such systems are susceptible to the usual paradoxes and hence to inconsistency. However, I 
have also shown that, if carefully applied, the method confers remarkable advantages in terms 
of consistency and clarity. Too often philosophical debates seem to be caused by a 
misconception of the LoA at which the questions should be addressed. This is not to say that a 
simplistic policy of “on the one hand... and on other hand” sort of arguments would represent 
a panacea. Disagreement is often not based on confusion. But it seems that chances of resolving 
or overcoming it may be enhanced if one is first of all careful about specifying what sort of 
observables are at stake. 
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