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Abstract

The incompleteness of set theory ZFC leads one to look for natural nonconservative extensions
of ZFC in which one can prove statements independent of ZFC which appear to be “true”.
One approach has been to add large cardinal axioms.Or, one can investigate second-order
expansions like Kelley-Morse class theory, KM or Tarski-Grothendieck set theory TG or It is
a nonconservative extension of ZFC and is obtained from other axiomatic set theories by the
inclusion of Tarski’s axiom which implies the existence of inaccessible cardinals. See also related
set theory with a filter quantifier ZF (aa) . In this paper we look at a set theory NC#

∞# , based
on bivalent gyper infinitary logic with restricted Modus Ponens Rule In this paper we deal
with set theory NC#

∞# based on bivalent gyper infinitary logic with Restricted Modus Ponens
Rule. Nonconservative extensions of the canonical internal set theories IST and HST are proposed.
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1 Introduction

The incompleteness of set theory ZFC leads one to look for nonconservative natural extensions of
ZFC in which one can prove statements independent of ZFC which appear to be “true”. One
approach has been to add large cardinal axioms. Or, one can investigate second-order expansions
like Kelley-Morse class theory, KM [1] or Tarski-Grothendieck set theory TG [2]. It is a non-
conservative extension of ZFC and is obtained from other axiomatic set theories by the inclusion
of Tarski’s axiom which implies the existence of inaccessible cardinals. See also set theory with a
filter quantifier ZF(aa) [3],related to set theory with satisfaction predicate.However nonconservative
extensions of ZFC mentioned above related only to pure set theoretical statements. In this paper
we look for nonconservative extensions of ZFC in which one can prove statements related to number
theory and analysis. In this paper we deal with set theory NC#

∞# based on hyper infinitary logic
2L#

∞# with restricted modus ponens rule [4]-[7].Non trivial applications of the set theory NC#

∞#

to transcendental number theory and functional analysis has been recently obtained in my papers
[7]-[10].However all results obtained in [7]-[10] based on a small part of the set theory NC#

∞# and in
fact are obtained using an nonconservative extension of the canonical internal set theory IST [11]-
[13]. The main goal of this paper is to present an nonconservative extension IST# of the canonical
internal set theory IST.Nonconservative extension of the model theoretical nonstandard analysis
also is considered.

2 Set Theory NC#
∞#

Set theory NC#

∞# is formulated as a system of axioms based on bivalent hyper infinitary logic 2L#

∞#

with restricted modus ponens rule [8],see Appendix A. The language of set theory NC#

∞# is a first-

order hyper infinitary language L#

∞# with equality =, which includes a binary symbol ∈. We write

x ̸= y for ¬ (x = y) and x /∈ y for ¬(x ∈ y). Individual variables x, y, z, ... of L#

∞# will be understood
as ranging over classical sets. The unique existential quantifier ∃! is introduced by writing, for any
formula φ(x),∃!xφ(x) as an abbreviation of the formula ∃x[φ(x) & ∀y(φ(y) =⇒ x = y)].L#

∞#

will also allow the formation of terms of the form x|φ(x)}, for any formula φ containing the
free variable x. Such terms are called non-classical sets; we shall use upper case letters A,B, ...
for such sets. For each non-classical set A = {x|φ(x)} the formulas ∀x [x ∈ A ⇐⇒ φ (x)] and
∀x [x ∈ A ⇐⇒ φ (x,A)] is called the defining axioms for the non-classical set A.

Remark 2.1. Remind that in logic 2L#

∞# with restricted modus ponens rule the statement
α ∧ (α =⇒ β) does not always guarantee that

α, α =⇒ β ⊢RMP β (2.1)

since for some α and β possible

α, α =⇒ β 0RMP β (2.2)

even if the statement α ∧ (α =⇒ β) holds [8],see Appendix A.

Abbreviation 2.1 We write for the sake of brevity instead (1.1) by

α =⇒ sβ (2.3)
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and we often write instead (1.2) by

α =⇒ wβ (2.4)

Remark 2.2. Let A be an nonclassical set.Note that in set theory NC#

∞#the following true formula

∃A∀x [x ∈ A ⇐⇒ φ (x,A)] (2.5)

does not always guarantee that

x ∈ A, x ∈ A =⇒ φ (x,A) ⊢RMP φ (x,A) (2.6)

even if x ∈ A holds and (or)

φ (x,A) , φ (x,A) =⇒ x ∈ A ⊢RMP x ∈ A; (2.7)

even φ (x,A) holds, since for nonclassical set A for some y possible

y ∈ A, y ∈ A =⇒ φ (y,A) 0RMP φ (y,A) (2.8)

and (or)

φ (y,A) , φ (y,A) =⇒ y ∈ A 0RMP y ∈ A. (2.9)

Remark 2.3. Note that in this paper the formulas

∃a∀x [x ∈ a ⇐⇒ φ (x) ∧ x ∈ u] (2.10)

and more general formulas

∃a∀x [x ∈ a ⇐⇒ φ (x, a) ∧ x ∈ u] (2.11)

is considered as the defining axioms for the classical set a.
Remark 2.4. Let a be a classical set. Note that in NC#

∞# : (i) the following true formula

∃a∀x [x ∈ a ⇐⇒ φ (x, a) ∧ x ∈ u] (2.12)

always guarantee that

x ∈ a, x ∈ a =⇒ φ (x, a) ⊢RMP φ (x) (2.13)

if x ∈ a holds and

φ (x) , φ (x) =⇒ x ∈ a ⊢RMP x ∈ a; (2.14)

if φ (x) holds;
In order to emphasize this fact mentioned above in Remark 2.1-2.3, we rewrite the defining axioms
in general case for the nonclassical sets in the following form

∃A∀x {[x ∈ A ⇐⇒ sφ (x,A)] ∨ [x ∈ A ⇐⇒ wφ (x,A)]} (2.15)

and similarly we rewrite the defining axioms in general case for the classical sets in the following
form

∃a∀x [x ∈ a ⇐⇒ sφ (x) ∧ (x ∈ u)] (2.16)

Abbreviation 2.2. We write instead (2.15):

∀x {[x ∈ A ⇐⇒ s,wφ (x,A)]} (2.17)
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Definition 2.1. (1) Let A be a nonclassical set defined by formula (2.17).

Assum that: (i) for some y statement φ (y) and statement φ (y) =⇒ y ∈ A holds and
(ii) φ (y) , φ (y) =⇒ y ∈ A 0RMP y ∈ A, y ∈ A, y ∈ A =⇒ φ (y) 0RMP φ (y) .

Then we say that y is a weak member of non-classical set A and abbreviate y ∈w A.

Abbreviation 2.3. LetA be a nonclassical set defined by formula (2.17) We abbreviate x ∈s,w A
if the following statement x ∈s A ∨ x ∈w A holds, i.e.

x ∈s,w A↔def (x ∈s A ∨ x ∈w A) (2.18)

Definition 2.2.(1) Two nonclassical sets A,B are defined to be equal and we write A = B if
∀x [x ∈s,w A ⇐⇒ sx ∈s,w B] . (2) A is a subset of B, and we often write A ⊂s,v B,if
∀x [x ∈s,w A =⇒ sx ∈s,w B] .(3) We also writeCL.Set(a) for the formula ∃u∀x [x ∈ a ⇐⇒ x ∈ u ∧ φ (x)].
(4) We also write NCL.Set(A) for the formulas

∀x [x ∈s,v A ⇐⇒ s,vφ (x)] and ∀x [x ∈s,v A ⇐⇒ s,vφ (x,A)] .

Remark 2.5.CL.Set(A) asserts that the set A is a classical set. For any classical set u, it follows
from the defining axiom for the classical set {x|x ∈s u ∧ φ (x)} that
CL.Set({x|x ∈s u ∧ φ (x)}).

We shall identify {x|x ∈s u} with u, so that sets may be considered as (special sorts of) nonclassical
sets and we may introduce assertions such as u ⊂s A, u js A, etc.

Abbreviation 2.4. Let φ(t) be a formula of NC#

∞# .

(i) ∀xφ(x) and ∀CLxφ(x) abbreviates ∀x (CL.Set(x) =⇒ φ(x))
(ii) ∃xφ(x) and ∃CLxφ(x) abbreviates ∀x (CL.Set(x) =⇒ φ(x))
(iii) ∀Xφ(X) and ∀NCLXφ(X) abbreviates ∀X (NCL.Set(X) =⇒ φ(X))
(iv) ∃Xφ(X) and ∃NCLXφ(X) abbreviates ∃X (NCL.Set(X) =⇒ φ(X))

Remark 2.6. If A is a nonclassical set, we write ∃x ∈ A φ (x,A) for ∃x [x ∈ A ∧ φ (x,A)]
and ∀x ∈ Aφ (x,A) for ∀x [x ∈ A =⇒ φ (x,A)] .

We define now the following sets:
1.{u1, u2, ..., un} = {x|x = u1 ∨ x = u2 ∨ ... ∨ x = un} .
2.{A1, A2, ..., An} = = {x|x = A1 ∨ x = A2 ∨ ... ∨ x = An} .
3.∪A = {x|∃y [y ∈ A ∧ x ∈ y]} .
4.∩A = {x|∀y [y ∈ A =⇒ x ∈ y]} . 5.A ∪B = {x|x ∈ A ∨ x ∈ B} .
5.A ∩B = {x|x ∈ A ∧ x ∈ B} . 6.A−B = {x|x ∈ A ∧ x /∈ B} . 7.u+ = u ∪ {u} .
8.P (A) = {x|x ⊆ A}. 9.{x ∈ A|φ (x,A)} = {x|x ∈ A ∧ φ (x,A)} . 10.V = {x|x = x} .
11.∅ = {x|x ̸= x} .
The system NC#

∞# of set theory is based on the following axioms:
Extensionality1: ∀u∀v [∀x (x ∈ u ⇐⇒ x ∈ v) =⇒ u = v]
Extensionality2: ∀A∀B [∀x (x ∈ A ⇐⇒ s,wx ∈ B) =⇒ A = B]
Universal Set: NCL.Set (V)
Empty Set: CL.Set (∅)
Pairing1: ∀u∀v CL.Set({u, v})
Pairing2: ∀A∀B NCL.Set({A,B})
Union1: ∀u CL.Set(∪u)
Union2: ∀A NCL.Set(∪A)
Powerset1: ∀u CL.Set(P (u))
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Powerset2: ∀A NCL.Set(P (A))

Infinity ∃a
[
∅ ∈ a ∧ ∀x ∈ a

(
x+ ∈ a

)]
Separation1∀u1∀u2, ...∀un∀a∃CL.Set ({x ∈s a|φ (x, u1, u2, ..., un)})
Separation2∀u1∀u2, ...∀unNCl.Set ({x ∈s,w A|φ (x,A;u1, u2, ..., un)})
Comprehension1∀u1∀u2, ...∀un∃A∀x [x ∈s,w A ⇐⇒ s,wφ (x;u1, u2, ..., un)]

Comprehension 2 ∀u1∀u2, ...∀un∃A∀x [x ∈s,w A ⇐⇒ s,wφ (x,A;u1, u2, ..., un)]

Comprehension 3 ∀u1∀u2, ...∀un∃a∀x [x ∈s a ⇐⇒ s (a ⊂ u1) ∧ φ (x, a;u1, u2, ..., un)]

In particular:

Comprehension 3′ ∀u∃a∀x [x ∈s a ⇐⇒ s (a ⊂ u) ∧ φ (x, a;u)]

Hyperinfinity: see subsection 2.1.

Remark 2.7. Note that the axiom of hyper infinity follows from the schemata Comprehension 3.

Definition 2.3. The ordered pair of two sets u, v is defined as usual by

⟨u, v⟩ = {{u} , {u, v}} (2.19)

Definition 2.4. We define the Cartesian product of two nonclassical sets A and B as usual by

A×s,w B = {⟨x, y⟩ |x ∈s,w A ∧ y ∈s,w B} (2.20)

Definition 2.5. A binary relation between two nonclassical sets A,B isasubset R⊆s,w A×s,w B.
We also write aRs,wb for < a, b >∈s,w R. The doman dom(R) and the range ran(R) of R are
defined by

dom(R) = {x|∃y (xRs,wy)} , ran(R) = {y : ∃x (xRs,wy)} (2.21)

Definition 2.6. A relation Fs,w is a function, or map, written Fun(Fs,w), if for each a ∈s,w

dom(F ) there is a unique b for which aFs,wb. This unique b is written F (a) or Fa.

We write Fs,w : A → B for the assertion that Fs,w s a function with dom(Fs,w) = A and
ran(Fs,w) = B.In this case we write a 7→ Fs,w(a) for Fs,wa.

Definition 2.7. The identity map 1A on A is the map A→ A given by a 7→ a.

If X ⊆s,w A, the map x 7→ x : X → A is called the insertion map of X into A.

Definition 2.8. If Fs,w : A → B and X ⊆s,w A, the restriction Fs,w|X of Fs,w to X is the map
X → A given by x 7→ Fs,w(x). If Y ⊆s,w B, the inverse image of Y under Fs,w is the set

F−1
s,w[Y ] = {x ∈s,w A : Fs,w(x) ∈s,w Y } (2.22)

Given two functions Fs,w : A → B,Gs,w : B → C, we define the composite function Gs,w ◦ Fs,w :
A → C to be the function a 7→ Gs,w(Fs,w(a)). If Fs,w : A → A, we write F 2

s,w for Fs,w ◦ Fs,w, F
3
s,w

for Fs,w ◦ Fs,w ◦ Fs,w etc.

Definition 2.9. A function Fs,w : A→ B is said to be monic if for all x, y ∈s,w A,Fs,w(x) = Fs,w(y)
implies x = y, epi if for any b ∈s,w B there is a ∈s,w A for which b = Fs,w(a), and bijective,
or a bijection, if it is both monic and epi. It is easily shown that Fs,w is bijective if and only if
Fs,w has an inverse, that is, a map Gs,w : B → A such that Fs,w◦Gs,w = 1B and Gs,w◦Fs,w = 1A.

Definition 2.10. Two sets X and Y are said to be equipollent, and we write X ≈s,w Y,if there is
a bijection between them.
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Definition 2.11. Suppose we are given two sets I, A and an epi map Fs,w : I → A.

Then A = {Fs,w(i)|i ∈ I} and so, if, for each i ∈s,w I, we write ai for Fs,w(i), then A can be
presented in the form of an indexed set {ai : i ∈s,w I}. If A is presented as an indexed set of sets
{Xi|i ∈s,w I}, then we write

∪
i∈I Xi and

∩
i∈I Xi for ∪A and ∩A, respectively.

Definition 2.12. The projection maps π1 : A×s,w B → A and π2 : A×s,w B → B are defined to
be the maps < a, b > 7→ a and < a, b > 7→ b respectively.

Definition 2.13. For sets A,B, the exponential BA is defined to be the set of all functions from
A to B.

2.1 Axiom of nonregularity

Remind that a non-empty set u is called regular iff ∀x[x ̸= ∅ → (∃y ∈ x)(x ∩ y = ∅)].

Let’s investigate what it says: suppose there were a non-empty x such that (∀y ∈ x)(x ∩ y ̸= ∅).
For any z1 ∈ x we would be able to get z2 ∈ z1∩x. Since z2 ∈ x we would be able to get z3 ∈ z2∩x.
The process continues forever: ... ∈ zn+1 ∈ zn... ∈ z4 ∈ z3 ∈ z2 ∈ z1 ∈ x.Thus if we don’t wish to
rule out such an infinite regress we forced accept the following statement:

∃x[x ̸= ∅ → (∀y ∈ x)(x ∩ y ̸= ∅)] (2.23)

2.2 Axiom of hyperinfinity

Definition 2.14.(i) A non-empty transitive non regular set u is a well formed non regular set iff:
(i) there is unique countable sequence {un}∞n=1 such that

... ∈ un+1 ∈ un... ∈ u4 ∈ u3 ∈ u2 ∈ u1 ∈ u (2.24)

(ii) for any n ∈ Nn and any un+1 ∈ un :

un = u+
n+1 = (2.25)

where a+ = a ∪ {a} .
(ii) we define a function a+[k] inductively by a+[k+1] =

(
a+[k]

)+

.

Definition 2.15. Let u and w are well formed non regular sets. We write w ≺ u iff for any n ∈ N

w ∈ un. (2.26)

Definition 2.16. We say that an well formed non regular set u is infinite (or hyperfinite)
hypernatural number iff:
(I) For any member w ∈ u one and only one of the following conditions are satified:

(i) w ∈ N or
(ii) w = un for some n ∈ N or
(iii) w ≺ u.

(II) Let ≺u be a set ≺u = {z|z ≺ u} ,then by relation (· ≺ ·) a set ≺u is densely ordered with no
first element.
(III) N ⊂ u.

Definition 2.17. Assume u ∈ N#,then u is infinite (hypernatural) number if u ∈ N#\N.
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Axiom of hyperinfinity

There exists a set N# such that:

(i) N ⊂ N#,

(ii) if u ∈ N#\N then there exists infinite (hypernatural) number v such that v ≺ u,

(iii) if u ∈ N#\N then there exists infinite (hypernatural) number w such that for any

n ∈ N : u+[n] ≺ w,

(iv) set N#\N is patially ordered by relation (· ≺ ·) with no first and no last element.

3 Hypernaturals N#

In this section nonstandard arithmetic A# related to hypernaturals N# is considered axiomatically.

3.1 Axioms of the nonstandard arithmetic A# are:

Axiom of hyperinfinity

There exists unique set N# such that:

(i) N ⊂ N#

(ii) if u is infinite (hypernatural) number then there exists infinite (hypernatural)

number v such that v ≺ u

(iii) if u is infinite hypernatural number then there exists infinite (hypernatural)

number w such that u ≺ w

(iv) set N#\N is patially ordered by relation (· ≺ ·) with no first and no last element.

Axioms of infite ω-induction

(i)

∀S (S ⊂ N)
{[ ∧

n∈ω

(
n ∈ S =⇒ sn

+ ∈ S
)]

=⇒ sS = N
}

(3.27)

(ii) Let F (x) be a wff of the set theory NC#

∞# , then

[ ∧
n∈ω

(
F (n) =⇒ sF

(
n+

))]
=⇒ s∀n (n ∈ ω)F (n) (3.28)

Definition 3.1.(i) Let β be a hypernatural such that β ∈ N#\N. Let [0, β] ⊂ N# be a set such
that ∀x [x ∈ [0, β] ⇐⇒ 0 ≤ x ≤ β] and let [0, β) be a set [0, β) = [0, β] \ {β} .

(ii) Let β ∈ N#\N and let β∞ ⊂ N#be a set such that

∀x
{
x ∈ β∞ ⇐⇒ ∃k (k ≥ 0)

[
0 ≤ x ≤ β+[k]

]}
(3.29)

Definition 3.2.Let F (x) be a wff of NC#

∞#with unique free variable x.We will say that a wff F (x)

is restricted on a classical set S such that S $s N# iff the following condition is satisfied

∀α
[
α ∈ N#\S =⇒ s¬F (α)

]
(3.30)

Definition 3.3.Let F (x) be a wff of NC#

∞#with unique free variable x.We will say that a wff F (x)

is strictly restricted on a set S such that S $s N# iff there is no proper subset S′ ⊂ S such that a
wff F (x) is restricted on a set S′.
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Example 3.1.(i)Let fin (α) , α ∈ N#be a wff formula such that fin (α) ⇐⇒ sα ∈ N.Obviouslywfffin(α)
is strictly restricted on a set N since ∀α

[
α ∈ N#\N =⇒ s¬fin (α)

]
.

Let hfin (α) , α ∈ N#be a wff formula such that hfin (α) ⇐⇒ sα ∈ N#\N since ∀α [α ∈ N =⇒ s¬hfin (α)] .

Definition 3.4. Let F (x) be a wff of NC#

∞#with unique free variable x.We will say that a wff

F(x) is unrestricted if wff F (x) is not restricted on any set S such that S $ N#.

Axiom of hyperfinite induction 1

∀S (S ⊆s [0, β]) ∀β
(
β ∈s N#

)
↘{

∀α (α ∈s [0, β))

[ ∧
0≤α<β

(
α ∈s S =⇒ α+ ∈s S

)]
=⇒ sS = [0, β]

}
.

(3.31)

Axiom of hyperfinite induction 1′

∀S (S ⊆s [0, β∞]) ∀β
(
β ∈ N#

)
↘{

∀α (α ∈ [0, β∞])

[ ∧
0≤α<β∞

(
α ∈ S =⇒ α+ ∈ S

)]
=⇒ S = [0, β∞]

}
.

(3.32)

Axiom of hyper infinite induction 1

∀S
(
S ⊂s N#

){
∀β

(
β ∈ N#

) [ ∧
0≤α<β

(
α ∈s S =⇒ α+ ∈s S

)]
=⇒ sS =s N#

}
. (3.33)

Definition 3.5.A set S ⊂s N# is a hyper inductive if the following statement holds∧
α∈N#

(
α ∈s S =⇒ sα

+ ∈s S
)

(3.34)

Obviously a set N# is a hyper inductive. Thus axiom of hyper infinite induction 1 asserts that a
set N# this is the smallest hyper inductive set.

Axioms of hyperfinite induction 2

Let F (x) be a wff of the set theory NC#

∞# strictly restricted on a set [0, β] then[
∀β (β ∈ [0, β])

[ ∧
0≤α<β

(
F (α) =⇒ sF

(
α+

))]]
=⇒ s∀α (α ∈ [0, β])F (α) (3.35)

Let F (x) be a wff of the set theory NC#

∞# strictly restricted on a set [0, β∞]then[
∀β (β ∈ [0, β∞])

[ ∧
0≤α<β∞

(
F (α) =⇒ sF

(
α+

))]]
=⇒ s∀α (α ∈ [0, β∞])F (α) (3.36)

Axiom of hyper infinite induction 2

Let F (x) be anrestricted wff of the set theory NC#

∞# then[
∀β

(
β ∈ N#

) [ ∧
0≤α<β

(
F (α) =⇒ sF

(
α+

))]]
=⇒ s∀β

(
β ∈ N#

)
F (β) (3.37)

The main restricted rules of conclusion.
If A# ⊢ A then ¬A 0RMP B,where B ∈# . Thus if statement A holds in A# we cannot obtain
from ¬A by restricted rules of conclusion any formula B ∈# whatsoever.
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3.2 The generalized recursion theorem

Theorem 3.1. Let S be a set, c ∈ S and G : S → S is any function with dom (G) = S and
range (G) j S.Let W [G] ∈ N# × S be a binary relation such that:

(a) (1, c) ∈W [G] and (b) if (x, y) ∈W [G] then (Sc (x) , G (y)) ∈W [G] .
Then there exists a function F : N# → S such that: (i) dom (F) =N# and range () j S;(ii)
(1) = c;(iii) for all x ∈ N# , (Sc (x)) = G ((x)) .
1.The desired function is a certain hyper inductive binary relation W j N# × S.

It is to have the properties:
(ii′) (1, c) ∈ W;(iii′) for all x ∈ N# ,if (x, y) ∈ W then (Sc (x) , G (y)) ∈ W.

Remark 3.1. The latter is just another way of expressing (iii), that for all x ∈ N#

F(x) = y (3.38)

then

(Sc (x)) = G (y) (3.39)

Remark 3.2.Note that any relation W mentioned above is a hyper inductive relation since the
hyper inductivity conditions (ii′)-(iii′) are satisfied.

However there are many hyper inductive relations which satisfy the conditions (ii′)-(iii′); on such
is N# × S.What distinguishes the desired function from all these other hyper inductive relations
is that we want (a, b) to be on it only as required by (ii′) and (iii′). In other words, it is to be the
smallest hyper inductive relation satisfying (ii′)-(iii′). This can be expressed precisely as follows:

(1) Let M be a set of the hyper inductive relations W satisfying the conditions (ii′)
and (iii′); then we define a set =

∩
W∈M

W. Hence (2) whenever W ∈ M then ⊆ W.

We shall now show that we can derived from (1) that is also one hyper inductive relation in M.(3)
(1, c) ∈ .

This follows immediately from the definition of
∩

W∈M

and the fact that (1, c) ∈ W for all W ∈

M.(4) If (x, y) ∈ then (Sc (x) , G (y)) ∈ .
For if (x, y) ∈ then (x, y) ∈ W for all W ∈ M;hence by (iii′) (Sc (x) , G (y)) ∈ W for all W ∈ M
so that (Sc (x) , G (y)) ∈ by (1).

We must now verify that ı́s actually a function, i,e., we wish to show that for any x, z1, z2 ∈ N# ,
if (x, z1) ∈ and (x, z2) ∈, then z1 = z2.

We shall prove this by hyper infinite induction on x. Let (5) A = {x|x ∈ N# and for all z1, z2
∈ N# , if (x, z1) ∈ and (x, z2) ∈then z1 = z2}.

We shalI show A = N# by applying hyper infinite induction. First we have (6) 1 ∈ A.

To prove (6), it suffices to show that for any z, if (1, z) ∈ then z = c.

We prove this by contradiction; in other words, suppose to tbe contrary that there is some z with
(1, z) ∈ but z ̸= c. Consider the hyper inductive relation W = \{(1, z)}.

Since (1, c) ∈ and (1, c) ̸= (1, z), it follows that (1, c) ∈ W. Moreover, whenever(u, y) ∈ W
then (u, y) ∈ and hence (Sc(u), G(y)) ∈ but Sc(u) ̸= 1, so (Sc(u), G(y)) ̸= (1, z),and hence
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(c(u), G(y)) ∈ W. Thus W satisfies both conditions (ii′) and (iii′); in other words, W ∈ M. But
then it follows from (2) that ⊆ W however this is elearly false sinee (1, z) ∈ and (1, z) /∈ W.Tbus
our hypothesis has led us to a contradiction, and henee (6) is proved. Next we show that (7) for
any x ∈ N# if x ∈ A then Sc(x) ∈ A.

Suppose that x ∈ A, so that whenever (x, z1) ∈ and (x, z2) ∈ then z1 = z2. We must show that
whenever (Sc(x), w1) ∈and (Sc(x), w2) ∈then w1 = w2. To prove this, it suffices to show that (8)
whenever (Sc(x), w) ∈ then there exists a z with w = G(z) and (x, z) ∈ .

For if (8) ia true, we would have for the given w1, w2 some z1 = z2 with w1 = G(z1), w2 = G(z2),
(x, z1) ∈ and (x, z2) ∈ . Then, since x ∈ A, z1 = z2 and henee G(z1) = G(z2) , that is, w1 = w2.

Now to prove (8) suppose, to the contrary, that it is not true; in other words, suppose that we have
some w with (Sc(x), w) ∈ but such that for all z which (x, z) ∈ we have w ̸= G(z). Consider the
hyper inductive relation W = \{(Sc(x), w)}.We shall show that W ∈ M. First of all (1, c) ∈and
(1, c) ̸= (Sc(x), w); hence (1, c) ∈ W. Suppose tbat (u, y) ∈ W;then (u, y) ∈ and (Sc(u), G(y)) ∈ .

Clearly if u ̸= x then (Sc(u), G(y)) ̸= (Sc(x), w),so that in this case (Sc(u), G(y)) ∈ W. On the
other hand, if u = x and (Sc(u), G(y)) = (Sc(x), w), then w = G(y), where (x, y) ∈, contrary to
the choice of w henee (Sc(u), G(y)) ̸= (Sc(x), w)), so again (Sc(u), G(y)) ∈ W. Thus whenever
(u, y) ∈ W, also (Sc(u), G(y)) ∈ W. Now that we have shown W ∈ M we see by (2) that ⊆ W
but this is false since (Sc(x), w) ∈ and (Sc(x), w) /∈ W. Thus our hypothesis that (8) is incorrect
has led to a contradiction, and now (8) is proved. Sinee (7) follows from (8), we have by hyper
infinite induction from (6) that A = N#. Hence (9) is a function.

We have still to prove that satisfies,condition (i); we must show that for each x ∈ N# there· is
a y with (x, y) ∈. Since ⊆ N# × S, it will then follow that dom() = N# and range() ⊆ S. Let
B = dom(), that is, (10) B = {x|x ∈ N# and for some y, (x, y) ∈}.

We prove now by hyper infinite induction that B = N#. First, 1 ∈ B, śınce (1, c) ∈ by (3). Next,
if x ∈ B, pick some y with (x, y) ∈; then by (4), (Sc(x), G(y)) ∈, and henee Sc(x) ∈ B.

Thus concludes the first part of the proof, that there is at least one function satisfying conditions
(i)-(iii).

Part 2. We prove that there cannot be more than one such function. Suppose that 1 and 2 both
satisfy the conditions (i)-(iii) we wish to show 1 =2, i.e., that for all x ∈ N#,1 (x) =2 (x) . Thus is
proved by hyper infinite induction on X. By (ii), 1(1) = c and 2(1) = c, so 1(1) = 2(1). Suppose
that 1(x) =2 (x); then 1(Sc(x)) = G(1(x)) and 2(Sc(x)) = G(2(x)), so 1(Sc(x)) =2 (Sc(x)).

Theorem 3.2. Let S be a set, c ∈ S and G : S × N# → S is a binary function with dom(G) =
S × N# and range (G) j S.

Then there exists a function : N# → S such that:

(i) dom () = N# and range () j S;(ii) (1) = c;(iii) for all x ∈ N# , (Sc (x)) = G ((x) , x) .

We omit the proof of the Theorem 3.2 since it can be given by simple modification of the proof to
Theorem 3.1.
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4 Nonconservative Extension of the Model Theoretical
NSA

Remind that Robinson nonstandard analysis (RNA) many developed using set-theoretical objects
called superstructures [14]-[17]. A superstructure V(S) over a set S is a set defined by the following
way:

V0(S) = S,Vn+1(S) = Vn(S) ∪ (P (Vn(S)),V(S) =n∈N Vn(S). (4.40)

Superstructures of the empty set consist of sets of infinite rank in the cumulative hierarchy and
therefore do not satisfy the in. . . nity axiom. Making S = R will suffice for virtually any construction
necessary in analysis.

Bounded formulas are formulas where all quantifiers occur in the form

∀x (x ∈ y =⇒ · · ·) , ∃x (x ∈ y =⇒ · · ·) (4.41)

A nonstandard embedding is a mapping

∗ : V(X) → V(Y ) (4.42)

from a superstructure V(X) called the standard universum, into another superstructure V(Y ),
called nonstandard universum, satisfying the following postulates:

1. Y = ∗X

2.Transfer Principle. For every bounded formula Φ(x1, ..., xn) and elements a1, ..., an ∈ V(X),
thepropertyΦ is true for a1, ..., an in the standard universum if and only if it is true for ∗a1 , ...,

∗an
in the nonstandard universum:

⟨V(X),∈⟩ |= Φ(a1, ..., an) ⇐⇒ ⟨V(Y ),∈⟩ |= Φ( ∗a1 , ...,
∗an ) (4.43)

3.Non-triviality. For every infinite set A in the standard universum, the set { ∗a |a ∈ A} is
a proper subset of ∗A

Definition 4.1. [17] A set x is internal if and only if x is an element of ∗A for some element A
of V(R). Let X be a set with A = {Ai}i∈I a family of subsets of X. Then the collection A has
the infinite intersection property, if any infinite subcollection J ⊂ I has non-empty intersection.
Nonstandard universum is κ-saturated if whenever {Ai}i∈I is a collection of internal sets with
the infinite intersection property and the cardinality of I is less than or equal to κ,i∈I Ai ̸= ∅.

Remark 4.1.Remind that: (i) for each standard universum U = V(X) there exists canonical
language =U ,(ii) for each nonstandard universum W = V(Y ) there exists corresponding canonical
nonstandard language ∗ =W [17].

3∗.The restricted rules of conclusion.

If W |= A then ¬A 0 B,where B ∈ ∧B ∈ ∗

Thus if A holds in W we cannot obtain from ¬A any formula B whatsoever.

Remark 4.2. We write ∗ |= A instead W |= A.

Definition 4.2.[6]-[7].A set S ⊂ ∗N is a hyper inductive if the following statement holds∧
α∈ ∗N

(
α ∈ S =⇒ sα

+ ∈ S
)

(4.44)
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where α+ , α+ 1.Obviously a set ∗N is a hyper inductive. As we see later there is just one hyper
inductive subset of ∗N ,namely ∗N itself.

In this paper we apply the following hyper inductive definitions of a sets [6]-[7]

∃ S∀β

[
β ∈ S ⇐⇒ s

∧
0≤α<β

(
α ∈ S =⇒ sα

+ ∈ S
)]

(4.45)

We extend up Robinson nonstandard analysis (RNA) by adding the following postulate:
4.Any hyper inductive set S is internal.

Remark 4.1.The statement 4 is not provable in ZFC but provable in a set theory NC#

∞# , see.

Thus postulates 1-4 gives an nonconservative extension of RNA and we denote such extension by
NERNA.

Remark 4.2.Note that NERNA of course based on the same gyper infinitary logic with
Restricted Modus Ponens Rule as a set theory NC#

∞# .

Remind that in RNA the following induction principle holds.

Theorem 4.1.[17]. Assume that S ⊂ ∗N is internal set, then

(1 ∈ S) ∧ ∀x [x ∈ S =⇒ x+ 1] =⇒ S = ∗N (4.46)

In NERNA Theorem 4.1also holds.

Remark 4.3. It follows from postulate 4 and Theorem 3.1 that any hyper inductive set S is
equivalent to ∗N : S ≡ ∗N

Remark 4.4. Note that the following statement is provable in NC#

∞# :
4′ Axiom of hyper infinite induction

∀S (S ⊂ ∗N )

{
∀β (β ∈ ∗N )

[ ∧
0≤α<β

(
α ∈ S =⇒ α+ ∈ S

)]
=⇒ S = ∗N

}
. (4.8) (4.47)

Thus postulate 4 of the theory NERNA is provable in NC#

∞# .

Rules of conclusion
MRR (Main Restricted rule of conclusion)
Let φ (x) be a wff with one free variable x and such that (n ∈ ∗N \N)∧V(Y ) |= φ (n) , then¬φ (n) 0
B,i.e., if statement A holds in V(Y ) we cannot obtain from ¬A any formula B whatsoever.

Remark 4.5.The MRR is necessarily in natural way, since by assumption ¬φ (n) one obtains
directly the apparent contradiction φ (n) ∧ ¬φ (n) from which by unrestricted modus ponens rule
(UMPR) one obtains φ (n) ∧ ¬φ (n) ⊢UMPR B.
Example 4.1. Remind the proof of the following statement: structure (N, <) is a well-ordered set.

Proof.Let X be a nonempty subset of N. Suppose X does not have a < -least element.
Then consider the set N\X.
Case (1) N\X = ∅. Then X = N and so 0 is a < -least element. Contradiction.
Case (2) N\X ̸= ∅.Then 1 ∈ N\X otherwise 1 is a < -least element. Contradiction.
Case (3) N\X ̸= ∅. Assume now that there exists an n ∈ N\X such that n ̸= 1.
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Since we have supposed that X does not have a least element, thus n+ 1 /∈ X.

Thus we see that for all n : n ∈ N\X implies that n+1 ∈ N\X. We can conclude by induction that
n ∈ N\X for all n ∈ N. Thus N\X = N implies X = ∅.
This is a contradiction to X being a nonempty subset of N.

We set now X1 = ∗N \N, thus ∗N \X1 = N.In contrast with a set X the assumption n ∈ ∗N \X1

implies that n+1 ∈ ∗N \X1 if and only if n is finite, since for any infinite n ∈ ∗N \N the assumption
n ∈ ∗N \X1 contradicts with a true statementV(Y ) |= n /∈ ∗N \X1 = N and therefore in accordance
with MRR we cannot obtain from n ∈ ∗N \X1 any formula B whatsoever.

5 IST# and BST#

The axiomatics IST (Internal Set Theory) was presented in 1977 [11] and in a sense formulates
within first-order language the behaviour of standard and internal sets of a nonstandard model of
ZFC. This were done by adding the unary standardness predicate ”st” to the language of ZFC
as well as adding to the axioms of ZFC three new axiom schemes involving the predicate ”st”
Idealization, Standardization and Transfer.

Remark 5.1. Formulas which do not use the predicate st are called internal formulas (or ∈-
formulas) and formulas that use this new predicate are called external formulas (or st-∈-formulas).A
formula φ is standard if only standard constants occur in φ.

Abbreviaion 5.1. We denote a set of the all naturals by N#and a set of the all finite naturals by N.

Abbreviaion 5.2. We write fin(x) meaning ’x is finite’. Let φ(x) be a st- ∈ -formula:

1.∀st xφ(x) abbreviates ∀x(st (x) =⇒ φ(x)).2.∃st xφ(x) abbreviates ∃x(st(x) ∧ φ(x)).
3.∀finxφ(x) abbreviates ∀x(fin(x)) =⇒ φ(x)).4.∃fin xφ(x) abbreviates ∃x(fin(x) ∧ φ(x)).
5.∀stfin xφ(x) abbreviates ∀x(st(x) ∧ fin(x)) =⇒ φ(x)).

6.∃stfin xφ(x) abbreviates ∃x(st(x) ∧ fin(x) ∧ φ(x)).
The fundamental axioms of IST :

(I) Idealization

∀stfinF∃y∀x ∈ F
[
R(x, y) ⇐⇒ ∃b∀stxR(x, b)

]
(5.48)

for any internal relation R.

Remark 5.2. The idealization axiom obviously states that saying that for any fixed finite set F
there is a y such that R(x, y) holds for all x ∈ F is the same as saying that there is a b such that
for all fixed x the relation R(x, b) holds.

(II) Standardization

∀stA∃stB∀stx(x ∈ B ⇐⇒ x ∈ A ∧ φ(x)) (5.49)

for every st-∈-formula φ with arbitrary (internal) parameters.

(III) Transfer

∀sty1, ..., yn∀stx [φ(x, y1, ..., yn)] =⇒ ∀xφ(x, y1, ..., yn) (5.50)

for all internal φ(x, y1, ..., yn).

Remark 5.3. An importent consequence of (I) is the principle of External Induction, which
states that for any (external or internal) formula φ,one has
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φ(0) ∧
[
∀stn(φ(n) =⇒ φ(n+ 1))

]
=⇒ ∀stnφ(n) (5.51)

Boundedness

∀x∃sty(x ∈ y) (5.52)

and since (2.5) contradicts idealization the following (bounded) form is taken instead:
(IV) Bounded Idealization

For every ∈-formula R :
∀stY

[
∀stfinF∃y ∈ Y (∀x ∈ FR(x, y) ⇐⇒ ∃b (b ∈ Y ) ∀stxR(x, b))

]
(5.53)

This gives a subsystem BST, which corresponds to the bounded sets of IST.

5.1 Internal set theory IST#

The axiomatics IST# formulates within infinitary first-order language the behaviour of standard
and internal sets of a nonstandard model of NC#

∞# . This done by adding the unary standardness

predicate ”st” to the language of NC#

∞# as well as adding to the axioms of NC#

∞# three new axiom
schemes involving the predicate ”st”:
Idealization, Standardization,Transfer and Axiom of internal hyper infinite induction.

Remark 5.4.Formulas which do not use the predicate st are called internal formulas (or ∈sw-
formulas) and formulas that use this new predicate are called external formulas (or st-∈sw-formulas).A
formula φ is standard if only standard constants occur in φ.

Abbreviaion 5.3.We write fin(x) meaning ’x is finite’.

Let φ(x) be a st- ∈sw-formula:
1.∀st

s xφ(x) abbreviates ∀x(st (x) =⇒ sφ(x)).
2.∀st

s,w xφ(x) abbreviates ∀x(st (x) =⇒ s,wφ(x)).
3.∃st xφ(x) abbreviates ∃x(st(x) ∧ φ(x)).
4.∀fin

s xφ(x) abbreviates ∀x(fin(x)) =⇒ sφ(x)).
5.∀fin

s,wxφ(x) abbreviates ∀x(fin(x)) =⇒ s,wφ(x)).
6.∃fin xφ(x) abbreviates ∃x(fin(x) ∧ φ(x)).
7.∀stfin

s xφ(x) abbreviates ∀x(st(x) ∧ fin(x)) =⇒ sφ(x)).
8.∀stfin

s,w xφ(x) abbreviates ∀x(st(x) ∧ fin(x)) =⇒ s,wφ(x)).
9.∃stfin xφ(x) abbreviates ∃x(st(x) ∧ fin(x) ∧ φ(x)).

The fundamental axioms of IST# :
(I) Idealization for classical sets

∀stfin
s FCL∃yCL∀xCL ∈s F

[
RCL(x, y) ⇐⇒ s∃bCL∀st

s xR
CL(x, b)

]
(5.54)

for any internal classical relation RCL(x, y).

Remark 5.5.The idealization axiom obviously states that saying that for any fixed classical finite
set F there is a classical y such that RCL(x, y) holds for all classical x ∈s F is the same as saying
that there is a classical b such that for all fixed classical x the classical relation RCL(x, b) holds.

(II) Standardization for classical sets

∀stACL∃stBCL∀stxCL(x ∈ B ⇐⇒ sx ∈ A ∧ φ(x)) (5.55)
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for every st-∈-formula φ with arbitrary (internal) parameters.

(III) Transfer for classical sets

∀styCL
1 , ..., yCL

n ∀stxCL [φ(x, y1, ..., yn)] =⇒ s∀xCLφ(x, y1, ..., yn) (5.56)

for all internal formulas φ(x, y1, ..., yn).

Boundedness

∀xCL∃styCL(x ∈s y) (5.57)

and since (5.10) contradicts idealization the following (bounded) form is taken instead:
(IV) Bounded Idealization for classical sets
For every ∈-formula R :

∀stY CL
[
∀stfinFCL∃yCL ∈ Y (∀xCL (x ∈ F )R(x, y) ⇐⇒ s∃bCL (b ∈ Y ) ∀stxR(x, b))

]
. (5.58)

(V) Idealization for nonclassical sets

∀stfin
s,w FNCL∃yNCL∀xNCL ∈s,w F

[
RNCL(x, y) ⇐⇒ s,w∃bNCL∀st

s,wxR
NCL(x, b)

]
(5.59)

for any internal nonclassical relation RNCL(x, y).

Remark 5.6.The idealization axiom obviously states that saying that for any fixed nonclassical
finite set F there is a classical y such that RNCL(x, y) holds for all classical x ∈s F is the same as
saying that there is a classical b such that for all fixed classical x the nonclassical relation RNCL(x, b)
holds.

(VI) Standardization for nonclassical sets

∀st
s,wA

NCL∃stBNCL∀st
s,wx

NCL(x ∈s,w B ⇐⇒ s,wx ∈s,w A ∧ φ(x)) (5.60)

for every st-∈s,w-formula φ with arbitrary (internal) parameters.

(VII) Transfer for nonclassical sets

∀st
s,wy

NCL
1 , ..., yNCL

n ∀stxNCL [φ(x, y1, ..., yn)] =⇒ s,w∀s,wx
NCLφ(x, y1, ..., yn) (5.61)

for all internal φ(x, y1, ..., yn).

Boundedness for nonclassical sets

∀s,wx
NCL∃styNCL(x ∈s,w y) (5.62)

since (5.15) contradicts idealization the following (bounded) form is taken instead:
(VIII) Bounded Idealization for nonclassical sets
For every ∈s,w-formula R :
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∀st
s,wY

NCL
[
∀stfin
s,w FNCL∃yNCL ∈s,w Y (∀s,wx

NCL (x ∈ F )R(x, y) ⇐⇒ s,w

∃bNCL (b ∈ Y ) ∀st
s,wxR(x, b))

]
.

(5.63)

(IX) Internal Induction

∀S
(
S ⊂s N#

){
∀β

(
β ∈ N#

) [ ∧
0≤α<β

(
α ∈s S =⇒ α+ ∈s S

)]
=⇒ sS =s N#

}
. (5.64)

The main restricted rules of conclusion.

If IST# ⊢ A then ¬A 0 B,where B ∈# .

Thus if statement A holds in IST# we cannot obtain from ¬A any formula B whatsoever.

6 External Set Theory HST#

6.1 External set theory HST

A ”perfect” external set theory (a nonstandard set theory that includes external sets) should satisfy
some requirements:

(I) It should be a conservative extension of classical mathematics (usually ZFC) so that all classical
mathematical the-orems and constructions remain valid.

(II)The theory should also allow to perform nonstandard constructions in its full generality and
therefore include a strong version of saturation (called idealization in IST and bounded idealization
in BST) and transfer principles.

(III) Finally it should allow to build, for any given set, the standard set of all its standard elements.
This is called standardization. This means that ideally it should be something like an extension of
IST allowing external sets and quantification over external formulas. However, as pointed out by
Hrbácek [10] such a theory cannot exist. In fact, the axiom of regularity cannot be extended to
the external universe. To see that let R#

∞ denote the external set of infinitely large real numbers.
Observe that for all ω in the (nonempty) external set R#

∞∩N, one has R#
∞∩N∩ω ̸= ∅ . Additionally,

if one wishes to formulate a nonstandard set theory with IST-style saturation 4,the replacement
axiom in the external universe contradicts both power set and choice. Let n be a nonstandard
natural number. By saturation there is a 1-1 embedding into n, for all ordinals. So by power set
and transfer the class Ord is a set (see Theorem 1.3.9 and Remark 1.3.10 in [13]).

Remark 6.1. To be of standard size means to be an image of the set of all standard elements of a
standard set (In HST,a set X is standard size if and only if X is well-ordered ) .To see that choice
fails, let x be well-ordered by a relation ≺.

Consider the class of all standard ordinals σOrd, well-ordered by ∈ . We use the theorem that
whenever two sets are well-ordered there is an order preserving embedding of one into the other.
Clearly σOrd cannot be embedded into x,otherwise σOrd would be a set. Then there is an
embedding of x into Ord. In fact, to an initial segment of σOrd. This means that x is of standard size.
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Remark 6.2. As a consequence, sets which are not of standard size cannot be well-ordered (see
Theorem 1.3.1 in [13]). These results are known as the Hrbácek’s paradoxes.

The first problem is not in fact a ”real” problem because the regularity axiom is given so that every
set is obtained at some level of the cumulative hierarchy over ∅ as mentioned above and has no
great impact on which theorems are true. This ”nice picture” of the universe is contested by some
mathematicians and a suitable anti-foundation axiom can be taken instead,see for example [18].

In [12] Hrbácek considered already two possibilities to avoid this. The first one was to lose both
power set and choice for external sets, leading to the system NS1 . The second one was to lose the
replacement axiom for external sets, which lead to his theory NS2 A third possibility was developed
by Kanovei [13].The idea is to restrict saturation by a standard infinite cardinal in order to reinstate
the power set axiom. This is a system of partially saturated external sets which modifies the system
HST (described below), called HSTk . This may be a solution for many practical purposes but not
a solution as a foundational system for the nonstandard methods.

The theory BST possesses an extension to HST, which formulates within first-order language
essential aspects of the behaviour of standard, internal and external sets within a nonstandard
model, much as in Hrbácek’s system NS1 . The system HST is conservative over ZFC and
equiconsistent with both BST and ZFC.

A set in HST is called internal if it is element of a standard set (see also the ”Boundedness” axiom).

Remark 6.3. Below we use (definable) classes, they only should be interpreted as abbreviations
of formulas with sets. Two important definable classes in HST are the class of standard sets

S = {x|st (x)} (6.65)

and the class of internal sets

I = x|∃y(st (y) ∧ x ∈ y) (6.66)

6.2 HST axioms

(I) Axioms for all sets.
The axioms of this group are valid for all sets. These axioms are similar to the respective ones
of ZFC with the diference that in HST they are presented in the full language. This implies in
particular, by the axiom of separation, that the theory HST deals with external sets; for example
if X is standard and infinite, then {x ∈ X|st (x)} is an external set.

1. Extensionality
∀X∀Y (∀x(x ∈ X ⇐⇒ x ∈ Y ) =⇒ X = Y ).

2. Pair

∀a∀b∃A∀x(x ∈ A ⇐⇒ (x = a ∨ x = b)).
3. Union

∀A∃B∀x(x ∈ B ⇐⇒ ∃X ∈ A(x ∈ X)).
4. Infinity

∃X(∅ ∈ X ∧ ∀x(x ∈ X =⇒ (x ∪ {x} ∈ X)).
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5. Separation

∀X∃Y ∀x(x ∈ Y ⇐⇒ (x ∈ X ∧ φ(x))).
6. Collection

∀X∃Y ∀x ∈ X(∃yφ(x, y)) =⇒ ∃y ∈ Y φ(x, y)).

The power set, regularity and choice axioms of ZFC are not valid in general.

This is because, as mentioned above, each one of these axioms (if considered in the full language of
HST) leads to a contradiction.

(II) Axioms for standard and internal sets

In this group as well as in the next there are axioms which are not valid for all sets. The first axiom
scheme states that all ZFC axioms, when restricted to standard parameters are valid in HST:

1. ZFCst.

This means, in particular, that the following are axioms of HST:

(a) Regularityst

∀stS
[
S ̸= ∅ =⇒

(
∃stx ∈ S

)
∧ (x ∩ S ̸= ∅)

]
(6.67)

(b) Power Setst

∀stX∃stY ∀stx(x ∈ Y ⇐⇒ x ⊆ X) (6.68)

(c) Choicest

∀stS∃stY ∀stx (x ∈ S \{∅} )
[
∃stz(Y ∩ x = {z})

]
(6.69)

The fact that every axiom of ZFC restricted to standard sets is an axiom of HST means that the
class S models ZFC.

2.Transfer

∀stx1, ..., ∀stxn [φ (x1, ..., xn)] ⇐⇒ φint (x1, ..., xn) (6.70)

where φ is an arbitrary closed ∈- formula containing only standard parameters

This means that the universe I is an elementary extension of S in the ZFC language.

3. Transitivity of I

∀intx∀y [y ∈ x =⇒ int (y)] (6.71)

The next axiom states that the class I is regular. This means that sets in HST are built over I in
a way similar to the Von Neumann hierarchy of sets in ZFC over ∅.

4. Regularity over I
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∀X ̸= ∅∃x ∈ X(x ∩X ⊂ I) (6.72)

5. Standardization

∀X∃stY (X ∩ S = Y ∩ S) (6.73)

This axiom implies that the only sets consisting entirely of standard sets are of the form Y ∩ S,
where Y ∈ S.

Axioms for sets of standard size

1. Saturation

If A ⊂ I is a standard size set then

((∀X,Y ∈ A) =⇒ X ∩ Y ∈ A) ∧ (X ∈ A) =⇒ X ̸= ∅))) =⇒ ∩A ̸= ∅ (6.74)

2. Standard Size Choice
Choice is available in the case where the domain of the choice function is of standard size.Let

X be a set of standard size and F a function on X.

Then

∀x ∈ X((F (x) ̸= ∅)) =⇒ ∃f(f(x) ∈ F (x))) (6.75)

3. Dependent Choice
Any nonempty partially ordered set without maximal elements includes a nonempty linearly ordered
subset (sequence) where any element has its immediate successor.

6.3 Nonconservative extension of the HST

6.3.1 External set theory HST#

(I) Axioms for all sets

The axioms of this group are valid for all sets. These axioms are similar to the respective ones of
NC#

∞# with the diference that in HST# they are presented in the full language. This implies in

particular, by the axiom of separation, that the theory HST# deals with external sets; for example
if X is standard and infinite classical set, then

{
x ∈ XCL|st (x)

}
is an external classical set of the

set theory NC#st

∞# .

This means, in particular, that the following are axioms of HST#:
I.Axioms for a classcal sets
(a) Regularityst for a classcal sets

∀stS
[
S ̸= ∅ =⇒ s

(
∃stx ∈s S

)
∧ (x ∩s S ̸= ∅)

]
(6.76)

(b) Power Setst for a classcal sets
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∀stX∃stY ∀stx(x ∈ Y ⇐⇒ sx ⊆ X) (6.77)

(c) Choicest for a classcal sets

∀stS∃stY ∀stx (x ∈s S \s {∅} )
[
∃stz(Y ∩s x = {z})

]
(6.78)

(d) Transfer for a classcal sets

∀stx1, ..., ∀stxn [φ (x1, ..., xn)] ⇐⇒ φint (x1, ..., xn) (6.79)

where φ is an arbitrary closed ∈- formula containing only standard parameters.

This means that the universe I is an elementary extension of S in the NC#st

∞# language.

(e) Transitivity of I for a classcal sets

∀intx∀y [y ∈s x =⇒ sint (y)] (6.80)

The next axiom states that the class I is regular. This means that sets in HST# are built over I in
a way similar to the Von Neumann hierarchy of sets in NC#st

∞# over ∅.

(f) Regularity over I for a classcal sets

∀X ̸= ∅∃x ∈s X(x ∩s X ⊂s I) (6.81)

(g) Standardization for a classcal sets

∀X∃stY (X ∩s S = Y ∩s S) (6.82)

This axiom implies that the only sets consisting entirely of standard sets are of the form Y ∩s S,
where Y ∈s S.
Axioms for a classcal sets sets of standard size
1. Saturation for a classcal sets
If A ⊂s I is a standard size set then

((∀X,Y ∈s A) =⇒ sX ∩s Y ∈s A) ∧ (X ∈s A) =⇒ sX ̸= ∅))) =⇒ s ∩s A ̸= ∅ (6.83)

2. Standard Size Choice for a classcal sets
Choice is available in the case where the domain of the choice function is of standard size.Let

X be a set of standard size and F a function on X.

Then

∀x ∈s X((F (x) ̸= ∅)) =⇒ s∃f(f(x) ∈s F (x))) (6.84)

3. Dependent Choice for a classcal sets
Any nonempty partially ordered set without maximal elements includes a nonempty linearly ordered
subset (sequence) where any ∈s,w element has itsi mmediate successor.
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II.Axioms for a nonclassical sets
(a) Regularityst for a nonclasscal sets

∀stSNCL
[
S ̸= ∅ =⇒ s,w

(
∃stx ∈s,w S

)
∧ (x ∩s,w S ̸= ∅)

]
(6.85)

(b) Power Setst for a nonclasscal sets

∀stXNCL∃stY NCL∀stxNCL(x ∈s,w Y ⇐⇒ s,wx ⊆s,w X) (6.86)

(c) Choicest for a a nonclasscal sets

∀stS∃stY ∀stx (x ∈s,w S \s {∅} )
[
∃stz(Y ∩s,w x = {z})

]
(6.87)

(d) Transfer for a nonclasscal sets

∀stx1, ..., ∀stxn [φ (x1, ..., xn)] ⇐⇒ s,wφ
int (x1, ..., xn) (6.22) (6.88)

where φ is an arbitrary closed ∈- formula containing only standard parameters.
This means that the universe I is an elementary extension of S in the NC#st

∞# language.

(e) Transitivity of I for a nonclasscal sets

∀intx∀y [y ∈s,w x =⇒ s,wint (y)] (6.89)

The next axiom states that the class I is regular. This means that sets in HST# are built over I in
a way similar to the Von Neumann hierarchy of sets in NC#st

∞# over ∅.

(f) Regularity over I for a nonclasscal sets

∀X ̸= ∅∃x ∈s,w X(x ∩s,w X ⊂s,w I) (6.90)

(g) Standardization for a nonclasscal sets

∀X∃stY (X ∩s,w S = Y ∩s,w S) (6.91)

This axiom implies that the only sets consisting entirely of standard sets are of the form Y ∩s,w S,
where Y ∈s,w S.

Axioms for a nonclasscal sets sets of standard size

1. Saturation for a a nonclasscal sets

If A ⊂s I is a standard size set then

((∀X,Y ∈s,w A) =⇒ s,wX ∩s,w Y ∈s,w A) ∧ (X ∈s,w A) =⇒ sX ̸= ∅))) =⇒ s,w

∩s,wA ̸= ∅. (6.92)

2. Standard Size Choice for a a nonclasscal sets
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Choice is available in the case where the domain of the choice function is of standard size.Let X be
a set of standard size and F a function on X.

Then

∀x ∈s,w X((F (x) ̸= ∅)) =⇒ s,w∃f(f(x) ∈s,w F (x))) (6.93)

3. Dependent Choice for a a nonclasscal sets

Any nonempty partially ordered nonclasscal set without maximal elements includes a nonempty
linearly ordered subset (sequence) where any element has its immediate successor.

7 Conclusion

Though the history of infinitesimals and infinity is long and tortuous,nonstandard analysis, as a
canonical formulation of the method of infinitesimals, is only about 60 years old. Hence, definitive
answers for many of its methodological issues are yet to be found. In 1960, Abraham Robinson,
exploiting the power of the theory of formal language reinvented the method of infinitesimals, which
he called nonstandard analysis because it used nonstandard models of analysis. K. Hrbacek argue
for acceptance of BNST+ (Basic Nonstandard Set Theory plus additional Idealization axioms)
[20]. BNST+ has nontrivial consequences for standard set theory; for example, it implies existence
of inner models with measurable cardinals.It has been proved in [21]-[22] that any set theory
wich implies existence of inner models with measurable cardinals is inconsistent. However hyper
Infinitary first-order logic 2L#

∞# with restricted rules of conclusions obviously can save BNST+

from a triviality.
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Appendix

A. Bivalent Hyper Infinitary first-order logic 2L#
∞# with

restricted rules of conclusions. Generalized Deduc-tion
Theorem

Hyper infinitary language L#

∞# are defined according to the length of hyper infinitary conjunctions/

disjunctions as well as quantification it allows. In that way, assuming a supply of κ < ℵ#
0 =

card
(
N#

)
variables to be interpreted as ranging over a nonempty domain, one includes in the

inductive definition of formulas an infinitary clause for conjunctions and disjunctions, namely,
whenever the hypernaturals indexed hyper infinite sequence {Aδ}δ∈N# of formulas has length
less than κ, one can form the hyperfinite conjunction/disjunction of them to produce a formula.
Analogously, whenever an hypernaturals indexed sequence of variables has length less than λ, one
can introduce one of the quantifiers ∀ or ∃ together with the sequence of variables in front of a
formula to produce a new formula. One also stipulates that the length of any well-formed formula
is less than ℵ#

0 itself.

The syntax of bivalent hyper infinitary first-order logics 2L#

∞# consists of a (ordered) set of sorts
and a set of function and relation symbols, these latter together with the corresponding type, which
is a subset with less than ℵ#

0 = card
(
N#

)
many sorts. Therefore, we assume that our signature

may contain relation and function symbols on γ < ℵ#
0 many variables, and we suppose there is a

supply of κ < ℵ#
0 many fresh variables of each sort. Terms and atomic formulas are defined as

usual, and general formulas are defined inductively according to the following rules.

If ϕ, ψ, {ϕα : α < γ} (for each γ < κ) are formulas of L#

∞# , the following are also formulas:

(i)
∧

α<γ ϕα,
∧

α≤γ ϕα,

(ii)
∨

α<γ ϕα,
∨

α≤γ ϕα,

(iii) ϕ→ ψ, ϕ ∧ ψ, ϕ ∨ ψ,¬ϕ
(iv) ∀α<γxαϕ (also written ∀xγϕ if xγ = {xα : α < γ}),
(v) ∃α<γxαϕ (also written ∃xγϕ if xγ = {xα : α < γ}),
(vi) the statement

∧
α<γ ϕα holds if and only if for any α such that α < γthestatementholdsϕα,

(vii) the statement
∨

α<γ ϕα holds if and only if there exist α such that α < γthe statement
holds ϕα.

Definition 1.[19]. A valuation of a syntactic system is a function that as signs ⊤ (true) to some
of its sentences, and/or ⊥ (false) to some of its sentences.Precisely, a valuation maps a nonempty
subset of the set of sentences into the set {⊤,⊥}.

We call a valuation bivalent iff it maps all the sentences into {⊤,⊥}.

Definition 2.[19].Let L be a propositional language. L is a classical bivalent propositional language
iff its admissible valuations are the functions v such that for all sentences A,B of L the following
properties hold

(a) v(A) ∈ {⊤,⊥}
(b) v(¬A) = ⊤ iff v(A) = ⊥
(c) v(A ∧B) = ⊤ iff v(A) = v(B) = ⊤.
(d) by definition of the classical implication A =⇒ B the following truth table holds
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(1)
(2)
(3)
(4)

v (A) v (B) v (A =⇒ B)
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

Truth table 1.
Remark 1.Note that in the case (4) on a truth table 1
In this case we call implication A =⇒ B a weak implication and abbreviate

A =⇒ wB (7.94)

We call a statement (1) as a weak statement and often abbreviate v (A =⇒ B) = ⊤w instead (1).

Definition 3.[19]. A is a valid (logically valid) sentence (in symbols, 
 A) in L iff every admissible
valuation of L satisfies A.

The axioms of hyper infinitary first-order logic 2L#

∞# consist of the following schemata:
I. Logical axiom

A 1. A→ [B → A]
A 2. [A→ [B → C] → [[A→ B] → [A→ C]]]
A 3. [¬B → ¬A] → [A→ B]
A 4. [

∧
i<α[A→ Ai]] → [A→

∧
i<αAi], α ∈ N#

A 5. [
∧

i<αAi] → Aj , α ∈ N#

A 6. [∀x[A → B] → [A → ∀xB]] provided no variable in x occurs free in A; A 7. ∀xA (x) →
Sf (A),
where Sf (A) is a substitution based on a function f from x to the terms of the language; in
particular:

A 7′. ∀xi [A (xi)] =⇒ A (t) is a wff of 2L#

∞# and t is a term of 2L#

∞# that is free for
xi

in A (xi). Note here that t may be identical with xi; so that all wffs ∀xiA =⇒ A are axioms
by virtue of axiom (7),see [19].
A 8.Gen (Generalization).

∀xiB follows from B.

II.Restricted rules of conclusion.
Let wff be a set of the all closed wffs of L#

∞# .
R1.RMP (Restricted Modus Ponens).

There exist subsets ∆1,∆2 ⊂wff such that the following rules are satisfied.

From A and A =⇒ B, conclude B iff A /∈ ∆1 and (A =⇒ B) /∈ ∆2,where ∆1,∆2 ⊂wff .
In particular for any A,B ∈wff : A =⇒ wB ∈ ∆2.
If A /∈ ∆1 and (A =⇒ B) /∈ ∆2we also abbraviate by A,A =⇒ B ⊢RMP B.

R2.RMT (Restricted Modus Tollens)
There exist subsets ∆′

1,∆
′
2 ⊂wff such that the following rules are satisfied.

P =⇒ Q,¬Q ⊢RMT ¬P iff P /∈ ∆′
1and (P =⇒ Q) /∈ ∆′

2,
where ∆′

1,∆
′
2 ⊂wff .

Remark 2.Note that RMP and RMT easily prevent any paradoxes of naive Cantor set theory
(NC), see [4]-[6].
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III. Additional derived rule of conclusion.

Particularization rule (RPR)

Remind that canonical unrestricted particularization rule (UPR) reads

UPR: If t is free for x in B(x), then ∀x [B(x)] ⊢ B(t),see [19].

Proof.From ∀x [B(x)] and the instance ∀x [B(x)] =⇒ B(t) of axiom (A7),
we obtain B(t)byunrestrictedmodusponensrule.

Since x is free for x in B(x), a special case of unrestricted particularization rule is:∀xB ⊢ B.

Definition 4.Any formal theory L with a hyper infinitary lenguage L#

∞# is defined when the
following conditions are satisfied:

1. A hyper infinite set of symbols is given as the symbols of L. A finite or hyperfinite sequence
of symbols of L is called an expression of L.

2. There is a subset of the set of expressions of L called the set of well formed

formulas (wffs) of L. There is usually an effective procedure to determine whether a given
expression is a wff.

3. There is a set of wfs called the set of axioms of L. Most often, one can effectively decide
whether a given wff is an axiom; in such a case, L is called an axiomatic theory.

4. There is a finite set R1, ..., Rn, of relations among wffs, called rules of conclusion. For each
Ri, there is a unique positive integer j such that, for every set of j wfs and each wff B, one can
effectively decide whether the given j wffs are in the relation Ri to B, and, if so, B is said to follow
from or to be a direct consequence of the given wffs by virtue of Rj .

Definition 5.A proof in L is a finite or hyperfinite sequence B1, ..., Bk, k ∈ N# of wffs such that
for each i,either Bi is an axiom of L or Bi is a direct consequence of some of the preceding wffs in
the sequence by virtue of one of the rules of inference of L.

Definition 6. A theorem of L is a wff B of Y such that B is the last wff of some proof in L. Such
a proof is called a proof of B in L.

Definition 7. A wff E is said to be a consequence in L of a set of Γ of wffs if and only if there is
a finite or hyperfinite sequence B1, ..., Bk, k ∈ N# of wffs such that E is Bk and, for each i,either
Bi is an axiom or Bi is in Γ, or Bi is a direct consequence by some rule of inference of some of the
preceding wffs in the sequence. Such a sequence is colled a proof (or deduction) E from Γ. The
members of Γ are called the hypotheses or premisses of the proof.

We use Γ ⊢ E as an abbreviation for E as a consequence of Γ.

In order to avoid confusion when dealing with more than one theory, we write Γ ⊢L E, adding the
subscript L to indicate the theory in question.

If Γ is a finite or hyperfinite set {Hi}1≤i≤m ,m ∈ N# we writeH1, ..., Hm ⊢ E instead of {Hi}1≤i≤m ⊢
E.

Lemma 1.[19]. ⊢ B =⇒ B for all wffs B.

Theorem 1.(Generalized Deduction Theorem1). If Γ is a set of wffs and B and E are wffs, and
Γ, B ⊢ E, then Γ ⊢ B =⇒ sE. In pticular, if B ⊢ E then ⊢ B =⇒ E.

Proof. Let E1, ..., En, n ∈ N# be a proof of E form Γ ∪ {B}, where Enis E.

Let us prove, by hyperfinite induction on j, that Γ ⊢ B =⇒ sEj for 1 ≤ j ≤ n.
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First of all, E1 must be either in Γ or an axiom of L or B itself.

By axiom schema A1, E1 =⇒ s (B =⇒ sE1) is an axiom. Hence, in the first two cases, by MP,
Γ ⊢ B =⇒ sE1 For the third case, when E1 is B, we have ⊢ B =⇒ sE1 by Lemma 1, and,
therefore, Γ ⊢ B =⇒ sE1. This takes care of the case j = 1.

Assume now that: ⊢ B =⇒ sEk for all k < j, j ∈ N#. Either Ej is an axiom, or Ej is in Γ, or Ej

is B, or Ej follows by modus ponens from some El and Em where l < j,m¡j,andEm has the form
El =⇒ sEj . In the first three cases, Γ ⊢ B =⇒ sEj as in the case j = 1 above. In the last case,
we have, by inductive hypothesis, Γ ⊢ B =⇒ sEl and Γ ⊢ B =⇒ s (El =⇒ sEj) But, by axiom
schema (A2), ⊢ B =⇒ s (El =⇒ sEj) =⇒ s ((B =⇒ sEl) =⇒ s (B =⇒ sEj))
Hence, by MP, Γ ⊢ (B =⇒ sEl) =⇒ s (B =⇒ sEj) and, again by MP, Γ ⊢ B =⇒ sEj .

Thus, the proof by hyperfinite induction is complete.

The case j = n ∈ N# is the desired result. Notice that, given a deduction of E from Γ and B, the
proof just given enables us to construct a deduction of B =⇒ sE from Γ. Also note that axiom
schema A3 was not used in proving the generalized deduction theorem.

Remark 3.For the remainder of the chapter, unless something is said to the contrary, we shall omit
the subscript L in ⊢L. In addition, we shall use Γ, B ⊢ E to stand for Γ ∪ {B} ⊢ E. In general, we
let Γ, B1, ..., Bn ⊢ E stand for Γ ∪ {Bi}1≤i≤n ⊢ E.

Remark 4.We shall use the terminology proof, theorem, consequence, axiomatic, etc. and notation
Γ ⊢ E introduced above.

Proposition 1. Every wff B of K that is an instance of a tautology is a theorem of K, and it may
be proved using only axioms A1-A3 and MP.

Proposition 2.If E does not depend upon B in a deduction showing that Γ, B ⊢ E, then Γ ⊢ E.

Proof.Let D1, ..., Dn be a deduction of E from Γand B, in which E does not depend upon B.In
this deduction, Dn is E. As an inductive hypothesis, let us assume that the proposition is true for
all deductions of length less than n ∈ N#

If E belongs to Γ or is an axiom, then Γ ⊢ E. If E is a direct consequence of one or two preceding
wffs by Gen or MP, then, since E does not depend upon B, neither do these preceding wfs. By the
inductive hypothesis, these preceding wfs are deducible from Γ alone. Consequently, so is E .
Theorem 2.(Generalized Deduction Theorem 2).Assume that, in some deduction showing that
Γ, B ⊢ E, no application of Gen to a wff that depends upon B has as its quantified variable a free
variable of B. Then Γ ⊢ B =⇒ sE.

Proof.Let D1, ..., Dn be a deduction of E from Γand B satisfying the assumption of this theorem.
In this deduction, Dn is E. Let us show by hyperfinite induction that Γ ⊢ B =⇒ sDi for each
i ≤ n ∈ N#. If Di is an axiom or belongs to Γ, then Γ ⊢ B =⇒ sDi, since Di =⇒ s (B =⇒ sDi)
is an axiom. If Di is B, then Γ ⊢ B =⇒ sDi, since, by Proposition 1, ⊢ B =⇒ sB.· If there
exist j and k less than i such that Dk is ⊢ Dj =⇒ sDi, then, by inductive hypothesis, Γ ⊢ B
=⇒ sDj and Γ ⊢ B =⇒ s (Dj =⇒ sDi). Now, by axiom A2, ⊢ B =⇒ s (Dj =⇒ sDi) =⇒
s ((B =⇒ sDj) =⇒ s (B =⇒ sDi)) .Hence, by MP twice, Γ ⊢ B =⇒ sDi. Finally, suppose that
there is some j < i such that Di is ∀xkDj .
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By the inductive hypothesis, Γ ⊢ B =⇒ sDj , and, by the hypothesis of the theorem, either Dj

does not depend upon B or xk is not a free variable of B. If Dj does not depend upon B,then, by
Proposition 2, Γ ⊢ Dj and, consequently, by Gen, Γ ⊢ ∀xkDj . Thus, Γ ⊢ Di. Now, by axiom A1,
⊢ Di =⇒ s (B =⇒ sDi) .

So, Γ ⊢ B =⇒ sDi by MP. If, on the other hand, xk is not a free variable of B, then, by axiom
A5, ⊢ ∀xk (B =⇒ sDj) =⇒ s (B =⇒ s∀xkDj) Since Γ ⊢ B =⇒ sDj , we have, by Gen,Γ ⊢
∀xk (B =⇒ sDj) , and so, by MP,Γ ⊢ B =⇒ s∀xkDj that is, Γ ⊢ B =⇒ sDi. This completes
the induction, and our proposition is just the special case i = n.
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