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|.Introduction

1.1. Colombeau algebra of Colombeau generalized

functions.

In contemporary mathematics, a Colombeau algebra of Colombeau generalized
functions is an algebra of a certain kind containing the space of Schwartz distributions.
While in classical distribution theory a general multiplication of distributions is not
possible, Colombeau algebras provide a rigorous framework for this.

Remark 1.1.1.Such a multiplication of distributions has been a long time mistakenly
believed to be impossible because of Schwartz’ impossibility result, which basically
states that there cannot be a differential algebra containing the space of distributions
and preserving the product of continuous functions. However, if one only wants to
preserve the product of smooth functions instead such a construction becomes possible,
as demonstrated first by J.F.Colombeau [1],[2].

As a mathematical tool, Colombeau algebras can be said to combine a treatment of
singularities, differentiation and nonlinear operations in one framework, lifting the
limitations of distribution theory. These algebras have found numerous applications in
the fields of partial differential equations, geophysics, microlocal analysis and general
relativity so far.

Basic idea.

Definition 1.1.1. The algebra moderate functions C{;(R") on R" is the algebra of
families of smooth functions (f:(x)), = (f:(X)) .1, € R",& € (0,1] (smooth
regularisations) (where ¢ is the regularization parameter), such that: (i) for all compact
subsets K of R" and all multiindices «, there is an N > 0 such that

okl (x)
(OX1) %t « o o(OXn)*"

sup = O(e™),e > 0, (1.1.1)

xeK

with addition and multiplication defined by natural way:

(f:(x)), +(@:(¥)), = (f:(X) +9:(X)), (1.1.2)
and



(fo(X)), x (9:(X)), = (fa(X) x gz(X)),. (1.1.3)
Definition 1.1.2.The ideal N(R") of negligible functions is defined in the same way but
with the partial derivatives instead bounded by O(¢N) for all N > 0, i.e.

aup lIf, (x)
@) x) ™

Definition 1.1.3.The Colombeau Algebra G(R") [1],[2] is defined as the quotient
algebra

= O(eN),e - O. (1.1.4)

G(RM) = C{(RM/MRM). (1.1.5)
Elements of G(R") are denoted by:
u = clf(u).] = (u:)e + NRM). (1.1.6)
Embedding of distributions
The space of Schwartz distributions D'(R") can be embedded into the Colombeau

algebra G(R") by (component-wise) convolution with any element (¢, ), of the algebra
G(R™) having as representative a J-net, i.e. a family of smooth functions ¢. such that ¢,
-dinD'(R") as e - 0.

Remark 1.1.2.Note that the embedding : : D'(R") — G(R") is non-canonical, because
it

depends on the choice of the J-net.

Example 1.1.1. Delta function §(x) € D'(R) for example has the following different
representatives in Colombeau algebra G(R) :

%( 1/% exp(—ﬁ—i)) € g(R),%(% sin(%))g € GR),

(1.1.7)
Hpts), <o b (o) o
since
1 exp - 600, L Lsin(X) > 6(x),
2 ~/1_ (&) * ‘ (1.1.8)
1_ e 2 N
T %24 2 5(X) =5 sin ( ) = 6(X)
inD as e - 0.

Remark 1.1.2.However note that embedding D'(R") — G(R") does not meant the

equivalence of the Schwartz distributions and corresponding by embedding
Colombeau

generalized functions. In contrast with the Schwartz distributions Colombeau
generalized

functions has well defined walue at any point x € R" these point values of the

Colombeau generalized functions is the Colombeau generalized numbers.

Example 1.1.2. Delta function 6(x) ill defined at point x = 0 since §(0) = «.However



__1 (L) <R
o 2VmE\VEJ, (1.1.9)

where R is
Remark 1.1.3.

1.2. The ring of Colombeau generalized numbers R.

Designation 1.2.1. We denote by R the ring of real, Colombeau generalized numbers.
Recall that by definition R = Er(R)/N(R) where [],[]

Er(R) = {(x:), € ROD|3a € R;)(Teo € (0,1))(Ve < 0)[[x:| < €721},

(1.2.1)
N(R) = {(X;), € ROD|(Va e R;)(Jeo € (0,1))(Ve < go)[[X:] < €3]}

Remark 1.2.1.Note that: (i) there exists natural embedding T : R < R such that for all
reR, 7:r—(ry),, re=r, forall ¢ e [1,0),(ii) the ring R can be endowed with the
structure of a partially ordered ring: forr,s R, r <z sif and only if there are
representatives (r.), and (s;), withr, <s; for all ¢ € [1,0).

Definition 1.5.2.(i) Let 6 € R. We say that ¢ is infinite small (but non zero) Colombeau
generalized number and abbraviate

5~ 0 (1.2.2)

R

|.3.Colombeau solutions to nonlinear equations in general.

During last 30 years the theory of Colombeau generalized solutions for linear and
nonlinear partial differential equations many developed [1]-[].

Colombeau’s method can yield generalized solutions for linear and nonlinear partial
differential equations, which cannot be obtained for instance within the Schwartz
distributions. To better understand the relevance of such generalized solutions, it is
useful to consider not only m-th order nonlinear partial differential equation and their
generalized solutions but also the specific solution methods within Colombeau’s theory.
Indeed, if in sufficiently particular or regular cases of initial and/or boundary values for
instance, such solution methods yield generalized solutions closely related to the usual
distribution, classical or analytic solutions, the respective solution methods-and their
supporting theory-prove to be natural extensions of the earlier, more restricted methods,
see review [2].



Generalized Einstein equation with Colombeau generalized energy-momentum
density of the gravity source reads

(Rike(X¥)), = 5 (Qike OR(X)), = —(Tike(X)),, (1.3.1)
where cl[(Tik:(X)).] € G(R™).
Or in the following form

(G, = R, = 381R), = x(Tike) (1.3.2)

where T," is defined by

(Tp,s)sz e (1.3.3)
with
(ﬂ) 2 ZQW% (1.3.4)

being the energy-momentum density of the distributional gravity source.

|.4.Why Colombeau solutions in general relativity is

needed.

Recoll that in contemporary physical literature Colombeau solutions of the generalized
Einstein field equations (1.3.1)-(1.3.2) originally were obtained only for the case []-[]:

Cl[(Tike (X)), ] = 1(Tik(X)), (1.4.1)
where Tik(x) € D'(R%) and where 1 : D'(R%) — G(R%) is an embedding mentioned above,
see Remark 1.1.2. We will be abbreviate: cl[(Tik:(x)),] € D'(R*%)

Designation 1.4.1.Let (u.(x)), € GR") and: : D'(R") - G(R") is an embedding
mentioned above.We will be abbreviate:
clf(u:(x)),] € D'(R"). (1.4.2)
Remark 1.4.1.Note that (1.4.2) obviously meant that there exists a weak limit

lim,o j U (OO0 (L.4.3)

where f € D(R%).

Remark 1.4.1.Note that in contemporary physical literature Colombeau solutions of
the generalized Einstein field equations (1.3.2) originally were obtained by using an
regularizations of the classical singular solutions obtained from classical Einstein field

equations with T, = 0.These classical singular solutions many years mistakenly

Example 1.4.1.[]in general relativity, many investigations have been made with regard
to exact solutions of the Einstein equation and the singularity structure of space-time,
but a distribution theoretical treatment of these space-times many years has not been
developed sufficiently. This is the case even for the well-known Schwarzschild solution,
which is given by, in the Schwarzschild coordinates (X°,f,6,¢),



ds? = —(1— %)(d%’)z + (1— %)_1(df)2 + £2[(d6)2 + sin20(dg)?]. (1.4.4)

Here, a is the Schwarzschild radius a = 2GM/c? with G,M and c being the Newton
gravitational constant, mass of the source, and the light velocity in vacuum Minkowski
space-time, respectively. Obviously the fundamental tensor corresponding to ds? has
the components which is degenerate or singular at f = 0,i.e.

ds?|;_o = —oo(dX®)? + 0(df)? + O[(d6)* + Sin®0(dg)?]. (1.4.5)

By using the Cartesian coordinates (X°,%%,%?,%%), which are related to (X%,%,0,¢) through
the canonical relation

&1 = fcospsing, %% =rfsingsing, %3 =rfcosh, (1.4.6)
the metric (1.4.4) reads

ds? = g, dRedR” (1.4.7)

where at points f # 0 the metric g,, is given by

oo =-(1-h), g, =0,

1.4.8
goup = 6% +h(1- h)—le_>2<ﬁ , o,=123 ( )
with h = a/f. Well known that at points f =+ 0
20 !
T.-_h _h
La 20
kTo=0, «T,=0, (1.4.9)
F _sp(_hl _h %% (h_”_L)
KT“‘5“( 2 f)+ 2 2 "32)

where the hatted symbols T: represent the quantity Tﬂv in the coordinate system
{&*;u = 0,1,2,3}. Also, we have defined h' £ dh/df and h" = d?h/df2.

Remark 1.4.2. We extend now the quantity (1.4.7)-(1.4.9) in point f = 0 as Colombeau
generalized functions from Colombeau algebra G(R3).Regularizing now the function

h = a/f as h, = a/{/? + £2 and the function )A(:);(ﬁ as fz(of(ﬁz with ¢ € (0,1], we obtain the
€

Colombeau generalized metric
ds? = (g,,,d%dR") (1.4.10)

where
<g00,8>8 =-(1-h;), &, =0,

A _ casf
(), =+ (=D (F55) L wp=123

(1.4.11)

and



20 2
S _ ac
(Tawo) - G25e ) -
a4 20
c(Toe)) =0z, x(Tuke)) -0z,
&P .. B 3as2
K(Ta(x,s))s Yy (—2(f2+82)5,2 ) _

(Fo)Nete=) G (F))
P2+e2 /) \ (F2+€?)% ) \2 P2+e2).) "

where T, (% ¢) stands for the regularized T,.

(1.4.12)

ll.Generalized pseudo-Riemannian geometry

2.1.Colombeau Calculus on separable Hausdorff manifold.

We use [],[],[] as standard references for the foundations and various applications of
standard Colombeau theory. We briefly recall the basic Colombeau construction.
Throughout the paper Q will denote an open subset of R". Stanfard Colombeau
generalized functions on Q are defined as equivalence classes u = [(u.).] of nets of
smooth functions u, € C*(Q) (regularizations) subjected to asymptotic norm conditions
with respect to ¢ € (0,1] for their derivatives on compact sets.

The basic idea of classical Colombeau’s theory of nonlinear generalized functions [],[]
is regularization by sequences (nets) of smooth functions and the use of asymptotic
estimates in terms of a regularization parameter ¢. Let (U)o, With (u;), € C*(M) for
all ¢ € R,,where M a separable, smooth orientable Hausdorff manifold of dimension n.

Definition 2.1.1.The Colombeau’s algebra of generalized functions on M is defined as
the quotient:

GgM) = Eu(M)IN(M) (2.1.1)
of the space £m(M) of sequences of moderate growth modulo the space N(M) of
negligible sequences. More precisely the notions of moderateness resp. negligibility are

defined by the following asymptotic estimates (where X(M) denoting the space of
smooth vector fields on M):



Ev(M) = {(ug)gl VK(K & M) Vk(k € N)IN(N € N)

(2.1.2)
Ve, ...,6k(&a, ..., k € X(M)) |:sup |Lg1...Lgk u:(p)|= O(E_N) ase - 0:|},

peK
and

NM) £ {(u):| YK(K & M), Vk(k € No)¥q(q € N)

(2.1.3)
Vér,...,.ék(é1,...,¢k € X(M)) |:sup ILe,...Lg uz(p)|= O(e9) as € - OJ}
peK
Remark 2.1.1. In the definition the Landau symbol a. = O(w(g)) appears, having the
following meaning: 3C(C > 0)3eo(eo € (0,1])Ve(e < go)[a. < Cy(e)].
Definition 2.1.3. Elements of G(M) are denoted by:

U= clf(Ue)e] = (Ue)e +N(M) (2.1.4)

Remark 2.1.2.With componentwise operations (-,£) G(M) is a fine sheaf of differential
algebras with respect to the Lie derivative defined by L:u = cl[(L:u,).].

The spaces of moderate resp. negligible sequences and hence the algebra itself may
be characterized locally, i.e., u € G(M) iff uo w, € G(v,(V,)) for all charts (V,,y,), where
on the open set v,(V,) < R" in the respective estimates Lie derivatives are replaced by
partial derivatives.

Remark 2.1.3.Smooth functions f € C*(M) are embedded into G(M) simply by the
“constant” embedding o, i.e., o(f) = cl[(f).], hence C*(M) is a faithful subalgebra
of G(M).

Definition 2.1.4.The G(M)-module of generalized sections in vector bundles-especially
the space of generalized tensor fields 7s' (M)-is defined along the same lines using
analogous asymptotic estimates with respect to the norm induced by any Riemannian
metric on the respective fibers. However, it is more convenient to use the following
algebraic description of generalized tensor fields

Gi(M) = G(M) ® Ts' (M), (2.1.5)

where 75" (M) denotes the space of smooth tensor fields and the tensor product is taken
over the module C*(M).

Remark 2.1.4.Thus generalized tensor fields are just given by classical ones with
generalized coefficient functions. Many concepts of classical tensor analysis carry over
to the generalized setting, in particular Lie derivatives with respect to both classical and
generalized vector fields, Lie brackets, exterior algebra, etc. Moreover, generalized
tensor fields may also be viewed as G(M)-multilinear maps taking generalized vector and
covector fields to generalized functions, i.e., as G(M)-modules we have

GxM) = Ly (G3(M)", G5(M)%; G(M)). (2.1.6)
and det(gap) is invertible in the algebra of generalized functions. A generalized metric
induces a G(M)-linear isomorphism from G§(M) to G}(M) and the inverse metric
g® 2 [(gat(e€))c] is a well defined element of G§(M) (i.e., independent of the
representative ((ge) ., )e)- Also the generalized Levi-Civita connection as well as the
generalized Riemann-, Ricci- and Einstein tensor of a generalized metric are defined
simply by the usual coordinate formulae on the level of representatives.



2.2.Point Values of a Generalized Functions on M.
Colombeau Generalized Numbers.

2.3. Colombeau generalized curvilinear coordinates

Let us consider the Colombeau generalized transformation from one generalized
coordinate system, (x2),_,(x3),,(X2),,(x3),to another generalized coordinate system
(x2),, (xH),, (x2) . (x2), : transform according to the relation

(X)), = (f‘gi (xfgo,x.’gl,xfgz,xff))e, (2.3.1)

where the(f!) are certain Colombeau generalized functions and where

(I (X0, x1,x2,x3))

O(X2, Xz, X5, X3
(Je (2, x4, x2,%2)), = ( a(>(<;° XL X2 X?? ) * 0 (2.3.1.a)
is the Jacobian of the Colombeau generalized transformation (2.3.1).
Remark 2.3.1.When we transform the coordinates, their Colombeau differentials
(dxfg)‘E transform according to the relation
i OX! OX!
dx.) = & de‘) = ( ¢ ) dxx) . 2.3.2
@), - (Zrow) - (2) @, 232)
Definition 2.3.1.Every tuple of four Colombeau quantities (AL)S,i =0,1,2,3, which
under
a transformation (2.3.1) of coordinates, transform like the Colombeau coordinate
differentials (2.3.2), is called Colombeau contravariant four-vector:

- oxL OXL )
Let (¢.), be the Colombeau scalar. Under a coordinate transformation (2.3.1), the four
Colombeau quantities (%) i =0,1,2,3 transform according to the formula

a‘Ps a(/)s 6X’€k 8(05 axék
(5XL)€: (ax;" axfg)gz (8ngk ot L) (2.3.4)

Definition 2.3.2.Every tuple of four Colombeau generalized functions (A; ), which,
under

a coordinate transformation (2.2.1), transform like the Colombeau derivatives of a
scalar,

is called Colombeau generalized covariant four-vector

(Ais), = (%I(A/ ) - (axlsk )S(A’kﬁ)e. (2.3.5)

OxL ' ke OXL




Definition 2.3.3.We call the Colombeau generalized contravariant tensor of the
second

rank, (Afgk)g,any tuple of sixteen Colombeau generalized functions which transform like
the

products of the components of two Colombeau generalized contravariant vectors, i.e.

according to the law

. oxk oxim OX Ox"
A, - (25 %A ) - (2520 i, (2.3.6)
and a mixed Colombeau generalized tensor transforms as follows
i oxL oxm ., OxL. oxm ,
o, - (2 20an ) - (222 @i, @37)

Remark 2.3.2.Note that the scalar product of two four-vectors (ALB; ) is invariant
since

- oxL oxX™ o XM o )
w8, - (252 e, ) - (ZTAsn ) - (B, @38)

The unit four-tensor 5} is defined the same as in classical case: | = 0fori # k and
= 1fori = k.If (Aﬁ)gis a Colombeau generalized four-vector,then multiplying by
lwe
obtain
(AsSL), = (AL),, (2.3.9)
i.e. again Colombeau generalized four-vector; this proves that s} is a tensor.
Remark 2.3.3.The square of the Colombeau generalized line element (dsﬁ)‘g in

curvilinear
coordinates is a quadratic form in the differentials dx',i = 0,1,2,3 :

(ds?), = (GikeAX'dX¥) = {(Qiks ), rax'dx . (2.3.10)
where the (gik:), are Colombeau generalized functions of the coordinates; (gik.), is
symmetric in the indices i and Kk :

Gike), = (Guie),- (2.3.11)
Definition 2.3.4.Since the (contracted) product of (gik.), and the contravariant tensor
dx'dxkis a scalar, the (gi.), form a covariant tensor; it is called the Colombeau

generalized metric tensor.
Definition 2.3.5.Two tensors (Aik.), and (BL")‘g are said to be reciprocal to each other

(Aik:BY), = {(Aike) 1 {(BY), } = 6k (2.3.12)
In particular the contravariant metric tensor is the tensor (gix. ) reciprocal to the tensor
(g¥), that s,

{@ike) > {(@9), ) = i (2.3.13)
The same physical quantity can be represented in contravariant or covariant
components.
It is obvious that the only quantities that can determine the connection between the
different forms are the components of the metric tensor. This connection is given by



the
formulas:

(AD), = (GFA),, (Aiz), = (GikAf),- (2.3.14)
These remarks also apply to Colombeau generalized tensors. The transition between
the
different forms of a given physical generalized tensor is accomplished by using the
metric
tensor according to the formulas:

(AL, = (@1AK:) . (AX), = (9105 Aim,) ,, etc. (2.3.15)

The completely antisymmetric unit pseudotensor in galilean coordinates we denote by

e'Mm et us transform it to an arbitrary system of Colombeau generalized coordinates,
and now denote it by (EX™) . We keep the notation ™ for the quantities defined as
before by

e”2 — 1 (or epzs = —1).Let the x",i = 0,1,2,3 be galilean, and the (x}),,i = 0,1,2,3 be
arbitrary Colombeau generalized curvilinear coordinates. According to the general rules
for transformation of Colombeau generalized tensors, we have

i OXt oxk ox. oxI
(EX™), = {( oxP ox" ox's ox't ) }epra’ (319

or
(EXM) = {(Jo(X°,x2,x2,x3))_}eos, (2.3.17)

where (J.(x° x%,x?2,x3))_# O is the determinant formed from the derivatives ox'/ox®,
i.e. it is just the Jacobian of the Colombeau generalized transformation from the galilean
to the Colombeau generalized curvilinear coordinates:
oxL oxk oxL oxm
oxP ox" ox's oxt /.

0 1 2 3
(JS(X/O’X/l’XIZ,X/S))E _ ( ( O(Xg, Xg, X5, X32)

o(x9,x1,x2,x3)

) . (2.3.18)

This Jacobian can be expressed in terms of the determinant of the Colombeau
generalized metric tensor (gik.), (in the system (XL)S). To do this we write the formula for
the transformation of the metric tensor:

- ox.  oxk i
where
1 1 1 1
. 1 -1 1 1
Oim _ 5@ _ , 2.3.20
9 Oim L1 11 ( )
1 1 1 -1

and equate the determinants of the two sides of this equation. The determinant of the
reciprocal tensor det|(g¥) | = 1/(g;),. The determinant detjg©®™= —1. Thus we have



1/(9:), = —(JZ(X°,x,x2,x?)) , and so

(JZ(x°, X1 x2,x3)) = 1 [(g.), - (2.3.21)

Thus, in curvilinear coordinates the antisymmetric unit tensor of rank four must
bedefined as

(EMm) = L giim (2.3.22)

V()

and its covariant components are

(Eikme), = J—(9:), €ikim. (2.3.23)
In a galilean coordinate system x',i = 0,1,2,3 the integral of a scalar with respect to

dQ' = dxOdx'*dx?dx"® is also a scalar, i.e. the element dQ' behaves like a scalar in the
integration. On transforming to Colombeau generalized curvilinear coordinates
(xg)g,i = 0,1,2,3, the element of integration dQ' goes over into

dQ' == {(I;H, }dQ = [-(g.), (dQ.),, (2.3.24)

where (dQ;), = {(dx?),}{(dxz), {(dx?), F{(ax?), }-
Thus, in Colombeau generalized curvilinear coordinates, when integrating over a
four-volume the quantity ,/—(g:), (dQ.), behaves like an invariant.

Remark 2.3.4.The element of "area" of the Colombeau generalized hypersurface
spanned

by three infinitesimal Colombeau generalized displacements is the contravariant

antisymmetric Colombeau generalized tensor (dS¥) ; the vector dual to it is gotten by

multiplying by the tensor ,/—(g:), €m, SO it is equal to

J=(0e), (0S:), = =5 /[—(9e), €im(dSE™) . (2.3.25)

Remark 2.3.5.Let (de")gbe the element of two-dimensional Colombeau generalized
surface spanned by two infinitesimal Colombeau generalized displacements, the dual

Colombeau generalized tensor is defined as

J-@), (dfics) = 4@, ewm(df™) . (2.3.26)

&

We will be use the designations (dS;;) and (dfg,f’g) for ewm(dSY™), and emm<dfg'm>
(and

not for their products by /—(g.), ).
Remark 2.3.6.Note that the canonical rules for transforming the various integrals into

one
another remain the same, since their derivation was formal in character and not
related to
the tensor properties of the different quantities. Of particular importance is the rule for
transforming the integral over a hypersurface into an integral over a four-volume
(Gauss’
theorem), which is accomplished by the substitution

@), = (@20, ( L) (2.3.27)




Remark 2.3.7.Note that for the integral of Colombeau generalized vector (Aig)‘S we

(§A'ds ) ( sdQ ) - j{(gAl ) }{(dQ Ny (2.3.28)

This formula (2.3.28) is the generalization of Gauss’ theorem.

An integral over a two-dimensional surface is transformed into an integral over the

hypersurface "spanning" it by replacing the Colombeau generalized element of
integration

(dfi;,g)g by the operator

(dfi;g)g - (ds,gai;(g) ( Sl ) . (2.3.29)

For example, for the integral of an antisymmetric Colombeau generalized tensor (Afg")‘g

we have
(JAsdii,) = (jdsgaAk> —(jdsk,g %ﬁk) _2(jdsgaA' ) (2.3.30)

The integral over a four-dimensional Colombeau generalized closed curve is
transformed into an integral over the surface spanning it by the substitution

(dxi) {(df ) }( = ) . (2.3.31)

Thus for the integral of Colombeau generalized vector, we have:

GAi’gdxi) Gdfk. aanllg) 1 I(df.kaAks df.kaaA.ke) (2.3.32)

which is the generalization of Stokes’ theorem.

2.4. Colombeau Generalized covariant derivatives

In galilean coordinates the Colombeau generalized differentials (dA; ), of a vector
(Ai.), form the Colombeau generalized vector, and the derivatives (aAi,g/ax.';)8 of the
components of a vector with respect to the coordinates form the Colombeau generalized
tensor. In Colombeau generalized curvilinear coordinates this is not so; (dA; ), is not a
vector, and (6°Ai,,g/6x'§)‘g is not the Colombeau generalized tensor.This is due to the fact
that (dAi ), is the difference of vectors located at different (infinitesimally separated)
points of space; at different points in space vectors transform differently, since the
coefficients in the transformation formulas (2.3.3), (2.3.4) are Colombeau generalized
functions of the generalized coordinates.Thus in order to compare two infmitesimally
separated generalized vectors we must subject one of them to a parallel translation to
the point where the second is located. Let us consider an arbitrary generalized
contravariant vector ; if its value at the point X' is (AL)E, then at the neighboring point
X' +dx' itis equal to (AL), + (dAL), = (AL + dA}), . We subject the vector (A.), to an
infinitesimal parallel displacement to the point x' + dx'; the change in the vector which
results from this we denote by ((SAL)‘S Then the difference (DAL)‘E between the two
Colombeau generalized vectors which are now located at the same point is

(DAL), = (dA}), - (BAL).. (2.4.1)




The change (6A}),in the components of Colombeau generalized vector under an

infinitesimal parallel displacement depends on the values of the components
themselves, where the dependence must clearly be linear. This follows directly from the
fact that the sum of two Colombeau generalized vectors must transform according to the
same law as each of the constituents. Thus (5A‘L)‘g has the form

(6AL) = —(T} Akdx! ) (2.4.2)

p
where (1“‘k,yg)‘g the are certain Colombeau generalized functions of the coordinates. Their

form depends, of course, on the coordinate system; for a galilean coordinate system
(l“id,g)8 = 0z.From this it is already clear that the quantities (1“ik|,g)‘E do not form

Colombeau generalized tensor, since a tensor which is equal to zero in one coordinate
system is equal to zero in every other one. In a curvilinear space it is, of course,
impossible to make all the (T} ), vanish over all of space. But we can choose a

coordinate system for which the (I'}; .) become 0 over a given infinitesimal region. The
guantities (FL|,8)81 are called generalized Christoffel symbols. In addition to the quantities
(l“id,g)8 we shall later also use Colombeau generalized quantities (I'ix.. ), defined as
follows

(ri,kl,s)s = (gim,frkmm,g)g' (2 4, 3)
Conversely,
(The), = (@M mu,e) - (2.4.4)

It is also easy to relate the change in the components of a covariant vector under a
parallel displacement to the Christoffel symbols. To do this we note that under a parallel
displacement, a scalar is unchanged. In particular, the scalar product of two vectors
does not change under a parallel displacement.

Let (Ai;), and (Bfg)8 be any covariant and contravariant vectors. Then from (S(Ai,sBig)‘E
= 0z, we have

(BioAi:) = —(Ai:0B}), = (Tjg.BEA .dX'), (2.4.5)
or, changing the indices,
(BLSAI:) = (T ;BLAKdX'), (2.4.6)
From this, by the arbitrariness of the (BL)‘E one obtains
OA), = ((Th Axs), )dX (2.4.7)

which determines the change in a covariant vector under a parallel displacement.
Substituting (2.4.2) and (dAL), = ((0AL/ox");)dx' in (2.4.1), we have

pA) = | (A 4 (i A% |ox 2.4.8
( 5)8_ Ox! s+( kl.e 5)5 X' ( )
Similarly, one finds for a covariant Colombeau generalized vector
oA .
(DA,), = [( A )8+(rh,sAk,g)g}dx'. (2.4.9)

The expressions in parentheses in (2.4.8) and (2.4.9) are Colombeau generalized
tensors, since when multiplied by the vector dx' they give a vector. Clearly, these are the
generalized tensors which give the desired generalization of the concept of a derivative
to Colombeau generalized curvilinear coordinates. These Colombeau generalized



tensors are called the Colombeau generalized covariant derivatives of the vectors (AL)‘g
and (Ai.), respectively. We shall denote them by Al . and Ajy.. Thus,

(DA}), = (Al .dx') ,(DAi;), = (Ai.dx') (2.4.10)
while the Colombeau generalized covariant derivatives themselves are
i oA i
(A,), = (_ax' )8+ (Tl oA, (2.4.11)
and
), = () + A, (2.4.12)

It is also easy to calculate the covariant derivative of the Colombeau generalized
tensor.

One gets the covariant derivative of the Colombeau generalized tensor (Afgk)8 in the
form

. ik _ _
(A%.), = (aaéj ) + (T AT, + (Tl AT (2.4.13)

The covariant derivative of the Colombeau generalized mixed tensor (A‘ky‘g)‘g and the
Colombeau generalized covariant tensor (Ai. ), has the form

. oA, . .
(8), = () + XA, + T A, (2.4.14)
and
OAike m m
Aicr), = (50" ) — TeAmke), = (CheAme),. (2.4.15)

correspondingly.

If in a covariant derivative we raise the index signifying the differentiation, we obtain
the

so-called contravariant derivative. Thus,

(A = (@A), (A, = (GEA,).. (2.4.16)

2.5. The relation of the Colombeau Generalized Christoffel

symbols to the Colombeau Generalized metric tensor

Let us show that the Colombeau generalized covariant derivative of the Colombeau
Generalized metric tensor (gik:), is Oz. To do this we note that the relation

(DAi¢), = (gik:DAY), (2.5.1)

is valid for the generalized vector (DA ), as for any generalized vector. On the other
hand, (Ai;), = (Qik:Af),, SO that

(DAic), = D(Qik:AL), = (Qik:DAY), + (ADgike) - (2.5.2)
Comparing with (DAi;), = (gik:DA¥) ., and remembering that the vector (A%) is
arbitrary,
(D), = O (2.5.3)

Therefore the covariant derivative



(Gik1e), = Ox. (2.5.4)
Thus (gik: ), may be considered as a constant under covariant differentiation.The
equation (giki..), = Oz can be used to express the Colombeau generalized Christoffel
symbols (1“‘k,yg)‘g in terms of the Colombeau generalized metric tensor (gix.),. To do this
we write in accordance with the general definition (2.4.9):

OQik ¢ m m
Qikls), = (%)8 = (Omkel ), — @imeli,), =

ogi &
(%)8 = (Tkite), — Cike), = Og.

(2.5.5)

Thus the derivatives of (gik:), are expressed in terms of the Colombeau generalized
Christoffel symbols.f We write the values of the derivatives of (gik:), , permuting the
indices i,k :

(%) = (Tkite), + Tike) ( Wi )8 = (Tine) + (Chike) s

| K
ke
(Wl = —(Tiiz), + (Diie) -
Taking half the sum of these equations, we find
_ _ 1| ( 99ike Ol ¢ ) B ( O0u ¢ ) }
(Tiwe), = 5 |:( o )8 + ( o ) o ) (2.5.6)
since (Tiu:), = (Tike),.From (2.5.6) we have for the symbols (T} ,), = (9T m.),
iy _ 1 qim OOmk.e agml,g) _(5gk|,e) }
(Tho), = 20 )8)[( ~ ) ; ( o) () | (2.5.7)

2.6. The Colombeau Generalized Curvature Tensor

In this subsection we derive the general formula for the change in a vector after
parallel displacement around any infinitesimal closed contour y. This generalized change

(AA;), € R can clearly be written in the form (55 SAk’€>e’ where the Colombeau integral

is taken over the given regular contour y. Substituting in place of (5Ax:) the expression
(), we have

(AA:), = (§ Tl (OA (x)dx') e, (2.6.1)
Y

where for any i,k,| = 0,1,2,3 : (I (X)), € GR*),x = (x°,x},x2,x3), Ai(x) € D(G),
G < R“. Note that the vector A; which appears in the integrand obviously changes as we
move along the contour y.
Definition 2.6.1.We will say that generalized change (AAx:), exists in the sense of
the
Schwartz distributions if for any Ai(x) € D(G) the limit: lim,.oAAk. exists. Of course in
this case obviously cl[ (I'.(X)), | € D'(G) and cl[(AAx;),] € R.
For the further transformation of this Colombeau integral, we must note the following.



The values of the vector A; at points inside the contour are not unique; they depend on
the path along which we approach the particular point. However, as we shall see from
the result obtained below, this non-uniqueness is related to terms of second order. We
may therefore, with the first-order accuracy which is sufficient for the transformation,
regard the components of the vector A; at points inside the infinitesimal contour y as
being uniquely determined by their values on the contour itself by the formulas
(0AI(X)), = (l“ﬁ‘,g(x)An,g(x)dx')8 , I.e., by the derivatives
aAi,‘s(x)
ox!
Now applying generalized Stokes’ theorem (Theorem 2.6.1) to the integral (2.6.1) and
considering that the area enclosed by the contour has the infinitesimal value (Afi") , we

get:
A, - 1 Kamkm,g(x)Ai(x))) _(a(rim,.g(x)Ai(x))) J(Aﬂm)g _

= (M 0A:(X) - (2.6.2)

X! ox™

o'} o(T|
1 [ Ai(x)( (rkén;(x))l_ Ai(x)( (rg;ngx>>>g+ (2.6.3)

(B8 ) s 00, ~ (52 )T, Jcatim,.

Definition 2.6.2.Colombeau generalized k-form (o), on a differentiable manifold M is
a

smooth section of the bundle of alternating Colombeau generalized k-tensors on M.

Equivalently, (w,), associates to each x € M an alternating Colombeau generalized

k-tensor (wx:),, in such a way that in any chart for M, the coefficients(wi,..i..), are

Colombeau generalized functions.

Theorem 2.6.1.(Generalized Stokes’ Theorem) Let (), be Colombeau generalized

differential form.Then the Colombeau integral of a differential form (w.), over the

boundary of some orientable manifold £ = M is equal to the integral of its exterior

Colombeau derivative (dw. ), over the whole of %, i.e.,

J (wag:(j w> =<j dwc> = [(doo),. (2.6.4)
ox ox e z e Z

Proof. Immediately from the classical Stokes’ Theorem and definitions.
Example 2.6.1. For example, for the integral of Colombeau generalized vector

(Ai € (X) )g

we have

(o) - (Jon2he ) - 31100, ](%- 26) -

r , : (2.6.5)
300 (B -5 ) = 410 (%) - (5). ]

where I' = 6% and (dff) = (dx,dx¥), — (dxgdx;!), is the infinitesimal element of

surface which is given by the antisymmetric tensor of second rank (dfgki> .



Substituting the values of the derivatives (2.6.2) into Eq.(2.6.3), we get
(A2, = 5 (Ram:COACOAR™) (2.6.6)

where (Ridm(x))8 is a Colombeau generalized tensor field of the fourth rank:

. 0 i P i
(Riuma)), = (%) (¥> )

(Thi.e OO s (%)), = (Thne OOT R 5(X))

Definition 2.6.3.The tensor field (RLim(x))8 is called the distributional curvature tensor
or

the distributional Riemann tensor.

Remark 2.6.1.Note that in general case for any i,k,| = 0,1,2,3 :
o[ (Rum:()), ] € GRH.

Definition 2.6.4.We will say that the distributional Riemann tensor (R‘k,myg(x))gexists in
the

sense of the Schwartz distributions if for any i,k,| = 0,1,2,3 and for any Ai(x) € D(G)
the

limit:

(2.6.7)

im0 jG Rim. 0OA (X)d*x (2.6.8)

exists.

Definition 2.6.5.We will say that the distributional Riemann tensor (R‘k,myg(x))gexists in
the

classical sense at point X € R if there exists standard part of point value of Colombeau

generalized function (Ri. (X)), at point X € R, i.e. st(cl[ (Rim.(X)),]) € R.

Remark 2.6.2.It is easy to obtain a similar formula to (2.6.6) for a generalized

contravariant vector (A};)g. To do this we note, since under parallel displacement a
scalar

does not change, that (A(A%Bk.)). = Oy, where (By.), is any Colombeau generalized

covariant vector. With the help of (91.3), we obtain

(AABK,))e = (AAKBI), + (ASABK,); = + (AlBLRim AL™) + (BiuAA), =

{(Bk,g)g}<(AA‘g)g + 3 (ARG, Af;m>g> o, (2.6.9)

or, in view of the arbitrariness of the vector (Bk;),

2.7. Properties of the distributional Curvature Tensor
From the expression (2.6.5) it follows directly that vx € R the distributional curvature



tensor is antisymmetric in the indices | and m :

(Rigm:(¥)), = —(Rign -(X)),, (2.7.1)
and therefore vz = (x;), € [IAR'ﬁn the following identity holds
(Rigms(%2)), = —~(Rign - (%2)) - (2.7.1.a)
Obviously the following identity holds
(Rlims (), + (Rig . (), + (Rimk-(¥)) = Og (2.7.2)

In addition to the mixed distributional curvature tensor (R}dm’e(x))g, one also uses the
covariant distributional curvature tensor

(Riums(X¥), = (Gine ORI (9), = (Gine(9)) ) (Riim(X)),) (2.7.3)
Obviously the following expressions for (Rikm:(X)), holds
(Rikme(X)), =

1 ([ 9*Gim:(X) ) (azgm,g(x) ) _ (azg”,g(x) ) B ( 0°Grme (X) ) )
2 (( anox ) T e ) T Uk )T e ) )T @0
+((gnp,8)8)[(rﬂl,gripm,g e (rﬂmgrﬁg)gj

From this expression it follows

(Rkme(X)), = —(Raiime (X)), = —(Rikm«(X)) .,
(Rikme(X)), = (Rimike(X)),.

For (Rikms(X)), the following identity holds

(2.7.5)

(Rikme(X)), (2.7.6)

2.8. The action functional for the gravitational field

The action S[(g:).] obviously must be expressed in terms of an scalar Colombeau
integral taken over all space and over the time coordinate x° between two given
values,i.e.

8@, = ([Gymmran) =[G, /~@.), d (2.8.1)

In order to determine this Colombeau scalar we assume that the equations of the
gravitational field must contain derivatives of the "potentials” no higher than the second
order. Since the field equations are obtained by varying the action, it is necessary that
the integrand (G;), contain derivatives of (gik.), no higher than first order; thus (G;),
must contain only the tensor (gik.), and the quantities (FLLS)S. However, it is impossible
to construct an invariant from the quantities (gix.), and (1“'k,yg)‘g alone.This is clear from



the fact that by a suitable choice of generalized coordinate system we can always make
all the quantities (I“Id,g)8 zero at a given point. There is, however, the Colombeau scalar
(R:),.(the generalized curvature of the four-space), which though it contains in addition to
the (gik.), and its first derivatives also the second derivatives of (gik.),, is linear in the
second order Colombeau derivatives. The action functional for the gravitational field
reads

(j R, J—_gng>g. (2.8.2)

The invariant Colombeau integral (2.8.2) can be transformed by means of
Gauss’'theorem to the integral of an expression not containing the second derivatives.
Thus Colombeau integral (2.8.2) can be presented in the following form

(jRSJ——gng)Sz (IGSJ—_%dQ>E+(I(3<:3+V\IL>dQ> , (2.8.3)

where (G, ), contains only the tensor (gik:), and its first derivatives, and the integrand of
the second integral has the form of a divergence of a certain quantity wl (the detailed
calculation is given at the end of this section). According to Gauss’ theorem, this second
integral can be transformed into an integral over a hypersurface surrounding the
four-volume over which the integration is carried out in the other two integrals. When we
vary the action, the variation of the second term on the right vanishes, since in the
principle of least action, the variations of the field at the limits of the region of integration
are zero. Consequently, we may write

6(JRoymrdn) = (s[Rma) = (5[ ma) . (2.8.4)

The left side is Colombeau scalar; therefore the expression on the right is also
Colombeau scalar (the quantity (G,), itself is, of course, not Colombeau scalar). The
quantity (G;), satisfies the condition imposed above, since it contains only the (gik:),
and its Colombeau derivatives. Thus finally we obtain

63(9.),) = e (6] Goymran) =4 (6[RymaR) . (285)

The constant « is called the gravitational constant. The dimensions of « follow from

(2.8.5). Its numerical value is k = 6.67 x 108sm3 xgr! x sec2.

Let us calculate now the quantity (G, ), of (2.8.5). From the expression for (Rix.).,we
get

(FER:), = (FEoiRi:), = { (/) } »

Oy orl . (2.8.6)
{(g;k = ) —(gzkaTL') QT T, + (QHTTLT mg)g}.

In the first two terms on the rhs of (2.8.6), we get

s .
(J——gsgzk = ) - O (O giTh,) — {(Th), > -2 <7 (VT el),
¢ (2.8.7)

(mg;k 6>2k8>8_ oo (VO OT,), - {(Flu)}&(\/—_gegigk)g.

Dropping the total derivatives in the Egs.(2.8.7), we find



(F9:6.), = {Tha) 3y (o), —{Th),} L (Foedd) . 288)
By using now formulas (2.)-(2.), we find that the first two terms on the right are
equal to (/=g; ) multiplied by
(2.8.9)

Finally, we get
G: = {(g::k)g} [(rm]grl(mg)g - (r’kgrm]g)g :| (2 8. 10)

Remark 2.8.1.Note that when the principle of least action is applied to a gravitational
field,
we

2.9.The distributional energy-momentum tensor.

In this subsection we consider the general rule for calculatingthe energy-momentum
tensor of any physical system whose action is given in the form of an Colombeau
integral over four dimensional distributional spase time.This integral reads

(Sne), = £ ([ A0 Fo.00d0)

Using generalized Gauss’ theorem, and setting (69“5")‘g = 0z at the integration limits,
one finds 6(Sn;), in the form,(see Remark 2.9.2):

0(Sme), =

(2.9.1)

&€

0/~ A 0/=0: A: _ ogik
1 ik 0 9. —
— 30! —3 dQ =
¢ I ( ok Y ) Tl 0 00F o

ox \ (2.9.2)

1
c

0. /—0: A¢ 0/—0: As¢ ik .
I3 ) | e e E | e

ogik ox! 5 ogik ox!
ox! c

We introduce now the notation

0/=0: A 0./=0: A
1 . gg & a gg &
5 <\/__g8Tik18> e - ( ag!gk ) - axl a ag!gk ! (2l 9. 3)
ox! ¢
then 6(Sne), reads
_ 1 Y — ik __1 ik — .
5Sne), = 2= ([ Twe 7w o0l dQ)g L([¥a (Sglk,gdsz)g, (2.9.4)

note that (Tik:69)), = —(Ti¥6Qik.), since (9¥6Gik:), = —(Jik:59:) .
Remark 2.9.1.In (2.9.1) we carry out now a transformation from the coordinates x' to
the

coordinates (x;), = x' + (&}),, where the (&), € R are small quantities. Under this



transformation the (gis")‘g are transformed according to the formulas

1K (i _ imgvi | OXa axlek) _
(o)), - (amod) 25 96 -

{(gig”‘)s}( |+ (gi: )) (5'r‘n+ (%’j)) ~ (2.9.5)
(@0, + @, H( ot ) @y (S )

were the tensor (g;%(x;)),is a function of the (x;)_, while the tensor (g¥), is a function
of

the original coordinates x'. In order to represent all terms as functions of one and the

same variables, we expand (g;*(x' + &})), in powers of (&}) . Furthermore, if we
neglect

terms of higher order in (&) ., we can in all terms containing (&;),, replace (g:¥), by
(95,

Thus we obtain

i i ogy i oS S,
@0, = @ko), - Y (B) @y (5F) + (@ (SF) @99

It is easy to verify by direct trial that the last three terms on the right can be written as
a

sum (£5%), +(£5), of contravariant derivatives of the (£}),. Thus we finally obtain the

transformation of the (g}¥), in the form

(92, = (99, + (691),, (69¥), = (&), + (&K, (2.9.7)
For the covariant components, we obtain
(Gike), = Gike), + (0Gike) » (0Gike), = —(Gike) s — (Gkie) o (2.9.8)

so that, to terms of first order we satisfy the condition (gn,gg’s"')‘g = ok

Remark 2.9.2.Since the action (Sp;), is a Colombeau scalar, it does not change
under a

transformation of coordinates.On the other hand, the change 6(Sn,), in the action
under

a transformation of coordinates can be written in the following form:let (q.), denote
the

quantities defining the physical system to which the action (Sn.), applies. Under

coordinate transformation the quantities (q.), change by (6q.).. In calculating

0(Sme), = (0Sm:), We need not write terms containing the changes in (q.),. All such

terms must cancel each other by virtue of the "equations of motion" of the physical

system, since these equations are obtained by equating to zero the variation of (Sy;),
with

respect to the quantities (q.),. Therefore it is sufficient to write the terms associated
with

changes in the (gik:), . Using Gauss’ theorem, and setting ((Sglgk)‘E = 0z at the
integration

limits, one finds 6(Sy:), in the form of the Eq.(2.9.2).



Remark 2.9.3.We note that the equations
(&89, + (&K, =0 (2.9.9)
determine the infinitesimal generalized coordinate transformations that do not change

the
Colombeau generalized metric. These are called the distributional Killing equations.

2.10. The generalized gravitational field equations.

We now proceed to the derivation of the equations of the gravitational field. These
equations are obtained from the principle of least action 6((Sw.), + (Sg.),) = Oz, where
(Sne), and (S, ) are the distributional actions of the gravitational field and matter

respectively. We now subject the gravitational Colombeau metric field, that is,the
quantities gix, to variation. Calculating the variation 6(S;,),, we get

5“ RSJ—_g;edQ>g - (5IR5J——gng>g - (5 ngRik,eJ—_g;edQ> -
{([Rcygrogian) +([Rugloga) +([gdmorud) | (2101)
I{(Rik,gJ__g‘géng>g + (Rik,ggLKSJ—_gg>g + <ngJ__g‘g6Rik’g>g}dQ.

From formula (), we obtain

Oy%), = —{( e ) }( 9, = -5 {(/70), } @i:dgk),.  (210.2)
Substituting Eq.(2.10.2) into Eq.(2.10.1), we obtain

6(JReymmrd) = (J{Rus - S0ieR. } Trogkd) +
+([ ot yFaroRid0) .

Remark 2.10.1.Note that although the quantities (1“‘k,yg)‘g don’t constitute a tensor, their
variations 5(1“ik|,g)‘E do form a generalized tensor, for (F{d,gAkdx')gis the change in a
vector

under parallel displacement [see (85.5)] from some point P to an infinitesimally
separated

point P" and therefore (I'} ,AcdX' ),Is the difference between the two vectors, obtained
as

the result of two parallel displacements (one with the unvaried, the other with the
varied (Fid’g)sfrom the point P to one and the same point P'. The difference between
two vectors

at the same point is a vector, and therefore 5(I'}; ) ((Sl“‘k,yg)‘g iS a generalized tensor.

Let us use now a locally geodesic system of a generalized coordinates. Then at that
point all the (l“id,g)8 = 0. With the help ofexpression (92.10) for the (Rik.),, we obtain
(we remind that the first derivatives of the (gis")‘g are now equal to 0x)

(2.10.3)



(@50Rike), = (@) }{ —5r,k8 __ (ﬁme)g} _

(i) - () - (2%).

(W;), = (9T k,), — (95T, (2.10.5)

Since (w}),is a generalized vector, replacing (dw./dx') by (w' |,s>g and using

(2.10.4)

where

(86.9),we may write the relation we have obtained above, in any generalized coordinate
system, in the form

1 0
(g49Ric.), {( = )} < (Ew), (2.10.6)
Therefore the second Colombeau integral on the right side of (2.10.3) is equal to
. 8 0/7G:Ws W,

and by generalized Gauss’ theorem can be transformed into an Colombeau integral of
(w'g)‘g over the hypersurface surrounding the whole four-volume. Since the variations of
the field are zero at the integration limits, this term drops out. Thus, the variation S[(g:), ]
is equal to

___¢c8 o1 — ik
Sl:(gs)g] = 167K (J.{le,g 2 glk,eRs} J gg 598 dQ>8 (2 10. 8)
Remark 2.10.2.We note that if we had started from the expression
__._¢c —
65((0:),) = —g&= (s [ G. 7mr ) (2.10.9)
for the action of the field, then we get
69[(9:),.] =
. 04 G; /—0: 04 G: /=0: 2.10.10
3 J.S(gfgk) 40 { ’/.g } 3 o { .g } . ( )
T ¢ ogik X 09
’ ox! c

Comparing Eq.(2.10.10) with Eqg.(2.10.8), we get

(Rice), — 5 (GiceRe), =

{(L)} (M) [ o H{eTm ) - i

/9 0 ox 5 0gF
ox!

&

For the variation of the action of the matter we can write immediately from (94.5):
_ 1 : i
©Sme), = 5 (] Twe 7O 00kd02) | (2.10.12)

where (Ti.), € G(R?) is the generalized energy-momentum tensor of the matter
fields.



Thus, from the principle of least action
0{S[(g:),] + (Sme) .+ = O (2.10.13)
one obtains

3 .
- 1gn,< G{Rik,e - %gik,sRe - %Tik,s} /=0 5g!g"dQ)

From Eq.(2.10.14), since of the arbitrariness of the (ngg")‘g € G(R%) finally we get

(2.10.14)

&

(Rike), — %(gik,gRs)e = gf (Tike ), (2.10.15)
or, in mixed components,
(RE), - %SF(RS)S = %(Thg)g. (2.10.16)

They are called the generalized Einstein equations.
Contracting (2.10.16) on the indices i and k, we get

(R:), = —%(Ti,g)g = —%(Tg)g. (2.10.17)

Therefore the generalized Einstein equations of the field can also be written in the
form

(Riks), = %{(Tik,g)g - L(@wT), }- (2.10.18)

Note that the generalized Einstein equations of the gravitational field are nonlinear
Colombeau equations.
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