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Abstract

With the present paper I maintain that the group field theory
(GFT) approach to quantum gravity can help us clarify and distin-
guish the problems of spacetime emergence from the questions about
the nature of the quanta of space. I will show that the use of approxi-
mation methods can suggest a form of indifference between scales (or
phases) and that such an indifference allows us to black-box ques-
tions about the nature of the ontology of the fundamental levels of
the theory.
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1 Introduction

Many approaches to quantum gravity (QG) seem to agree that spacetime is
not a fundamental entity and, as such, it should emerge from a different non-
spatiotemporal structure —for a general overview of many such approaches
see: (Oriti 2009).1 The immediate consequence is that the fundamental

1Notably, there are also non-emergent approaches such as string theory, and emergent
approaches that posit fundamental entities that have spatiotemporal entities different form
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ontology of QG seems to be non-spatiotemporal in nature, which is an issue
that causes many headaches to the working philosophers. For example: is
the emergence of spacetime an inter-theoretic property (Bain 2013b), or is it
an ontological property that requires a metaphysical account (Huggett and
Wüthrich 2013), (Lam and Wüthrich 2018)? Instead of making spacetime
emergent, can we relinquish either space or time separately (Smolin 2020),
(Gomes 2016)? What account of emergence should we expect (Oriti 2021a)?

Perhaps, for the sake of simplicity, we can divide some of the technical
and philosophical problems of quantum gravity into two broad categories:
on the one hand we have the challenge of accounting for the emergence of
spacetime, that is, we need to provide a mechanism (mathematical or phys-
ical) that describes how non-spatiotemporal and pre-geometric entities can
approximate the geometry of spacetime. On the other hand, we have to face
the problem of accounting for the existence of fundamental entities that are
pre-geometric and that do not live in spacetime. In what follows, I will focus
on the group field theory approach and use the analogy with the Ising model
to show that we can treat the two classes of problems as independent of one
another.

It is well known that physical systems may undergo an abrupt change in
their macroscopic behavior as certain quantities are varied smoothly. Such
changes of behavior happen when those quantities (such as, for example,
temperature and pressure) reach certain values called critical points, which
mark a phase transition from one state of matter to another. These critical
points are strongly related to the length scale at which the properties of the
macroscopic system begin to substantially differ from the properties of the
individual parts. Such a length scale is usually called correlation length, and
it indicates the distance at which the fluctuations of the microscopic degrees
of freedom of the system are correlated with each other.

There are two ways in which a phase transition may occur: (i) discon-
tinuous (first-order) phase transitions in which the two phases coexist at the
critical point, and the correlation length is finite; (ii) continuous (second-
order) phase transitions in which as the critical point is approached both
phases are identical, and the correlation length diverges.2 The divergence of

those described by general relativity (for example: (Volovik 2006)). In this contribution
I will focus on emergentist approaches to quantum gravity that posit non-spatiotemporal
fundamental entities.

2The distinction between the two types of phase transitions can be further characterized
in terms, for example, of latent heat. See: (Binney et al. 1992).
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the correlation length close to a second order phase transition allows for a
description of the behavior of the macroscopic system (near critical point) in
terms of effective theories, involving only long-range collective fluctuations.
It is in this sense that: “[m]any properties of a system close to a continuous
phase transition turn out to be largely independent of the microscopic de-
tails of the interactions between the individual atoms and molecules” (Cardy
1996, p. 3).3 The description of these systems makes use of mathematical
tools such as: renormalization group techniques, mean field theory, hydro-
dynamic approximations, and others.4

In what follows, I will use the Ising model, mean field theory, and the hy-
drodynamic description of many-body systems to remark and describe this
independence between microscopic and macroscopic scales of a system under
specific conditions. If a macroscopic system is indeed (at least partly) inde-
pendent of its component parts, then the philosophical problem of addressing
the properties of the individual components can be separated from the prob-
lem of addressing the macroscopic properties of the system. Afterward, I
will apply such considerations to the group field theory (GFT) approach to
quantum gravity. I shall argue that, if the emergence of spacetime is (partly)
indifferent to the dynamics of the individual quanta of space, we can sepa-
rate the problems related to spacetime emergence from those related to the
fundamental ontology of the theory.

The reason as to why I focus on the group field theory approach is the
immediate connection with the physics of phase transitions. As a matter
of fact, the key idea in the GFT approach —which also led to the deriva-
tion of cosmological models (both homogeneous and inhomogeneous, see for
example: (Gielen and Oriti 2018) and (Marchetti and Oriti 2022))— is to
interpret the collective behavior of the quanta of space as a form of Bose-

3It is important to stress the fact that not all systems manifest the type of independence
between macroscopic and microscopic scales described here. Indeed, for example, in Bose-
Einstein condensates the Bose statistics (microscopic scale) is directly responsible for the
superfluidity behavior at the system’s macroscopic scale. I thank a anonymous reviewer
for stressing this point in a previous version of this manuscript.

4Another important feature that characterizes systems undergoing this type of phase
transitions is that they can be grouped into different classes, each characterized only by
global features, such as symmetries and number of spatial dimensions of the system. This
feature is called universality, and it has been the subject of many debates in philosophy of
physics —especially with respect to the possibility of giving a reductionist explanation to
such an interesting feature. For example: (Franklin 2018), (Batterman 2013), (Butterfield
2014), (Butterfield and Bouatta 2012), (Morrison 2012), and others).
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Einstein condensate (see: (Gielen, Oriti, and Sindoni 2014), (Gielen, Sindoni,
et al. 2016), (Oriti 2017), (Pithis and Sakellariadou 2019), (Gielen and Po-
laczek 2020), (Gabbanelli and De Bianchi 2021)). The individual quanta of
space of the theory are taken to be living in a pre-geometric microscopic
phase, in that they are the fundamental entities of the theory and they have
no spatiotemporal properties. By studying their collective behavior (within
the thermodynamic limit) in the mean field approximation, one obtains the
equations of a condensate from which it is possible to extract some properties
such as, for example, the volume of the condensate.5

In Section 2 and 3, I present the philosophical problems of quantum
gravity that I will be discussing in this paper. I will clarify notions such
as emergence and reduction and review some of the recent literature. In
section 4, I will provide a brief discussion of the Ising model to the pur-
pose of showing how phase transitions offer us a case of indifference of the
macroscopic properties of a given system from the dynamics of its individual
components. Section 5 briefly introduces the group field theory approach
to quantum gravity and applies the results of Section 4 to the emergence of
spacetime. Section 6 offers some concluding remarks.

2 Setting the Stage: Levels of Emergence

Two recent papers, (Oriti 2021a) and (Oriti 2021b), set out a multilevel-
ontology account of spacetime emergence in the context of some approaches
to quantum gravity.6 The starting point of Oriti’s argument is the neces-
sity (and corresponding difficulties) of identifying the fundamental degrees of
freedom of a theory that aims at justifying the emergence of spacetime from
entities that are fundamentally non-spatiotemporal. The problem, which
stems from the common understanding of observables living in spacetime,
has even led to doubts about the very possibility of verifying a theory of
quantum gravity in the first place (see: (Huggett and Wüthrich 2013)). The
atoms of space, the fundamental degrees of freedom of the theory, shall define

5One of the main results of the approach is that the equation of motion of the condensate
is analogous to the Gross-Pitaevskii equation in canonical condensed matter (Gielen and
Polaczek 2020). The geometric quantities defined by the condensate can be interpreted as
the Friedmann equations for the GFT condensate and they can be shown to be consistent
with their canonical counterpart (see: (Oriti, Sindoni, and Wilson-Ewing 2016), (Oriti,
Sindoni, and Wilson-Ewing 2017)).

6An overview of such levels can also be found in: (De Bianchi and Gabbanelli 2023).
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not only a quantum dynamics, but also show how at some (continuum) limit
general relativity (GR) becomes a good effective description of spacetime. In
other words: one of the challenges faced by the community working on quan-
tum gravity is to show how GR spacetime emerges from non-spatiotemporal
fundamental entities.

The instance of emergence, in this case, is taken to be one that justifies
novel properties that are missing from the properties of the underlying en-
tities. See, for example: (Butterfield and Bouatta 2012), and (Butterfield
2011a). In this sense: “[e]mergence is understood to be the appearance, in
a certain description of a physical system, of properties that are novel with
respect to a different (more ‘fundamental’) description of the same system,
robust, and thus stable enough to represent a characterization of the new
description and to form part of new predictions stemming from it” (Oriti
2021a, p. 17). The emergence of such new phenomena from some underlying
entities often requires the use of limiting procedures and approximations.
These provide a new description of the system via novel quantities that, as
we shall see below, are indifferent to the dynamics of the more fundamental
levels.

In his account, Oriti defines four non-sequential levels of spacetime emer-
gence, to be interpreted as describing the issues involved in the emergence of
spacetime from the atoms of space of a theory of quantum gravity. The first
level (listed as ’Level -1’) emphasizes how general relativity already implies a
disappearance of a notion of absolute space and time. That is: the continuous
fields of GR are defined on a differentiable manifold but, because of diffeo-
morphism invariance, the manifold offers only global topological constraints
on the fields that ‘constitute’ spacetime. As a consequence, the individual
points of the manifold carry no physical meaning, and the general solutions
to the dynamical equations do not single out a preferred direction of time
or space. In quantum mechanics, and with respect to the choice of a pre-
ferred reference frame, things are not that dissimilar: “no preferred space or
time direction is present in the theory, coordinate frames are unphysical and
generic physical configurations of the quantum spacetime will also not select
any” (Oriti 2021a, p. 5). A possible solution is the relational strategy (see, for
example, (Gambini and Porto 2001)), for which there is no space and time,
but only imperfect physical clocks and rods. That is, one can attempt to
identify some internal degrees of freedom (some appropriate generic fields) of
the system acting as approximate clocks and rods that thereby parametrize
the spatial and temporal relations of the remaining degrees of freedom. The
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notions of space and time thus defined do not match their usual Newtonian
counterparts yet, since that is the case only for special kind of fields and
approximations.

Then, (Oriti 2021b) further distinguishes a level of emergence that in-
volves the canonical quantization of general relativity. Provided that one
can proceed with canonical quantization, one would obtain a valid theory of
quantum gravity insofar as “the quantum dynamical nature of the matter
fields chosen as preferred reference frame can be neglected” (Oriti 2021b,
p. 4). In such a theory of quantum gravity, space and time disappear in a
sense that is even more radical than in the previous level. Indeed, the process
of quantization implies that the field will be subject to quantum properties
such as uncertainty, non locality (entanglement), and discreteness of the ob-
servables. Therefore, “[s]tarting from such quantum realm, the emergence
of space and time as we know them from GR requires a number of approx-
imations and restrictions, which together define the semiclassical limit of
quantum gravity” (Oriti 2021b, p. 5). This level, which recovers space and
time from generally covariant dynamical quantum fields is listed as Level 0.

Level 1, in Oriti’s taxonomy, constitutes a different sense in which space
and time ought to emerge in some approximations in a theory of quantum
gravity. This level implies the existence of quanta of space (or atoms of space)
as non-spatiotemporal entities, and such new degrees of freedom constitute
the theory’s new fundamental building blocks from which space, time, and
geometry, are supposed to emerge in some continuum limit —although they
are still different from the smooth continuous spacetime of general relatvity.
Level 1 is thus fundamentally different from the previous ones, in that space
time and geometry do not emerge in the context of a (more or less) straight-
forward quantization of general relativity. Notably, several approaches seem
to conceive of emergence as described in Level 1. For example, spin net-
works in loop quantum gravity (for example: (Ashtekar and Lewandowski
2004)): “with their dual functional dependence on group elements or group
representations associated to graphs, and their histories labeled by the same
algebraic data and associated to cellular complexes” (Oriti 2021a, p. 6). An-
other approach that is based on a new type of fundamental entities is causal
set theory (for a review, see: (Surya 2019)), where discreteness is assumed
as a core tenet of the theory and the elements of a causal set are in a causal
relation (partial order) with one another. Another example are the quanta
of group field theory (see: (Oriti 2012), (Krajewski 2012)): “which can be
descried both as generalized spin networks and as simplicial building blocks
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of piecewise-flat geometries” (Oriti 2021a, p. 6). Although there are other
approaches that fit in with this level of spacetime emergence, in this contri-
bution I shall focus on group field theories only.

Since in these approaches the atoms of space are non-spatiotemporal in
themselves, how can they give rise to spatiotemporal properties in the first
place? A possible response is that the collective behavior of individual en-
tities can lead to novel properties that are not possessed by the underlying
components. Yet, some theoretical, if not ontological, bridging between the
underlying and emergent components should be accounted for: “if spacetime
has to be reconstructed at all, the more fundamental theory should allow for
a dictionary, mapping its basic entities and some of their properties into con-
tinuum fields including those defining spatiotemporal notions” (Oriti 2021a,
p. 25).

There is an important distinction that should be accounted for in the
previous quote: whether the dictionary is to be taken as translating concepts
from one theory to another, or whether the ontology tracks the respective
theories. The first possibility implies a more timid perspective in that it
would require an account of inter-theoretic reduction between the atoms of
space of quantum gravity and the spacetime of general relativity. On the
other hand, a stronger claim (and one that requires some metaphysical fi-
nessing) is that not only a dictionary between theories is possible, but also
that the ontology of the respective theories follows such a reduction. With
respect to these possibilities, (Oriti 2021b) emphasizes how the physical enti-
ties we endow with ontological status are defined within the contexts of either
the theory, or models thereof. This is true especially for theories operating
at scales beyond immediate sensory experience, such as quantum mechanics,
quantum field theory, and, consequently, quantum gravity. It is therefore
hard to imagine how the ontologies proper of each theory could be inde-
pendent from the corresponding mathematical framework. This amounts to
following a cautious scientific realism, and I emphasize the term ‘cautious’
because, while a complete separation between formal apparatus and ontology
is unlikely, it is also too strong of a claim to say that all theoretical objects
partake in the ontology of the theory. However, to provide a detailed analysis
of how to separate the ontological wheat from the mathematical chaff goes
far beyond the scope of the present contribution.

In addition, one could argue that I am confusing emergence and reduc-
tion. In the context that I will be discussing in this paper, i.e., that of phase
transitions (and group field theory), to determine which concept should apply
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is a matter open to debate. For example, (Butterfield 2011b) and (Butter-
field and Bouatta 2012) maintain that phase transitions combine a form of
inter-theoretic reduction and emergence at the thermodynamic limit, (Bat-
terman 2011) and (Morrison 2012) maintain that some approximations and
limit procedures imply the emergence of new phenomena. Alternatively,
(Palacios 2019) argues for a sophisticated notion of inter-theoretic reduc-
tion between thermodynamics and statistical mechanics that involves logical
deduction between theories and a form of limiting reduction (which makes
use of approximations and idealizations). The bottom line is that notions
such as reduction and emergence need not be incompatible if applied to dif-
ferent contexts. Indeed we can have inter-theoretic reduction via limiting
procedures and emergent properties stemming from the collective behavior
of fundamental entities.7

I shall conclude this section by summarizing the second and third level of
emergence which focus on the atoms of space in terms of collective behavior
(Oriti 2021a). Level 2 deals with issues related to the fact that there are more
than one continuum phases for the same atoms of space. Indeed, by exploring
the continuum limit of the collective behavior of the fundamental entities,
one should expect that such a limit is not unique. That is, there might be
different phases that are separated by different phase transitions, and this
yields different kind of macroscopic properties and systems, one for each
phase. However, of these macroscopic systems, not all of them are amenable
to be described as space, time, and geometry governed by general relativity
(and approximations thereof). It is thus of great importance to any theory
of quantum gravity to identify such phases, and “it is the task of quantum
gravity formalisms that suggest fundamental non-geometric atoms of space to
show that there exists such geometric, spatiotemporal phase, in a continuum
limit, in some approximation” (Oriti 2021a, p. 10). This again emphasizes
that the transition from fundamental atoms of space to macroscopic phases
is not ‘just’ a matter of some approximations, but rather the emergence of
of new properties starting from entities that are not spatiotemporal. That
is: there is an ontological difference between the emergent phases and the

7Notably, while Oriti (2021a) seems to suggest a realist attitude about the fundamental
entities postulated by the theory, Oriti (2021b) is more cautious about such an ontological
commitment. Nonetheless, he maintains that ontological emergence might follow from the
inter-theoretic one: “This intertheoretic (or epistemic) emergence amounts in fact to a
relation between mathematical and conceptual models of the world, from which we imply
a relation between natural phenomena described by those theories” (Oriti 2021b, p. 2).
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underlying fundamental entities.
Finally, the third level of spacetime emergence involves the (physical)

mechanism responsible for the transition from non-geometric to geometric
phases. A possible interpretation to such mechanism might be found in
cosmology, for example: (Magueijo, Smolin, and Contaldi 2007). A possible
idea is to interpret the mechanism as a process of condensation of the atoms
of space that gives rise to the universe described as a quantum field (for
example: (Gielen, Sindoni, et al. 2016)).

In sum, Oriti’s taxonomy can be divided into two main classes: On the
one hand we have issues concerned with the (canonical) quantization of grav-
ity, that is, levels -1 and 0 are focused on recovering spacetime from generally
covariant classical and quantum fields. On the other hand, levels 1, 2 and
3 discuss the problems of recovering space and time starting from new fun-
damental degrees of freedom. More specifically, Level 1 assumes that there
is only one phase, Level 2 deals with problems related to the existence of
different continuum phases and phase transitions, and Level 3 deals with
issues related to the transition from non-geometric to geometric phases. In
what follows, I will focus mostly on Level 1, 2, and 3, and I will emphasize
the distinction between the problem of spacetime emergence —that is, how
non-spatiotemporal entities can approximate spacetime structures—, and the
problem of the nature of non-spatiotemporal entities —that is, the apparent
difficulty of accounting for a theory whose fundamental ontology does not
live in spacetime.

3 The Twofold Problem

Having shed some light on concepts such as emergence and reduction, we
can now move back to the original problem I intend on discussing here: the
justification of spacetime emergence from non-spatiotemporal entities. The
problem is twofold, and thus requires separate considerations. On the one
hand, we want an account of how spacetime emerges from, or reduces to,
more fundamental entities. On the other hand, we want a precise account,
possibly endowed with a plausible physical interpretation, of the kinematics
and dynamics of such fundamental entities (the atoms of space). The latter
problem, as far as the current research goes, presents itself with the demand
for the atoms of space to be fundamentally non-spatiotemporal. How to
conceive of some fundamental physical entities to be non-spatiotemporal is
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a philosophical conundrum, yet one that ought not to be confused with the
question of how such entities can approximate spacetime.

Notably, that spacetime is not the sort of fixed background that allows
us to absolutely identify objects and events is already questioned in general
relativity. However, one of the challenges posed by quantum gravity is that
even the individual rods and clocks used by GR to keep track of the dynamics
between entities and events seem to vanish. Perhaps, one could relinquish
the idea that being-in-spacetime is a necessary condition for existence.8 Al-
ternatively, one can opt for an instrumentalist view and consider fields as the
only truly physical entities, while the non-spatiotemporal basic structures of
the theory are conceived of as mathematical artifacts.

In what follows, I will discuss how emergent properties in the context
of phase transitions can be considered to be independent from their funda-
mental constituents. Afterward, I will review the analogy between GFT and
hydrodynamics models (Kadanoff and Martin 1963) (Marchetti et al. 2022a),
(Marchetti et al. 2022b), (Volovik 2006) and emphasize how GFT condensate
offers a mechanism for spacetime emergence that relies on the independence
of spacetime from the dynamics of the underlying physics.

4 Ising Model and Indifference

In this section I will briefly present the Ising model, and some approximation
methods that allow us to define salient mesoscale quantities. The relevant
feature of these quantities is that they are indifferent to the micro-dynamics
of the more fundamental levels. This indifference will turn out to be central
for our discussion on quantum gravity, since it will allow us to ‘black-box’ the
questions about the nature of the atoms of space and focus on the emergence
of spacetime.

The Ising model is a simplified lattice model that can be used to describe
the total magnetization of a system composed of many individual atomic
spins. In conjunction with the Ising model, I will introduce the mean field
theory approximation, which derives an effective field by averaging over the
behavior of the individual atomic spins. As a result, the effective field ‘ig-
nores’ the interactions between individual spins and allows us to derive the

8Notably, this is not necessarily a new view. Mathematical and abstract objects do not
exist in spacetime and yet they can be (for the most part) well-defined and individuated.
See: (Linnebo 2018).
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thermodynamic properties of the macroscopic system (for example, its mag-
netization). While I will emphasize that a change in the orientation of some
of the individual atomic spins would not be relevant to the overall magneti-
zation, it would be too strong of a claim to characterize such an indifference
as a complete autonomy. Indeed, while we could modify some of the ori-
entations of the individual spins without affecting the total magnetization,
a change in the orientation of all spins would inevitably change the total
magnetization.9 It is precisely because of this indifference that we have the
emergence of novel (and as we will see, robust) properties at the macroscopic
phase.

4.1 Ising Model

The Ising model (Onsager 1944), (Stanley 1971) is a mathematical model
that can be used to represent the ferromagnetic behavior of a collection of
atomic spins on a lattice. Each spin σi has values ±1 and interacts with the
neighbor sites on the lattice, and with an external magnetic field h. The
Hamiltonian of the system reads:

H = −J
∑
⟨i,j⟩

σiσj − h
∑
i

σi (1)

The first sum on the right hand side of the equation is taken over all the
sites of the lattice ⟨i, j⟩ close to σi, and J is the coupling factor between
spins. As I have mentioned in the introduction, phase transitions are char-
acterized by critical points associated with some macroscopic quantities, in
this case the critical temperature T = Tc. The two phases of the system
(ferromagnetic and paramegnetic) can be described by the order parameter

magnetization M ≡ 1
N

∑N
i=1 ⟨σi⟩, where ⟨σi⟩ = Tr(σi exp(−βH))

Z
, Z is the parti-

tion function Z = Tr exp(βH), and β = 1/kbT .
10 The exact solution of the

two-dimensional Ising model was presented by (Onsager 1944), but higher di-
mensionality leads to untractable terms. As a consequence, scientists need to
rely on approximation methods, such as mean field theory (MTF), to derive

9I leave the discussion about how many atomic spins we can change before affecting
the macroscopic system to later works.

10A more thorough presentation of the mathematical details of the Ising model can be
found in (among others): (Binney et al. 1992), (Cardy 1996).
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the macroscopic properties of the modeled systems.11

The idea behind MTF is that instead of accounting for all the interactions
of the individual atomic spins, we can average their behavior and treat them
as a single effective field. More precisely, consider the interaction between two
spins σiσj in the previous Hamiltonian, where each spin is σi = ⟨σi⟩ + δσi,
and δσi denotes the fluctuations around the mean value of σi. Then, one
obtains that: σiσj = ⟨σi⟩ ⟨σj⟩ + ⟨σi⟩ δσj + ⟨σj⟩ δσi + δσiδσj. The central
assumption of the mean field theory approximation is that the fluctuations
quadratic term is negligible: δσiδσj = 0.12 In addition, since the system is
invariant under translations, the averaged spin is independent of its specific
location i in the lattice. Thus, M = ⟨σi⟩ = ⟨σj⟩, and the interaction term
in the original Hamiltonian becomes: σiσj = M(σi + σj) − M2. Also, the
sum over nearest neighbors

∑
<ij> can be re-written as a sum over the lat-

tice locations times the nearest neighbors to each such locations: that is,∑
<ij> → 1/2

∑
i=1

∑
j∈neigh(i).

13 Thus, the latter summation term is simply
accounting for the number of nighbors of each lattice site i and can be ex-
pressed as:

∑
j∈neigh(i) = z. Upon substitution, one derives the mean field

theory Hamitonian Heff = +JM2Nz−(JMz + h)
∑N

i=1 σi and the mean field
equation for the order parameter magnetization:

M =
1

N

N∑
i=1

Tr (σi exp(−βHeff))

Z
= tanh [β (h+ zJM)]

The equation means that we can ignore the interactions between particles
and consider only those with the external field h and with the effective field
Jzm. By solving the equation, one obtains that the description of the ther-
modynamic properties of the system is independent from the dynamics of

11Mean field theory is but one method that involves forms of coarse-graining. Another
example is represented by renormalization group techniques (or, renormalization group
theory (RG), (Wilson 1975)). As pointed out in (Batterman 2013, p. 8): “In a mean field
theory, the order parameter M is defined to be the magnetic moment felt at a lattice site
due to the average over all the spins on the lattice. This averaging ignores any large-scale
fluctuations that might (and, in fact, are) present in systems near their critical points.
The RG corrects this by showing how to incorporate fluctuations at all length scales, from
atomic to the macro, that play a role in determining the macroscopic behavior [...] of the
system near criticality”.

12A more thorough exposition of mean field theory approximations and consequences
thereof can be find in, for example, (Binney et al. 1992), (Cardy 1996).

13The term 1/2 is to account for the double counting like: i-being-near-j and j-being-
near-i.
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the microscopic quantities (the orientation of the individual spins):14

m(T, h = 0) =

±
(
1− T

Tc

)1/2

T → T−
c

0 T → T+
c

(2)

The result is that, starting from a system composed of (infinitely) many
atomic spins, it is possible to average over the degrees of freedom using some
statistical methods and obtain a new quantity that was not present at the
scale of the individual atoms. This new quantity can be used to describe
the macroscopic properties of the system. The crucial point is that the total
magnetization of the system seems to be independent from the orientation of
the individual atomic spins, where such an independence is provided mean
field theory approximations.

One could contend that the independence was built-in in the approxima-
tion method, that is, in the fact that mean field theory assumes that small
fluctuations in the interaction between spins can be ignored. Indeed, if we
were trying to demonstrate that mean field theory explains such an inde-
pendence, the argument would not hold, for we would be assuming the very
same thesis we are trying to prove. However, what I emphasize here is that
one can derive macroscopic properties (and phenomenology) of a giving sys-
tem by using a method that ignores some physical information about the
microscopic scale of that same system.

Another approach that testifies the irrelevance of the microscopic degrees
of freedom to the order parameter M is the hydrodynamic description of
many-body systems. The general idea is to describe the behavior of a many-
particles system —which may be too complicated to deal with— with a
simpler and more tractable theory. More specifically: “[t]he simplification
occurs because when all physical quantities vary slowly in space and time
each portion of the system is almost in thermodynamic equilibrium. Under
these conditions, the variation in the system is completely described by local
values of the various thermodynamic variables —for example, by giving the
pressure, density, and velocity as a function of space and time. The basis
of fluid mechanics is the partial differential equations satisfied by these local
thermodynamic quantities” (Kadanoff and Martin 1963, p. 3).

Let us consider, again, the Ising model and let us define M(r, t) the
magnetization of the system at site r and time t. At equilibrium, the variation

14The mathematical details of the solution can be found in, for example: (Selinger 2016),
(Kadanoff 2000), (Goldenfeld 2018).
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over time of the magnetization will be conserved: ∂/∂t
∫
M(r, t)dr = 0. If

we add a perturbation, the system will relax back to equilibrium state. This
determines a flux

〈
jM

〉
= −D∇⟨M(r, t)⟩ and a diffusion equation that uses

averages to describe the diffusion of the long-lived disturbances to the system
by the external field:15

∂

∂t
⟨M(r, t)⟩ −D∇2 ⟨M(r, t)⟩ (3)

Here, M indicates the magnetization, the brackets indicate averages and
thus not individual spins, and D the transport coefficient (or spin-diffusion
coefficient).16

It was Kadanoff and Martin (1963, p. 419) who pointed out how the hy-
drodynamic description of a system can be equivalent to that provided by
correlation functions. That is, one can use equilibrium statistical mechanics
to describe non-equilibrium behaviors. For instance, let us characterize an ex-
ternal field acting on the atomic spins as: ⟨M(r)⟩ = χh(r) where χ = ∂M/∂h
is the magnetic susceptibility. The relaxation back to equilibrium after the
macroscopic disturbance by the external field h “[. . . ] follows the same laws
as the regression of microscopic fluctuations at equilibrium. These fluctua-
tions are represented by correlation functions” (Batterman 2021, p. 59). This
means that correlation functions such as ⟨Cij⟩ = ⟨σiσj⟩ − ⟨σi⟩ ⟨σj⟩ lead to
thermodynamic information. For example, one can show that magnetic sus-
ceptibility can be expressed in terms of a sum of correlation functions over
all sites of the lattice:17

χ(T,H) = N
m2

kβT

∑
i

Ci(T,H) (4)

From magnetic susceptibility one can obtain the thermodynamic properties
of the system by using the free energy and appropriate variational principles,
see: (Solé 2011), (Selinger 2016), (Kadanoff 2000), (Goldenfeld 2018).

The example, which I have reported here in a simplified form, shows
that there is a connection between the linear response of a system to an

15Batterman (2021) notes that the averages do not indicate individual spins nor contin-
uum systems, and therefore they are to be considered as mesoscale quantities.

16Because magnetization is expressed in terms of averages, (Batterman 2021) maintains
that the equation describes mesoscale quantities.

17A rigorous derivation of the magnetic susceptibility from hydrodynamic equations is
offered in (Kadanoff and Martin 1963)
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external ‘macroscopic push’, and the internal fluctuations of a system in
equilibrium —I shall say more on this in the next section. Such a connection
allows us to use hydrodynamic equations (such as the diffusion equations) to
describe the behavior of a many-body system without needing a description
of the microscopic behavior. For example, to calculate the thermodynamic
properties of the system we do not need the fine details of the individual
spins —e.g., we do not need the interaction coupling constant between spins
to calculate the spontaneous magnetization below critical temperature. This
is made evident graphically in Figure 1: below the critical temperature, the
system undergoes a symmetry-breaking corresponding to the ferromagnetic
phase.

Figure 1: The parameter M (magnetization) as a function of parametrized tem-
perature T/Tc (Selinger 2016, p. 18).

4.2 Neither Realism nor Instrumentalism

Models such as the Ising model have the capacity of representing correla-
tions that are statistically representative at different scales. In this sense:
“equilibrium statistical mechanics itself has the means to describe the non-
equilibrium behavior of the transport properties in the slow, linear regime”
(Batterman 2021, p. 58). This is considered by Batterman as a consequence
of the fluctuation-dissipation theorem in (Kubo 1966, p. 256), for which there
is: “a general relationship between the response of a given system to an ex-
ternal disturbance and internal fluctuation of the system in the absence of
the disturbance [. . . ] The internal fluctuation is characterized by a corre-
lation function of relevant physical quantities of the system fluctuating in
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thermal equilibrium, or equivalently by their fluctuation spectra”. In other
words, the fluctuation-dissipation theorem proves a connection between the
relaxation back to equilibrium of correlated atoms (or molecules) with some
external perturbation of the system. This justifies the use of hydrodynamic
equations, as shown in (Kadanoff and Martin 1963, p. 800):

The response of a system to an external disturbance can al-
ways be expressed in terms of time dependent correlation func-
tions of the undisturbed system. More particularly the linear
response of a system disturbed slightly from equilibrium is char-
acterized by the expectation value in the equilibrium ensemble, of
a product of two space -and time- dependent operators. When a
disturbance leads to a very slow variation in space and time of all
physical quantities, the response may alternatively be described
by the linearized hydrodynamic equations.

Thus, as we have seen earlier for the Ising model, the hydrodynamics ap-
proach emphasizes the autonomy of the mesoscale from the (more) funda-
mental micro-dynamics. Because of this autonomy, (Batterman 2021) con-
siders the correlation variables as ‘natural variables’ of the system at a given
scale.

There are cases, though, where the suppressed fluctuations at all scales
have indeed an effect on the macro dynamics of the system. Renormalization
Group Theory (RG) solves this problem by iterating the process of averaging
over different length scales: “Instead of using the ensemble to calculate an
average, as in SM [statistical mechanics], we use RG to transform one ensem-
ble into another one with different couplings. Each transformation increases
the length scale so that the transformation eventually extends to informa-
tion about the parts of the system that are infinitely far away” (Morrison
2014). This way, while the system loses information about the microscopic
structure, it displays the new macroscopic correlations. With respect to our
purposes, the crucial point remains: one can describe macroscopic properties
using an appropriately defined mesoscale which is (partly) indifferent to the
behavior of the more fundamental entities.

At this point, one might question whether the mesoscale level is to be
considered as merely an instrumental tool for calculation purposes. For ex-
ample, (Williams 2019) advocates a form of effective realism that includes
entities derived from approximation methods such as renormalization group
techniques: “focusing exclusively on fundamental ontology [. . . ] leaves one
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with an interpretation unequipped to support the theory in the performance
of its explanatory duties [. . . ] many explanatory affirmations made in the
theory simply cannot be made true by including in one’s ontology only those
entities at the fundamental scale” (Williams 2019, p. 19). Alternatively, one
could argue that the indifference of the mesoscales from the fundamental
ontology will one day be explained by a complete physical theory. The ar-
gument calls for a form of strong reductionism that attempts to ‘build the
universe from fundamental entities’ (see: (Anderson 1972)). Other forms of
reductionism set a less stringent requirement (Bain 2013a), but they still do
not invalidate the fact that the explanatory power of approximate models is
provided by quantities that lie at the mesoscale level: densities and gradients
in flowing contexts, geometrical properties and topological features in static
cases, effective fields in magnetic phenomena. The (more) fundamental levels
of the theory remain irrelevant to the explanatory power of those models.

This is very clear in the case of Putnam’s pegs and board (“Philosophy
and our mental life” 1975). Suppose we have a wooden board with two holes
drilled on it. The first hole is circular with diameter 1cm and the second
is squared with each side being 1cm long. Direct experience tells us that a
cubical peg that perfectly fits the squared hole will not fit the circular one.
We can offer two types of explanations to this fact. On the one hand, we can
adopt a bottom-up approach and attempt to derive an explanation starting
from the microscopic structure of the system. On the other hand, we can rely
on the geometrical and topological structure of both pegs and holes, since
the area of a circle with diameter d is smaller than the area of a square whose
sides are of the same length as the diameter of the circle. The geometrical
explanation is indifferent to the microscopic structure of the board (or of the
cubical peg).

The crucial point is that independently of the philosophical attitude we
assume towards geometric properties and microscopic structure, the irrele-
vance of the latter to the former seems to remain a brute fact when it comes
to explaining why the square peg does not find the round hole. This fact
can tell us something about the tension that I mentioned in the first section
between realism of non-spatiotemporal entities and instrumentalism towards
the atoms of space.

The discussion about the Ising model and approximation methods leaves
us with the conclusion that we might separate the problem of accounting
for spacetime emergence in QG from the discussion over the ontology of the
corresponding fundamental entities. In the next section I will review a theory
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of quantum gravity that interprets the emergence of spacetime in terms of
phase transitions, thereby rendering the problem of the ontology of the atoms
of space, at least partly, irrelevant.

5 GFT and Phase Transition

Originally, a theory of quantum fields of geometry was developed in the con-
text of global quantum cosmology (see: (Giddings and Strominger 1989),
(Banks 1988), and (Oriti 2009) for a review). The theory would construct
a sum over possible topologies where each topology would correspond to a
Feynman graph and corresponding quantum amplitude. However, the ap-
proach presented interpretative and mathematical problems which could be
partially eased by adopting a local framework that generalizes dynamically to
the whole universe (Oriti 2006). Thus, a partial solution was to use a simpli-
cial description of spacetime obtained by gluing together many fundamental
discrete building blocks (atoms of space).18 The complex simplicial structures
would be expressed by the tensor product of the wave functions associated
to each individual block, where the geometry of each building block of space
is described in terms of group and representation variables (see: (Oriti 2016)
and (Oriti 2012)). While more complex simplices can be realized by gluing
simpler ones along a shared boundary, this is not a spacetime structure yet,
since it lacks both a continuum limit and a metric structure.

The theory defines a complex scalar field φ : G×d → C on a group man-
ifold G which is usually taken to be either the Lorentz group SO(3) or the
rotation group SU(2). The many wave functions are then promoted to op-
erators and the field theory is thus “specified by a choice of action and by
the definition of the quantum partition function expressed perturbatively
in terms of Feynman Diagrams” (Oriti 2009, p. 311). The action is cho-
sen so that the perturbative expansion of the partition function equals the
discretized path integrals for quantum gravity of the form:

Z =

∫
DφDφ∗e−S(φ,φ∗) (5)

Then, from the path integrals form, one can couple a scalar field to provide
the dynamics for the structure of the tetrahedra: “in particular, we are

18The use of discrete structures is an approach taken also by simplicial quantum gravity
(Hartle 2022) and spin foam models (Rovelli and Vidotto 2014)
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interested in adding degrees of freedom that can be interpreted as discretized
scalar matter, just like the group-theoretic variables can be interpreted as
discrete geometric data” (Oriti 2021b, p. 10). Thus, the initial field defined
on the SU(2) group assumes the form: φ(gI , ϕ

J) : SU(2)4 × R → C. The
newly added free, massless, real-valued field ϕ will act as a relational clock,
i.e., as an internal time variable with respect to which the other variables
evolve.19

At this stage, the individual tetrahedra are analogous to the individual
atomic spins of the Ising model I described above. They do not carry any
spatiotemporal information in the sense of general relativity, similarly to how
the orientation of the individual spins does not inform us about the overall
magnetization. To be more precise, the distance between the fundamental
entities of GFT and the macroscopic spacetime of general relativity is even
larger than the one between individual spins and total magnetization in the
Ising model. Indeed, the total magnetization of the Ising model is obtained
from averaging over the individual orientation of the individual spins. In
this sense mean field theory, for example, relies on the loss of some of the
microscopic information to obtain a macroscopic property of the system. It
is that lost information that allows us to maintain that the macroscopic
property is independent from the corresponding microscopic dynamics. It
would be more appropriate to characterize such an independence as only
partial, in that the effective Hamiltonian still depends on the terms σi, and
it only neglects the quadratic term δσiδσj. On the other hand, the individual
tetrahedra in the GFT case do not carry any spatiotemporal properties of the
relativistic fields. The continuum limit here corresponds to Level 1 of Oriti’s
taxonomy, in that a spatial manifold is thought of as “a collection of (glued)
building blocks, akin to many-particle state, and the field theory should be
defined on the space of possible geometries of each such building block” (Oriti
2012, p. 8). Then, how does spacetime emerge in such a context?

In general, in quantum field theory, the evaluation of the full partition
function incorporates all dynamical degrees of freedom and thus the con-
tinuum limit of the theory as well. In the GFT context, this amounts to:
“[...] resumming the full perturbation series, thus the sum over triangulations
weighted by a discrete gravity path integral [...] including infinitely refined
lattices. In physical terms, this means being able to control the full collec-

19The strategy of adding a field to play the role of relational clock is not new, see:
(Dittrich 2006) and (Brown and Kuchař 1995).
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tive quantum dynamics of the QG atoms, looking for regimes in which the
discrete picture can (and should) be replaced by one in terms of continuum
spatiotemporal fields” (Oriti 2021b, p. 11).

That is, from the perspective of spacetime emergence, one needs to move
from the atoms of space to the continuum phase, but this requires the control
of the dynamics of the theory at all scales and regimes. Yet, the mathematical
control of the theory does not discern between physical and mathematical
phases. In addition, one needs to identify which phases amidst the ones
allowed by the theory can be rewritten in terms of spatiotemporal fields
and dynamics of general relativity. One can employ approximation methods
(such as renormalization group techniques and mean field theory) to obtain a
picture of the continuum phases from which to extract some physical insights:

If the emergence of space and time takes place due to the
collective dynamics of the QG atoms, we need approximation
schemes that capture such collective dynamics, that correspond
to some form of coarse-graining of the fundamental ‘atomic’ dy-
namics, and that maintain visible the quantum nature of the same
atoms (since the continuum limit is distinct from the classical one,
and it could well be that quantum properties of the QG atoms are
in fact responsible for key aspects of the spatiotemporal physics
we want to reproduce) (Oriti 2021b, p. 12).

Oriti (2021b) uses mean field theory to approximate the full theory with
quantum states expressed in terms of excitations of the Fock vacuum |σ⟩ =
exp(σ̂) |0⟩ that are simplified with respect to the initial tetrahedra, for they
now do not encode correlation information or quantum entanglement. The
use of such a simplification shifts the theory to a new level of description:
“we are then moving from the QG atoms to the full continuum description
of quantum gravity, but within a specific regime of approximation, which
remains quantum and focused on the collective properties of the same QG
atoms, rather than their individual, pre-geometric features” (Oriti 2021b,
p. 12). This way, the approximation methods allow us to obtain simplified
states (in a quantum superposition) associated with a wave function σ of
infinitely many degrees of freedom: the new wave function describes the
collective behavior of infinitely many atoms of space.

The point is then to obtain from such collective behavior an (effective)
dynamics that can be understood as quantum general relativity. One possi-
bility is to individuate a phase of the quantum gravity system that resembles
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a condensate phase, and to treat the dynamics of the fundamental atoms
of space in terms of hydrodynamics regime. In sum, a quantum spacetime
is conceived of as a very large number of small GFT fundamental entities
close to a many-particles vacuum described collectively, and whose dynamics
is provided by (continuum) large scale equations. This situation is similar
to that of a fluid, where the quantum spacetime is analogous to a quantum
fluid of GFT atoms-of-space governed by the GFT partition function at the
microscopic level, and by some effective hydrodynamics at the macroscopic
level. In this sense, the continuum limit and the classical approximations
are different, where the former consists of the limit of QFT quanta governed
by some collective dynamics equations, and the latter is needed to extract a
specific dynamics in a given regime.

Now, granted the feasibility of such a strategy, what kind of spacetime
physics can we expect? The most supported answer (see, for example: (Oriti
and Sindoni 2011)) is cosmological dynamics; that’s because the focus on
macroscopic variables and maximal coarse-graining limit us to a dynamics
close to equilibrium. In addition, it is only collectively that one can talk about
geometries, since the atoms of space are strictly speaking non-geometrical and
a notion of local geometric behavior is not available. Also, the condensate
wave function and the mean field can only be treated statistically due to the
coarse-graining, even though the fundamental degrees of freedom are treated
quantum mechanically.

5.1 GFT Condensate

The idea of using some forms of coarse-graining to model relativistic effects
in quantum theories is not new. For example, (Volovik 2006) studied the
similarity of relations between classical and quantum hydrodynamics, and
quantum hydrodynamics and quantum gravity. Originally, (Landau 1941)
discussed the derivation of quantum hydrodynamics from its classical coun-
terpart by expressing the quantum Hamiltonian as the energy of a liquid
where the classical velocity v and density ρ are replaced by the correspond-
ing quantum operators v̂ and ρ̂. The classical Hamiltonian reads (Volovik
2006, p. 2):

Hhydro(ρ,v) =

∫
d3

(
1

2
ρv2 + ϵ̃(ρ)

)
(6)
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where ϵ̃(ρ) = ϵρ − µρ and ϵ(ρ) is the energy of the static liquid which will
be related to the vacuum energy state (assumed that the temperature is
T = 0) and µ is the constant chemical potential. The relation P = −ϵ̃
between pressure and energy can be taken to be as the equation of state for
the vacuum of any system, and it does not depend on underlying physics of
the vacuum state. Similarly, one can obtain the hydrodynamics equations
using Poisson brackets, which depend on symmetry conditions of the system,
rather than on the underlying physics. By looking at cases in which quantum
hydrodynamics and quantum gravity can be used to obtain fine corrections to
classic hydrodynamics and general relativity, (Volovik 2006) concludes that
such cases are not generalizable. This implies that the route from classical to
quantum hydrodynamics does not lead to a theory that is completely faithful
to the microscopic theory. This might be considered as a genuine instance of
emergence in physics.

In a similar fashion, some approaches to GFT aim at using the conden-
sate analogy to model relativistic behavior of quantum systems.20 Indeed,
a great advantage of the GFT formalism is that one can use quantum field
theory (QFT) methods for treating many degrees of freedom: “condensation
of many atoms into a common ground state can be viewed as a transition
from a perturbative phase around the Fock vacuum (of zero atoms) into a
condensed phase, with associated symmetry breaking of the U(1) symmetry
of the theory” (Gielen, Sindoni, et al. 2016, p. 2). The aim is to approx-
imate 3-d geometries and cosmological evolution in terms of some specific
condensate states in the formalism of GFT. These states should come from
the macroscopic quantum dynamics, in a way inspired by phase transitions.

The construction of the condensate state is analogous to the construction
of the effective field we have seen for the Ising model. That is, one can
coarse grain the many degrees of freedom of the theory represented by N -
excitations of the Fock vacuum and define a new state (which now plays the
role of order parameter) as a superposition of one-particle wave functions
(Gielen, Sindoni, et al. 2016, p. 19):

20There is though an important difference between the works of Volovik and the GFT
approach. In the former, while gravity emerges in the hydrodynamics regime, spacetime
is already present from the start, since the many-body system is defined in flat spacetime.
On the other hand, GFT (and other quantum gravity approaches) is more ambitious since
spacetime itself would be emergent.

22



|σ⟩ := N (σ) exp

(∫
dgσ(gI)φ

†(gI)

)
|0⟩ (7)

where N is a normalization factor and
∫
dg is the integral over the local

gauge group. The state |σ⟩ corresponds to a single particle condensate state
which is an eigenstate of the field operator φ̂(gI) |σ⟩ = σ(gI) |σ⟩ with non
vanishing expectation values ⟨σ|φ̂(gI)|σ⟩ ̸= 0, unlike for the Fock vacuum
where ⟨0|φ̂(gI)|0⟩ = 0. The condensate wave function, together with the
massless scalar field ϕJ can be interpreted as a continuum spacetime geom-
etry (Gielen, Sindoni, et al. 2016) in a way analogous to how magnetization
was defined over the effective field in the Ising model. This is because the
condensate wave function ignores the fluctuations between individual quanta
due to the mean field theory approximation which assumes that: “the system
exhibits a separation of scales which allows to average over the microscopic
details. [...] This leads to a model which only involves scales which extend
from the mesoscale to the macroscale. The field variable is an averaged quan-
tity (the order parameter) which only reflects general features of the system
such as symmetries and the dimensionality of the domain” (Marchetti et al.
2022b, p. 5). Then, the thermodynamic limit corresponds to having N → ∞
and it is described by states that are no longer in the GFT Fock space: “this
is standard in quantum field theory, where in the limit corresponding to a
phase transition one needs to change representation to a different, unitarily
inequivalent, Hilbert space” (Gielen, Sindoni, et al. 2016, p. 19).21

The condensate approach to GFT rests on the fact that low-energy scale
physics can be independent from its high-energy counterpart, and that one
can study quantum gravity models in terms of collective behavior of funda-
mental entities. However, how should we obtain geometric quantities from
a condensate function obtained as the thermodynamic limit of N-many non-
geometric atoms of space? To answer the question, even though I will skimp
on the details, we can consider (Oriti 2021b), (Gielen, Oriti, and Sindoni
2014) and use the simplest case of homogeneous and isotropic cosmology. To
do so, explains (Oriti 2021b, p. 16), “we define the relational observables that
we expect to be relevant for describing homogeneous cosmological evolution
[...] the universe volume [the operator V̂ ] (constructed from the matrix ele-
ments of the 1st quantized tetrahedra, with eigenvalues Vj, convoluted with

21Notably, σ(gI) is not an ordinary wave function: it is a superposition of states ψ(gI)
but it is not linear |σ⟩+ |σ⟩′ ̸= |σ + σ′⟩.
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field operators) [...] the operator adds the individual volume contributions
from the GFT quanta populating the state:”

V (χ0) ≡
〈
V̂
〉
σ;χ0,π0

=
∑
j

Vjρ
2
j(χ0) (8)

where ρj(χ) is the density of the fluid which is obtained from the decom-
position of the condensate wave function in hydrodynamics variables. From
the volume observable (and others that are calculated in (Oriti 2021b)), and
from the description of the evolution of the condensate with respect to the
relational clock χ0, (Oriti 2021b, p. 17) obtains the generalized Friedmann
equations (in χ0): “that our quantum gravity model gives for the emergent
spacetime in the homogeneous case”.

Philosophically, the point I raised for the Ising model applies quite natu-
rally to the case of group field theory and condensate models. The geometric
properties of the condensate are indifferent to the individual tetrahedra, and
that is warranted by the use of approximation methods such as the mean field
theory.22 A caveat, similarly to how I have suggested that the independence
between macroscopic and microscopic regimes in the Ising model should be
addressed as partial, the same cautionary step should be taken here. Indeed,
the use of approximation methods still relies on some features of the micro-
scopic regime, for example, the combinatorial structure of the atoms of space
and their group theoretic data.23 It follows that more work is needed to
properly spell out the conditions of independence between microscopic and
macroscopic regimes in different approaches to quantum gravity, but I shall
leave this investigation to later works.

In this contribution, I have looked into the case of group field theories
to show that hydrodynamic description and mesoscale quantities are at least
partly indifferent to the microscopic dynamics of the fundamental entities.
This allows us to discuss higher-order properties with a moderate indifference
with respect to their more fundamental counterparts. I added the term ‘mod-
erate’ here because, although magnetization, spacetime, and geometric prop-
erties can be considered independently of their constituent parts, the question
about the ontology of fundamental entities remains unattended. However,

22Even further, the vacuum state of the condensate lives on a unitarily inequivalent
Hilbert space from the Hilbert space of the tetrahedra (which is a common feature of
phase transitions on quantum field theory).

23The addition of group theoretic data in tensorial models is discussed, for example, in
(Oriti 2014).
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such an indifference allows us to separate between the previous question and
that of spacetime emergence. In this sense, ‘how does spacetime emerge’ and
‘what does spacetime emerge from’ become separate problems that require
separate analysis. For example, the former calls for further investigations
about inter-theoretic reduction and the possibility of interpreting phase tran-
sitions as actual physical processes. The latter, looks at the very possibility
of having experimental verifications of non-spatiotemporal entities, or at the
possibility of relinquishing the property of ‘being-in-spacetime’ as necessary
requirement for existence.

6 Conclusion

The philosophical discussion on the emergence of spacetime is very much
alive and prolific. For example, the community still discusses issues related to
specific accounts of spacetime (such as, for example, the recent functionalist
view (Lam and Wüthrich 2018)), or re-definition of the problem of spacetime
emergence (Jaksland and Salimkhani 2023), or the emergence of low-energy
theories from high-energy ones (Crowther 2014), and many others. In this
contribution, after discussing some of the literature on reduction, emergence,
and corresponding philosophical problems, I divided the problem of space-
time emergence into two sub-problems: (i) to account for the ontology of
non-spatiotemporal fundamental entities, and (ii) to provide a mechanism
for the emergence of spacetime from such entities. Afterward, I argued that
such a division is warranted in the context of the group field theory approach
to quantum gravity and in the analogy with the physics of phase transitions.
I presented the Ising model to show how the total magnetization of the sys-
tem is indifferent to the microscopic dynamics of the individual atomic spins.
This means that the macroscopic thermodynamic properties of the system
can be considered independently of the corresponding microscopic dynamics
—granted that specific conditions apply, such as those needed by the cor-
responding approximation methods. This conclusion is less interesting for
the case of the Ising model, in that we already know the properties of the
individual atomic spins. However, the same conclusion becomes relevant to
the discussion on quantum gravity and, more specifically, in the context of
group field theory. Since group field theory suggests to treat the collective
behavior of the individual atoms of space in terms of condensate states after
the application of mean field theory, we can warrant a very similar type of
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indifference that we also find in the mean field theory and hydrodynamics
approximation in the Ising model.24

Therefore, if we accept that the physics of phase transitions can display
genuine forms of emergence in the use of some approximation methods, then
a theory of quantum gravity that makes use of these same (or analogous)
approximations in deriving continuum and classical limits should display the
same (or at least similar) type of independence. I have discussed the case
of group field theory precisely because it makes use of such methods that
warrant the independence between the fundamental quanta of the theory
and some macroscopic quantities. It is because of this form of independence
that one can black-box some of the (philosophical) problems related to the
ontology of the fundamental quanta, even though this requires that we ac-
cept to work within the scope of group field theory (or similar approaches).
Indeed, different types of quanta (and thus different QG approaches) might
not not allow for the use of those mathematical tools that warrant the above
mentioned independence. Yet, a very similar argument as the one presented
here might apply to other approaches (for example: spin foam models). It
would be interesting to dig deeper and look at the commonalities between
such approaches and their use of approximation methods. Similarly, it would
be interesting to investigate whether and to what extent other approaches,
that do not make use of phase transitions and approximation techniques,
deal with the separation between mechanism of emergence and ontological
considerations on their fundamental entities. Finally, the independence ad-
vocated here does not diminish the need for a serious philosophical account
of the fundamental ontology of theories quantum gravity, nor it dispenses
philosophers from having to investigate the problem(s).
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