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ABSTRACT 

In this article, a possible generalization of the Löb’s theorem is considered. Main result is: let κ be an inaccessible car-

dinal, then    Con .ZFC V H  

 ,x n
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1. Introduction 

Let Th be some fixed, but unspecified, consistent formal 
theory. 

Theorem 1 [1]. (Löb’s Theorem). 
If Th nProvTh x  

n


 where x is the Gödel 
number of the proof of the formula with Gödel number n, 
and  is the numeral of the Gödel number of the for- 
mula n , then nTh  . Taking into account the second 
Gödel theorem it is easy to be able to prove  

n Prov ,Thx x n    , for disprovable (refutable) and 
undecidable formulas n . Thus summarized, Löb’s 
theorem says that for refutable or undecidable formula 
 , the intuition “if exists proof of  then  ” is fails. 

Definition 1. Let ThM  be an  -model of the Th. 
We said that, Th# is a nice theory over Th or a nice ex-
tension of the Th iff: 

1) Th# contains Th; 
2) Let  be any closed formula, then 

  Pr
c

ThTh   
& ThM   

#Th 

 Ded Th

   Ded Th

 

implies . 
Definition 2. We said that, Th# is a maximally nice 

theory over Th or a maximally nice extension of the Th 
iff Th# is consistent and for any consistent nice extension  

Th  #Ded Th of the Th:  implies 

#Ded Th . 

Theorem 2. (Generalized Löb’s Theorem). Assume 
that 1) Con(Th) and 2) Th has an  -model Th

 . Then 

theory Th can be extended to a maximally consis- tent 
nice theory Th#. 

2. Preliminaries 

Let Th be some fixed, but unspecified, consistent formal 
theory. For later convenience, we assume that the encod- 
ing is done in some fixed formal theory S and that Th 
contains S. We do not specify S—it is usually taken to be 
a formal system of arithmetic, although a weak set theory 
is often more convenient. The sense in which S is con- 
tained in Th is better exemplified than explained: If S is a 
formal system of arithmetic and Th is, say, ZFC, then Th 
contains S in the sense that there is a well-known embed-
ding, or interpretation, of S in Th. Since encoding is to 
take place in S, it will have to have a large supply of con-
stants and closed terms to be used as codes. (e.g. in for-
mal arithmetic, one has 0, 1, S)  will also have cer-
tain function symbols to be described shortly. To each 
formula,  , of the language of Th is assigned a closed 
term,   c x , called the code of . [N. B. If  

  c

 is a  

formula with a free variable x, then x  


 is a closed  

xterm encoding the formula   with x viewed as a 
syntactic object and not as a parameter.] Corresponding 
to the logical connectives and quantifiers are function 
symbols,    neg ,imp  , etc., such that, for all formulae 

  
 

M
      

, : neg

, imp ,

c

c c c c

S

S

  

    




 etc. 
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 model ofTh ZFC ZFC   Of particular importance is the substitution operator, 
represented by the function symbol . For formu- 
lae 

 sub , 
 x  ct, terms t with codes : 

   sub ,S x    c cc
t t   

3 4sub , ,subn

.    (2.1) 

Iteration of the substitution operator sub allows one to 
define function symbols  such that sub ,

   
 

1 2 1

1 2

sub , , , , ,

, , ,

c

n n

c

n

S x x x

t t t

  

  



 

    2 , ,
cc c

nt t t 

 Prov ,

 (2.2) 

It well known [2,3] that one can also encode deriva- 
tions and have a binary relation Th x y  (read “x 
proves y” or “x is a proof of y”) such that for closed 

, : Prt t S t

  Prov ,
c

Th t 



, t

2t
1 2 1 2Th  iff 1t  is the code of a derivation 

in Th of the formula with code . It follows that 
ov

Th S       (2.3) 

for some closed term t. Thus one can define predicate 
PrTh y

 Prov ,Th x y

  Pr
c

Th  

2 3D

  
  

  

,

,

c

c
c

Th

c c

      

 

2 3D

: 

 PrTh y x ,        (2.4) 

and therefore one obtain a predicate asserting provability. 
Remark 2.1. We note that is not always the case that 

[2,3]: 

Th i S  .        (2.5) 

It well known [3] that the above encoding can be car- 
ried out in such a way that the following important con- 
ditions  and  are met for all sentences [2,3]: 1,D D

  
  

  

1. implies Pr

2. Pr Pr Pr

3. Pr Pr

Pr .

Th

c

Th Th

Th Th

c

Th

D Th S

D S

D S

 

 

  

 

 




  (2.6) 

Conditions  and  are called the Deriv- 
ability Conditions. 

1,D D

Assumption 2.1. We assume now that: 
1) the language of Th consists of: 

numerals 0, 1,


  
countable set of the numerical variables: 0 1, ,  

 , , , ,X Y Z 
0 1, ,n nf f 

0 1, ,n nR R 
, 



 
countable set F of the set variables:  

 , , ,F x y z
countable set of the n-ary function symbols:  
countable set of the n-ary relation symbols:  
connectives:  
quantifier: . 

2) Th contains 

 

ThM3) Th has an  -model  . 
 Theorem 2.1. (Löb’s Theorem). Let be 1) Con Th  

and 2)   be closed. Then 

  Pr iff
c

ThTh Th    .      (2.7) 

It well known that replacing the induction scheme in 
Peano arithmetic PA by the  -rule with the meaning “if 
the formula  A n  is provable for all n, then the formula 
 A x  is provable”: 

     
 

0 , 1 , , ,
,

A A A n

xA x
 

PA

#

Th PA
PA

       (2.8) 

leads to complete and sound system   where each 
true arithmetical statement is provable. S. Feferman 
showed that an equivalent formal system Th  can be 
obtained by erecting on  a transfinite progres- 
sion of formal systems   according to the following 
scheme 

     
0

1 Pr ,
c

PA

PA PA

PA PA x A x xA x

PA PA

 

 
 







     






 (2.9) 

 A x  is a formula with one free variable and    where 
is a limit ordinal. Then  being Kleene’s  ,

O
Th PA O


#Th PAsystem of ordinal notations, is equivalent to 

# #PA #Th

wff

. 
It is easy to see that Th , i.e.  is a maxi- 
mally nice extension of the PA.  

3. Generalized Löb’s Theorem 

Definition 3.1. An Th   (well-formed formula 
 ) is closed i.e.,   is a Th-sentence iff it has no free 
variables; a wff Ψ is open if it has free variables. We’ll 
use the slang “k-place open wff” to mean a wff with k 
distinct free variables. Given a model ThM  of the Th 
and a Th-sentence  , we assume known the meaning 

M  e. —i.   is true in Thof M , (see for example 
[4-6]). 

ThM  be an Definition 3.2. Let  -model of the Th. 
We said that,  is a nice theory over Th or a nice 
extension of the Th iff: 

#Th

#Th1)  contains Th; 
  be any closed formula, then 2) Let 

  P &r Tc

Th
hTh M

      
  

#Th

 

implies 
#Th

#Th

.  
Definition 3.3. We said that  is a maximally nice 

theory over Th or a maximally nice extension of the Th 
iff  is consistent and for any consistent nice exten- 
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sion  of the Th:  implies  Th  #Ded Th

   # DedTh Th

 

 Ded Th

 Th

Ded . 

Lemma 3.1. Assume that: 1) Con ; and 2)  

Pr

  
  2

g

neg

c

c

   
 

c

Th 

  Pr
c

Th 

 ConTh 

 

  
  

1 2 1

1 2 1

Prov , P

Prov ,

Th

Th

t t t

t t t



  

  

,t t

   n ConThTh 

Th , where   is a closed formula. Then  

Th  .  

Proof. Let  be the formula 




2

Con

rov , ne

Prov ,

Th

c

Th

c

Th

t

t

 

 

  

(3.1) 
where 1 2  is a closed term. We note that under ca-
nonical observation, one obtain 

CoTh   for any closed wff  . 

Suppose that , then assumption (ii) 
gives 

Pr
c

ThTh 

  PrThTh  

  1 2 1Prov , ProTht t t  

  Pr
c

ThTh 

  c

Th  

  Pr
c

Th 



 

  Pr
c c

Th 

  neg
c  

 Con Th

Pr

.     (3.2) 

From (3.1) and (3.2) one obtain 

 2v ,
c

Th t  . (3.3) 

But the Formula (3.3) contradicts the Formula (3.1).  

Therefore: . 

Lemma 3.2. Assume that: 1) ; and 2)  

Th 

Th 

, where  is a closed formula. Then 

. 

Theorem 3.1. [7,8]. (Generalized Löb’s Theorem). 
Assume that: Con Th

  

. Then theory Th can be extended 
to a maximally consistent nice theory  over Th.  #Th

Proof. Let 1 i  be an enumeration of all wff’s 
of the theory Th (this can be achieved if the set of pro- 
positional variables can be enumerated). Define a chain 

  1i  of consistent theories induc- 
tively as follows: assume that theory  is defined. 

,Th Th
Th

   and
c

i

Th
iM



   

1iTh

Th i 
i

1) Suppose that a statement (3.4) is satisfied 

 

Pr

&

Th

i i

Th

Th 


.        (3.4) 

Then we define theory   as follows  

 i i iTh  

  
 

Pr and

&

c

Th i

Th
i i i

Th

Th M



  

1Th  . 

2) Suppose that a statement (3.5) is satisfied 

 



 

1iTh 

 1i i iTh Th  

 

.      (3.5) 

Then we define theory  as follows:  

. 

3) Suppose that a statement (3.6) is satisfied 

 Pr
c

Th iTh  i iTh 

1iTh 

 1i i iTh Th  

 

 and .     (3.6) 

Then we define theory  as follows:  

. 

4) Suppose that a statement (3.7) is satisfied 

 Pr
c

Th iTh  i

1iTh 

1i iTh Th 
#Th

#
i

i

Th Th


 
Th

1i

 and Th .     (3.7) 

Then we define theory  as follows: 

. 

We define now theory  as follows: 

.             (3.8) 

First, notice that each i  is consistent. This is done 
by induction on i and by Lemmas 3.1-3.2. By assumption, 
the case is true when  . Now, suppose  is con- 
sistent. Then its deductive closure i  is also 
consistent. If a statement (3.6) is satisfied i.e.,  

iTh
 Ded Th

  Pr
c

Th iTh  i and Th , then clearly  

 1i i iTh Th   is consistent since it is a subset of   
 Ded iTh

 
. If a statement (3.7) is satisfied, i.e.,  closure 

 Pr
c

Th iTh  i iTh and , then clearly  

 1i i iTh Th    is consistent since it is a subset of  

 Ded iTh

 

. closure 
Otherwise: 
1) if a statement (3.4) is satisfied, i.e.  

 ThPr
i

c

i iTh  i i and Th , then clearly 

 1i i iTh Th   is consistent by Lemma 3.1 and by   
 Aone of the standard properties of consistency:   

is consistent iff A  ; 
2) if a statement (3.5) is satisfied, i.e.  

  Pr
c

Th iTh  i i and Th , then clearly  

 1i i iTh Th    is consistent by Lemma 3.2 and by 
one of the standard properties of consistency:  A   
is consistent iff A  . 

 #Ded Th


 is a maximally consistent  Next, notice 

 De . A setd Th #Ded Th  is  nice extension of the set

consistent because, by the standard Lemma 3.3 below, it 
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is the union of a chain of consistent sets. To see that 
 #Ded Th  is maximal, pick any wff  . Then   is 

some  in the enumerated list of all wff’s. Therefore  i




 for any  such that Pr c

Th 

Pr #.Th

 Ded ,Th

Th

   ,c

Th 

or 

Th  either  or   #Th
#Since  we have   1Ded iTh 

 #Ded Th  or  #Ded Th


 , which implies that  

#Ded Th


 is maximally consistent nice extension of the  

Ded Th . 
Lemma 3.3. The union of a chain  i

 
of 

the consistent sets , ordered by , is consistent.  
i 

i

Definition 3.4. (a) Assume that a theory Th has an 


 -model ThM  and   is a Th-sentence. Let   be 
a Th-sentence  with all quantifiers relativized to 
 -model ThM  [9]; 

(b) Assume that a theory Th has a standard model 
 ThSM


ThSM

And Φ is a Th-sentence. Let SM  be a Th-sentence Φ 
with all quantifiers relativized to the model  [9]. 

Definition 3.5. (a) Assume that Th has an  -model  
ThM . Let Th  be a theory Th relativized to a model  
ThM —i.e., any Th -sentence has a form 


ThSM

Th ThSM
Th

 for some 
Th-sentence  [9]; 

(b) Assume that Th has an standard model . Let 

SM  be a theory Th relativized to a model —i.e., 
any SM -sentence has a form  for some Th-sen- 
tence Φ [9]. 

SM

Definition 3.6. (a) For a given  -model ThM  of the 
Th and for any Th -sentence  , we define  

ThM 

,Th

 

  such that the equivalence: 

   
i f

r

f

P

Th

c

Th

M

Th

hT

 





 

 †

ThTh M

 

 †

       (3.9a) 

where Th  
ThSM

Th
SMSM 

,

†  is satisfied; 
(b) For a given standard model  of the Th and 

for any -sentence , we define  SMTh SM
 such that the equivalence: 

   r

iff

P
SM

Th
SM

c

SM Th S

SM

M SMTh



†

ThTh SM 



ThSM

Th

 

 

 



†

     (3.9b) 

where  is satisfied.  Th †

Theorem 3.2. (Strong Reflection Principle). Assume 
that: 1) Con Th , 2) Th has an  -model ThM  and 3) 

| ThThM  

Th

. Then 

  Pr
c

ThTh
     

  Pr
c

ThTh
 

 Th

.    (3.10) 

Proof. The one direction is obvious. For the other, as-
sume that 

,          (3.11) 

  and Th  

 
. Then 

Pr
c

ThTh
 



.         (3.12) 

Note that 1) + 2) implies ωCon Th

ω
ConTh

 

. 
Let  be the formula 

 
      

  
      

1 2 3 3

1 2

1 2 3 3

1 2

Con

Prov , Prov , neg

Prov , Prov ,neg .

c

Th

c c

Th Th

c

c c

Th Th

t t t t

t t

t t t t

t t



 

 



 



 

    

      

     

     



1 2 3, ,t t t

 (3.13) 



where  is a closed term. Note that in any  -  
ThM  by the canonical observation one obtain the  model 

equivalence: Con ConTh Th But the Formulae 
(3.11)-(3.12) contradicts the Formula (3.13). Therefore  



Th     and Pr
c

Th  

Th Th

.Th  

Then theory       is consistent and from 
the above observation one obtain that:  

 Con ConThTh
  

 

, where 

 
      

1 2 3 3

1 2

Con

Prov , Prov ,neg .

c

Th

c c

Th Th

t t t t

t t



 



 



 

     

    
(3.14) 

  

 
On the other hand one obtain  

    Pr , Pr
c c

Th ThTTh h
         .  (3.15) 

But the Formula (3.15), contradicts the Formula (3.14). 
This contradiction completed the proof. 

Definition 3.7. (a) Assume that: (i) Th has an  - 
model Th Th ThM  . Then we said that M  and (ii) 

ThM  -model of the Th and denote such    is a strong 

 -model of the Th as . ,
ThM 

ThSM
ThSM Th ThSM

ThSM

(b) Assume that: (i) Th has an standard model  
and (ii) SM . Then we said that  is a 
strong standard model of the Th and denote such standard 
model of the Th as 

Definition 3.8. (a) Assume that Th has a strong 
. 

,
ThM -model 

ThSM

. Then we said that Th is a strongly 
consistent. 

(b) Assume that Th has a strong standard model   
Then we said that Th is a strongly SM-consistent 
Definition 3.9. (a) Assume that Th has a strong  - 

model ,
ThM   is a Th-sentence. Let ,   and    be a 

Th-sentence   with all quantifiers relativized to a 
strong ,

ThM -model  . 
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Z(b) Assume that Th has a strong standard model 

  and Φ is a Th-sentence. Let ,SM   be a Th- 
sentence Φ with all quantifiers relativized to 

ThSM 
ThSM 

Definition 3.10. Assume that Th has a strong 
. 
 - 

model , . Let ,   be a theory Th relativised to 

,  i.e., any  -sentence has the form 

ThM 



Th
M ,Th  ,

Th
  



 n ; ThTh M

 for 
some Th-sentence .  

Let Th be a theory such that Assumption 1.1 is satis- 
fied. Let  be a sentence in Th asserting 
that Th has a strong 

, Co
 -model . Let Th* be a the- ,

ThM 

 ,
ThMory: Con ;ThTh Th

  


. 

Let ,; ThTh M


Con  be a sentence in Th* asserting  

that Th* has a strong  -model ,  . We assume 
throughout that Th is a strongly consistent, i.e. a sentence  

ThM


 ,n ; ThTh M 
ThCo  is true in any ω-model M  of the Th.  

Note that: 

 ,Con ;

Con Pr

Th

Th Th

Th M

 

  





 
,

, , ,

ConTh

c







    



  

,   ,Th 

 
,

,

Con
Th

c








 


  



 


,


  ,Th




,     (3.16) 

where a sentence  is refutable in  and 

 
, ,

,Con ;

Con Pr

Th

Th Th

Th M

 





 


 





,     (3.17) 

where a sentence  is refutable in .  

Lemma 3.4. Th* is a strongly consistent.  
Proof. Assume that Th* is no strongly consistent, that  

is, has no any strong  -model . This means that  ,
ThM





there is no any  -model ThM  of the Th in which  

 ,; ThM 

ω,
ConTh 

Con Th  is true and therefore from Formula (3.16)  

one obtain, that a formula 


 is true in any  

 -model ThM  of the Th. So from Formula (3.16) by 
using a Strong Reflection Principle (Theorem 3.2) one  

obtain that a sentence  ,; ThTh M Con  is provable in  

Th , i.e. . But a sentence   ,; ThTh M  

 ,; ThTh M 

ConTh 

Con  contrary to the assumption that Th is a 

strongly consistent. This contradiction completed the 
proof.  

Theorem 3.3. Th has no any strong  -model ,
ThM  . 

Proof. By Lemma 3.4 and Formula (3.17) one obtain that  

,
Con

Th






 

,



,

Con
Th



,Th
 . But Godel’s Second Incompleteness  

Theorem applied to Th  asserts that 


,Th




 is  

unprovable in . This contradiction completed the 
proof. 

Theorem 3.4. ZFC has no any strong ω-model ,
FCM 

Proof. Immediately follows from Theorem 3.3 and 
definitions. 

. 

Theorem 3.5. ZFC has no any strong standard model. 
ZFCSM 

Proof. Immediately follows from Theorem 3.4 and 
definitions. 

. 

 ConZTheorem 3.6. FC ZFC  is incompatible 
with all the usual large cardinal axioms [10,11] which 
imply the existence of a strong standard model of ZFC.  

Proof. Theorem 3.6 immediately follows from Theo- 
rem 3.5. 

Theorem 3.7. Let κ be an inaccessible cardinal. Then 
 Con ZFC   . 

Proof. Let H  be a set of all sets having hereditary 
size less then κ. It easy to see that H  forms a strong 
standard model of ZFC. Therefore Theorem 3.7 immedi- 
ately follows from Theorem 3.6. 

4. Conclusion 

In this paper we proved so-called strong reflection prin-
ciples corresponding to formal theories Th which has 
ω-models ThM  and in particular to formal theories Th, 
which has a standard models . The assumption that 
there exists a standard model of Th is stronger than the 
assumption that there exists a model of Th. This paper 
examined some specified classes of the standard models 
of ZFC so-called strong standard models of ZFC. Such 
models correspond to large cardinals axioms. In particu- 
lar we proved that theory 

ThSM

 ConZFC ZFC

Con ZFC  
0

 is incom- 
patible with existence of any inaccessible cardinal κ. 
Note that the statement: (  some inaccessi- 
ble cardinal κ) is 1 . Thus Theorem 3.6 asserts there 
exist numerical counterexample which would imply that 
a specific polynomial equation has at least one integer 
root. 
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