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Abstract. The cosmological constant problem arises because the magnitude of vacuum energy
density predicted by quantum field theory is about 120 orders of magnitude larger than the value
implied by cosmological observations of accelerating cosmic expansion. We pointed out that
the fractal nature of the quantum space-time with negative Hausdorff- Colombeau dimensions
can resolve this tension. The canonical Quantum Field Theory is widely believed to break
down at some fundamental high-energy cutoff Λ∗ and therefore the quantum fluctuations in the
vacuum can be treated classically seriously only up to this high-energy cutoff. In this paper we
argue that Quantum Field Theory in fractal space-time with negative Hausdorff-Colombeau
dimensions gives high-energy cutoff on natural way. We argue that there exists hidden
physical mechanism which cancel divergences in canonical QED4, QCD4, Higher-Derivative
- Quantum-Gravity, etc. In fact we argue that corresponding supermassive Pauli-Villars ghost
fields really exists. It means that there exists the ghost-driven acceleration of the univers
hidden in cosmological constant. In order to obtain desired physical result we apply the
canonical Pauli-Villars regularization up to Λ∗. This would fit in the observed value of the
dark energy needed to explain the accelerated expansion of the universe if we choose highly
symmetric masses distribution between standard matter and ghost matter below that scale
Λ∗,i.e., fs.m (µ) ≈ −fg.m (µ) , µ = mc, µ ≤ µeff , µeff < Λ∗/c. The small value of the cosmological
constant explaned by tiny violation of the symmetry between standard matter and ghost matter.
Dark matter nature also explaned using a common origin of the dark energy and dark matter
phenomena.

1. Introduction
One of the greatest challenges in modern physics is to reconcile general relativity and elementary
particles physics into a unified theory. Perhaps the most dramatic clash between the two
theories lies in the cosmological constant problem [1]-[6] and in the problem of the Dark
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(i.e., non-luminous and non-absorbing) Matter nature is, arguably, the most widely discussed
topic in contemporary particle physics [7]. Naive predictions of vacuum energy from canonical
quantum field theory predict a magnitude so high that the expansion of the Universe should
have accelerated so quickly that no any structure could have formed. The predicted rate of
acceleration resulting from vacuum energy is famously 120 orders of magnitude larger than what
is observed. In order to avoid these difficultnes mentioned above we assume that:(i) physics of
elementary particles essentially is separated into low/high energy ones, (ii) the standard notion of
smooth spacetime is assumed to be altered at a high energy cutoff scale Λ∗ and a new treatment
based on quantum field theory (QFT) in a fractal space-time with negative dimension is used
above that scale Λ∗. In this paper we argue that Quantum Field Theory in fractal space-time with
negative Hausdorff-Colombeau dimensions [8], [9] gives high-energy cutoff on natural way. No
one knows what dark energy is, but we need it to explain the discovered accelerated expansion of
the Universe. The most elegant and natural solution is to identify dark energy with the energy
of the quantum vacuum predicted by Quantum Field Theory, but the trouble is that QFT
predicts the energy density of the vacuum to be orders of magnitude larger than the observed
dark energy density: εde ≈ 7.5× 10−27kg/m3. Recall that it was stressed by Zeldovich [1] that
quantum field theory generically demands that cosmological constant or, let us repeat, what
is the same, vacuum energy is non-vanishing. Summing the zero-point energies of all normal
modes of some quantum field of mass m up to a wave number cut-off Λ∗/c

2 � m, QFT yields
[1], [5] a vacuum energy density

εvac (p∗) ∼
∫ p∗

0 d3p
√
p2 +m2 ' p4

∗. (1.1)

If we take the Planck scale (i.e. the Planck mass) as a cut-off, the vacuum energy density
εvac (p∗) is 10121 times larger than the observed dark energy density εde. Several possible
approaches to the problem of vacuum energy have been discussed in the contemporary literature,
for the review see ref. [5]-[7], [10]. They can be roughly divided into four different groups: (1)
Modification of gravity on large scales. (2) Anthropic principle. (3) Symmetry leading to
εvac = 0.(4) Adjustment mechanism, see [10]. (5) Hidden nonstandard dark matter sector and
corresponding hidden symmetry leading to εvac ' 0, see ref. [8], [9].

2. The formulation of the cosmological constant problem. Zel’dovich approach to
cosmological constant problem by using Pauli-Villars regularization revisited
The cosmological constant problem arises at the intersection between general relativity and
quantum field theory, and is regarded as a fundamental unsolved problem in modern physics.
Remind that a peculiar and truly quantum mechanical feature of the quantum fields is that
they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise
‘empty’ (i.e. devoid of matter and radiation). This vacuum energy density is believed to act as
a contribution to the cosmological constant λ appearing in Einstein’s field equations from 1917,

Rµν − 1
2gµνR = 8πG

c4
T ′µν, (2.1)

where Rµν and R refer to the curvature of space-time, gµν is the metric, T ′µν the energy-
momentum tensor,

′ T ′µν = Tµν + c4λ
8πG


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (2.2)

where Tµν is the energy-momentum tensor of matter. Thus T ′00 = T00+ελ, T
′
αβ = Tαβ+ +δαβPλ,

where

ελ = −Pλ = c4λ/8πG. (2.3)
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Remind that under Lorentz transformations (εΛ, PΛ)→ ε′Λ, (εΛ, PΛ)→ P ′Λ the quantities εΛ

and Pλ are changes by the law

ε′λ = ελ+β2Pλ
1−β2 , P ′λ = Pλ+β2ελ

1−β2 . (2.4)

Thus for the quantities ελ and Pλ Lorentz invariance holds by Eq.(2.3) [1]. In review
[5], Weinberg indicates that the first published discussion of the contribution of quantum
fluctuations to the cosmological constant was a 1967 paper by Zel’dovich [6]. In his article
[1] Zel’dovich emphasizes that zeropoint energies of particle physics theories cannot be ignored
when gravitation is taken into account, and since he explicitly discusses the discrepancy between
estimates of vacuum energy and observations, he is clearly pointing to a cosmological constant
problem. As well known zeropoint energy density of scalar quantum field, etc.is divergent

εvac (m) = 2πc
(2πh̄)3

∫∞
0

√
p2 +m2c2p2dp =∞. (2.5)

In order to avoid difficultnes mentioned above, in article [1] Zel’dovich has applied canonical
Pauli-Villars regularization [9], [11], [12] and formally has obtained a finite result (his formulas
[1], Eqs. (VIII.12)-(VIII.13) p.228)

εvac = −pvac = 1
8

µeff∫
0
f (µ)µ4 (lnµ) dµ = c4λ

8πG , (2.6)

where

µeff∫
0
f (µ) dµ =

µeff∫
0
f (µ)µ2dµ =

µeff∫
0
f (µ)µ4dµ = 0. (2.7)

Unfortunately the Eq.(2.6)-Eq.(2.7) give nothing in order to obtain desired small numerical
values of the zero-point energy density εvac. It is clear that aditional physical assumptions are
needed. In his paper [1], Zel’dovich arrives at a zero-point energy (his formula [1], Eq.(IX.1))

εvac = m
(
mc
h̄

)3 ∼ 1017g/cm3, λ ∼ 10−10cm−2, (2.8)

where m (the ultra-violet cut-of ) is taken equal to the proton mass. Zel’dovich notes that since
this estimate exceeds observational bounds by 46 orders of magnitude it is clear that ”...such an
estimate has nothing in common with reality”.

In his paper [1], Zel’dovich wroted: ”Recently A. D. Sakharov proposed a theory of
gravitation, or, more precisely, a justification GR equations based on consideration of vacuum
fluctuations. In this theory, the essential assumption is that there is some elementary length L
or the corresponding limiting momentum p0 = h̄/L. Shorter lengths or for large impulses theory
is not applicable. Sakharov gets the expression of gravitational constant G through L or p0 (his
formula [1], Eq.(IX.6))

G = c3L2

h̄ = h̄c3

p2
0
. (2.9)

This expression has been known since the days of Planck, but it was read ”from right to left”:
gravity determines the length L and the momentum p0. According to Sakharov, L and p0 are
primary. Substitute Eq. (IX. 6) in the expression Eq. (IX.4) (see [1]), we get

ρvac = m6c5

p2
0h̄

3 , εvac = m6c7

p2
0h̄

3 . (2.10)
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That is expressions that the first members (in the formulas [1], Eqs.(VIII.10)-(VIII. 11))
which are vanishing (with p0 → ∞). Thus, we can suggest the following interpretation of the
cosmological constant: there is a theory of elementary particles, which would give (according to
the mechanism that has not been revealed at the present time) identically zero vacuum energy, if
this theory was applicable infinitely, up to arbitrarily large momentum; there is a momentum p0,
beyond which the theory is nont applicable; along with other implications, modifying the theory
gives different from zero vacuum energy; general considerations make it likely that the effect
is portional p−2

0 . Clarification of the question of the importance for the theory of elementary

particles”.
In contrast with Zel’dovich paper [1] we assume that:
(i) Poincaré group is deformed at some fundamental high-energy cutoff Λ∗ [13]-[15] in

accordance with the basis of the following deformed Poisson brackets

{xµ, xν} = κ−1
(
xµη0ν − xνηµ0

)
, {pµ, pν} = 0,

{xµ, pν} = −ηµν + κ−1ηµ0pν
(2.11)

where µ, ν,= 0, 1, 2, 3, ηµν = (+1,−1,−1,−1) and κ is a parameter identified as the ratio
between the high-energy cutoff Λ∗ and the light speed. The corresponding to (2.11) momentum
transformation reads, (see ref. [14])

p′0 = γ(p0−upx)

1+(cκ)−1[(γ−1)p0−γupx]
, p′x =

γ(px−up0/c2)
1+(cκ)−1[(γ−1)p0−γupx]

,

p′y =
py

1+(cκ)−1[(γ−1)p0−γupx]
, p′z = pz

1+(cκ)−1[(γ−1)p0−γupx]
.

(2.12)

and coordinate transformation reads, (see ref. [15])

t′ =
γ(t−ux/c2)

1+(cκ)−1[(γ−1)p0−γupx]
, x′ = γ(x−ut)

1+(cκ)−1[(γ−1)p0−γupx]
,

y′ = y

1+(cκ)−1[(γ−1)p0−γupx]
, z′ = z

1+(cκ)−1[(γ−1)p0−γupx]
,

(2.13)

where γ =
√

1− u2/c2. It is easy to check that the energy E = cκ , identified as the high- energy
cutoff Λ∗, is an invariant as it is also the case for the fundamental length lΛ∗ = h̄c/E = h̄/κ.
Note that the transformation (2.12) defined in p-space and the transformation (2.13) defined in
x-space becomes Lorentz for small energies and momenta and defines a large invariant energy
l−1
Λ∗
.The high-energy cutoff Λ∗ is preserved by the modified action of the Lorentz group [13]-[15].

Therefore the canonical quadratic invariant ‖p‖2 = ηabpapb collapses at high-energy cutoff Λ∗and
being replaced by the non-quadratic invariant:

‖p‖2 = ηabpapb
(1+lΛ∗p0) . (2.14)

see ref. [13]-[14].
(ii) The canonical concept of Minkowski space-time collapses at a small distances lΛ∗ = Λ−1

∗
to fractal space-time with Hausdorff-Colombeau negative dimension and therefore the canonical
Lebesgue measure d4x being replaced by the Colombeau-Stieltjes measure with negative
Hausdorff-Colombeau dimension D :

(dη (x, ε))ε =
(
vε(s (x))d4x

)
ε , (2.15)

where

(vε(s (x)))ε =

((
|s (x)||D | + ε

)−1
)
ε
,

s (x) =
√
xµxµ,

(2.16)
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see sect. 3 and ref. [8], [9].
(iii) The canonical concept of momentum space collapses at fundamental high-energy cutoff

Λ∗ to fractal momentum space with Hausdorff-Colombeau negative dimension and therefore
the canonical Lebesgue measure d3k, where k = (kx, ky, kz) being replaced by the Hausdorff-
Colombeau measure

dD
+,D k =:

∆(D−)dD
+

k

(|k||D |+ε)
ε

=
∆(D+)∆(D−)pD

+−1dp

(p|D |+ε)
ε

, (2.17)

where ∆ (D±) = 2πD
±/2/Γ (D±/2) and p = |k| =

√
kx + ky + kz and where D+ − |D | ≤ −6,

see sect. 3 and ref. [8]. Hausdorff-Colombeau measure (2.7) avoid classical divergence (2.5) of
the zeropoint energy εvac (m) and instead Eq. (2.5) one obtains

εvac (m) =
∫ p∗

0 d3p
√
p2 +m2 + ∆ (D+) ∆ (D−)

∫∞
p∗
dpp2

√
p2+m2

(p|D |+ε)
ε

' p4
∗. (2.18)

3. Hidden ghost matter sector and corresponding nonstandard symmetry leading
to εvac ' 0. Dark matter nature

Dark matter is a hypothetical form of matter that is thought to account for approximately
85% of the matter in the universe, and about a quarter of its total energy density.The majority
of dark matter is thought to be non-baryonic in nature, possibly being composed of some
as-yet undiscovered subatomic particles. Its presence is implied in a variety of astrophysical
observations, including gravitational effects that cannot be explained unless more matter is
present than can be seen. For this reason, most experts think dark matter to be ubiquitous in
the universe and to have had a strong influence on its structure and evolution. Dark matter
is called dark because it does not appear to interact with observable electromagnetic radiation,
such as light, and is thus invisible to the entire electromagnetic spectrum, making it extremely
difficult to detect using usual astronomical equipment [16-18]

Figure 1. Dark matter map for a patch of sky based on gravitational lensing analysis [18], [19]

Analysis of a giant new galaxy survey, made with ESO’s VLT Survey Telescope in Chile,
suggests that dark matter may be less dense and more smoothly distributed throughout space
than previously thought. An international team used data from the Kilo Degree Survey (KiDS)
to study how the light from about 15 million distant galaxies was affected by the gravitational
influence of matter on the largest scales in the Universe. The results appear to be in disagreement
with earlier results from the Planck satellite. This map of dark matter in the Universe was
obtained from data from the KiDS survey, using the VLT Survey Telescope at ESO’s Paranal
Observatory in Chile. It reveals an expansive web of dense (light) and empty (dark) regions.
This image is one out of five patches of the sky observed by KiDS. Here the invisible dark matter
is seen rendered in pink, covering an area of sky around 420 times the size of the full moon. This
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image reconstruction was made by analysing the light collected from over three million distant
galaxies more than 6 billion light-years away. The observed galaxy images were warped by the
gravitational pull of dark matter as the light travelled through the Universe. Some small dark
regions, with sharp boundaries, appear in this image. They are the locations of bright stars
and other nearby objects that get in the way of the observations of more distant galaxies and
are hence masked out in these maps as no weak-lensing signal can be measured in these areas
[16-18].

Figure 2. A simulation of the dark matter distribution in the universe 13.6 billion years ago

The luminous (light-emitting) components of the universe only comprise about 0.4% of the
total energy. The remaining components are dark. Of those, roughly 3.6% are identified: cold
gas and dust, neutrinos, and black holes. About 23% is dark matter, and the overwhelming
majority is some type of gravitationally self-repulsive dark energy.

Figure 3. Matter and energy distribution in the universe today. The luminous (light-emitting)
components of the universe only comprise about 0.4% of the total energy. The remaining
components are dark

Remark 3.1. There is no candidate in the standard model of particle physics. In what way
does dark matter extend the standard model?

Remark 3.2. In order to explain physical nature of dark matter sector we assume that
main part of dark matter, i.e., ' 23%− 4.6% = 18% (see Fig.3) formed by supermassive ghost
particles vith masess such that mc2 > Λ∗.

Remark 3.3. In order to obtain QFT description of the dark component of matter in natural
way we expand now the standard model of particle physics on a sector of ghost particles. QFT
in a ghost sector developed in ref. [8], (see [8], sect. 3.1-3.4 and sect. 4.1-4.8).



8th International Conference on Mathematical Modeling in Physical Science

Journal of Physics: Conference Series 1391 (2019) 012058

IOP Publishing

doi:10.1088/1742-6596/1391/1/012058

7

4. Hausdorff-Colombeau measure and associated negative Hausdorff-Colombeau
dimensions. Fractional Integration in negative dimensions

Let µD
+

H be a Hausdorff measure [20]-[21] and X ⊂ Rn, D+ < n is measurable set. Let s (x)
be a function s : X → R such that is symmetric with respect to some centre x0 ∈ X, i.e. s(x)
= const for all x satisfying d (x, x0) = r for arbitrary values of r. Then the integral in respect
to Hausdorff measure over n-dimensional metric space X is then given by [20]:

∫
X s(x)dµD

+

H = 2πD
+/2

Γ(D+/2)

∫∞
0 s (r) rD

+−1dr. (4.1)

The integral in RHS of the Eq. (4.1) is known in the theory of the Weyl fractional calculus
where, the Weyl fractional integral WDf (x) , is given by

WD+
f (x) = 1

Γ(D+)

∫∞
0 (t− x)D

+−1 f (t) dt. (4.2)

The notion of negative dimension in geometry and quantum physics was many developed,see
[9], [22]-[32].

In order to extend the Weyl fractional integral (4.2) in negative dimensions we apply the
Colombeau generalized functions [33]-[34] and Colombeau generalized numbers [35], [36].

Recall that Colombeau algebras G (Ω) of the Colombeau generalized functions defined as
follows [33]-[34]. Let Ω be an open subset of Rn. Throughout this paper, for elements of

the space C∞ (Ω)(0,1] of sequences of smooth functions indexed by ε ∈ (0, 1] we shall use the
canonical notation (uε)ε so uε ∈ C∞ (Ω) , ε ∈ (0, 1].

Definition 4.1. We set G (Ω) = EM (Ω) /N (Ω), where

EM (Ω) =
{

(uε)ε ∈ C∞ (Ω)(0,1]
∣∣∣ ∀K ⊂⊂ Ω,∀α ∈ Nn∃p ∈ Nwith

supx∈K |uε (x)| = O (ε−p) asε→ 0} ,
N (Ω) =

{
(uε)ε ∈ C∞ (Ω)(0,1]

∣∣∣ ∀K ⊂⊂ Ω,∀α ∈ Nn∀q ∈ N
supx∈K |uε (x)| = O (εq) asε→ 0} .

(4.3)

Note that G (Ω) is a differential algebra containing D′ (Ω) as a linear subspace and C∞ (Ω)
as subalgebra. Equivalence classes of sequences (uε)ε will be denoted by cl [(uε)ε] .

Definition 4.2. Weyl fractional integral
(
WD −
ε f (x)

)
ε

in negative dimensions D− < 0,

D− 6= 0,−1, ...,−n, ..., n ∈ N is given by [8], [9]:

WD−f (x) = 1
Γ(D−)

(∫∞
ε (t− x)D

−−1 f (t) dt
)
ε

or(
W

D−−
ε f (x)

)
ε

= 1
Γ(D−)

(∫∞
0

1

ε+(t−x)|D−|+1
f (t) dt

)
ε
,

(4.4)

where ε ∈ (0, 1] and
∫∞

0 |f (t) dt| < ∞. Note that
(
WD−−
ε f (x)

)
ε
∈ G (R) . Thus in order to

obtain apropriate extension of the Weyl fractional integral WD+
f (x) on the negative dimensions

D− < 0 the notion of the Colombeau generalized functions is essentially important. Thus in
negative dimensions from Eq. (4.1) we formally obtain(∫

X s(x)dµD
−

HC,ε

)
ε

= 2πD
−/2

Γ(D−/2)

(∫∞
0

s(r)

ε+r|D |+1dr
)
ε

=

(
I
D−
ε

)
ε
, (4.5)

where ε ∈ (0, 1] and D− 6= 0,−2, ...,−2n, ..., n ∈ N and where
(
µDHC,ε

)
ε

is apropriate generalized

Colombeau outer measure. Namely Hausdorff-Colombeau outer measure, see [8], [9], sec. 6.1.



8th International Conference on Mathematical Modeling in Physical Science

Journal of Physics: Conference Series 1391 (2019) 012058

IOP Publishing

doi:10.1088/1742-6596/1391/1/012058

8

We apply throught this paper more general definition then definition (4.5):(∫
X s(x)dµD

+,D −

HC,ε

)
ε

= 4πD
+/2πD

−/2

Γ(D+/2)Γ(D−/2)

(∫∞
0

rD
+−1s(r)

ε+r|D −|+1
dr

)
ε

=
(
I
D+,D−
ε

)
ε
, (4.6)

where ε ∈ (0, 1] and D+ ≥ 1, D− 6= 0,−2, ...,−2n, ..., n ∈ N and where
(
µD

+,D −−

HC,ε

)
ε

is

apropriate generalized Colombeau outer measure. Namely Hausdorff-Colombeau outer measure.
In ref. [9] (see [9], sec. 3.3) it has been proved that there exists Colombeau generalized measure(
dµD

+,D −−

HC,ε

)
ε

and therefore Eq. (4.6) gives apropriate extension of the Eq. (4.1) on the negative

Hausdorff-Colombeau dimensions.
Definition 4.3.We denote by R̃ the ring of real,Colombeau generalized numbers. Recall that

by definition R̃ = EM (R) /N (R) [35], [36] where

EM (R) =
{

(xε)ε ∈ R(0,1]
∣∣∣ (∃α ∈ R) (∃ε0 ∈ (0, 1])∀ε ≤ ε0 [|xε| ≤ εα]

}
,

N (R) =
{

(xε)ε ∈ R(0,1]
∣∣∣ (∀α ∈ R) (∃ε0 ∈ (0, 1])∀ε ≤ ε0 [|xε| ≤ εα]

}
.

(4.7)

Notice that the ring R̃ arises naturally as the ring of constants of the Colombeau algebras
G (Ω) . Recall that there exists natural embedding r̃ : R ↪→ R̃ such that for all r ∈ R, r̃ = (rε)ε
where rε ≡ r for all ε ∈ (0, 1] . We say that r is standard number and abbreviate r ∈ R for

short. The ring R̃ can be endowed with the structure of a partially ordered ring: for r, s ∈ R̃
η ∈ R+, η ≤ 1 we abbreviate r ≤

R̃,η
s or simply r ≤

R̃
s if and only if there are representatives

(rε)ε and (sε)ε with rε ≤ sε for all ε ∈ (0, η] . Colombeau generalized number r ∈ R̃ with
representative (rε)ε we abbreviate cl [(rε)ε] .

Definition 4.4. (i) Let δ ∈ R̃. We say that δ is infinite small Colombeau generalized number
and abbreviate δ ≈

R̃
0̃ if there exists representative (δε)ε and some q ∈ N such that |δε| = O (εq)

as ε → 0. (ii) Let ∆ ∈ R̃. We say that ∆ is infinite large Colombeau generalized number and

abbreviate ∆ =
R̃
∞̃ if ∆−1

R̃
≈
R̃

0̃. (iii) Let R±∞ be R ∪ {±∞} We say that Θ ∈ R̃±∞ is

infinite Colombeau generalized number and abbreviate Θ =
R̃
±∞

R̃
if there exists representative

(Θε)ε where |Θε| = ∞ for all ε ∈ (0, 1] . Here we abbreviate EM (R±∞) = EM (R ∪ {±∞}) ,
N (R±∞) = N (R ∪ {±∞}) and R̃±∞ = EM (R±∞) /N (R±∞) .

Definition 4.5. (Standard Part Mapping). (i) The standard part mapping st : R̃ → R is
defined by the formula:

st (x) = sup
{
r ∈ R|r ≤

R̃
x
}
. (4.8)

If x ∈ R̃, then st (x) is called the standard part of x.

(ii) The mapping st : R̃ → R ∪ {±∞} is defined by (i) and by st (x) = ±∞ for x ∈ R̃ and

for x ∈ R̃±∞, respectively.
Definition 4.6. The singular Hausdorff-Colombeau measure originate in Colombeau

generalization of canonical Caratheodory’s construction, which is defined as follows: for each
metric space X, each set F = {Ei}i∈N of subsets Ei of X, and each Colombeau generalized
function (ζε (E, x, x̆))ε , such that: (i) 0 ≤ (ζε (E, x, x̆))ε , (ii) (ζε (E, x̆, x̆))ε =

R̃
∞̃, whenever

E ∈ F, a preliminary Colombeau measure (φδ (E, x, x̆, ε))ε can be constructed corresponding to
0 < δ ≤ +∞ , and then a final Colombeau measure (µε (E, x, x̆))ε, as follows: for every subset
E ⊂ X, the preliminary Colombeau measure (φδ (E, x, x̆, ε))ε is defined by

φδ (E, x, x̆, ε) = sup
{Ei}i∈N

{∑
i∈N

ζε (Ei, x, x̆) |E ⊂
⋃
i∈N

Ei,diam (Ei) ≤ δ
}
. (4.9)
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Since for all ε ∈ (0, 1] : φ−δ1 (E, x, x̆, ε) ≥ φ−δ2 (E, x, x̆, ε) for 0 < δ1 < δ2 ≤ +∞, the limit

(µε (E, x, x̆))ε = (µ (E, x, x̆, ε))ε =(
lim
δ→0+

φδ (E, x, x̆, ε)

)
ε

=

(
inf
δ>0

φδ (E, x, x̆, ε)

)
ε

(4.10)

exists for all E ⊂ X. In this context, (µ (E, x, x̆, ε))ε can be called the result of Caratheodory’s
construction from (ζε (E, x, x̆))ε on F and (φδ (E, x, x̆, ε))ε can be referred to as the size δ
approximating Colombeau measure.

Definition 4.7. Let (ζε (Ei, D
+, D−, x, x̆))ε be

(ζε (Ei, D
+, D−, x, x̆))ε =


(

Ω1(D+)Ω2(D−)[diam(Ei)]
D+

[d(x,x̆)]|D |+ε

)
ε

ifx ∈ Ei

0 ifx /∈ Ei
(4.11)

where ε ∈ (0, 1] ,Ω1 (D+) , |Ω2 (D−)| > 0. In particular, when F is the set of all (closed or open)
balls in X,

Ω1 (D+) =
2−D

+
Γ( 1

2)
D+

Γ

(
1+D+

2

) = 2−D
+
π
D+

2

Γ

(
1+D+

2

) (4.12)

and

Ω2 (D−) = 2−D π
D
2

Γ

(
1+D−

2

) , (4.13)

where D− 6= −2,−4,−6, ...,−2 (n+ 1) , ....
Definition 4.8. The Hausdorff-Colombeau singular measure (µHC (E,D+, D−, x, x̆, ε))ε of a

subset E ⊂ X with the associated Hausdorff-Colombeau dimension D̆+ (D−) ∈ R+, D− ∈ R+,
which is defined by (

µHC
(
E, D̆+, D−, x, x̆, ε

))
ε

=(
lim
δ→0

[
sup
{Ei}i∈N

{∑
i∈N

(
ζε
(
Ei, D̆

+, D−, x, x̆
))

ε
|E ⊂

⋃
i∈N

Ei, ∀i (diam (Ei) < δ)
}])

ε

,

D̆+ = sup
{
D+ > 0|

(
µHC

(
E,D+, D−, x, x̆, ε

))
ε =∞

R̃

}
. (4.14)

The Colombeau-Lebesgue-Stieltjes integral over continuous functions f : X → R can be
evaluated straightforward, but using the limit in sense of Colombeau generalized functions of
infinitesimal covering diameter when {Ei}i∈N is a disjoined covering and xi ∈ Ei :(∫

X
f (x) dµHC

(
E,D+, D−, x, x̆, ε

))
ε

=(
lim

diam(Ei)→0

[∑
∪Ei=X

f (xi) inf
Eijwith∪jEij⊃Ei

∑
j
ζε
(
Ei, D

+, D−, xi, x̆
)])

ε

. (4.15)

We assume now that X is metrically unbounded, i.e. for every x ∈ X and r > 0 there
exists a point y such that d(x, y) > r. The standard assumption that D̆+ and D̆− is uniquely
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defined in all subsets E of X requires X to be regular (homogeneous, uniform) with respect to

the measure, i.e.
(
µ−HC

(
Br (x̆) , D̆+, D̆−, x, x̆, ε

))
ε

=
(
µ−HC

(
Br (y̆) , D̆+, D̆−, x′, y̆, ε

))
ε
, where

d(x, x̆) = d(x′, y̆) for all elements x̆, y̆, x, x′ ∈ X and convex balls Br(x̆) and Br(y̆) of the
form Br(x̆) = {z|d (x̆, z) ≤ r; x̆, z ∈ X} and Br(y̆) = {z|d (y̆, z) ≤ r; y̆, z ∈ X} . In the limit
diam (Ei)→ 0, the infimum is satisfied by the requirement that the variation over all coverings
{Eij}ij∈N is replaced by one single covering Ei, such that ∪jEij → Ei 3 xi. Therefore(∫

X f (x) dµHC
(
E, D̆+, D̆−, x, x̆, ε

))
ε

=(
limdiam(Ei)→0

∑
∪Ei=X f (xi) ζε

(
Ei, D̆

+, D̆−, xi, x̆
))

ε
. (4.16)

Assume that f (x) = f (r) , r = ‖r‖ .The range of integration X may be parametrised by polar
coordinates with r = d(x, 0) and angle ω. {Eri,ωi} can be thought of as spherically symmetric
covering around a centre at the origin. Thus(∫

X f (r) dµHC
(
Ex, D̆

+, D̆−, x, x̆, ε
))

ε
=(

limdiam(Ei)→0
∑
∪Ei=X f (ri) ζε

(
Ei, D̆

+, D̆−, xi, x̆
))

ε
. (4.17)

Notice that the metric set X ⊂ Rn can be tesselated into regular polyhedra; in particular it
is always possible to divide Rn into parallelepipeds of the form

Πi1,...,in = {x = (x1, ..., xn) ∈ X|xj = (ij − 1) ∆xj + γj , 0 ≤ γj ≤ ∆xj , j = 1, ..., n} . (4.18)

For n = 2 the polyhedra Πi1,i2 is shown in figure 4. Since X is uniform(
dµHC

(
E, D̆+, D̆−, x, x̆, ε

))
ε

=(
lim

diam(Πi1,...,in)→0
ζε
(
Πi1,...,in , D̆

+, D̆−, x, x̆
))

ε

=

 lim
diam(Πi1,...,in)→0

Πn
j=1

 ∆xj

|xj − x̆j ||D̆
−| + ε

 D̆+

n


ε

:=

Πn
j=1

d
D̆+

n xj(
|xj − x̆j ||D̆

−| + ε
) D̆+

n


ε

. (4.19)

Notice that the range of integration X may also be parametrised by polar coordinates with
r = d(x, 0) and angle Ω. Er,Ω can be thought of as spherically symmetric covering around a
centre at the origin (see figure 5 for the two-dimensional case). In the limit, the Colombeau

generaliza function
(
ζε
(
Er,Ω, D̆

+, D̆−, r, r̆
))

ε
is given by(

dµHC
(
Er,Ω, D̆

+, D̆−, r, r̆,Ω, ε
))

ε
=(

lim
diam(Πi1,...,in)→0

ζε
(
Er,Ω, D̆

+, D̆−, r, r̆,Ω
))

ε

:=



8th International Conference on Mathematical Modeling in Physical Science

Journal of Physics: Conference Series 1391 (2019) 012058

IOP Publishing

doi:10.1088/1742-6596/1391/1/012058

11

Figure 4. The polyhedra covering for
n=2

dΩD̆+−1rD̆
+−1dr(

(r − r̆)|D̆−| + ε
)
ε

. (4.20)

Figure 5. The spherical covering Er,Ω

When f(x) is symmetric with respect to some centre x̆ ∈ X, i.e. f(x) = constant for all x
satisfying d(x, x̆) = r for arbitrary values of r, then change of the variable: x→ z = x− x̆ can
be performed to shift the centre of symmetry to the origin. The integral over metric space X is
then given by formula(∫

X f (x) dµHC
(
Ex, D̆

+, D̆−, x, x̆, ε
))

ε
= 4πD

+/2πD /2

Γ(D+/2)Γ(D−/2)

(∫∞
0

rD
+−1f(r)

r|D |+ε
dr

)
ε
. (4.21)

The Colombeau integral defined in (4.17) satisfies the following conditions.(i) Linearity:(∫
X [a1f1 (x) + a2f2 (x)] dµHC

(
Ex, D̆

+, D̆−, x, x̆, ε
))

ε
=

a1

(∫
X f1 (x) dµHC

(
Ex, D̆

+, D̆−, x, x̆, ε
))

ε
+

a2

(∫
X f2 (x) dµHC

(
Ex, D̆

+, D̆−, x, x̆, ε
))

ε
.

(4.22)

(ii) Translational invariance:(∫
X f (x+ x0) dµHC

(
Ex, D̆

+, D̆−, x, x̆− x0, ε
))

ε
=(∫

X f (x) dµHC
(
Ex, D̆

+, D̆−, x, x̆, ε
))

ε
(4.23)
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since (
dµHC

(
Ex−x0 , D̆

+, D̆−, x− x0, x̆− x0, ε
))

ε
=(

dµHC
(
Ex, D̆

+, D̆−, x, x̆, ε
))

ε
. (4.24)

5. Hausdorff-Colombeau measure and associated negative Hausdorff-Colombeau
dimensions

During last 20 years the notion of negative dimension in geometry was many developed, see
for example [9], [22]-[26]. Let Ω be an open subset of Rn, let X be metric space XRn and let F
be a set F = {Ei}i∈N of subsets Ei of X. Let ζ (E, x, x̆) be a function ζ : F × Ω× Ω→ R. Let
C∞F (Ω) be a set of the all functions ζ (E, x, x̆) such that ζ (E, x, x̆) ∈ C∞ (Ω× Ω) whenever

E ∈ F. Throughout this paper, for elements of the space C∞F (Ω× Ω)(0,1] of sequences of smooth
functions indexed by ε ∈ (0, 1] we shall use the canonical notations (ζε (E, x, x̆))ε and (ζε)ε so
ζε ∈ C∞F (Ω× Ω) , ε ∈ (0, 1].

Definition 5.1.We set GF (F,Ω) = EM (F,Ω) /N (F,Ω), where

EM (F,Ω) =
{

(ζε (E, x, x̆))ε ∈ C∞F (Ω× Ω)(0,1]
∣∣∣ ∀K ⊂⊂ Ω,∀α ∈ Nn∃p ∈ Nwith

supE∈F ;x∈K |ζε (E, x, x̆)| = O (ε−p) asε→ 0
}
,

N (F,Ω) =
{

(ζε (E, x, x̆))ε ∈ C∞F (Ω× Ω)(0,1]
∣∣∣ ∀K ⊂⊂ Ω, ∀α ∈ Nn∀q ∈ N

supE∈F ;x∈K |ζε (E, x, x̆)| = O (εq) asε→ 0
}
.

(5.1)

Notice that GF (F,Ω) is a differential algebra. Equivalence classes of sequences (ζε)ε =
(ζε (E, x, x̆))ε will be denoted by cl [(ζε)ε] or simply [(ζε)ε] .

Definition 5.2. Any outer Colombeau metric measure on a set X ⊂ Rn is a Colombeau
generalized function [(φε (E))ε] ∈ GF (F,Ω) , E ∈ F satisfies the following properties:

(i) Null empty set: The empty set has zero Colombeau outer measure

[(φε (∅))ε] = 0. (5.2)

(ii) Monotonicity: For any two subsets A and B of X

AB [(φε (A))ε] ≤R̃ [(φε (B))ε] . (5.3)

(iii) Countable subadditivity: For any sequence {Aj} of subsets of X pairwise disjoint or not[(
φε
(
∪∞j=1Aj

))
ε

]
≤
R̃

[(∑∞
j=1 φε (Aj)

)
ε

]
. (5.4)

(iv) Whenever d(A,B) = inf {dn (x, y) |x ∈ A, y ∈ B} > 0

[(φε (A ∪B))ε] = [(φε (A))ε] + [(φε (B))ε] , (5.5)

where dn (x, y) is the usual Euclidean metric: dn (x, y) =
√∑

(xi − yi)2.

Definition 5.3. We say that outer Colombeau metric measure (µε)ε , ε ∈ (0, 1] is a
Colombeau measure on σ-algebra of subests ofX ⊂ Rn if (µε)ε satisfies the following property:[(

φε
(
∪∞j=1Aj

))
ε

]
=
[(∑∞

j=1 φε (Aj)
)
ε

]
. (5.6)
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Definition 5.4. If U is any non-empty subset of n-dimensional Euclidean space, Rn, the
diamater |U | of U is defined as

|U | = sup {d (x, y) |x, y ∈ U} . (5.7)

If F ⊆ Rn, and a collection {Ui}i∈N satisfies the following conditions:
(i) |Ui| < δ for all i ∈ N, (ii) F ⊆ ∪i∈NUi, then we say the collection {Ui}i∈N is a δ-cover of

F .
Definition 5.5. If F ⊆ Rn and s, q, δ > 0, we define Hausdorff-Colombeau content:(

Hs,q
δ (F, ε)

)
ε =

(
inf
{∑∞

i=1
|Ui|s
‖xi‖q+ε

})
ε

(5.8)

where the infimum is taken over all δ-covers of F and where xi = (xi,1, ...xi,n) ∈ Ui for all

i ∈ N and ‖x‖ is the usual Euclidean norm:‖x‖ =
√∑n

j=1 x
2
j .

Note that for 0 < δ1 < δ2 < 1, ε ∈ (0, 1] we have

Hs,q
δ1

(F, ε) ≥ Hs,q
δ2

(F, ε) (5.9)

since any δ1 cover of F is also a δ2 cover of F , i.e. Hs,q
δ1

(F, ε) is increasing as δ decreases.
Definition 5.6. We define the (s, q)-dimensional Hausdorff-Colombeau (outer) measure as:

(Hs,q (F, ε))ε =
(
δ → 0limHs,q

δ (F, ε)
)
ε . (5.10)

Theorem 5.1. For any δ-cover, {Ui}i∈Nof F , and for any ε ∈ (0, 1] , t > s :

Ht,q (F, ε) ≤ δt−sHs,q (F, ε) . (5.11)

Proof. Consider any δ-cover {Ui}i∈Nof F. Then each |Ui|t−s ≤ δt−s since |Ui| ≤ δ, so:

|Ui|t = |Ui|t−s |Ui|s ≤ δt−s |Ui|s . (5.12)

From (5.12) it follows that

|Ui|t
‖xi‖q+ε ≤

δt−s|Ui|s
‖xi‖q+ε (5.13)

and summing (5.12) over all i ∈ N we obtain

∑∞
i=1

|Ui|t
‖xi‖q+ε ≤ δ

t−s∑∞
i=1

|Ui|s
‖xi‖q+ε . (5.14)

Thus (5.11) follows by taking the infimum.
Theorem 5.2. (1) If (Hs,q (F, ε))ε <R̃ ∞R̃

, and if t > s, then
(
Ht,q (F, ε)

)
ε = 0

R̃
.

(2) If 0
R̃
<
R̃

(Hs,q (F, ε))ε, and if t < s, then
(
Ht,q (F, ε)

)
ε =∞

R̃
.

Proof. (1) The result follows from (5.11) after taking limits, since ∀ε ∈ (0, 1] by definitions
it follows that Hs,q (F, ε) <∞. (2) From (5.11) ∀ε ∈ (0, 1] ,∀δ > 0 it follows that

1
δs−tH

s,q (F, ε) ≤ Ht,q (F, ε) . (5.15)

After taking limit δ → 0, we obtain Ht,q (F, ε) =∞, since limδ→0

(
δs−t

)−1
=∞ and

limδ→0H
s,q
δ (F, ε) = Hs,q (F, ε) > 0.
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Definition 5.7. We define now the Hausdorff-Colombeau dimension dimHC (F, q) of a set
F (relative to q > 0) as

dimHC (F, q) =

sup
{
s = s (q) | (Hs,q (F, ε))ε =∞

R̃

}
= inf

{
s = s (q) | (Hs,q (F, ε))ε = 0

R̃

}
.

(5.16)

Remark 5.1. From Theorem 5.2 it follows that for any fixed q = q̆ :
(
Hs,q̆ (F, ε)

)
ε

= 0
R̃

or(
Hs,q̆ (F, ε)

)
ε

=∞
R̃

everywhere except at a unique value s, where this value may be finite. As

a function of s,Hs,q̆ (F, ε) is decreasing function. Therefore, the graph of Hs,q̆ (F, ε) will have a
unique value where it jumps from ∞

R̃
to 0

R̃
.

Remark 5.2. Note that the graph of
(
Hs,q̆ (F, ε)

)
ε

for a fixed q = q̆ is

(
Hs,q̆ (F, ε)

)
ε

=


∞
R̃

if s < dimHC (F, q̆)

0
R̃

if s > dimHC (F, q̆)

undetermined if s = dimHC (F, q̆)
(5.17)

Definition 5.8. We say that fractal ⊂ Rn has a negative dimension relative to q̆ > 0 iff
dimHC (F, q̆)− q̆ < 0.

6.Green’s functions in spacetime with Hausdorff-Colombeau negative dimensions

We consider now as an example a self-interecting scalar field (ϕε (x))ε ∈ G
(
RDx

)
describing

by the action

(Sε)ε =
∫
RDx

(dvε (x))ε

[
1
2 (∂µϕε∂

µϕε)ε −
1
2m

2
(
ϕ2
ε

)
ε − (Vε (ϕε))ε

]
, (6.1)

where (ϕε (x))ε , (Vε (ϕε (x)))ε ∈ G
(
RDx

)
and (dvε (x))ε = dDx (vε (x))ε is the Colombeau-

Stieltjes measure, where (vε (x))ε ∈ G
(
RDx

)
and

(vε (x))ε = (vε (x,N))ε =

((
|s (x)||D | + εN

)−1
)
ε
, N � 1, s2 (x) = xµx

µ = xix
i − x2

0, (6.2)

i=1,...,D-1.

Remark 6.1. We will denote with r = sE (x) =
√
xixi + x2

0 the Wick-rotated Lorentz

invariant s (x). Thus the Wick-rotated Lorentz invariant Colombeau-Stieltjes measure (vε (x))ε
reads (

vEε (x)
)
ε

= (vε (x,N))ε =((
|sE (x)||D | + εN

)−1
)
ε
, N � 1, s2 (x) = xµx

µ = xix
i + x2

0. (6.3)

Corresponding to the action (6.1) generalized vacuum-to-vacuum amplitude in Hausdorff-
Colombeau negative dimensions reads [9]:

(ZM [Jε])ε =
(ϕε)ε∈G̃(RDx )

D [(ϕε)ε]×

exp
[
i
(
RDx

(dvε (x))ε
(
12 (∂µϕε∂

µϕε)ε − 12m2
(
ϕ2
ε

)
ε − (Vε (ϕε))ε + ϕεJε

))
ε

]
=

(ϕε)ε∈G̃(RDx )
D [(ϕε)ε]×

exp
[
iRDx (dvε (x))ε

(
12 (∂µϕε∂

µϕε)ε − 12m2
(
ϕ2
ε

)
ε − (V (ϕε))ε + (ϕε)ε (Jε)ε

)] (6.4)
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where G̃
(
RDx

)
⊂ G

(
RDx

)
is a topological linear subspace of Colombeau algebra G

(
RDk

)
,

(ϕε (x))ε ∈ G̃
(
RDx

)
and (Jε (x))ε ∈ G̃

(
RDx

)
is a source.

Remark 6.2. Note that in (6.4) we integrate over an topological linear subspace G̃
(
RDx

)
⊂

G
(
RDx

)
of Colombeau algebra G

(
RDx

)
but not over full Colombeau algebra G

(
RDx

)
.

We will be write for short the expression (Z [Jε])ε in the following form

(ZM [Jε])ε = NM
∫
G̃(RDx )

D [(ϕε)ε]×
exp

[
i
〈

1
2 (∂µϕε∂

µϕε)ε −
1
2m

2
(
ϕ2
ε

)
ε − (Vε (ϕε))ε + (ϕε)ε (Jε)

〉
ν

]
,

(6.5)

where NM is a normalizing constant, the 〈...〉v now means integration with nontrivial Colombeau-
Stieltjes measure dDx (vε (x))ε over spacetime. The integrand in (6.5) is oscillatory and even
path integrals are not well defined. There are two canonical ways to resolve this problem: (i)
put in a convergence factor exp

[
− ε

2

〈(
ϕ2
ε

)
ε

〉]
with ε > 0, or (ii) define (Z [Jε])ε in Euclidean

space by setting x0 = ix̄0, d
Dx = −idDx̄, (∂µϕε∂µϕε)ε = −

(
∂µϕε∂

µ
ϕε
)
ε
, where the bar denotes

Euclidean space variables, ∂µ = ∂/∂x̄µ . Then Eq. (6.5) becomes

(ZE [Jε])ε = NE
∫
G̃(RDx )

D [(ϕε)ε]×

exp

[
−
〈

1
2

(
∂µϕε∂

µ
ϕε
)
ε

+ 1
2m

2
(
ϕ2
ε

)
ε + (Vε (ϕε))ε − (ϕε)ε (Jε)ε

〉
v

]
, (6.6)

where for instance (Vε (ϕε))ε =
∑m
k=3 ck

(
ϕkε

)
ε
. The exponent of the integrand is now negative

definite for positive m and Vε. In either case, the generating functional (6.6) is used to
manufacture the Euclidean Green’s functions which are the coefficients of the functional
expansion

(Z [Jε])ε =
∑∞
N=0

(−1)N

N !

〈(
J1,εJ2,ε...JN,εG

(N) (1, 2, ..., N ; ε)
)
ε

〉
ν1,ν2,...,νN

, (6.7)

where 〈...〉ν1,ν2,...,νN
. means integration with nontrivial Colombeau–Stieltjes measure

dDx1

(
νEε (x1)

)
ε
× dDx2

(
νEε (x2)

)
ε
× ... ×dDxN

(
νEε (xN )

)
ε

and therefore

(
G(N) (1, 2, ..., N ; ε)

)
ε

= 1
(−1)N

δ
δ(Jν1,ε)ε

δ
δ(Jν2,ε)ε

... δ

δ
(
JνN,ε

)
ε

(Z [Jε])ε

∣∣∣∣
(Jνε )ε=0

. (6.8)

where
(Jνε)ε =

((
Jν1,ε

)
ε
,
(
Jν2,ε

)
ε
, ...,

(
JνN,ε

)
ε

)
and

(
Jνk,ε

)
ε

=
(
Jε (x) νEε (x)

)
ε
.

We evaluate now (ZE [Jε])ε when (Vε (ϕε))ε = 0. Let
(
ZE0,ε [Jε]

)
ε

be

(
ZE0,ε [Jε]

)
ε

= NM
∫
G̃(RDx )

D [(ϕε)ε] exp {− (Sε [ϕε, Jε])ε} =

NM
∫
G̃(RDx )

D [(ϕε)ε] exp
[
−
〈

1
2 (∂µϕε∂

µϕε)ε + 1
2m

2
(
ϕ2
ε

)
ε + (ϕε)ε (Jε)

〉
ν

]
.

(6.9)

Remark 6.3. We assume now that (φε(x))ε , (Jε(x))ε ∈ G̃
(
RDx

)
⊂ G

(
RDx

)
, (%1,ε(x))ε ∈

G
(
RDx

)
, (%2,ε (k))ε ∈ G

(
RDk

)
and introduce the D-dimensional Colombeau Fourier–Stieltjes
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transform (ϕ̃ε(k))ε (S)% [(φε(x))ε] (k) , of the field (ϕε(x))ε with weight
{
(%1,ε (x))ε , (%2,ε (k))ε

}
using the following formal definitions: where the Colombeau-Fourier- Stieltjes transform(
G̃ε(k)

)
ε
∈ G̃

(
RDk

)
of a function (Gε(x))ε ∈ G̃

(
RDx

)
and its inverse are defined as(

G̃ε(k)
)
ε

=
(∫

dDx%1,ε(x)Gε(x) e−ik·x
)
ε

=
∫ (

dDx%1,ε(x)
)
ε

(Gε(x))ε e
−ik·x (6.10)

and

(Gε(x))ε = 1
(2π)D

(∫
dDk%2,ε(k) G̃ε(k) eik·x

)
ε

= 1
(2π)D

∫ (
dDk%2,ε(k)

)
ε

(
G̃ε(k)

)
ε
eik·x. (6.11)

correspondingly, where k · x = k0x0 +
−→
k · −→x and

−→
k = (k1, ..., kD−1) ,−→x = (x1, ..., xD−1) .

Remark 6.4. In additional we assume that (i) for any (Gε(x))ε ∈ G̃
(
RDx

)
: ‖Gε(x)‖1 <∞,

ε ∈ (0, 1] and (ii) |[Gε (x)]| ≈ |k|D(1+εM) ,M � 1, ε ∈ (0, 1] .
Remark 6.5. Note that: (i) from (6.10)-(6.11) it follows that(

G̃ε(k)
)
ε

=
(
%−1

2,ε(k) [Gε (x)] (k)
)
ε
, (Gε(x))ε =

(
%−1

1,ε(x)−1
[
G̃ε (k)

]
(x)
)
ε
, (6.12)

(ii) we choose now %2,ε(k) =

((
|ρ (k)||D | + ε

)−1
)
ε
, ρD (k) =

√∑D
i=1 k

2
i

and

%1,ε(x) =

((
|r (x)||D | + εN

)−1
)
ε
, N � 1, r (x) =

√∑D
i=1 x

2
i .

Remark 6.6. Note that %1,ε(x) = νEε (x,N) (see Remark 6.1, Eq.(6.3)) and therefore(
2−Dπ−D

∫
RDx

dDxνEε (x,N) e−ik·x
)
ε
' ρ

|D |
D (k)

ρDD(k)
' ρ|D |

D (k) δD (k) , (6.13)

since (i) F
[
rλ
]

= 2λ+DπD/2Γ
(
λ+D

2

)
Γ−1

(
−λ

2

)
ρλ−DD (k) and (ii) ρ−DD (k) = 2−1ΩDδ

D (k) , see

[37].
Using now the definition of the D-dimensional Colombeau–Dirac distribution with nontrivial

Colombeau-Stieltjes measure
(
dDkρ−1

2,ε(k)
)
ε

[10], [32]:(
δ1/ρ2,ε

(k)
)
ε

=
(
2−Dπ−D

∫
RDx

dDxνε(x,N) e−ik·x
)
ε
' δD(k)

%2,ε(k) , (6.14)

where (vε (x))ε =

((
|s (x)||D | + εN

)−1
)
ε
, N � 1, and the Colombeau-Fourier-Stieltjes

transform (6.11), the exponent of the integrand in Eq. (6.9) is easily expressed in terms of
the Colombeau- Fourier-Stieltjes transforms of (ϕε(x))ε and (Jε(x))ε. Modulo the measure, we
have followed exactly the same steps as in ordinary quantum field theory [38]. By using the
Colombeau-Fourier-Stieltjes transform of the field (ϕε(x))ε we obtain

(Sε [ϕε, Jε])ε =
1
2

(∫
dDxνε(x,N)

∫ dDk1%2,ε(k1)
(2π)D

∫ dDk2%2,ε(k2)
(2π)D

ei(k1+k2)·x [−ϕ̃ε(k1)(k2
2 +m2)ϕ̃ε(k2)

+J̃ε(k1)ϕ̃ε(k2) + J̃ε(k2)ϕ̃ε(k1)
])
ε

=

1
2

(∫ dDk1%2,ε(k1)
(2π)D

∫ dDk2%2,ε(k2)
(2π)D

δ1/ρ2,ε
(k1 + k2)

[
−ϕ̃ε(k1)(k2

2 +m2)ϕ̃ε(k2)

+J̃ε(k1)ϕ̃ε(k2) + J̃ε(k2)ϕ̃ε(k1)
])
ε

=

1
2

(∫ dDk1%2,ε(k1)
(2π)D

∫ dDk2%2,ε(k2)
(2π)D

(2π)DδD(k1+k2)
%2,ε(k1+k2)

[
−ϕ̃ε(k1)(k2

2 +m2)ϕ̃ε(k2)

+J̃ε(k1)ϕ̃ε(k2) + J̃ε(k2)ϕ̃ε(k1)
])
ε

=

1
2

(∫ dDk%2,ε(−k)
(2π)D

[
−ϕ̃ε(−k)(k2

2 +m2)ϕ̃ε(k) + J̃ε(−k)ϕ̃ε(k) + J̃ε(k)ϕ̃ε(−k)
])
ε

=

1
2

∫ dDk%2,ε(−k)
(2π)D

[
−ϕ̃ε(−k)(k2

2 +m2)ϕ̃ε(k) + J̃ε(−k)J̃ε(k)
(k2

2+m2)

]
.

(6.15)
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Finally the integrand in Eq. (6.9) becomes(∫
d%2,ε(−k)

[
ϕ̃∗ε (k)

(
k2 +m2

)
ϕ̃∗ (−k)− J̃ε(k)

(
k2 +m2

)−1
J̃ε(−k)

])
ε
, (6.16)

where

(ϕ̃∗ε (k))ε = (ϕ̃ε (k))ε +
(
k2 +m2

) (
J̃ε(k)

)
ε
. (6.17)

Note that ∫
G̃(RDk ) D [(ϕ̃ε)ε] exp [...] =

∫
G̃∗(RDk ) D [(ϕ̃∗ε)ε] exp [...] , (6.18)

since the new variable (ϕ̃∗ε)ε differs from (ϕ̃ε)ε in function space by a constant, so that
D [(ϕ̃ε)ε] = D [(ϕ̃∗ε)ε] . Putting it all together, we obtain(

ZM0,ε [Jε]
)
ε

= NM exp

[
1
2

(∫
d%2,ε(−k) J̃ε(k)J̃ε(−k)

k2+m2

)
ε

]
×∫

(ϕ∗ε)ε∈G̃∗(RDx )
D [(ϕ∗ε)ε] exp

[
−
〈

1
2 (∂µϕ

∗
ε∂

µϕ∗ε)ε + 1
2m

2
(
ϕ∗2ε

)
ε

〉
ν

]
.

(6.19)

Thus (
ZM0,ε [Jε]

)
ε

=
(
ZM0,ε [0]

)
ε

exp

[
1
2

(∫
d%2,ε(−k) J̃ε(k)J̃ε(−k)

k2+m2

)
ε

]
. (6.20)

By adjusting NM , we can take
(
ZM0,ε [0]

)
ε

= 1. The important thing is that we have succeeded

in finding the explicit dependence of
(
ZM0,ε [Jε]

)
ε

on (Jε(x))ε. The use of the (Jε(x))ε inverse

Colombeau-Fourier-Stieltjes transform (6.10) yields(∫
RD
k
d%2,ε(−k) J̃ε(k)J̃ε(−k)

k2−m2+iε

)
ε

=∫
RD
k

(d%2,ε(−k))ε
(2π)D

∫
RDx

(
(d%1,ε(x))ε

) ∫
RDy

(
(d%1,ε(y))ε

)
eik·(x−y) (Jε(x)Jε(y))ε

k2−m2+iε
.

(6.21)

and since such that (%2,ε(−k))ε = (%2,ε(k))ε, the free partition function reads

(Z0,ε[Jε])ε =
(
(Z0,ε[0])ε

)
×

exp
[

1
2

∫
RDx

(
(d%1,ε(x))ε

) ∫
RDy

(
(d%1,ε(y))ε

)
(Jε(x) ((∆F (x− y; ε))ε) Jε(y))ε

]
=

exp
[

1
2

〈
(Jε(x) ((∆F (x− y; ε))ε) Jε(y))ε

〉
ρ1(x),ρ1(y)

]
,

(6.22)

where

(∆F (x− y; ε))ε = 1
(2π)D

∫
RD
k

(
(d%2,ε(k))ε

)
eik·(x−y)

k2+m2 . (6.23)

Thus, we have recovered the usual definition of the propagator as the solution of the
generalized Green equation(

+m2) ∆F (x− y; ε)
)
ε =

(
δ%2,ε(x− y)

)
ε
. (6.24)

7.The solution cosmological constant problem. Einstein-Gliner-Zel’dovich
vacuum with tiny Lorentz invariance violation
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We will now briefly review the canonical assumptions that are made in the usual formulation
of the cosmological constant problem.

7.1. The canonical assumptions
1.The physical dark matter.
Dark matter is a hypothetical form of matter that is thought to account for approximately

85% of the matter in the universe, and about a quarter of its total energy density. The majority
of dark matter is thought to be non-baryonic in nature, possibly being composed of some
as-yet undiscovered subatomic particles. Its presence is implied in a variety of astrophysical
observations, including gravitational effects that cannot be explained unless more matter is
present than can be seen. For this reason, most experts think dark matter to be ubiquitous in
the universe and to have had a strong influence on its structure and evolution. The name dark
matter refers to the fact that it does not appear to interact with observable electromagnetic
radiation, such as light, and is thus invisible (or ’dark’) to the entire electromagnetic spectrum,
making it extremely difficult to detect using usual astronomical equipment. Because dark matter
has not yet been observed directly, it must barely interact with ordinary baryonic matter and
radiation. The primary candidate for dark matter is some new kind of elementary particle that
has not yet been discovered, in particular, weakly-interacting massive particles (WIMPs), or
gravitationally-interacting massive particles (GIMPs). Many experiments to directly detect and
study dark matter particles are being actively undertaken, but none has yet succeeded.

2.The total effective cosmological constant.
The total effective cosmological constant λeff is on at least the order of magnitude of the

vacuum energy density generated by zero-point fluctuations of the standard particle fields.
3.The Canonical QFT.
Canonical QFT is an effective field theory description of a more fundamental theory, which

becomes significant at some high-energy scale Λ∗.
4.The vacuum energy-momentum tensor.
The vacuum energy-momentum tensor is Lorentz invariant.
5.The Moller-Rosenfeld approach to semiclassical gravity.
The Moller-Rosenfeld approach [39], [40] to semiclassical gravity by using an expectation

value for the energy-momentum tensor is sound.
6.The Einstein equations.
The Einstein equations for the homogeneous Friedmann-Robertson-Walker metric accurately

describe the large-scale evolution of the Universe.
Remark 7.1. Note that obviously there is a strong inconsistency between Assumptions 2 and

3: the vacuum state cannot be Lorentz invariant if modes are ignored above some high-energy
cutoff Λ∗, because a mode that is high energy in one reference frame will be low energy in another
appropriately boosted frame. In this paper Assumption 3 is not used and this contradiction is
avoided.

Remark 7.2. Note that also, Assumptions 1, 2 and 4 are modifed, which we denote as
Assumptions 1′, 2′ and 4′ respectively.

7.2. The modified assumptions
1′. The physical dark matter.
2′. The total effective cosmological constant λeff is on at least the order |µeff |−n+5 ln |µeff |

of magnitude of the renormalized vacuum energy density generated by zero-point fluctuations
of standard particle fields and ghost particle fields, (see [8] sec. 1.2 and [9]).

3′.The vacuum energy-momentum tensor is not Lorentz invariant.

7.3. The physical ghost matter and dark matter nature
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In the contemporary quantum field theory, a ghost field, or gauge ghost is an unphysical state
in a gauge theory. Ghosts are necessary to keep gauge invariance in theories where the local
fields exceed a number of physical degrees of freedom. For example, in quantum electrodynamics,
in order to maintain manifest Lorentz invariance, one uses a four component vector potential
Aµ(x), whereas the photon has only two polarizations. Thus, one needs a suitable mechanism
in order to get rid of the unphysical degrees of freedom.

Introducing fictitious fields, the ghosts, is one way of achieving this goal. Faddeev-Popov
ghosts are extraneous fields which are introduced to maintain the consistency of the path integral
formulation. Faddeev-Popov ghosts are sometimes referred to as ”good ghosts”. ”Bad ghosts”
represent another, more general meaning of the word ”ghost” in theoretical physics: states of
negative norm, or fields with the wrong sign of the kinetic term, such as Pauli-Villars ghosts,
whose existence allows the probabilities to be negative thus violating unitarity.

In contrary with standard Assumption 1 in the case of the new approach introduced in this
paper we assume that:

(1.a) The ghosts fields and ghosts particles with masses at a scale less then an fixed scale
meff really exist in the universe and formed dark matter sector of the universe, in particular:

(1.b) these ghosts fields gives additive contribution to a full zero-point fluctuation, i.e. also
to effective cosmological constant λeff .

(1.c) Pauli-Villars renormalization of zero-point fluctuations (see [9], sec. 1.2) is no longer
considered as an intermediate mathematical construct but obviously has rigorous physical
meaning supported by assumption (4.a-4.b).

(2) The physical dark matter formed by ghosts particles.
(3) The standard model fields do not couple directly to the ghost sector in the ultraviolet

region of energy at a scale less then an fixed large energy scale Λ∗, in particular.
(3.a) The ”bad” ghosts fields with masses at a scale less then an fixed scale meff , where

meff c
2 � Λ∗, cannot appear in any effective physical lagrangian which contain also the standard

particles fields.
(4) The ”bad” ghosts fields with masses at a scale m∗,where m∗c

2 � Λ∗ can appear in any
effective physycal lagrangian which contain also the standard particles fields, in particular.

(4.a) Pauli-Villars finite renormalization with masses of ghosts fields at a scale m∗ of the S-
matrix in QFT (see [8], sec.3) is no longer considered as an intermediate mathematical construct
but obviously has rigorous physical meaning supported by assumption (4.4).

Remark 7.3. We emphazize that in Universe standard matter coupled with a physical ghost
matter has the equation of state [8]:

εvac (µeff ) = −p (µeff ) = 1
8

µeff∫
0
f (µ)µ4 (lnµ) dµ = c4λvac

8πG , (7.1)

where

|f (µ)| =
{
O (µ−n) , n > 1 µ ≤ µeff

0 µ > µeff
(7.2)

µeff = meff c and therefore gives rise to a de Sitter phase of the universe even if bare cosmological
constant λ = 0.

(5) In order to obtain QFT description of the dark component of matter in natural way we
expand the standard model of particle physics on a sector of ghost particles, see ref. [10], sec.
2.3.2. QFT in a ghost sector developed in [10], sec.3.1-3.4 and sec.4.1-4.8.

7.4. Different contributions to λeff .
The total effective cosmological constant λeff is on at least the order of magnitude of the

vacuum energy density generated by zero-point fluctuations of standard particle fields.
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Assumption 2 is well justified in the case of the traditional approach, because the contribution
from zero-point fluctuations is on the order of 1 in Planck units and no other known contributions
are as large thus, assuming no significant cancellation of terms (e.g. fine tuning of the bare
cosmological constant λ), the total λeff should be at least on the order of the largest contribution
[5], [8]

In contrary with standard Assumption 1 in the case of the new approach introduced in this
paper we assume that:

(1) For simplisity though not necessary bare cosmological constant λ = 0.
(2) The total effective cosmological constant λeff depends only on mass distribution f (µ)

and constant µeff = meff c but cannot depend on large energy scale ∼ Λ∗
Remark 7.4. Note that in this subsection we pointed out that if bare cosmological constant

λ = 0 the total cosmological constant λvac is on at least the order |µeff |−n+5 of magnitude of the
renormalized vacuum energy density generated by zero-point fluctuations of standard particle
fields and ghost particle fields:

εvac (µeff ) = 1
8

µeff∫
0
f (µ)µ4 (lnµ) dµ+O

(
Λ−2
∗
)
,

pvac (µeff ) = −1
8

µeff∫
0
f (µ)µ4 (lnµ) dµ+O

(
Λ−2
∗
)
.

(7.3)

7.5. Effective field theory and Lorentz invariance violation
To prevent the vacuum energy density from diverging, the traditional approach also assumes

that performing a high-energy cutoff is acceptable. This type of regularization is a common step
in renormalization procedures, which aim to eventually arrive at a physical, cutoff-independent
result. However, in the case of the vacuum energy density, the result is inherently cutoff
dependent, scaling quartically with the cutoff Λ∗.

Remark 7.5. By restricting to modes with particle energy a certain cutoff energy ωk ≤ Λ∗
a finite, regularized result for the energy density can be obtained. The result is proportional
to Λ4

∗. Any other fields will contribute similarly, so that if there are nb bosonic fields and nf
fermionic fields, the density scales with (nb − 4nf ) Λ4

∗. Typically, the cutoff is taken to be near
= 1 in Planck units (i.e. the Planck energy), so the vacuum energy gives a contribution to the
cosmological constant on the order of at least unity according to Eq. (1.1).

Thus we see the extreme ne-tuning problem: the original cosmological constant λ must cancel
this large vacuum energy density εvac ' 1 to a precision of 1 in 10120 -but not completely- to
result in the observed value λeff = 10−120 [5].

Remark 7.6. As it pointed out in this paper that a high-energy theory, i.e. QFT in
fractal space-time with Hausdorff-Colombeau negative dimension would not display the zero-
point fluctuations that are characteristic of QFT, and hence that the divergence caused by
oscillations above the corresponding cutoff frequency is unphysical. In this case, the cutoff Λ∗
is no longer an intermediate mathematical construct, but instead a physical scale at which the
smooth, continuous behavior of QFT breaks down.

Poincaré group of the momentum space is deformed at some fundamental high-energy cutoff
Λ∗. The canonical quadratic invariant ‖p‖2 = ηabpapb collapses at high-energy cutoff Λ∗ and
being replaced by the non-quadratic invariant:

‖p‖2 = ηabpapb(1 + lΛ∗p0). (7.4)

Remark 7.7. In contrary with canonical approuch the total effective cosmological constant
λeff depends only on mass distribution f (µ) and constant µeff = meff c but cannot depend on
large energy scale ∼ Λ∗.
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7.6. Semiclassical Moller-Rosenfeld gravity
Remind that canonical Assumption 5 means that it is valid to replace the right-hand side

of the Einstein equation Tµν with its expectation 〈Tµν〉. It requires that either gravity is not
in fact quantum, and the Moller-Rosenfeld approach is a complete description of reality, or at
least a valid approximation in the weak field limit. The usual argument states that the vacuum
state |0〉 should be locally Lorentz invariant so that observers agree on the vacuum state. This

means that the expectation value of the energy-momentum tensor on the vacuum, 〈0| T̂µν |0〉,
must be a scalar multiple of the metric tensor gµν which is the only Lorentz invariant rank (0, 2)
tensor. By using Moller-Rosenfeld approach the Einstein field equations of general relativity,
a term representing the curvature of spacetime Rµν is related to a term describing the energy-

momentum of matter 〈0| T̂µν |0〉, as well as the cosmological constant λ and metric tensor gµν
reads:

Rµν − 1
2R

υ
υgµν + λgµν = 8π 〈0| T̂µν |0〉 . (7.5)

The T̂00 component is an energy density, we label 〈0| T̂µν |0〉 = εvac,so that the vacuum
contribution to the right-hand side of Eq. (7.5) can be written as

8π 〈0| T̂µν |0〉 = 8πεvacgµν . (7.6)

Subtracting this from the right-hand side of Eq. (7.5) and grouping it with the cosmological
constant term replaces with an ”effective” cosmological constant [5]:

λeff = λ+ 8πεvac. (7.7)

Note that in flat spacetime, where gµν = diag(−1,+1,+1,+1), Eq. (7.6) implies εvac = −pvac,

where pvac = 〈0| T̂ii |0〉 for any i = 1, 2, 3 is the pressure. Obviously this implies that if the energy
density is positive as is usually assumed, then the pressure must be negative, a conclusion which
extends to any metric gµν with a (−1,+1,+1,+1) signature.

Remark 7.8. In this paper we assume that the vacuum state |0〉 should be locally invariant
under modified Lorentz boost (2.13) but not locally Lorentz invariant. Obviously this assumption
violate Eq. (7.6). However modified Lorentz boosts (2.13) becomes Lorentz boosts for a
sufficiently small energies and therefore in IR region one obtains in a good aproximation

8π 〈0| T̂µν |0〉 ≈ 8πεvacgµν (7.8)

and

λeff ≈ λ+ 8πεvac. (7.9)

Thus Moller-Rosenfeld approach holds in a good approximation.

7.7. Quantum gravity at energy scale Λ ≤ Λ∗. Controlable violation of the
unitarity condition

Gravitational actions which include terms quadratic in the curvature tensor are
renormalizable. The necessary Slavnov identities are derived from Becchi-Rouet-Stora (BRS)
transformations of the gravitational and Faddeev-Popov ghost fields. In general, non-gauge-
invariant divergences do arise, but they may be absorbed by nonlinear renormalizations of the
gravitational and ghost fields and of the BRS transformations [8], [9]. The generic expression of
the action reads

Isym = −d4x
√
−g

(
αRµνR

µν − βR2 + 2κ−2R
)
, (7.10)
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where the curvature tensor and the Ricci is defined by Rλµαν = ∂νΓλµα and Rµν = Rλµλν
correspondingly, κ2 = 32πG. The convenient definition of the gravitational field variable in
terms of the contravariant metric density reads

κhµν = gµν
√
−g − ηµν . (7.11)

Analysis of the linearized radiation shows that there are eight dynamical degrees of freedom in
the field. Two of these excitations correspond to the familiar massless spin-2 graviton. Five more
correspond to a massive spin-2 particle with mass m2. The eighth corresponds to a massive scalar
particle with mass m0. Although the linearized field energy of the massless spin-2 and massive
scalar excitations is positive definite, the linearized energy of the massive spin-2 excitations is
negative definite. This feature is characteristic of higher-derivative models, and poses the major
obstacle to their physical interpretation.

In the quantum theory, there is an alternative problem which may be substituted for the
negative energy. It is possible to recast the theory so that the massive spin-2 eigenstates of the
free-fieid Hamiltonian have positive-definite energy, but also negative norm in the state vector
space. These negative-norm states cannot be excluded from the physical sector of the vector
space without destroying the unitarity of the S matrix. The requirement that the graviton
propagator behave like p−4 for large momenta makes it necessary to choose the indefinite-
metric vector space over the negative-energy states. The presence of massive quantum states
of negative norm which cancel some of the divergences due to the massless states is analogous
to the Pauli-Villars regularization of other field theories. For quantum gravity, however, the
resulting improvement in the ultraviolet behavior of the theory is sufficient only to make it
renormalizable, but not finite.

Remark 7.9. (I)The renormalizable models which we have considered in the papers [8],
[9] many years mistakenly regarded only as constructs for a study of the ultraviolet problem of
quantum gravity. The difficulties with unitarity appear to preclude their direct acceptability as
canonical physical theories in locally Minkowski space-time. In canonical case they do have only
some promise as phenomenological models.

(II) However, for their unphysical behavior may be restricted to arbitrarily large energy
scales Λ∗ mentioned above by an appropriate limitation on the renormalized masses m2 and
m0. Actually, it is only the massive spin-two excitations of the field which give the trouble with
unitarity and thus require a very large mass. The limit on the mass m0 is determined only by
the observational constraints on the static field.

Conclusion
We argue that a solution to the cosmological constant problem is to assume that there exists

hidden physical mechanism which cancel divergences of the zero-point energy density in canonical
QED4, QCD4, Higher-Derivative-Quantum-Gravity, etc. In fact we argue that corresponding
supermassive Pauli-Villars ghost fields, etc. really exists [8], [9]. New theory of elementary
particles which contains hidden ghost sector is proposed [9]. In accordance with Zel’dovich
hypothesis [1] we suggest that physics of elementary particles is separated into low/high energy
ones the standard notion of smooth spacetime is assumed to be altered at a high energy cutoff
scale Λ∗ and a new treatment based on QFT in a fractal spacetime with negative dimension is
used above that scale. This would fit in the observed value of the dark energy needed to explain
the accelerated expansion of the universe if we choose highly symmetric masses distribution
below that scale Λ∗, i.e., fs.m (µ) ≈ −fg.m (µ) , µ ≤ µeff , µeff c

2 < Λ∗.
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[2] Gliner É B 2002 Inflationary universe and the vacuumlike state of physical medium Physics–Uspekhi 45 2,
213–220.
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