Model P(¢@), Quantum Field Theory: A Nonstandard
Approach Based on Nonstandard Pointwise-Defined
Quantum Fields

Jaykov Foukzon

Center for Mathematical Sciences, Technion Israstifute of Technology City, Haifa 3200003 Israel

jaykovfoukzon@list.ru

Abstract. A new non-Archimedean approach to interacted aquarftelds is presentedn proposed approach, a field
operatorp(x, t) no longer a standard tempered operator-valuedhiisbn, but a non-classical operator-valued fiorct
We prove using this novel approach that the quanfighd theory with HamiltonianP(¢), exists and that the
corresponding:*- algebra of bounded observables satisfies all thegHKastler axioms except Lorentz covariance. We
prove that thel(¢*), quantum field theory model is Lorentz covariant.

INTRODUCTION

Extending the real numbeR to include infinite and infinitesimal quantitiesiginally enabled Laugwitz [1] to
view the delta distributiod(x) as a nonstandard point function. Independentlyif&an [2] demonstrated that
distributions could be viewed as generalized patyiads. Luxemburg [3] and Sloan [4] presented aeralite re-
presentative of distributions as internal functievithin the context of canonical Robinson's theofyhonstandard
analysis. For further information on nonstandaal emalysis, we refer to [5, 6].

Abbreviation 1.1.1In this paper we adopt the following notationst Bstandard sét we often writeE,. For a
setE let °E be a s&tF,, = {"x|x € E4}. We identifyz with °z i.e.,z = ?z for allz € C. Hence,’E = E; if
EcC eg.,°C=C, °R=R, °P =P, °L, =L}, etc. Let'R. "R., *Rgy,, R, and ‘N, denote the sets of
infinitesimal hyper-real numbers, positive infirstmal hyper-real numbers, finite hyper-real numpéndinite
hyper-real numbers and infinite hyper natural nurspeespectively. Note thaRg, = "R\"R,, 'C="R+i'R,
“Cein = "Rein + 1" Ryip -

Definition 1.1Let {X, 0} be a standard topological space andXebe the nonstandard extensionXofLet 0,
de-note the set of open neighbourhoods of poiatX. The monadnon,(x) of x is the subset of'X defined by
mongy(x) =N {*0]|0 c 0,}.The set of near standard points *a&f is the subset of*X defined bynst (*X) =u
{mon, (x)|x € X}. It is shown tha{X, 0} is Hausdorff space if and only:if+ y impliesmon,(x) N mon,(y) =
@. Thus for any Hausdorff spdcg 0}, we can define the equivalence relatigf onnst (*X) so thate =, y if and
only if x € mon,(z) andy € mon,(z) for somez € X.

Definition 1.2 The standard Schwargpace of rapidly decreasing test functionsR¥hn € N is the standard
function space is defined b§(R™, C) = {f € C*(R",C)|Va, B € N"[|fllop < |}, where

Ifllap = Supyegn [x* (DEF ().
Remark 1.11If f is a rapidly decreasing function, then forak N™ the integral oﬂx“Df”f(x)| exists
f |x*DB f(x)|d™x < 0
]Rn

Definition 1.3 The internal Schwartgpace of rapidly decreasing test functions’Bf,n € *N is the function
space defined byS("R™, *C) = {*f € *C" ("R, *C)|Va, f € "N*["||'fllo.p < o]}, where



Wfllap = sup {x*(DPF00) Ix € ™).

Remark 1.2 If f is a rapidly decreasing functiofi,e S(R", C), then for alle, 8 € *N™ the internal integral of
*x*DP*f(x)| exists
J.o
HereDf*f(x) = (DF f(x)).
Definition 1.4 The Schwartzspace of essentially rapidly decreasing test fonston*R"™, n € *N is the function
space defined by

*x“DB*f(x)| d™x < *oo,

“Stin "R, "C) =
{1f € C=CRY O Y(a, B) (@ B € N")3cup(Cap € "Ren )Vx(x € R [[x% ('DF £ ()| < cap}
Remark 1.3 If *f € *Sg, ("R™, *C), then for alla € *N™ the internal integral of x*D#*f (x)| exists and finitely

bounded above
g XEDP ()| dMx < dyp, dag € Ry -

Abbreviation 1.2 The standard Schwartpace of rapidly decreasing test functionsR¥nwe will be denote by
S(R™). Let'S(*R™), n € *N denote the space d€-valued rapidly decreasing internal test functionsR"™,n € *N
and let'Sg, ("R™), n € *N denote the set dffy;,, -valued essentially rapidly decreasing test fungtioriR™, n € *N.
If h(w,x):R x R" andf:R™ - C are Lebesgue measurable ®&f" we shall write(*h, *f) for internal Lebesgue
integral*f*]Rn *h*f d™x with *f € *Sg, (*R™). Certain internal functionsh(w, x): "R X *R™ — *C define classical

distributionz(f) by the rule [3, 4]:

7(f) = st(("h, " f). (1)

Herest(a) is the standard part afandst({*h, *f}) exists [5].

Definition 1.5 We shall say thath(w, x) with w = @w € *R,, is an internal representative to distributic(f’)
and we will write symbolicallyt(x, ..., x,) = "h(w, x4, ..., x,) if the equation (1) holds.

Definition 1.6 [6] We shall say that certain internal functiotigw, x): "R X *R™ - *C is a finite tempered
distribution if *f € *Si, ("R™) implies |*h, *f| € °R = R. A functions *h(w,x): 'R X *R™ - *C is called
infinitesimal tempered distribution if f € *Si, (*R™) implies |*h, *f| € *R. .The space of infinitesimal tempered
distribution is denotedyb*S. (*R™).

Definition 1.7 We shall say that certain internal functidhgw, x): R x *R** — *C is a Lorentzx -invariant
tempered distribution if f € *Sg, "R™) andA € oL implies (*h, *f (Axy, ..., Ax,)) = (°h, *F (X1, o) X))

Example 1.1 Let us consider Lorentz invariant distribution

D(x) = ﬁfw elhr S22 3 =— §(r? — t2)sign(t). 2

Here w = |k| =k +ki+ki and r = (xy,x,%x3), ¥ = Jxf + x5 + x5. It easily verify that distribution
D(x) has the following internal representative

10 iky Sin wt
D(x,®) = @ flklswelkere‘k. 3)
Herew € *R,. By integrating in (3) over angle variables we get
D(x, ) = Bnlzr *fow{eiw(r—t) 4 elw—t) _ plo(r+t) _ e—iw(r+t)} dw. (4)

From (4) by canonical calculation finally we get

1 [sin w(r—t) _ sin@w(r+t) . S(r—t)=6(r+t) _ 1 2 12Vei
Dlx,w) ~ 4n2r[ r—t T+t ] = an2r - 2n6(r t )Slgn(t)' (5)
Example 1.2 We consider now the following Lorentz invarianstdibution:
_ 1 ikr COSwt ;3 =Li
D;(x) = el Jrae —d’k = (6)
It easily verify that distributio® (x) has the following internal representative
_ 1 ikr COSwt ;3
Dl(x,m) = W flklsmel er k. (7)
Herew € *R,,. By integrating in (7) over angle variables we get
i *rw( g _ _i _ i _i
Dl(x, '(I)') ~ — — fo {elw(r t) _ p-iw(r-t) + elw(+t) _ o Lw(r+t)}dw. (8)

From (8) finally we get



i -2 -2 2cos w(r—t) 2cosw(r+t) L 11
Dl(x m) " enr [l(r—t) T i(r+t) i(r-t) i(r+t) ] 2m2 x2° (9)
Example 3.We consider now the following Lorentzariant distribution

@) . 7
-t iGr—e(ole)) @k _ _m m Hy(~imyx71)
Ac (X) 2(2m)3 f]Rs e =0 pw i (10)

Here—x2 < 0, (k) = /|k?| + m? and Hl(z) is a Hankel function of the second kind. It easibrify that
distributionA.(x) has the following internal representative

—__t i(kr—e()lt)) LK
A(x, @) = 2(2m)3 flklswe e(k) (11)
From (10)-(11) it follows*A.(x) = A.(x, @) + A.(x) where
< _ 1 * k K)|t| d3k
Be() =557 Juswe OV 5 (12)
Note that for allA € °L,, A.(Ax) € *S.(*R™) and therefore for alh € °L%, A, (Ax, @) = A.(x, @), i.e.,
A.(x, @) is a Lorentz -invariant tempered distribution, see definitionTéus we can set= 0 in (11). By
integrating in (11) over angle variables and usingstitution of variablelk| = m sinh(u) we get
A(x, @) = - er f_mw exp(lmrsmh(u))du (13)
Note that
*H(Z) (x) = —f exp(lmrsmh(u))du A.(x, @) + E(x,w), (14)
E(x, @) = —f e exp(imrsinh(w) )du + flnw exp(imrsinh(w) )du. (15)

From (13)-(15) finally we obtaim, (x, @) ~ H (x) , sinceE(x, @) € “S.("R™).
Example 1.4 Let us consider Lorentz invariant distribution

A(x —y) = [{exp[—ip(x — ¥)] — exp[ip(x — y)]} §(p* — m*)I(p®)d*p. (16)
From (16) one obtains(x —y) = E;(x —y) — E,(x — y), where

21 (e =) = [{exp{lip(x - y)] - i@ (° - )= J—m (17)
2, (x —y) = [{exp{[-ip(x — )] + iw(®) (x° — y°)}} =5 JW : (18)

w(p) = /p? + m2. It easily verify that distribution (17) and (183s the following internal representatives
B =y, @) =y (expllin(x = 3] — 0 @) -y} . (19)
8= 3,0) = fyepl—ewpllip(x = )] + 0@ - y)]) Zr (20)

Note that *A(x — y) = [E;(x — ¥, @) + E,(x — y,®)] + [E.(x — y,®) + E,(x — y,@)], where

8= y,@) = [ lenllipt = »] - 0@ -y 55 (21)
5.0 =3,) = fyuol—emllipte = 3]+ 0@ = Y} 2 (22)

Note that for allA€°Ll, E,(A(x—7v),@)+ZE (A(x—y), @) € *S.('R") and therefore for allA €
oL A(A(x —y)) & AA(x —y), @) = B (A(x — ¥), @) + E,(A(x — y),®), i.e, A(x—y,@) is a Lorentz
~-invariant tempered distribution, see definitiorFom (20) by replacemept— —p we obtain

* 3
B = y,@) = = [y {epllipCe = ] + 0@ -y s - (23)
From (19) and (23) we get
Ax —y,®) =5 (x —y,@) + B -y o) = [, . sinfo@)(x° - y")]explip(x - y)] == m (24)
Thus for any points andy separated by space-like interval from (24) we iobtzat
ACx -y, @) ~ 0, (25)

sinceA(x — y,w) is a Lorentz=-invariant tempered distribution. From (25) for grgintsx andy separated by
spacelike interval we obtain that(A(x — y,@)) = 0.

Definition 1.8 [7] Let for eachn > 0: H, ={p e R*p:p=m?%m>p, >0},
wherep = (p°, —p?, —p?,—p?). Here the setH,, which are standard mass hyperboloids, are invatinder’L',.
Let j,, be the homeomorphism df,, ontoR3 given by j,..: (P, P1, P2, P3) = (P1, P2, P3) = p. Define a measure
Q,,(E) onH,, by



_ a*p
Qm(E) - f}m(E) /|p|2+m2 )

The measur@,,(E) is °L -invariant [7].

Theorem 1.1[7] Let uis a polynomially bounded measure with suppoi,inif u is °L, = L' - invariant, there
exists a polynomially bounded measpr@n[0,0) and a constantso that for any’ € S(R*)

_ o F(VIpIZ+mZ,py.p2,p3)dp
IR4fdu_Cf(O)+fo dp(m)<fR3 \W >

Theorem 1.2 Let uis a polynomially bounded', - invariant measure with supportifp. Let F(f) be a linear

x-continuous functiondF: *Ss, (*R*) - *Rg, defined by*f* *fduand there exists a polynomially bounded

(26)

R4
measurep on[0,00) such thatfoxood *p (m) € "Ry, and a constant€ *Rg,. Then for anyf € *S . (*R*) and for
anyx € "R, the following property holds

7V Ipl2+m2.p1.pz,p3)d#3p>

FCf) = cf(0) + foxood ' (m) < flplﬁﬂ VIpl2+m?

Definition 1.9 Let y(x,p) be a function such that:y(s,p) =1 if |p| <, x(G,p) =0 if |p|>x €
"Re.Define internal measut@,, ,, on *H,, by
: xGep)d3p
Qm,n(E) - f*Hm JIplZemz’ (28)
Theorem 1.3 [7] Let W, (x4, x,) be the two-point function of a field theory safisfy the Wightman axioms and
the additional condition thafy,, @(f),) =0 for all f € S(R*). Then there exists a polynomially bounded
positive measurp(m) on[[0,e0) so that for all for alf € S(R*)

Wo() = (o, 0(Fe(o) = [ FO)f () Wolry — x)d*xdy = [ ([, fdQ, ) dp(m). (29)
Theorem 1.4 Let W, (x,, x,) be the two-point function of a field theory memtgal in Theorem 1.3. Then for all
f € Sun CR*) and for anyr € *R,, the following property holds

Wolf) = J," (", fds) d*pm). (30)

Definition 1.10 (1) LetL(H) be algebra of the all densely defined linear djpesan standard Hilbert spaci.
Operator-valued distribution o™, that is a map ¢: S(R™) —» L(H) such that there exists a dense subspace
D c H satisfying:

1. for eachf € S(R™) the domain ofp containsD,

2. the induced mapS - End(D), f - ¢ (f), is linear,

3. for eachh; € D andh, € H the assignmenf — (h,, p(f)h,) is a tempered distribution.

(2) Certain operator-valued internal functior(*f, @): *S( *Rn) - *L(*H) is an internal representative for standard
operator valued distributiop (f) if for each near standard vectats € *D andh, € *H the equality holds

(hZ! ‘P(f)h1) = St(*(EZ! ‘P(*f' w)ﬁl))! (31)

(27)

whereh, ~ h, andh, ~ h,.

Definition 1.11 [8] Let H be a Hilbert space and denote % then-fold tensor produci™ = HQ H® --- ®H.
SetH® = Cand defineF(H) = H". F(H)is called the Fock space over Hilbert spHceNotice F(H) will be
separable ifH is. We set now! = L,(R®) then an elementy € F(H) is a sequence of -valued functions
Y = {Wo, W1(x0), Yo (%1, x3), Yo (1, %2, %3), oo, Wy (x4, ..., x,)}, n € N and such that the following condition holds

[Pol® + Xne N(fllpn(xl' s X)) [2d3Mx) < o0

Definition 1.12 [7] Let us define now external operatoip) onF, with domainDg by

(a@)P)™ = Vn+ 1P (p,ky, - k). (32)
The formal adjoint of the operata(p) reads
@ @Y™ = ZT, 6D @ = k)Y@ Dk, s i, ki, e k) (33)

Definition 1.13 [7] Let ™ be a vectorpf® = {1/)(”)}:=1 for whichy™ = 0 for all except finitely many: is
called a finite particle vector. We will denote thet of finite particle vectors ;. The vectorQ, = (1,0,0, ...) is
called the vacuum.

Definition 1.14 We let now'D-s = {"y|"y € *Fp, "p™ € *S ("R®"),n € *N} and for eaclp € "R*" we define
an internal operatdia(p) on*F, with domain*D+; by



Ca@yP)™ = Vn+ 1P (p, ky, k). (34)
The formalx-adjoint of the operatcia reads
Cat @Y™ = =T, 6D P~ k) YD Ul ki, Ky e, K- (35)
We express the free internal scalar field andithe zero fields with hyperfinite momentum cut-offe *R,, in
terms of*a’(p) and*a(p) as quadratic forms oiD-g by

*q)m,;f(x: t) =
@) [, A(exp(u)t = ip0) at @) + (expu(p)t + ipx))'a ()} 5= (36)
P = @YV [ {(exp(=ip)) at () + (exp(ipn) e ()} 7 (37)
T () = )72 [ {(exp(=ip)) et () + (exp(ipm)'a ()} 7l (38)

Theorem 1.5 Letd,,(x,t) and o,,(x,t), m,,(x,t) be the free standard scalar field and the time fietds
respectively. Then for any € ‘R, the operator valued internal functions (35)-(3ik)eg internal representatives
for standard operator valued distributiots, (x, t) and ¢,,,(x, t), m,,(x,t) respectively.

Definition 1.15 Let{X, ||-||} be a standard Banach space.fear*X ande > 0,e ~ 0 we define the oper-ball
aboutx of radiuse to be the seB,(x) = {y € *X|*||lx — y|| < &}

Definition 1.16 Let {{X, ||-||} be a standard Banach spafes X, thus*Y c *X and letx € *X.Thenx is anx-

accumu-lotion point ofY if for anye € "R, there is a hyper infinite sequen@el};"ilin *Y such that{xn};"i1 n
(B: O\ {x} # ).

Definition 1.17 Let {{X, ||-||} be a standard Banach spaceYlat *X,*Y is = -closed if any-accumulation point
of *Y is an element ofY.

Definition 1.18 Let {{X, ||-|I} be a standard Banach space. We shall say thahahteyper infinite sequence

{xn};‘zlin *X is x-converges tor € *X asn — oo if for any € € "R, there isN € *N such that for anyr >
N:"|lx —y|l < e

Definition 1.19 Let {{X, [|'llx}, {{Y,I'lly} be a standard Banach spaces. A linear internatatpel: D (4) <
*X - *Y isx*-closed if for every internal hyper infinite sequer‘ﬁxn};‘ﬁ1 in D(A) *-converging tax € *X such
thatAx,, —» y € Y asn - *o one hax € D(A) andAx = y. Equivalently ,A is x-closed if its graph is -closed in
the direct sunix @ *Y.

Definition 1.20 Let H be a standard external Hilbert space. The grapthefinternal linear transformation
T:*H - *H is the set of pairfg, Te)|p € D(T)}. The graph off', denoted by (T), is thus a subset 6H x *H
which is internal Hilbert space with inner prod@@p,,y.), (@2, ¥2)) = (@1, 9,) + (P1,,). The operatorT is
called ax-closed operator if'(T) is a* -closed subset of Cartesian prodUétx *H.

Definition 1.21 Let H be a standard Hilbert space. |t and T be internal operators on internal Hilbert
space€'H. Note that if'(T,) o I'(T), thenT; is said to be an extension Bfand we writel; o T. Equivalently,
T, o Tifand only ifD(T,) > D(T) andT,¢ = T¢ for allp € D(T).

Definition 1.22 Any internal operatof” on *H is =-closable if it has a&-closed extension. Everyclosable
internal operatof has a smallest-closed extension, called isclosure, which we denote byT.

Definition 1.23 Let H be a standard Hilbert space. letbe a*-densely defined internal linear operator on
internal Hilbert spacéH. Let D(T*) be the set of € *H for which there is a vectdr€ *H with (Ty, ¢) = (@, §)
for all ¥ € D(T), then for eachp € D(T*), we defineT*¢ = &. T* is called thex-adjoint ofT. Note thatS c T
impliesT* c S*.

Definition 1.24 Let H is a standard Hilbert space. *Adensely defined internal linear operaforon internal
Hilbert space*H is called symmetric (or Hermitian) Ifc T*. Equivalently, T is symmetric if and only if
(To,¥) = (¢, Ty) for all g, € D(T).

Definition 1.25 Let H be a standard Hilbert space. A symmetric intelinglar operato on internal Hilbert
space H is called essentially sel-adjoint if its-closurex-T is self x-adjoint. If T is *-closed, a subsét c D(T)
is called ax-core forT if - (TTD) =T.If T is essentially self-adjoint, then it has one and only one self
-x-adjoint extension.

Theorem 16 Let n;,n, € N and suppose thatW(ky,...kn,, 1, ... Pn,) € "L(*R3™*72))  where
W (ky, . kn,, D1, s Py,) IS @*C-valued internal function ofR®™1*n2). Then there is a unique operay on
*F(*L,(*R?)) so that'D-; < D(Ty,) is a* - core forT,, and



(1) as*C-valued quadratic forms GiD+s X "D+

* nq ny
Ty = f W(kl, wkn,p1, ...,pnz) (1_[ *a*(ki)> (1_[ *a(pi)) d™kd™p
*R3(M1+12) i=1 i=1

(2) As*C-valued quadratic forms @Pxg X D+g

* ng ny
Ty = f W(kl, Ky, D1, ...,pnz) (1_[ *aT(ki)> (1_[ *a(pi)) d™kd™p
*R3(M1+n2) i=1 i=1

(3) On vectors ifF, the operatordy, and Ty, are given by the explicit formulas

(T )" =

K(lny,m)"S [*flpllsw e S W (s len P e Py ) WO (P s Py Ky i, ) p], (39)
(TV’,‘,(*I/)))n =0ifn <n; —n,,
(T Cy)" ™™ =
K(l,ny1,)"S [*flpllsw *f|pn2|sw W (Ky, o e Das oo Py ) WO (D1 oo Py K o e, A k] (40)

(TV*V(*l,I)))n =0, ifn <n, —n,g.

. L ) . U(l+n,—np)1 /2 .

HereS is the symmetrization operator defined in [8] &d n,,n,) = [W] ,n,n, € N, LE "N,
-2

Proof. For vectorsy € D-; we defineTy, (*ip) by the formula (39). By the Schwarz inequality dhe fact that
*S is a projection we get

* —ny+ng 2 *
(™™ ™)" < Knyn) [CO) w1 (41)

Let us now define the operat8j, (*y) on D+ by the formula (39), then for dlp, iy € D+, then one obtains
directly *( "o, Ty, ") = *(Ty, ", "Y). Thus, Ty, is * -closable andy, is the restriction of the -adjoint of T;, on
D+g. We will useT,, to denotex -T;,, andT;;, to denote the -adjoint ofT;,. By the definition of T, D« is a* -core
and further, sincel}, is bounded on theparticle vectors iD-swe get'F, c D(Ty, ). Since the right-hand side of
(39) is also bounded on tligarticle vectors, equation (38) represefyson alll-particle vectors. The proof of the
statement (2) abo;, is the same.

Definition 1.26 [7] Define standard) -space by) =x;_, R. Let ¢ be theo-algebra generated by infinite
products of measurable setsRnand setu = @5,y With du, = m~/?exp(—x2/2). Denote the points a by
q ={q1, 92, - )- Then{Q, 1) is a measure space and the set of the all furectbthe formB,(q) = P(q1, 92, -» qn),
whereP,(q) is a polynomial ana € N is arbitrary, is dense ih,(Q, di). Remind that there exists a unitary map
S:F,(H) — L,(Q,du) of Fock spacé;(H) ontoL,(Q, du) so thatSp(f,)S™! = g, andSQ, = 1. Here{f,}i=, is
an orthonormal basis fai. Then by transfer one obtains internal measureespdk u) = (*Q, *u) and internal
unitary map *S: F(H) - *L,(*Q,d*u) so that*Se(f,)*S'=gq,, r€*N and *SQ, = 1. Here {fr};‘f1 is an
orthonormal basis foiH.

Theorem 1.7 Let *¢,(x,t) be internal free scalar boson field of massat timet = 0 with hyperfinite
momentum cutoff » in four-dimensional space-time. Ley(x) be a real-valued internal function
in*L, "R3®) n *L, (*R®). Then the operator

“Hip(9) = 200) “fops 9(0) "0 £ (0): dx (42)
is a well-defined internal symmetric operator @ . Here: "¢ (x) := "¢, (x) + d, () (*(pi(x)) +d, ().

where the coefficientd, () andd, () are independent of LetS denote the unitary map &f(H) ontoL,(Q, du)
considered in [7]. Thel = *S*H, ,,(9)*S™* is multiplication by internal functioH; ,,(q) which satisfies:

(@) Vi (q) € "Ly ("Q,d") for allp € 'N, (b)exp (—tV,,.(q)) € "Ly ("Q,d"y) for all t € [0,"0).
Proof: Note that for each € *R3, the operatotS(*, (x))*S~! is just the operator on internal measurable space
*L,(*Q,d"w) on which this operator acts by multiplying by thenction Zkflck(x, n)q, Wherec, (x,x) =

(2m)3/? (fk, (M(p))l/zexp(ipx)). FurthermoreE;oillck(x, n)|? = (211)3/2* M(P)”ZHE S0 *S (*(pi(x)) *S~land

*S (*(pi(x)) *S~tare in *L,(*Q,d*u) and the correspondingL,(*Q,d*u)-norms are uniformly bounded in




Therefore, sincgy € *L,(*R?) the operatorS (*H,,H(g)) *S~1 is just the operator on internal measurable space

*L,(*Q, d*u) on which this operator acts by multiplying by thg (*Q, d*u)-function which we denote b¥, ,(q).
Let us consider now the expression iy, (g)*Q, obviously this is a vectd0,0,0,0,%*,0, ...) with

T A9 T lxGpp)] exp(~ix ZiZtp; )aix
Y (1, 02,03, 04) = f*Ra )32 [T .

o [2u@)]Y/? (43)
Herex(x,p) = 1if |p| < »,x(t,p) = 0if |p| > %, x € *R,,. We choose now the parametier A(») = 0 such
2 * 2
that*[li*||2 € R and therefore we obtail| *H,,K,A(%)(g)QOHZ ER, since || *H,,K,A(H)(g)ﬂonz = *||y*||3. But,
since’S* (), = 1, we get the equalities

*” *Hl,x,l(x)(g)ﬂonz = ”*S HI,J{,A(H)(Q)*S_l

From (43) we get tha*“V"""l(”)(q)||*L2(*Q -
is n € *Nin the domain of the operatdr,_,f,',l(”)(q) and*S *Hy, 260 (9)"S™ = Vi,.200(q) on that domain. Since
*Qg is in the domain OTsz,z,A(x)(g)'p € N, 1 is in the domain of the operat?, ,, ;. (q) for all p € *N. Thus,
forallp € "NV}, 160(q@) € "Ly, ("Q, d”w), since’u (*Q ) is finite, we conclude thaf,,, 5, (q) € "L, (*Q,d"w) for
allp € *N.

(b) Remind Wick's theorem asserts that: g}, (x) = 251;/;](—1)1'ﬁc,i*wg{;“”(x) with ¢, =

*||*<pm,n(x)*ﬂo||z. For j =4 we get—0(c2) <: *pm.(x):and therefore — (*fwg(x) d3x) 0(c) <

*

|*Lz(*Q,d*u) = VI,J{,A(H) (q)”*Lz(*Q,d*u)' (44)

) € R and it is easily verify, that each polynomiq,, g5, ..., q5),

"Hypep00(9)- Finally we obtain [, exp (—t(: *<p;‘;1_,{(x):))d *u <exp(0(c¥))and this inequality
finalized the proof.

Theorem 1.8 [7] Let (M, u) be ac-measure standard space wijttM) = 1and letH, be the generator of a
hyper- contractive semigroup dn(M,du). Let V be aR-valued measurable function di, ) such thatV €
L,(M,dy) for all p € [1,00) andexp(—tV) € L,;(M,dyu) for all t > 0. ThenH, + V is essentially self-adjoint on
C*(Hy) nD(V) and is bounded below. Heilg”(H, ) = ﬂpEND(H(’J’).

Theorem 1.9 Let (M, u) be ac-measure space witlhh(M) = 1land letH, be the generator of a hypercontractive
semi-group onL,(M,du). LetV be a *R-valued internal measurable function diM,*u) such thatV e
*L,("M,d"u) for allp € [1, ") and*exp(—tV) € "L, ("M, d"u) for all t > 0. Assume that a S€t°(*Hy) N D(V)
is internal. Then operatdiHl, + V is essentially sel--adjoint internal operator orC ®(*H, ) n D(V) and it is
hyper finitely bounded below. Heré" ® ("Hy ) = Npe-y D(*HY).

Proof. It follows immediately by transfer from theorem 8.

Remark 1.4 Let V;, ; be operator on internal measurable spdg€*(), d*u) on which this operator acts by
multiplying by the *L,(*Q, d*u)-functiorV;,,; , see proof to Theorem 1.7. Note that for this afmera set
C°(*Hy) N D(V,M) is not internal and therefore Theorem9 no longedd But without this theorem we cannot
conclude that operatdH, + V;,, ; is essentially self--adjoint internal operator o ®(*Hy ) N D(V,,K,A). Thus
Robinson’s transfer is of no help in the case apoeading to operatdr;, ; considered above. In order to resolve
this issue, we will use non conservative extensiothe model theoretical nonstandard analysis[$483].

NON CONSERVATIVE EXTENSION OF THE MODEL THEORETICAL
NONSTANDARD ANALYSIS

Remind that Robinson nonstandard analysis (RNA)yntiveloped using set theoretical objects callgabsu
structures [2-6, 14]. A superstructuv€S) over a sefS is defined in the following wayV,(S) =S, V,.1(S) =
V,(S)u P(Vn(S)), V(S) = Unen Vn+1(S). Making S = R will suffice for virtually any construction necesg in
analysis. Bounded formulas are formulas where @dintjfiers occur in the formvx (x €y - - ), Ix (x €y =
-+ ). A nonstandard embedding is a mappirgV(X) — V(Y) from a superstructureV(X) called the standard
universe, into another superstructli@’) called nonstandard universe, satisfying the follmapostulates:

1L.Y="X



2. Transfer Principle For every bounded formul&(x,, ..., x,) and elements,, ...,a, € V(X) the property
®(ay, ...,a,) is true for a4, ...,a, in the standard universe if and only if it isarfor *a,, ..., *a,, in the
nonstandard univers&X) ®(xq,..,x,) @ V() ®(*aq, ..., a,).

3. Non-triviality For every infinite setd in the standard universe, the §ét|a € A} is a proper subset oA.

Definition 2.1 A setx is internal if and only ifc is an element of'4A for somed € V(R). Let X be a set and

A = {A,;};¢; a family of subsets o .Then the collectiond has the infinite intersection property, if anyiiife sub
collection ] c I has non-empty intersection. Nonstandard univesseci -saturated if whenevef4;};c; is a
collection of internal sets with the infinite inseiction property and the cardinality bis less than or equal to

Remark 2.1 For each standard univerde= V (X) there exists canonical langualye and for each nonstandard

universel/ = V(Y) there exists corresponding canonical nonstandaglage*L = Ly, [5, 14]

4.The restricted rules of conclusion If Let A andB well formed, closed formulas so th&tB € *L.If W E A4,
then—A4 W#gyp B. Thus, if a statememt holds in nonstandard universe, we cannot obtaim fiormula —A
any formulaB whatsoever.

Definition 2.2 [9-13] A setS c *N is a hyper inductive if the following statementdwinV (Y):

/\ (e €S—>at€d).
a€c*N

Herea™ = a + 1.0bviously a setN is a hyper inductive.
5. Axiom of hyper infinite induction
VS(S € "NY{VB(B € "N)[A1cq<p(@ €S > a* € 5)| - S ="N}.

Example 2.1 Remind the proof of the following statement: stane (N, <, =) is a well-ordered set.

Proof. Let X be a nonempty subset &. Suppose X does not have deast element. Then consider the SgX.

CaselN\X = @. ThenX = N and sd0 is a< -least element but this is a contradiction.

Case2N\X = @. Thenl € N\X otherwisel is a< -least element but this is a contradiction. Assumw that
there exists some € N\X such that # 1, but since we have supposed tiatloes not have & -least element,
thusn + 1 ¢ X. Thus we see that for all the statement € N\X implies thatn + 1 € N\X. We can conclude by
axiom of induction that € N\ X for alln € N. ThusN\X = N impliesX = @. This is a contradiction t& being a
non-empty subset &f. Remind that structur€'N, <, =) is not a well-ordered set [5, 6, 14]. We set fgw= "N\N
and thusN\X, = N. In contrast with a seX mentioned above the assumptiore *N\X,; implies thatn + 1 €
*N\X; if and only ifn is finite, since for any infinite € *N\N the assumption € *N\X,; contradicts with a true
statemen? (V) £ n ¢ *"N\X;=N and therefore in accordance with postulate 4 vmaagobtain frorn € *N\X; any
closed formula whatsoever.

Theorem 2.1 [13] (Generalized Recursion Theorem) lSebe a setc € S andg: S X *N — S is any function
with dom(g) = S X *N andrange(g) < S, then there exists a functidht *N — S such that: 1om(F) = *N and
range(F) € S; 2)F(1) =c; 3) forallx € 'N,F(n + 1) = g(F(n),n).

Definition 2.3 [11-13] (1) Suppose th& is a standard set on which a binary operatigris-) and (-x-) is
defined and under whichi is closed. Le{x,},c+y be any hyper infinite sequence of termsSfFor every hyper
naturaln € *N we denote byExt- Y-, x, the element ofS uniquely determined by the following canonical
conditions: (aExt-Yi_,x, = x;; (0)Ext-Y¥1x, = Ext-YF_, X + x4, for alln € *N.

(2) For every hyper natural € *N,, we denote byExt-[];-; x; the element ofS uniquely determined by the

following canonical conditions: (&xt-[T5-1x, = x1; (0) Ext-[1321 x, = (Ext-[1}21 xk) X X4, for all
n € *N.

Theorem 2.2. [13] (1) suppose that is a standard set on which a binary operafich-) is defined and under
which S is closed and that + -) is associative on S. Lék, },c-y be any hyper infinite sequence of termsSf
Then for anyn, m € *N we haveExt- YT x), = Ext- Yjo; X + Ext-Ype, Xy ;

(2) suppose that is a standard set on which a binary operafion) is defined and under whichis closed and

that (-x-) is associative on S. Léi, },c+y be any hyper infinite sequence of terms$fThen for any
n,m € *N we have:Ext- [[pil xx = (Ext-[Th=1 x) X (Ext-TTit, x); (3) for anyz € *S and for any
n € *N,, we have:

z X (Ext-YRoq xx) = Ext-Y0-12Z X xy.



External non-Archimedean Fidd *R# by Cauchy Completion of the Internal Non -
Archimedean Field *R.

Definition 2.4 A hyper infinite sequence of hyperreal numbersnfriR is a functiona: *N - *R from the
hyper- natural number®N into the hyperreal numbefR.We usually denote such a function by~ a, , so the
terms in the sequence are written fas, a,, ..., a,, ... }.To refer to the whole hyper infinite sequence,wilé write
{an}noz1 Or{an}nE*N'

Abbreviation 2.1 For a standard sé we often writeFEy,, let °E, = {*x|x € E,.}.We identifyz with 9z i.e.,
z=9%9 for allzeC. Hence, °E4=E, if EcSC eg., °C=C °R=R, etclet *R¥
‘REL,'RE,, *Rﬁ'ﬁn 'R, *N,, de-note the sets of Cauchy hyper-real numbersci@ainfinitesimal hyper-real
numbers, Cauchy positive infinitesimal hyperreambers, Cauchy finite hyper-real numbers, Cauchjnitef

hyper-real numbers and infinite hypernatural nureperspectively. Note théR’j_ﬁn = "RI\"R! .

Definition 2.5 Let {an};‘il be a hyper infinite'R- valued sequence mentioned above. We shall say that

{an};:l #-tends to0 if, given anye € "R, , there is a hyper natural numkere *N such that for alln > N,
la,| < e. We denote this symbolically iy, — 0.

Definition 2.6 Let {an};‘zl be a hyper infinitéR-valued sequence mentioned above. We shall say{d;gf:l
#-tends toqg € "R if, given anye € "R.,, there is a hyper natural numbdre "N such that for ath > N,
la, — q| < € and we denote this symbolically by -4 g or by #-lim,_+, a, = q.

Definition 2.7 Let {an};‘zl be a hyper infinitéR-valued sequence mentioned above. We shall sag¢iaaence
{an};"i1 is bounded if there is a hyperrdéle *R suchthat for anyn € "N, |a,| < M.

Definition 2.8 Let {an};‘il be a hyper infinitéR-valued sequence mentioned above. We shall say{d;gle
is a Cauchy hyper infinit&R-valued sequence if , given an¥e *R., , there is a hyper natural numhbié(e) € *N
such that for anyn,n > N, |a, — a,,| < &.

Theorem 2.3 If {an}*°° is a#-convergent hyper infinitéR-valued sequence, i.e., that é5, -4 q for some

n=1

hyper-real number, g € "R then {an};‘il is a Cauchy hyper infinitéR-valued sequence.

Theorem 2.4 If {an};‘il is a Cauchy hyper infinitéR-valued sequence, then it is finitely bounded opery
finitely bounded; that is, there is some finitehgperfiniteM € *R, such thata,,| < M for alln € *N.

Definition 2.8 Let S be a set, with an equivalence relatigh~ -) on pairs of elements. Fore S, denote by
cl[s] the set of all elements hthat are related to Then for any, t € S, eithercl[s] = cl[t] orcl[s] andcl[t] are
dis-joint.

Remark 2.2 The hyperreal numbet®# will be constructed as equivalence classes of Bahgper infinite’R-
valued sequences. LE{*R} denote the set of all Cauchy hyper infiriRe-valued sequences of hyperreal numbers.
We define the equivalence relation on aBER}.

Definition 2.9 Let{a, },-, and{b,},, be inF{*R}. Say they aré-equivalent ifa, — b, -4 0 i.e., if and only
if the hyper infinite'R-valued sequender,, — bn};‘ﬁl #-tends taD.

Theorem 2.5 [13] Definition above yields an equivalence ralaton a seF{*R}.

Definition 2.10 The external hyperreal numbeiR? are the equivalence classel${a,}] of Cauchy hyper
infinite *R-valued sequences of hyperreal numbers, as parititafi above. That is, each such equivalence dtass
an external hyperreal number.

Definition 2.11 Given any hyperreal numbere *R, define a hyperreal numbefto be the equivalence class of
the hyper infinite'R-valued sequend, = q},,-,consisting entirely of € *R. So we viewR as being insidéR}
by thinking of each hyperreal numbere *R as its associated equivalence clgbslt is standard to abuse this
notation, and simply refer to the equivalence ctesg as well.

Definition 2.12 Lets,t € *R¥, so there are Cauchy hyper infinitR-valued sequence{an};":l,{bn};‘zl of
hyper-real numbers with = cl[{a,}] andt = cl[{b,}].

(a) Defines + t to be the equivalence class of the hyper infiséguencéa,, + bn};‘zl.

(b) Defines x t to be the equivalence class of the hyper infisitguencéa,, + bn};‘ﬁl.
Theorem 2.6 [13] The operations-,x in definition above by the requirements (a) andafie well-defined.



Theorem 2.7 Given any hyperreal numbge€ *R¥,s # 0 there is a hyperreal numbere *R¥ such that
sxt=1.

Theorem 2.8 If {an};‘il is a Cauchy hyper infinite sequence which does#nt@nd to0, then there is some
N € "N such that, for ath > N, a,, # 0.

Definition 2.13 Lets € *R¥. Say that is positive ifs = 0, and ifs = cl[{a,}] for some Cauchy hyper infinite
sequence of hyperreal numbers such that for s8ree’N, a,, > 0 for all n > N. Then for a given two hyperreal
numberss, t, say that > t if s —t is positive.

Theorem 2.9 Lets, t € *R¥ be hyperreal numbers such that ¢, and letr € *R¥, thens +r >t +r.

Theorem 2.10 Let s, t € *R¥ be hyperreal numbers such tlat > 0. Then there isn € *N such thain x s >
t.

Theorem 2.11 Given any hyperreal numberE *R#¥, and any hyperreal number- 0,& = 0, there is a
hyperreal numbeg € *R¥ such thatr — q| < e.

Definition 2.14 Let S & *R¥ be a nonempty set of hyperreal numbers. A hypememberx € *R¥ is called an
upper bound fof if x > s for all s € S. A hyperreal number is the least upper bound (or supremupS) for S
if x is an upper bound f¢ andx < y for every upper bound of S.

Remark 2.3 The order< given by definition above obviously {&incomplete.

Definition 2.15 LetS ¢ *R¥ be a nonempty set of hyperreal numbers. We wylltsat:

(1) S is < -admissible above if the following conditions aggisfied:

(a) S is finitely bounded or hyper finitely bounded abov

(b) let A(S) be a set such thatc[x € A(S) © x = S] then for anye > 0,¢ = 0 there arex € S andp € A(S)

suchtha —a <e = 0.

(2) S is < -admissible belov if the following conditions ardised:

(a) S is finitely bounded or hyper finitely bounded belo

(b) let L(S) be a set such thatx[x € L(S) © x < S] then for anye > 0,¢ = 0 there arex € S andf € L(S)

suchthatr — g < e = 0.

Theorem 2.12 [13] (a) Any<-admissible above subsgt= *R¥ has the least upper bound property.

(b) Any <-admissible above subsgt= “R¥ has the greatest lower bound property.

Theorem 2.13 [13] (Generalized Nested Intervals Theorem) {.Ig};":l = {[a,, bn]};°=°1, [a,, b,] € "R¥ be a
hyper infinite sequence @#-closed intervals satisfying each of the followganditions:

@L2L21,2-+21,2

(b) b, — a,, »4 0 asn - oo, Thenﬂ;‘ﬁ1 I,consists of exactly one hyperreal numbpet *R¥.

Theorem 2.14 [13] (Generalized Squeeze Theorem) L{%};O:y {cn};‘zl be two hyper infinite sequences
#-converging taL, and {bn};‘il a hyper infinite sequence. ¥ > K, K € "N we haven,, < b,, < ¢,, thenb,, also
#-converges td.

Theorem 2.15[13] If #-lim,,_+s, | a,| = 0, then#-lim,,_+s,, a,, = 0.

Theorem 2.16 [13] (Generalized BolzanéNeierstrass Theorem) Any finitely or hyper finitddpunded hyper
infinite *R# -valued sequence h&sconvergent hyper infinite subsequence.

Definition 2.16 Let {an};‘i1 be *R#-valued sequence. Say that a seque{m,ga};":1 #-tends to0 if, given any
£ >0, £ = 0, there is a hyper natural numhére *N.,, N = N(¢) such that, for ath > N, |a,| < ¢.

Definition 2.17 Let {an};‘il be *R#-valued hyper infinite sequence. We c@ﬂn};‘il a Cauchy hyper infinite
sequence if given any hyperreal numbe *Rf .., there is a hypernatural numh®r= N(¢) such that for any
m,n >N, |a, — ap| <&.

*
o]

Theorem 2.17 If {a,},,_,is a#-convergent hyper infinite sequence ie,,—4 b for some hyperreal numbare
*R¥, then{an};":1 is a Cauchy hyper infinite sequence.
Theorem 2.18 If {an};‘ﬁl is a Cauchy hyper infinite sequence, then it igrged; that is, there is somee
‘R¥ such thata,| < M for alln € *N.

Theorem 2.19 [13] Any Cauchy hyper infinite sequenéen};":1 has a#-limit in *R?; that is, there exists
b € *R¥ such thatt,, -4 b.

Remark 2.4 Note that there exists canonical natural embeddiRg> *R¥.



Remark 2.5 A nonempty set S of Cauchy hyperreal numb@&$ is unbounded above if it has no hyperfinite
upper bound, or unbounded below if it has no hypief lower bound. It is convenient to adjoin touchy
hyperreal number systefiR? two points,+o* = (*+0)*  (which we also write more simply as’ ) and—o*,
and to define the order relationships between taedchany Cauchy hyperreal numbeg *R¥ by —oo¥ < x < oo,

Definition 2.18 We will call —o* andw* are points at hyper infinity. I§ ¢ *R¥ is a nonempty set of Cauchy
hyperreals, we writsup(S) = oo to indicate thas is unbounded above, aief(S) = —oo* to indicate thas is un-
bounded below.

Definition 2.19 That is(e, 8) definition of the#-limit of a function f: D — *R¥ is as follows: letf(x) is a
*R¥- valued function defined on a subget= *R¥ of the Cauchy hyperreal numbers. kebe a#-limit point of D
and letL € "R¥ be Cauchy hyperreal number. We say thatim, . f(x) = L if for everye = 0, > 0 there
exists @ = 0,6 > 0 such that, foralk € D, if 0 < |x — ¢| < &, then|f(x) — L] < «.

Definition 2.20 [12] The functionf: *R¥ — *R# is a#-continuous (or micro continuous) at some peirf its
domain if the #-limit of f(x), as x #-approachesc through the domain off, exists and is equal to
fe):#-limy,, o f(x) = f(0).

Theorem 2.20 [13] Let {an};":l and {bn};‘:l be *R¥- valued hyper infinite sequences. Then the following
equalities hold for any, k,1,j,m € *N :

b x (Ext-Y-,a;) = Ext-Y7, b X q; (45)
Ext-Yi—1a; + Ext-¥i_; by = Ext-Y;,(a; + b;) (46)

Ext- Zf;ko(Ext- Z?:zo ai]-) = Ext- Zi-l:lo(Ext- Zfiko ai]-) (47)
(Ext-37, a;) x (Ext-¥7_; b;) = Ext- Y1, (Ext- Y7, a; X by) (48)
(Ext-TTi=; @) x (Ext-11i2; by) = Ext-TIiZ; a; X b; (49)
(Ext-[Ti=; @)™ = Ext-[Ti-; @i (50)

Theorem 221 [13] Let {a,}, and {b,}*, be *R¥-valued monotonically non-decreasing hyperfinite
sequences. Suppose thak b;, 1 < i < n, then the following equalities hold for anye "N :
Ext-I, a; < Ext-[], b;. (51)
Theorem 222 [13] Let {a,}, and {b,}, be *R#-valued hyperfinite sequences. Then the following
inequalities hold for any € *N :
(Ext-TTi-y @ % b)? < (Ext-TT}; af) X (Ext-TTi, b). (52)
Definition 2.21 [12] Assume thafa,}, -, is a'R¥- valued hyper infinite sequence, the symBet- Y.~ a, is a
hyper infinite series, andl, is the n-th term of the hyper infinite series.
Definition 2.22 [12] We shall say that a seriéct- Zn‘ﬁl a, #-converges to the sume *R#, and write
Ext- Z;‘Zl a, = A if the hyper infinite sequencééln};"i1 defined byA,, = Ext-Y-, a,, #-converges to the surh
The hyperfinite sum,, is then-th partial sum ofExt- Y, -, a,. If #-limA,, = o* or—o*, we shall say that

m-*oo,
Ext-¥, %, a, #-diverges too* or to—co¥,
Theorem 2.23 [12] The hyper infinite suixt- ¥~ a, of a#-convergent hyper infinite series is unique.

Hyper I nfinite Sequences and Series of *R¥*- Valued Functions

Definition 2.23 [12] If £;, f2, s fior fiew1s s for -1 € *N are*R¥- valued functions on a subsgtc *R# we say
that{fn}:l‘i1 is a hyper infinite sequence 6R¥- valued functions ob.

Definition 2.24 [12] Suppose tha(tfn};":1 is a hyper infinite sequence @R#- valued functions o® < *R¥ and
the hyper infinite sequence of valu{qu(x)};"i1 #-converges for each in some subsef of D. Then we say that
{fn(x)};":1 #-converges pointwise ahto the#-limit function f, defined byf (x) = lim,,_,« f,, ().

Definition 2.25 [12] If {fn(x)};‘:1 is a hyper infinite sequence @®¥- valued functions o c *R¥, then

Ext-3,2, fo(x) (53)
is a hyper infinite series of functions &n The partial sums of (1), are defined BYx) = Ext- Y.5—, fn(x). If
hyper infinite sequence

{Fn(x)};oi1#'



converges pointwise to the #-limit functionF(x) on a subs&fcD, we say that
{Fn(x)}nozl#'
converges pointwise to the suix) onS, and writeF (x) = Ext- Y., =, f,(x).

Definition 2.26 [12] A hyper infinite series of the forBwt- Z;‘:l(x —xo)",n € *N is called a hyper infinite
power series i — x;.

The #-Derivatives and Riemann #-Integral of *“R#-Valued Functions f: D - *R#"

Definition 2.27 [12] A functionf: D — *R¥ #-differentiableat an#-interior pointx € D of its domainD c *R#
if the difference quotient f(x)— f(xo)/x — xq has a
#-limit:

#- limxe#xo (f(x) - f(xo)/x - xo)-
In this case thet-limit is called the#-derivative of f at interior point,, and is denoted by’#'(xo) or by
d*f (xo)/d*x.

Definition 2.28 If f is defined on ar#-open sef c *R¥, we say that f is#-differentiable onS if f is
#-differentiable at every point ¢ If f is #-differentiable ors, thenf#'(x) is a function ons.We say thaff is
#-continuously#-differentiable ors if f#'(x) is #-continuous ors.

Definition 2.29 If f is #-differentiable on a#-neighbourhood of,, it is reasonable to ask jf#* (x) is
#-differentiable af,. If so, we denote th#-derivative off* (x) atx, by f*’(x,) or by f*®(x,) and this is the
second#-derivative off at x,. Continuing inductively by hyper infinite inductipif f#™~Y(x) is defined on a
#-neighbourhood ofx,, then then-th #-derivative off atx, denoted by *™ (x,) or byd*™f (x,)/d*x™, where
n € *N.

Theorem 2.24[12] If f is #-differentiable atx, thenf is #-continuous ak,.

Theorem 2.25[12] If f andg are#-differentiable ak,, then so ar¢ + g andf x g with:

@) (f £9)"(x0) = f*(x0) £ 9% (x0), (b) (f X g)* (x0) = f* (x0)g (x0) + g (xo) f (x0).

#1 _#
(c) The quotienf /g is #-differentiable at, if g(x,) # 0 with (f/g)*" =L ("°’9(’;j’(’x9)z (xg)f (o)
0

(d) If n € *"N andf;, 1 < i < n are#-differentiable atc,, then so ar&xt- Y7, f; with:
(Ext- 37y f)* (xo) = Ext- 37, £, (o).
(e) Ifn € "N and f*™(x,), g*™ (x,) exist, then so dod&g x g )*™ (x,) and

n n #(0) )
(Fx9) o) =Ext- ) (1)f G)g " Do)
=
Theorem 2.26 [12] (The Chain Rule) Suppose thats #-differentiable atc, andf is #-differentiable aig(x,).
Then the composite functioh = f o g defined byh(x) = f(g(x)) is #-differentiable at x, with h*'(x,) =
f*(9(x0))g* (x0)-
Theorem 2.27 [12] (Generalized Taylor's Theorem) Suppose &P (x ), n € *N exists on ar-open interval
I about x,, and letx € I. Let B,(x,x,) be then-th Taylor hyper polynomial off aboutx,, B,(x,x;) =

Ext'Z?:ow Then the remainddt(x, x,) = f(x) — B,(x, x,) can be written as
#(n+1) _ n
R(x,x,) = % (54)

Herec depends upom and is betweer andx,.

Definition 2.30 [12] Let[a, b] € *R¥. A hyperfinite partition of [a, b] is a hyperfinite set of subintervals
[x0, %1]),- - [Xn_1, %], Withn € *N,, wherea = x;, < x; ... < x,, = b. A set of these pointsy, x4, ..., x,, defines a
hyperfinite partitionP of [a, b], which we denote by = {x;}i-,. The pointsx,, x4, ..., x, are the partition points of
P.The largest of the lengths of the subinteryals,, x;], 0 <i < n is the norm ofP = {x;}-, denoted by{P||;
thus,||P|| = max;<<n (% — X;-1).

Definition 2.31 Let P andP’ are hyperfinite partitions dia, b], thenP’ is a refinement of if every partition
point of P is also a partition point d¢f’; that is, if P’ is obtained by inserting additional points betwésrse ofP.
Definition 2.32 Let f be*R#- valued functiorf: [a, b] —» *R¥, then we say thaexternal hyperfinite suna£*
defined by

0Bt = Ext-Y7 f(c) (6 — xi-1), X1 S ¢ S x, (55)



is a Riemann external hyperfinite sumfobver the hyperfinite partitio? = {x;}7-,.

Definition 2.33 [12] Let f be*R#- valued functiorf: [a, b] — *R#, then we say thaf is Riemann#-integrable
on [a, b] if there is a numbek € *R¥ with the following property: for every = 0, > 0, there is & ~ 0,6 > 0
such thaiL — ¢*| < § if aE*t is any Riemann external hyperfinite sumfodver a partition? of [a, b] such that
[IP]| < 6. In this case, we say thiiis the Rieman#-integral off over[a, b], and we shall write

L = Ext- [} f(x)d"x. (56)

Thus the Rieman#-integral of *R¥- valued function f: [a,b] - "R¥ over[a, b] is defined agt-limit of the
external hyperfinite sums (55) with respect toifiarts of the intervala, b]:

Ext- fabf(x)d#x = #-lim, o0 (Ext- X1 f(c)) (i — xi21)). (57)

Definition 2.34 A coordinate rectangl® in *R¥™ n € *N is the external finite or hyperfinite Cartesian gwot
of n #-closed intervals; that isR = Ext- X}, [a;, b;]. The content ofR isV(R) = Ext-[]-,(b; — a;). The
hyperreal numbers; — a;, 1 <i < n are the edge lengths Bf If they are equal, theR is finite or hyperfinite
coordinate cube. lIfa; = b, for somer, then V(R) =0 and we say thaR is degenerate; otherwis® is
nondegenerate.

Definition 2.35 If R = Ext-x}_, [a;, b;] andp. = a,y < a,q << a,,, IS an external hyperfinite partition of
[a,,b,],1 <7 <n, then the set of all rectanglesR{™ that can be written axt- X1, [a;;,_,a;;,]. 1 < j, <m,,
1 <r < nis a partition ofR. We denote this partition by = Ext- x_; B. and define its norm to be the maximum
of the norms oP;, 1 < i < n; thus,||P|| = max;{P;|1 < i <n}.

Definition 2.36 If P = Ext- x]—; P, andP' = Ext- Xx}-, P/ are partitions of the same rectangle, tf#éns a
refinement of? if P/ is a refinement oP;, 1 < i < n as defined above.

Definition 2.37 Suppose thaf is a *R#- valued function defined on a rectangtein *“R¥*,n € *N, P =
{P}¥_,is a partition ofR, andx; is an arbitrary point irR;, 1 < j < k. Then a Riemann external hyperfinite sum
aB*t of f over the partitionP is defined by

o = Ext-Biss f(x) V(R) (58)

Definition 2.38 Letf be a*R#- valued function defined on a rectandiein *R#", n € *N. We say thaif is
Riemann#-integrable onR if there is a number L with the following properfpr everye = 0, > 0, there is a
8§ = 0,8 > 0 such thafL — o&*t| < § if 0%t is any Riemann external hyperfinite sunyadver a partition? of R
such thaf|P|| < §. In this case, we say thatis the Rieman#-integral off overR, and write

L = Ext- [, f(x)d*"x. (59)

Thus the Rieman#-integral of'R¥- valued functionf defined on a rectangl in *R#* is defined ag-limit of

the external hyperfinite sums (58) with respeqidditions of the rectangle:

Ext- [ f(x)d*x = #-lim (Ext- 2, f () V(RY) (60)

The *R¥-Valued #-Exponential Function Ext-exp(x) and *R#-Valued Trigonometric
Functions Ext-sin(x), Ext-cos(x)

We define thet-exponential functioxt-exp(x) as the solution of th#-differential equation

]:#’(x) = f(x),f(0) = 1*. (61)
We solve it by settingf (x) = Ext-X,-,x™, f*(x) = Ext- ¥, -, nx". Therefore
Ext-exp(x) = Ext- Z;‘ZO J;—T (62)

From (1) we gefExt-exp(x))(Ext-exp(y)) = Ext-exp(x + y) for anyx,y € *R¥.
We define thet- trigonometric functiongxt- sin x andExt- cos x by
o _ : *00 _ n x2n+1 ) _ : *00 _ n
Ext-sinx = Ext-},,_,(—1) (2n+1)!,Ext cosx = Ext-},,_,(—1) @
It can be shown that the series #1yonverges for alk € *R? #-differentiating yields
(Ext-sinx )* = Ext-cos x, (Ext-cos x )*' = —(Ext-sinx ). (64)

x2n

(63)



*R# -Valued Schwartz Distributions

Definition 2.39 [12] LetU be an#- open subset diR¥™ andf: U — *R¥. The partial derivative of at the point
x = (xq, %y, ..., X, ..., X, ) With respect to théth variablex; is defined as
iﬁ — # lim f(xl,xz,...,xl—+h,...,xn)—f(x1,x2,...,xi,...,xn).
0%x; h—40 h
Definition 2.38 A multi-index of sizen € *N is an element in"N", the length of a multi-indexx =
(ay, ..., ay) € *N"is defined aExtY,[~; @; and denoted bjz|. We introduce the foIIowing notations for a give

. # .
multi-index a = (ay, ...,a,) € *N™: x® = Ext-[[L, x5 0% = Ext-[[-, prm al or symbolically 9% =

a#a
Ext- m..
Definition 2.40 The Schwartspace of rapidly decreasiri@?- valued test functions otR*™,n € *N is the
function space defined by
SYCRE, € = {f € C°(CREY, *CH|V(a, B)(a, B € *N™)Vx(x € "RE™)[|x* D*F f(x)]| < oo*]}.
Remark 2.6 Note that iff € S*(*RE™, *C#) the integral of®| D*# f(x)| exists

Ext-f | x¥D*F f(x)|d*™ < oo*.
*]Rign

Definition 2.41 The Schwartapace of essentially rapidly decreasi@fj- valued test functions oiR?*",n € *N
is the function space defined by
S*CREINCH ={f € C (R, CH)|Va(a € NY)VBR(B € "NY)Vx(x € REV[|x* D*F f(x)| < o [}
Remark 2.7 Note that iff € S*(*RE™, *C¥) the integral of®| D* f(x)|,« € N, B € *N™ exists and

Ext-f | x*D#*F f(x)|d*™ < 0.

Definition 2.42 The Schwartspace of rap|dly decreasini@?- valued test functions o’rlRC fin M € "N is the
function space defined by
S#( Rcfm'*(c#) {f ec 00( Rc fin’ *(C#)|V(a’ ﬁ)(“ ﬁ € *N”)Vx(x € *Rcfm)”xa D#Bf(x)| < oo#]}'
Remark 2.8 Note that iff € S*(*R¥%,, “C#) the integral ofk®| D*# f(x)|,« € *N™, B € *N™ exists and
Ext-f | x*D*F f(x)|d*™ < oo® |
*]R#n

cfin

Definition 28.43 The Schwartzspace of essentially rapidly decreasin@?- valued test functions on
n € *N is the function space defined by
Sfm ( Rc fin’ *(C#) =
{f eC oo( Rcfm' *(C#)|V(0l B)(a € N", .8 € Nn)acaﬁ(caﬁ € IRcﬂn)vx(x € *Rcfm) [|x‘1(D#B f(x))| < CaB]}-
Remark 2.9 Note that iff € S, ("R#", *C#) the integral of **D*# £ (x)| exists and finitely bounded above
Ext- f*Rﬁrflm| an#‘Bf(de#n < daﬁ!daﬁ [S *Rﬁ,ﬁn'

Abbreviation 2.2 1) The Schwartspace of rapidly decreasing test functions'Bf" we will be denoting by
S*("R#™) and let S, ("R#") denote the set ofc#-valued essentially rapidly decreasing test funstion*R#™ .
2) The Schwartzspace of rapidly decreasing?- valued test functions oﬁ]RCfln we will be denoting by
S#(* ]Rcfm) and let S, ("R¥%, ) denote the set ofCf-valued essentially rapidly decreasing test functiom
“R*

‘R

¢ fin »

¢ fin *

Definition 2.44 A linear functionah: S*(*R¥™) — *C# is a#-continuous if there exigt, k € *N and constants
Cap such thatu(@)| < C(Ext- ¥4 <k ip1<k Cap )- Here Vx(x € "RE™) ” "‘(D’“g (p(x))| < caﬁ]

Definition 2.45 A linear functionaku: S*(*R¥%,,) — *C# is a strongly#-continuous if there exidt, k € *N and
constants,s such thatu(p)| < C(Ext- X4 1<k g1k Cap) € "R fin-

Definition 2.46 A generalized functiom € S* (*R¥™) is defined as #-continuous linear functional on vector
spaceS*(*R#), symbolically it written asu: ¢ — (u, ¢). Thus spaces® (*R#™) of generalized functions is the
space dual t6# (*R#™).



Definition 2.47 A generalized functiom € S* (*R¥7,,) is defined as a strongly-continuous linear functional

on vector spaces*(*R¥%,), symbolically it written asu:¢ — (u,9). Thus spaceS* (*R¥%.) of generalized

¢ fin
functions is the space dual$8(*R¥%,).
Definition 2.48 Convergence of a hyper infinite sequer{ug}::l of generalized functions i8*'(*R¥™) is
defined as weak¢-convergence of the hyper infinite sequence of fonels in S* (*R#*) that isu, —4 0, as
n - *oo, in S* (*R¥™) means thafu,, ) -4 0, asn — *oo, for all ¢ € S*(*R#™).

Definition 2.49 Convergence of a hyper infinite sequerﬁm&;}n":1 of generalized functions iﬁ#’(*R#” ) is

¢ ,fin
defined as weak¢-convergence of functionals 8" (*R¥%) that isu, —4 0, asn - "o, in S*(*RE%,) means
that (u,, ¢) =4 0, asn - *oo, for all € S*(*R¥E).

¢.fin
) ¢ fin
Definition 2.50 1) Letu € S* (*R#™) and letx = Ay + b be a linear transformation ofR*" onto*R#". The

generalized function(4y + b ) € S* (*R¥™) is defined by
1
(u(Ay +b), ) = (w ZAE), (65)
Formula (1) enables one to define generalized fonstthat are translation invariant, sphericallyngyetric,
centrally symmetric, homogeneous, periodic, Loréméariant, etc.

2) Let the functiorx(x) € C*1(*R¥) have only simple zeros, € *R¥ k € "N, the functions(a(x)) is defined

by
S(a(x)) = Ext-Y, 0, li(;(;:))l . (66)
3) Letu € S* ("R*"), the generalized (wealderivatived*@u of u of ordera is defined as
(0%*u, ) = (=D(u, 0% ). (67)
4) Letu € S¥ ("R*™) andg(x) € C*'*(*R#™), The producgu = ug is defined by
(gu, @) = (w, g9). (68)
5) Lety, € S* ("R¥™) andu, € S* (*R¥™) then their direct product is defined by the foraul
(U1 X Uz, @) = (W (D W), @), @(x,y) € S* (RE x "RE™). (69)
6) The Fourier transfori®i[u] of a generalized functiom € S#'(*Ri‘”) is defined by the formula
(Flul, @) = W, FloD), (70)
Flp] = Ext- f*Rgn @ (x) (Ext-exp[i(§, x)])d*"x. (71)

Since the operatiop(x) — F[¢](§) is an isomorphism & (*R¥™) ontoS*(*R#™), the operationt — F[u] is
an isomorphism ofS* (*R#") ontoS* (*R¥") and the inverse ofF[u] is given by:F~1[u] = (27) "F[u(=&)].
The following formulas hold fou € S* ("R#™): (a)9#* F[u] = F[(ix)*u], (b) F[ 0% u] = (i&)*F[u],(c) if the
generalized function, € S* (*R¥™) has#-com-pact support, theR[u, * u,] = F[u,]F[u,].

7) If the generalized function is periodic withn-periodT = (T, ..., T;,), thenu € 5#'(*R§”), and it can be

expanded in a hyper infinite trigonometric series
u(x) = Ext-Z”jT:O cr (W) (Ext-expli(kw, x)]), lcp,(w)| < AL + |k])™ . (72)
21 2mkq ann)

i in o (it —(?® 2= =
The series (1¥-converges tau(x) inS* (*Ri™), herew = (n , ...,Tn) andkw = ( T,

A NON-ARCHIMEDEAN METRIC SPACESENDOWED WITH *R¥ -VALUED
METRIC

Definition 3.1 A non-Archimedean metric space is an ordered @#jd*) whereM a set andl” is a#-metric
onM i.e.,"R¥, - valued functiord®: M x M — *R#, such that for any triplet,y, z € M, the following holds:

1.d*(x,y) = 0= x =y.2.d*(x,y) = d*(y,x). 3.d*(x,2) < d*(x,y) + d*(v,2).

Definition 3.2 A hyper infinite sequenc(ﬂcn};"i1 of points inM is called#-Cauchy in(M,d") if for every
hyperreals € *R¥, there exists som&/ € *N such thatl*(x,, x,,) < € if n,m > N.

Definition 3.3 A point x of the non-Archimedean metric spagd,d”) is the #-limit of the hyper infinite

sequencéxn};‘:1 if for all £ € *R¥,, there exists soml € *N such thati” (x,, x) < € if n > N.



Definition 3.4 A non-Archimedean metric spacetiscomplete if any of the following equivalent condits are
satisfied:

1.Every hyper infinitet-Cauchy sequenc{ecn};"i1 of points inM has a#-limit that is also inV.

2.Every hyper infinitgt-Cauchy sequence M, #-converges irM that is, to some point @4.

For any non-Archimedean metric spdaé d*) one can construct#complete non-Archimedean metric space
(M', d*) which is also denoted ##-M, d*) and which containdf a#-dense subspace.

It has the following universal property: if is any#-complete non-Archimedean metric space And — K is
any uniformly #-continuous function fromM to K, then there exists a unique uniformtycontinuous function
f':M' - K that extendg.The spacet-M is determined up t&-isometry by this property (among attcomplete
metric space#- isometrically containing non-Archimedean metric ap@#-M, d*), and is called thé-completion
of (M,d*").

The #-completion ofM can be constructed as a set of equivalence clas€gsuchy hyper infinite sequendes
M. For any two hyper infinite Cauchy sequenée,$}::1 and {yn};:l in M, we may define their distance as
a* = #-lim,_ .+ d*(x,, y,,). This #-limit exists because the hyperreal numbi@$ are#-complete. This is only a
pseudo metric, not yet a metric, since two diffedeyper infinite Cauchy sequences may have thamltsd. But
having distance 0 is an equivalence relation onditeof all hyper infinite Cauchy sequences, arel sbt of
equivalence classes is a metric space#tiecempletion of M. The original space is embeddethia space via the
identification of an element of M’ with the equivalence class of hyper infinite ssages inM #-converging tox
i.e., the equivalence class containing a hypenitgfisequence with constant valuerhis defines a@-isometry onto
a #-dense subspace, as required.

Example 3.1 Both R and*C are internal metric spaces when endowed with thmte functiord(x,y) =
lx — yl.

Definition 3.5 About any pointc € M we define the#-open ball of radius € *R#, aboutx as the seB,(x) =
{y € M|d*(x,y) < r}. These#-open balls form the base for a topologyidn

Definition 3.6 A non-Archimedean metric spaé#f,d”) is called hyper finitely bounded if there existsre
7 € "R finy SUch thatt* (x,y) < r for allx,y € M.

Definition 3.7 A non-Archimedean metric spad#f,d”) is called finitely bounded if there exists some
“Rews SUch thatl®(x,y) <r for allx,y € M.

Definition 3.8 A non-Archimedean metric spaé#f,d”) is called hyper finitely bounded if there existsre
7 € "R, SUch that(x,y) < r for allx,y € M.

Definition 3.9 Let (M, d*) be a non-Archimedean metric space. Adset X is called finitely bounded if there
exists some € "R, i, such tha#l c B, (a), a€ X.

Definition 3.10 A non-Archimedean metric spa¢¥, d*) is called#-compact if every hyper infinite sequence

{xn};":1 in M has a hyper infinite subsequence thatonverges to a point id. This sort of compactness is
known as hyper sequential compactness and, in dAndrimedean metric spaces is equivalent to theltaical
notions of hyper countablke-compactness.

Definition 3.11 A topological space is called hyper countably-compact if it satisfies any of the following
equivalent conditions: (a) every hyper countableropoverU of X (i.e.,card(U) = card(*N)) has a finite or
hyperfinite sub-cover.

For a functionf:M; - M, with a non-Archimedean metric spac€¥,,d?) and (M,,d¥) the following
definitions of uniform#-continuity and (ordinaryj-continuity hold.

Definition 3.12 A function f is called uniformly#-continuous if for everyg € *R¥_, there existsy € "R...
such that for every,y € M; with d (x,y) < § we getds(f(x),f()) < e.

Definition 3.13 A function f is called#-continuous atx € M, if for every ¢ € *R¥_, there existss € "R,
such that for every € M, with d¥(x,y) < § we getd}(f(x),f()) < e.

LEBESGUE #-INTEGRATION OF *R# -VALUED FUNCTIONS

Let Cf(*R#™) be the space of alR¥-valued#-compactly supporte#-continuous functions ofR#". Define a
#-norm onC# by the Rieman-integral [12]:

Iflls = Ext- [1f ()|d*"x, (73)



Note that the Rieman#-integral exists for ang-continuous functioif: *R#¥" — *R# | see [12]. TheiG¥ (*R#™)
is a#-normed vector space and thus in particular, it isoa-Archimedean metric space. All non-Archimedean
metric space, have a non-Archimedeamgompletion(#-M,d"). Let L¥ be this#-completion. This spacé? is
isomorphic to the space of Lebesgtintegrable functions modulo the subspace of funstizvith #-integral zero.
Furthermore, the Riemann integral (1) is a unifgrdflcontinuous linear functional with respect to th@orm on
Cc¢("R¥™) which is#-dense inLf. Hence the Rieman# integral Ext- [ f(x)d*"x has a unique extension to all
of L%. This integral is precisely the Lebesgtintegral.

Definition 4.1 Suppose that < p < *oo, and[a, b] is an interval ifR¥. We denote byL’;*,([a, b]) the set of

the all functionsf: [a, b] — *R# such thaExt- fablf(x)lpd#x < *oo. We define theL} -#-norm off by
b I 1/p
Ifllep = (Exe- 1 fGOIPatx) . (74)

More generally, iff is a subset 6fR}", which could be equal taR:™ itself, then L% (E) is the set of Lebesgue
#-measurable function: E - *R¥ whosep-th power is Lebesgu-integrable, with thét-norm

Ifllap = (Ext- [ If GO Pd*mx) "7 (75)

Definition 4.2 A set X c *R¥" is #-measurable if there exisBxt- [ 1y d*"x, where 1, is the indicator
function.

Definition 4.3 A *R# -valued functionf on *R#" is a#-measurable if a sét|f(x) > t} is a#-measurable set
for all t € *R¥™,

Remark 4.1 To assign a value to the Lebesgt:ntegral of the indicator functioh, of a#-measurable sef
consistent with the give#--measure:”, the only reasonable choice is to it [ 1,d u* = p*(X).

Definition 4.4 A hyperfinite linear combination of indicator fuians f = Ext-Yj_; ax 1y, where the
coefficientsa, € "R¥ andX, are disjoint#-measurable sets, is calledtaneasurable simple function.

Definition 4,5 When the coefficients, are positive, we sefxt- [ fd u* = Ext-Yp_, a, u* (X, ). For a non-
negative#-measurable functiofi, let {fn(x)};‘ﬁlbe a hyper infinite sequence of the simple fundifyfx) whose
values iszin Wheneverzin <fx)< % for k a non-negative hyperinteger less td&nThen we set

Ext- [ fdu* = #-1im,_ - (Ext- [ fd u®).

Definition 4.6 If f is a#-measurable function of the ggtto the reals includingo”, then we can writ¢ =
fr—f", where: D)f*(x)=f(x) if f(x)>0andf*(x)=0if f(x)<0; 2)f (x) =f(x) if f(x) <0 and
f~(x) =0 if f(x) = 0. Note that botlf * andf ~ are non-negativé-measurable functions affll = f* + f~.

Definition 4.7 We say that the Lebesgéeintegral of thet-measurable functiofi exists, or is defined if at least
one ofExt- [ f*d u* andExt- [ f~d u* is finite or hyperfinite. In this case we define

Ext- [ fdu* = (Ext- [ f*d u*) + (Ext- [ f~d u*).

Theorem 4.1 Assuming thatf is #-measurable and non-negative, the functfdw) = {x € E|f(x) >t} is

monotonically non-increasing. The Lebesgumtegral may then be defined as the improper Rienélamtegral of

f(x): Ext- Jofdu* = Ext- fowf(x)d#x.

Definition 4.8 Let X be any set. We denote B the set of all subsets ¢f. A family F c 2% is called a
#-g-algebra onX (or o*-algebra orX) if: 1) @ € F. 2) A family F is closed under complements, ide€ F implies
X\A e F. 3) A familyF is closed under hyper infinite unions, i.e{#, },c-y iS a hyper infinite sequence in
F thenU, ey 4n € F.

Theorem 4.2 If F is a#-g-algebra onX then: (1)F is closed under hyper infinite intersections,, ie{A,, },.c*n
is a hyper infinite sequence A then N,enA4, €EF. (2) X € F.3) F is closed under hyperfinite unions and
hyperfinite intersections.(4) is closed under set differences. 35 closed under symmetric differences.

Theorem 4.3 If {4,},¢; is a collection olr*-algebras on a s#t then N,e; 4, , iS also anc®-algebras on a
setX.

Theorem 4.4 If K c L thena*(K) c ¢*(L).

Definition 4.9 (Borel 0#-algebra) Given a topological spatgthe Borels#-algebra is the#-algebra generated
by the#-open sets. It is denoted By (X). We call sets irB*(X) a Borel set. Specifically in the cake= "R¥" we
have thaB*(*R#™) = {U|U is #-open set}. Note that the Boret#-algebra also contains aflclosed sets and is the
smallesio#-algebra with this property.



Definition 4.10 (#- Measures) A pailX,F) whereF is anc*-algebra onX is call a#- measurable space.
Elements ofF are called at-measurable sets. Given#ameasurable spadg, F), a functionu®: F — [0, "] is
called a#-mea-sure orfX,F) if: 1) u*(@) = 0.2) For all hyper infinite sequencéa, },c+y Of pairwise disjoint
sets inF

i (UnZy An) = Ext-3,7, 1 (4,). (76)
A NON-ARCHIMEDEAN BANACH SPACES ENDOWED WITH *R! -VALUED NORM

A non-Archimedean normed space wiR¥ -valued norm #-norm) is a pain(X, ||||+) consisting of a vector
spaceX over a non-Archimedean scalar fieltR¥ or complex field *C# = "R¥ +i*R¥ together with a norm
I'lla: X = *R¥.  Like any norms, this norm induces a translatiovariant distance function, called the norm
induced non-ArchimedeaiR? -valued metriaci®(x, y) for all vectorsx, y € X, defined byd*(x,y) = ||x — y|ls =
lly — x|l4. Thusd®(x,y) makesX into a non-Archimedean metric spaeg d¥).

Definition 5.1 A hyper infinite sequence{xn};(’i1 in X is calledd® - Cauchy or Cauchy i6X,d") or |||« -
Cauchy if for every hyperreak € *R¥, there exists someV € *N such thatd”(x,, ym) = X, — yulls < & if
n,m> N.

Definition 5.2 The metricd” is called a#-complete metric if the pair(X,d*) is a#-complete metric space,

which by definition means for evew)- Cauchy sequenc{acn}*w in (X,d"), there exists some € X such that

n=1
#-lim,, o || x, — x|l = 0.
Semigroups on Non-Archimedean Banach Spaces and Their Generators

Definition 5.3 A family of bounded operatofd (¢)|0 < t < *co} on external hyper infinite dimensional non-
Archimedean Banach spakeendowed witi'R? -valued#-norm||-||» is called a stronglyt-continuous semigroup
if: (@) T(0) =1, (b) T(s)T(t) =T(s+¢) for all s,t € *RE,, (c) For eachp € X, ¢ » T(t) is #-continuous map-
ping.

Definition 5.4 A family {T'(t)|0 < t < *} of bounded or hyper bounded operators on extdryér infinite
dimensional Banach spacgis called a contraction semigroup if it is a sgign#-continuous semigroup and
moreovel|T(t)||x < 1 for allt € [0, *).

Theorem 5.1 Let T(t) is a strongly#-continuous semigroup on a non-Archimedean Banadtesy,
let

Ap = #-1im,_, o A, ¢
whereA, = r*(I = T(r)) and letD(4) = {¢|3(#-1im,_,,, A,¢)}, then the operatod is #-closed and¢-densely
defined. Operatod is called the infinitesimal generator of the semigpT (t).

Definition 5.5 We will also say thatl generates the semigrofigt) and writeT (t) = Ext-exp(—tA).

Theorem 5.2 (Generalized Hille -Yosida theorem) A necessarg anfficient condition that-closed linear
operatorA on a non-Archimedean Banach spacgenerate a contraction semigroup is that:({&)o, 0) c p(4),
) I(A+A4) Y, <A foralla>o0.

Definition 5.6 Let X be a non-Archimedean Banach spac& X.An element € X* that satisfiedll||s = |||«

, andl(p) = |lpll% is called a normalized tangent functionaistoBy the generalized Hahn-Banach theorem, each
@ € X has at least one normalized tangent functional.

Definition 5.7 A #-densely defined operatdr on a non-Archimedean Banach spaces called accretive if for
eachp € D(4), Re(l(Ago)) >0 for some normalized tangent functionalgto OperatorA is called maximal
accretive if4 is accretive and has no proper accretive extension.

Remark 5.1 We remark that any accretive operato##-islosable. The#-closure of an accretive operator is again
accretive, so every accretive operator has a ssh#Helosed accretive extension.

Theorem 5.3 A #-closed operatoA on a non-Archimedean Banach spacé the generator of a contraction
semigroup if and only ifl is accretive an®an(4, + A) = X for somel, > 0.

Theorem 5.4 Let A be a#-closed operator on a non-Archimedean Banach spathen, if both4 and it adjoint
A* are accretived generates a contraction semigroup.



Theorem 5.5 Let A be the generator of a contraction semigron@ non-Archimedean Banach spacé.et D
be a#-dense set) c D(A), so thatExt-exp(—tA): D - D. ThenD is a#-core for4, i.e.#-A [ D = A.

Hyper contractive Semigroups

In the previous section we discussgdcontractive semigroups. In this section we giveel #- adjointness
theorem for the operators of the fodnt V, whereV is a multiplication operator andl generates &’,’,-contractive
semigroup that satisfies a strong additional prigper

Definition 5.8 Let (M. u*) be a#-measure space wiili* (M) = 1 and suppose thatis a positive self-adjoint
operator oz (M,d*u*). We say thatExt-exp(—tA) is a hyper contractive semigroup if. (Bxt-exp(—tA) is
L,-contractive; (b) for somk > 2 and some constafj, there is & > 0 so thatl|[Ext-exp(—tA)]@lls < ll@ll42
forallp € LA(M,d"u®).

Remark 5.2 Note that the condition (a) implies thatt-exp(—tA) is a strongly#-continuous contraction semi-
group for allp < *oo. Holder's inequality shows thitlls, < IIll4, if p = g. Thus thel};-spaces are a nested family
of spaces which get smaller psgets larger; this suggests that (b) is a veryngtroondition. The following
proposition shows that constanplays no special role.

Theorem 5.6 Let Ext-exp(—tA) be a hypercontractive semigroup Ig{M, d*u*). Then for allp, q € (1, *)
there is a consta@, , and at,,, > 0 so that if> t,,, , then||Ext-exp(—tA)¢ll4, < Cpqll@llyg, forallp € LE.

Theorem 5.7 Let (M,u*)be a o*-measure space withh#(M) = 1and let H, be the generator of a
hypercontractive semi-group di(M,d*u#). Let V be a*R¥ -valued measurable function dn, u*) such that
V € Ly(M,d*u*) for all p € [1, ) andExt-exp(—tV) € L§(M,d*p*) for all t > 0. ThenH, + V is essentially
self#t-adjoint on € (H, ) n D(V) and is bounded below. Hei@ *(H, ) = Npe-y D(HY).

A NON-ARCHIMEDEAN HILBERT SPACESENDOWED WITH *C# -VALUED INNER
PRODUCT

Definition 6.1 Let H be external hyper infinite dimensional vector spaver complex fieldC# = "R¥ + i*R¥.
An inner product orH is aC#-valued function(-): H x H — *C¥, such that (1Yax + by, z) = (ax, z) + (by, z),
(2) (x,y) = (,x). (3) llx[|> = (x, x) = 0 with equality(x, x) = 0 if and only ifx = 0.

Theorem 6.1 (Generalized Schwarz Inequality) L§t, (-)}be an inner product space, then forxgly € H:
I(x,y)| < llxllllyll and equality holds if and only # andy are linearly dependent.

Theorem 6.2 Let {H, (-,')}be an inner product space, afiet||» = +/(x,x) . Then||‘||» is a*R¥ -valued#-norm
on a spacél. Moreover(x, x) is #-continuous on Cartesian prodétix H, whereH is viewed as thet-normed
space(t, ||[l}-

Definition 6.2 A non-Archimedean Hilbert space isgtacomplete inner product space.

Example 6.1 The standard inner product 8€f™, n € *N,, is given by external hyperfinite sum

(x,y) =EXt T, %, yi. (77)

Here x = {x;}-,, v = {y;}, , withx;,y; € *C¥,1 < i <n, see [13].

Example 6.2 The sequence spatk consists of all hyper infinite sequences: {zi}ZZ’l of complex numbers in
*C¥ such that the hyper infinite series BXt-,|z;|? #-converges. The inner product Bnis defined by

(z,w) =EXt,Z 7 ;. (78)

Here z = {zi}Z:l, w = {wi}:f1 and the latter hyper infinite seridsconverging as a consequence of the
generalized Schwarz inequality and theonvergence of the previous hyper infinite series.

Example 6.3 Let C#[a, b] be the space of tH€#- valued#-continuous functions defined on the interialb]
*R¥, see [13]. We define an inner product on the sig4¢e, b] by the formula

(f,g) = Ext- [, F()g (x) d"x. (79)

This space is nat-complete, so it is not a non-Archimedean Hilbedcsp Thet#-complettion ofC*[a, b] with

respect to thét-norm

Il = (Ext-[1f GOl atx) (80)



is denoted by%[a, b].
Example 6.4 Let C*®[a, b]be the space of the¥- valued functions withk € *N #-continuous#-derivatives
on[a,b] c *R¥, see [13].We define an inner product on the sgd€8[a, b] by the formula

(f,g) = Ext-Y%, (Ext- f; FHO(x)g*D(x) d#x). (81)
Heref*® and g*® denotes théth #-derivatives off andg respectivel/y.The corresponditgnorm is
) 2 1/2
Ity = (Ext-Si, (Bxt- [l O@[ d'x)) . (82)

This space is nat-complete, so it is not a non-Archimedean Hilbedacs The non-Archimedean Hilbert space
obtained by#-complettion ofc#**)[q, b] with respect to thé&-norm (1) is non-Archimedean Sobolev space, denoted
by H**[a, b].

Definition 6.3 The graph of the linear transformatidnH — H is the set of pair§(¢p, Tp)|(¢p € D(T))}. The
graph of the operatdt, denoted by'(T), is thus a subset &f x H which is a non-Archimedean Hilbert space with
the following inner produdi{¢,, ¥,), (¢, P,)). OperatorT is called a #-closed operatolifT) is a #-closed subset
of H X H.

Definition 6.4 Let T, andT be operators on H. If(T,) o I'(T), thenT; is said to be an extension &fand we
write T, D T. Equivalently,T; o T if and only if D(T,)  D(T) andT,¢p = T¢ for all¢ € D(T).

Definition 6.5 An operatorT is #-closable if it has at-closed extension. Everi-closable operator has a
smallest#-closed extension, called isclosure, which we denote By T.

Theorem 6.3 If T is #-closable, thelt (#-T) = #-I'(T).

Definition 6.6 Let D(T*) be the set ofp € H for which there is ag € H with (Ty, p) = (¥, &) for all ¢ €
D(T).For eachp € D(T™), we defineT*p = £.The operatol” is called thet-adjoint of T. Note thatp € D(T*) if
and only if|(Ty, )| < C||Y|l4 for allyp € D(T). Note thatS < T impliesT* c S.

Remark 6.1 Note that forg to be uniquely determined by the conditi@hp, ¢) = (¥, ) one need the fact that
D(T) is #-dense irH. If the domainD (T*) is #-dense irH, then we can defind™* = (T*)".

Theorem 6.4 Let T be a#-densely defined operator on a non-Archimedean HilbgaceH. Then: (2)T* is
#-closed. (b) The operatdfis #-closabie if and only ifD(T*) is -dense in which casE=T". (c) If T is
#-closable, theif#-T)* = T*.

Definition 6.7 Let T be a#-closed operator on a non-Archimedean Hilbert sgack complex numbet € *C#
is in the resolvent sei(T), if Al — T is a bijection of D(T) ontoH with a finitely or hyper finitely bounded
inverse. If complex numbére p(T), R; = (AI — T)™ ! is called the resolvent GfatA.

Definition 6.8 A #-densely defined operatd on a non-Archimedean Hilbert space is called sytrimer
Hermitian ifT < T, thatis,D(T) c D(T*) andT¢ = T*¢ for all ¢ € D(T) and equivalentlyl is symmetric if and
only if (Te,y) = (¢, TY) for allp,y € D(T).

Definition 6.9 A #-densely defined operatoll” is called self#-adjoint ifT = T*, that is, if and only ifT is
symmetric and (T) = D(T").

Remark 6.2 A symmetric operatof is always#-closable, sincd(T) #-dense irH. If T is symmetricT* is a
#-closed extension of" so the smallest-closed extensioff** of T must be contained IR*. Thus for symmetric
operators, we have c T™ c T*, for #-closed symmetric operators we ha&ve= T* c T* and, for self¢-adjoint
operators we havé = T* = T*. Thus a#-closed symmetric operat@ris self#-adjoint if and only ifT* is sym-
metric.

Definition 6.10 A symmetric operatof is called essentially seif-adjoint if its #-closure#-T is self#-adjoint.

If T is #-closed, a subsé c D(T) is called a core foF if #-T [ D =T.
Remark 6.3 If T is essentially self-adjoint, then it has one and only one sekdjoint extension.

Definition 6.11 Let A be an operator on a non-Archimedean Hilbert spic&he setC °(4) = ﬂ;‘ilD(A“) is
called theC “®-vectors ford. A vectorg € € ®(A) is called ar#-analytic vector fod if Ext-z*oo 14%08t7 o5 for

n=0
somet > 0. If A is self#-adjoint, therC " (A) will be #-dense inD(A).

Theorem 6.5 (Generalized Nelson's analytic vector theorem) Hebe a symmetric operator on a non-
Archimedean Hilbert space H. I(A) contains a#-total set of#-analytic vectors, themd is essentially self-
#-adjoint.

Definition 6.12 Operator4 is relatively bounded with respect to operdtdof D(T) < D(A) and

lAully < allulls + blITully, u € D(T).



Theorem 6.6 Let T be self#-adjoint. If A is symmetric and’-bounded withT-bound smaller thard, then
T + A is also self¢-adjoint. In particularT + A is self#-adjoint if A is bounded and symmetric with(T) c
D(A).

Theorem 6.7 Let A be essentially self#-adjoint on the domainD (4) and letB be a symmetric operator on
D(A). If there exists a constaate *R¥ such that for ally € D(A4) and for allg € *R# such thad < g < 1 and the
inequality holdg|By||4+ < al|(A + BB)Y |4, thenA + B is essenallv self #-adjoint onD(A4) and its#-closure has
domainD (#-4).

Theorem 6.8 Let A andB be the same as in Theorem 6.7. THeandA + B have the sam#-cores. If4 is
bounded from below, theti+ B is bounded from below.

GENERALIZED TROTTER PRODUCT FORMULA

Theorem 7.1 Let A and B be self-adjoint operators on non-Archimedean Hillspace?”. Suppose that the
opera-tord + B is self#-adjoint onD = D(A) n D(B), then the following equality holds

s-#-1lim,,_,+o, [(Ext-exp (%)) (Ext-exp (%))]n = Ext-exp[it(4 + B)]. (83)

Theorem 7.2 Let A and B be self-adjoint operators on non-Archimedean Hillspacd?*. Suppose that the
opera-tord + B is essentially self-adjoint onD = D(A4) n D(B), then the following equality holds

. . n
s-#-lim,,_ o, [(Ext-exp (%)) (Ext-exp (%))] = Ext-exp[it(A + B)]. (84)
Theorem 7.3 Let A and B be the generators of contraction semigroups on-Arohimedean Banach

spaceB”.Suppose that thie-closure of(4 + B) I D(A) n D(B) generates a contraction semigroup®h Then the
following equality holds

s-#-1im,,_,+e, [(Ext-exp (— %)) (Ext-exp (— %))]n = Ext-exp[—t(#-A + B)]. (85)

FOCK SPACE OVER NONARCHIMEDEAN HILBERT SPACE

Definition 8.1 Let H* be a complex hyper infinite-dimensional non-Architean Hilbert space over fiel@?#
and denote byi*™ then-fold tensor productf*™ = Ext-®%_,H*, n € *N. SetH*® = *C# and defineF (H*) =
Ext-@pe-y(H*™). F(H") is called the Fock space over non-Archimedean HilggaceH”. SetH* = L§("R¥?),
then an elementy € F(H*) is a hyper infinite sequence 6€#-valued functionsy = {y, 11 (x1), Y, (x4, x5),
W, (1, X5, X3), oo, W (%4, ..., x,)}, n € *N and such that

IYlls = ol + Ext- Tnen(Ext- [ (xy, ..., xp) |2 d*"x) < “o0.
Actually, it is notF (H#) itself, but two of its subspaces which are usegliantum field theory. These two hyper
infinite-dimensional subspaces are constructealé®as: Let B, be the permutation group ane *N elements and

let {gok};flbe a basis for a spa##. For eachs € B, we define an operator (which we also denote)ogn basis
elements oH*™ by o (Ext-®L,¢y,) = Ext-®-, ¢y - The operator extends by linearity to a boundeerator

(of #-norm one) onH* and we can defind = (%) (Ext-Yyep, 0). It is easily to show by definitions that

$#2 = §% and §#* =S¥ soS! is an orthogonal projection. The rangeS#fis called then-fold symmetric tensor
product ofH*. We now defineF* (H* ) = Ext-@,cSHH*™. Non-Archimedean Hilbert spacg”(H* ) is called

the symmetric Fock spaoser non-Archimedean Hilbert spadé” or the Boson Fock space over non-Archimedean
Hilbert spaced®.

SEGAL QUANTIZATION OVER NONARCHIMEDEAN HILBERT SPACE

Let H* be a complex non-Archimedean Hilbert space oveld fiC# and letF(H*) = Ext-@®,c-y(H*™),
where H*™ = Ext-®7_,H* be the Fock space ovéi*and letF,(H*) be the Boson subspace B{H"). Let
f € H* be fixed. For vectors ilf*™ of the formn = Ext-Q™,1;,n € *N we define a map~(f): H¥®™ -
H* =D by b=(n = (f, ) (Ext-Q,1;) and b~ (f) extends by linearity to finite and hyperfinite diar
combinations of suchy, the extension is well defined, atfid~()nlls < lIfl«lInlls. Thusb™(f) extends to a



bounded map (o#-norm||f]l+) of H*™ into H*™~D_ Since this holds for eashe *N (except fom = 0 in which
case we definé~(f): H*©® - {0}), b~ (f) is a bounded operator #fnorm||f||. from F(H*) to F(H*). It is easy
to check that operatob*(f) = (b~(f)) takes each subspadé*™into H*™*Dwith the action b*(f)n =
fQRExt-®T,y; on product vectors. Note that the myap> b*(f) is linear and the mag — b~(f) is antilinear.
Let S, be the symmetrization operators introduced in iptes/section and then the opera§8r= Ext-@®,,c-yS! is
the projection onto the symmetric Fock Sp&EeH*) = Ext-@ne-nStHY™, we will write §#H#™ = g#™and call
Hf(”)the n- particle subspace @ (H"). Note that operatab~(f) takes spac&,(H") into itself, but the operator

b*(f) does not. A vectap = {1p(”)}n°=°1 with ™ = 0 for all except finite or hyperfinite set of nuntbeis called
a finite or hyperfinite particle vector correspamgly. We will denote the set of hyperfinite pariclectors byF,.
The vectorQ, = (1,0,0, ...) is called the vacuum vector. Létbe any self-adjoint operator aff with domain of
essential sel#-adjointnessD = D(A). Let D, = {y € Fo|p™ € Ext-®,D,n € "N} and define operatall'*#(A)
on D, N HY™ by dT#*(A)=AQ QI+ QAQ-Q I+ +®I Q1 Q A. Note thatd'*(A)is essentially
self#-adjoint onD, . OperatordI'#(4) is called the second quantization of the opetétdfor example, lel =
I, then its second quantizatiofi’ = dI'#(I) is essentially self<adjoint onF, and fory € H*™ N#yp = mp. N* is
called the number operator.Ufis a unitary operator on spaké, we definedI'*(U) to be the unitary operator on
F,(H") which equalsExt-@'-,U when restricted td?™for n > 0, and which equals the identity &, If
Ext-exp(itA) is a #-continuous unitary group #if, then#*(Ext-exp(itA)) is the group generated By*#(4), i.e.,
that expressed by the formuld (Ext-exp(itA)) = Ext-exp(itdT*(4)).
Definition 9.1 We define the annihilation operaiot (f) on¥,(H*) with domainF, by the formula
a”(f) = VN +1b7(f). (86)
Operatora™(f) is called an annihilation operator because it dad@&ch(n + 1)-particle subspace into the
particle subspace. For eaphandny in Fy, (VN + 16~ (), 1) = (¥, S*b*(f)YN + 1), then we get
(@ (f)) 1 Fo=S*p*(f)VN + 1. (87)
The operatofa~(f)) is called a creation operator. Botit(f) and (a~(f))  #-closable; we denote their
#-closures bya™(f) and(a‘(f))* also. The equation (1) implies that the Segatifaperatodf (f) on F, defined
by ®#(f) = %[a‘(f) +(a=(f))’] is symmetric and essentially seta#joint. The mapping fromi* to the self-
#-adjoint operators off;(H*) given byf — ®#(f)is called the Segal quantization ovéf. Note that the Segal
quantization is a real linear map.
Theorem 9.1 Let H* be hyper infinite dimensional Hilbert space ovemplex field *C# = *R¥ + i*R# and
®#(f) the corresponding Segal quantization. Then:
(@) (self#-adjointness) for eacfi € H* the operatof(f) is essentially self<adjoint onF ,, the hyperfinite
particle vectors;
(b) (cyclicity of the vacuum) the vect€, is in the domain of all hyperfinite produdst- [T, ®Z(f;),n € *N
and the sefExt- [T, ®Z(f) |f; € H*,n € *N} is #-total inF,(H*);
(c) (commutation relations) for eaghe F, andf, g € H*: [®{(f)DE(g) — PE(9)PE(N]Y = ilm(f, g) ,#¥;
(c") (generalized commutation relations) assuming ¢fiag) ,+ = 0 andy € F is a near standard vector we
get[® () PE(g) — PE(g)PE(N]Y ~ 0 and thereforst([@f () DE(g) — PE()PE(HIY) = 0;
(dy let W) denotes the  external unitary  operatorExt-exp (id)ﬁ(f)) then

W(f +g) = [Ext-exp (= S1m(f, ), )| W (W (9);

(e) @#-continuity) if {fn};‘ﬁl is hyper infinite sequence such#adim,,_ s, f, = f in H* then:

1) #-1im,_+ W (£ exists for ally € F,(H*) and#-lim,,_,+e, W (£ ) = W ()Y

2) #-1im, L+ PE(f,)Y exists for alkp € Fy and#-lim,,_« PZ(f,)P = ®E(HY

(e) For every unitary operatdr on H*,I'*#(U): D(#-®%(f)) » D(#-®%(Uf)) and for ally € D(#-0E(Uf)),
T*(U) (#-F ()T 1(U)y = #-0F(Uf)y for all ¢ € F, andf € H*.

Remark 9.1 Henceforth we useb#(f) to denote thét-closure #-®%(f) of df (f).

Definition 92 For each m>0meR letH ={p € *R¥*p-p=m?p, >0}, where
p = @° —pt,—p% —p?), the setdl?, are called mass hyperboloids, are invariant uncimonical Lorentz




groug’Ll.. Let j,, be the#-homeomorphism of H onto *R¥3 given by j,.: (po, P1, P2, P3) = (P1, P2, P3) = P.
Define a#-measure)? on H}, for any#-measurable sé& c Hj by

d#s
Q# (E) = Ext- fjmwww—% . (88)

Theorem 9.2 Let u* be a polynomially bounded #-measure with support
in
#-V,
If u* is oL, = L' - invariant, there exists a polynomially boundedeasure® on[0,00") and a constantso that

for anyf € S*¥("R#*)
* / 2 2 #3
Ext- f*m§4f d*u* = cf(0) + Ext- fow d*p*(m) (Ext- f*]R*f (! ‘*;/Tpl.fi:;,vs)d p).
Definition 9.3 Let F(f) be a linear#-continuous functionaf: S & (*R**) - *R¥. FunctionalF is L'- ~ -
invariant if for anyA € L, the following property hold€ (f (Ax)) = F(f) for all f € S §,CR#*).
Theorem 9.3 Let u* be a polynomially boundeH, - invariant#-measure with support iV, . Let F(f) be a
linear #-continuous functionaF: S &, ("R#*) - *R¥, defined by Ext- fmg‘Lfd#u# and there exists a

¢ fin

(89)

polynomially boundedt-measure® on [0,00%) such thatf(:oo d*p*(m) € "R and a constant € "R¥ . so that

¢ fin ¢ fin
(1) holds. Then for anf € S {,, "R#*) and for anyr € “R¥ ,, the following property holds
_ o 4y F(VIpP+mZ p1.p p3)a*p
F(f) = cf(0) + Ext- [~ d¥p*(m) <Ext- flplsu Tt .
Definition 9.4 Let y(»,p) be a function such thaty(x,p) = 1 if |p| < %, x(3,p) = 0 if |p| > x. Define a
#-measuredfy, ,, onH} by

(90)

x(ep)a*p
an'%(E) = Ext- fjm(E) W (91)

We use the Segal quantization to define the freermifian scalar field of masa. We
takeH"* = L%( H, d*Qt ). For eachf € Sf, ("Ri*) we defineEf € H* by Ef = 2rn(Ext-f) I H}, where the
Fourier transform is defined in terms of the Loeentinvariant inner produgt- x:
Ext-f = #(Ext- f*nx’g‘* Ext-exp[i(p - f)]d#‘*x). If ®%,()is the Segal quantization ovej( Hf,d*Q ), we
define for eachR?- valuedf € S*("R¥*): @}, ,,(f) = @£, (Ef) and for eacHC%- valuedf € S*(*R{*) we define
q)?nx(f) = (Dfn,n(Ref) + iq)?n,n(lmf)-

Definition 9.5 The mapping — @5 ,.(f) is called the free non-Archimedean Hermitian sciédd of massn.

Definition 9.6 On Li( HY,d*Qk ) we define the following unitary representationtioé restricted Poincare

groupL'.: (U,,(a, N)(p) = (Ext-exp[i(p - @)])y(A~'p) where we are using to denote both an element of the
abstract restricted Lorentz group and the corredipgrelement in the standard representatiofiRh

Remark 9.2 Note that by Theorem 9.1(e) for ajl € F, andf € L( Hf, d* Q% ) we get

M (U (@, 0) (#-@F, (D) (U (@, D)ip = T¥ (U (a, 0)) (#-@F(EN))T* (U (@, 1)) =
#-0F (U (a, VEP)Y.
A change of variables for gfl € Sf, (*R¥#*) gives that
Un(a, NEf = EUp(a,Nf.
Therefore for all € DS# c F, such thatj|y|l, € *Rﬁ'ﬁn and for *R¥, -valued functiorf such that f €

¢ fin
SE ("R#*) we obtain that

D (U (@, 1)) (#-0f o (F)) T#H (U (0, DI = #-f, Ui (a, DFP.
Definition 9.7 The#-conjugation on a non-Archimedean Hilbert spHéeis an antilinea#-isometryC* so that
the following equality hold€%2 = 1.
Definition 9.8 Let H* be a non-Archimedean Hilbert space over fieltf, ®#(-)the associated Segal

quantization. LetH !, = {f|C*f = f}. For eachf € Hﬁ# we definep®(f) = ®%(f) and ¥ (f) = ®E(if), the
map f — ¢*(f) is called the canonical free field over the dotlbk*, C*) and the mag — n#(f) is called the

canonical conjugate momentum.



Theorem 9.4 Let H* be a non-Archimedean Hilbert space over figfl with #-conjugationC*. Letp*(-) and
m#(-) be the corresponding canonical fields. Then: (a)dachf € H i#,q)#(f) is essentially self-adjoint onF,.
(b) {<p#(f)|f €EH ﬁ#} is a commuting family of sel#-adjoint operators. (d@, is a#-cyclic vector for the family

{o*(DIf € HE&} (@) If {f..2, is hyper infinite sequence such #slim, - f,=f in H 4 then
#-1im,,_, 0 @™ (f )W exists for al YeF and #lim, 0" (F)Y =" (HY.  (e)
#-1im,,_ o (Ext-explio® (f,) 1) = Ext-explip®(f)]y for all € F,(H¥). (f) Properties (a)-(e) hold with*(f)
replaced byr*(f). () If f.g € H s , then[p*(No*(9) — ¥ (@)e* (A = i(f, g) for all y € F(H*) and
(Ext-explip® (f)]) (Ext-exp[in® (f)]) = (Ext-exp[i(f, g)D) (Ext-exp[in* (f)]) (Ext-exp[ip* (f)]).

Definition 9.9 We write nowf € Li( Hf,d*Qk ) as f(p,,p) and define the#-conjugation C* by
C*(f)(po, ) = f(po, —p) . Note thatC* is well-defined orf € L( Hf,d*Q% ) since(p,, —p) € H, if and only
if (po, p) € H.

Definition 9.10 We denote the canonical fields correspondingtby ¢* (-) andn® (-) and definep}: ,. (f) =
o* (Ef) and nift,, (f) = n* (u(P)ES), u(p) = /p? + m? for *R¥- valuedf € LE(*RE*), extending to all of
LE('R#*) by linearity. We let nowg = {Yly € Fp,p™ € s, CR¥™)} and for eaclp € "R¥ we define the
operatora(p) onF, (Lﬁ(*]Rﬁ)) with domainDgs by (a@P)™ =Vn+1 p™I(p,ky, ... k,) and therefore the
formal #-adjoint of the operaton(p) reads(a’(p)y)™ = \/% n 8= k)Y O (key, o kg, gy s k).
Note that the formulas

a(g) = Ext- [.p4: a(p)g(—p)d™p, (92)
a*(g) = Ext- [,y a*(P)g(p)d"*p (93)
hold for all g € S&, ("R¥?) if the equalities (92)-(93) are understood in $e@se of quadratic forms. That is,
(92) means that fog,, 1, € D : (Y1, a(g)p,) = Ext- Jog#2 (1, a(@)P2) g(—p)d*p and similarly (93) means
that fory,,, € Dy : (Y1, a(@)z) = Ext- [ w1, aT(0)p2) g(p)d*p. The particles number operator reads

Nos = Ext-[,_ a*(®a®)d*p. (94)
The generator of time translations in the freeaci@ld theory of masa is given by
Hoy = Ext- [ u(@)a’ (p)a(p) d*p. (95)
We express the free scalar field and the time fiefds in terms ofat(p) anda(p) as quadratic forms on
DSﬁn X Dsﬁn by
(Dg,m,x (x’ t) =
#3
(2m)~3/2Ext- flplsu{(Ext-exp(u(p)t — ipx))at(p) + (Ext-exp(u(p)t + ipx))a (p)}\/% : (96)
(Dg,m,x(x) =
-3/2 _ _ . + : . a*3p
(2m) 32 Ext flplsx{(Ext exp( lpx))a (p) + (Ext exp(lpx))a (p)}m . (97)
T[g,m,x(x) =
-3/2 ~ _ . + . . d#3p
(2m)3/?Ext flplﬂ{(Ext exp(—ipx))a’(p) + (Ext-exp(ipx))a (p)}\/m . (98)

Abbreviation 9.1 We shall write for the sake of brevity through titiaperd},, (x,t), ®§, (x) and 1}, (x)
insteaddf .., (x, t), ®F . . (x) andnf ., . (x) correspondingly.

Theorem 95 Let n;,n, € N and suppose thatW(ky,..ky Py, ., Pn,) € L§ (*Rfe‘(nﬁnﬁ) where
W (ky, . kn,, D1, s Pp,) 1S @ *Clg, -valued function onR"™*"2)  Then there is a unique operatf on

F, (L§(*R§3)) o) thatDS;q;rl c D(Ty,) is a#- core forTy, .

1) As*C#-valued quadratic forms (ms# X DS#
Ty = Ext- f*nx3(n1+nz) W(kl, ok, 01, ...,pnz) (H’::ll at(k;, 8))(1_[?:21 a(p;, €))d#3n1kd#3"2p.
2) As *C#-valued quadratic forms (ms# X DS#

Ty = Ext- f*ux3(n1+nz) W(kl' Ky D1 ""pnz) (H:;l1 a’(k;, 5))(H:l:21 a(p;, 5))d#3n1kd#3n2p-




3) If my andm, are nonnegative integers so thgt+ m, = n; + n,, then
(14 NH)T™M2Ty, (1 + N2 < COmy, mp) W 5.
4) On vectors inF,, the operatordy, and Ty, are given by the explicit formulas
(Tw(lp))l n2+n1 _
K(l,ny,n,)S [ Ext- flpllsx . Ext- flanIS%W(kl’ wkn, D1 ...,pnz) lp(’)(pl, s Pryr Ky oo knl)d’l’te‘”2 p],
(TW(¢))" =0ifn<n; —ny,,
(TW(ll)))l n1+n2 _

. Ext-fl | W (ky, o kny, D1s ooes Py ) WP (01, oo Py K o )dBM ke
p‘nz sx

K(l,n,,n,)S [ Ext- f
12

1]sx

(T5; ()" = 0if and only if n < n, — n,. Here§ is the symmetrization operator.

Q"-SPACE REPRESENTATION OF THE FOCK SPACE STRUCTURES

In this section the construction of a non-Archimmu@*-space and} (Q# d*u*) , another representation of the
Fock space structures are presented. In analognthetone degree of freedom case wiFte'R? ) is isomorphic
to L{("R¥,d*x) in such a way thatb#(1) becomes multiplication ky we will construct ac*-measure
space(Q¥, u*), with u*(Q#) = 1, and a unitary map*: 7 (H* ) — L%(Q*, d*u*) so that for eacli € Hf, S* ¢/ ()
S#=1 acts onLi (Q*, d*u*) by multiplication by au*-measurable function. We can then show that irctise of the
free scalar field of mass in 4-dimensional space-tindé}, V = S*H, (g)S*~* is just multiplication by a function

V(q) which is inL%(Q#,d*u*) for eactp € *N. Let {gn};‘il be an orthonormal basis féf* so that eacly € Hf

and let {g,}N_,, N € *N be a finite or hyperfinite subcollection of the SEL};":I .Let Py be a set of the all external
finite and hyperfinite polynomials Ext-P[u,,...,uy] and Fj# be the #closure of the set
{Ext-PloZ(g.),..., 0k (gn)]1IP € Py} in F#(H*) and define a sét)’ = Fji n F,. From Theorem 55 it follows that
0} (g,) andri(g,), for all1 < k,1 < N are essentially self-&djoint onF¥ and that
(Ext-explitef (g:)]) (Ext-exp[itnf(g)]) =
(Ext-exp|—istdy, |)(Ext-explitm}(g,)]) (Ext-explite} (gi)]) -
Therefore we have a representation of the genethlieyl relations in which the vectofl, satisfies the
equality ([o#(g)]1? + [ (g9)]? — 1), = 0 and is cyclic for the operatofg (g,)}¥_,. Therefore there is a

- - #
unitary mapS*™: Ff — LE("REN) such that: 1)S* ™ e} (g,) (S*™) Y= x,, 2)St ™t (g, )(S#M) t-_14

i d¥xp

and 3)S*Mq, = g~N/4 [Ext exp( Ext-YN_ )] It is convenient to use the non-Archimedean Hitltspace
2
L% (*Rﬁ”,n‘”“ <Ext-exp (—Ext-Zﬁzlxz—k)>> d*Nx instead ofL{(*R#V) so we letd”ufi= Ext-exp (— xz—k) d*x;

2
and define the operatéff)(x) = n™N/* (Ext-exp (Ext-z‘,l,;’ﬂx—k)), ThenT is a unitary map oLf(*R#") onto

LA(CREY, Ext-TTY-, d*uf ) and if we let sfV = TS#(N) we get: 1)5#“") Fli - LRI, Ext- TN, d*uf), 2)

-1
SEM (g (SFMY T = x, 3) Sf(N)n%(gk)(Sf(N)) = +—— and 4)sf™q, = 1, wherel is the function
identically one. Note that ea¢h measurg:; has mass one, WhICh |mpI|es that

(Q, (Ext-TIN-, Pe(02(91)))Q0) = *R#N(Ext 18- 1 P () (Ext-TIR=, d*uf) = (99)

= Ext-[[}-, f*Rgzv Py () d* ¢ = Ext-TIN=, fletcﬁN<QO; P (95(91)20)).
HereP,, ..., Py are external finite and hyperfinite polynomial&viwe can to construct directly tad-measure
spacgQ*, u*). We define a spad@” =x,- i . "R¥. Take theo*-algebra generated by hyper infinite products of

#-measurable sets iR and seu® =®k=1 ug. We denote the points a@# symbolically byg = (q,, g5, ...}, then
(Q*, u*) is ac®- measure space and the set of functions of tha Py, g5, ...), whereP is a polynomial and



n € *N is arbitrary, is#-dense inL%(Q¥, d*u"). Let P be a polynomial inN € *N variablesP(x;, x, ..., Xy) =
l l -
Ext-31,. iy ClytyXic, " Xiy @nd defines®: P (gofﬁ(gkl), ...,<pf§(gkN)) Qo = P(qk,, Qiyr > Gk )- Then we get

(0£(9ic)r - @5 (9ky)) Q0 = Ext-z il (2,9(96) "™ 0 (910) " ) =

N
2
Ext- E clEmf qll)rm1 X X @t (Ext-l | d#y,’i,) = Ext-f |P(xiey Xieys woor Xiey )|~ d* .
Lm *REN i=1 t o*

By the equation (99) and the fact that each measi;rieas mass one. Sin€x, is cyclic for polynomials in the
fields, S*extends to a unitary map &f (H* ) onto L% (Q#, d¥*u*).

Theorem 10.1 [15] Let g} (x), » € *RE ,,be the free scalar field of mass (in 4-dimensional space-time) at
time zero. Let g € L{CRE) N LECRE) and  defind 60(9) = 10¢) (Ext- [0 9(0): @l (2):dx),
whered(x) € *Rf .. Let S* denote the unitary maps*: 7 (H* ) - L§(Q*, d*u*) constructed above. Thén=
S*H, ,,,(g)$*is multiplication by a functiorV, ;(¢q) which satisfies: (ay, 1(q) € L5 (Q* d*u*) for all p € *N.
(b) Ext-exp (—thl(q)) € LE(Q*, d*u™) for all t € [0, *o0).

Proof. (a) Note that ¢, (x) is a well-defined operator-valued function efe *R%3. We define now

: @t (x): by moving all thea®’s to the left in the formal expression fer, (x). By Theorem 59: pit (x): is
also a well-defined operator for eaghe *]R#3 Notice that for each € *R¥#3 operator et (x): takesF0 into
itself. Thus for eaclr € *R{> operator @it (x): reads @it (x) = @ih (x) + dy(3) @i (x) + d, (»%) where the

coefficientsd, (») andd, (x) are hyperfmlte constant mdependenkoFor eachr € *R#3, S’*(pm_,f(x)(g)s# lis the
operator on #-measurable spaceLf(Q*,d*u*) which acts by multiplying by the function

Ext-3,2, ¢ (%, ) q, where ¢, (x,0) = (21)73/%( gy, (Ext-exp(ipx))x (e, p)u(p) %) and x(Ge,p) =1 if
Ipl <, x(3t,p) = 0if |p| > ». Note that
Ext- Y, 2 lep (x, 2012 = m) 732 x Ge, p) )13, (100)

so the functions*pit (x)(g)S*~* andS*pj2, (x)(g)S*~* are inL{(Q*, d*u*) and theLf(Q*, d*u*) norms
are uniformly bounded inc. Therefore, sinceg € LY("R¥3), S*H,,, 260 (9)S* *operates onLj(Q*,d*u*) by
multiplication by someLf(Q*, d*u*)-function which we denote by, , 10, (q). Consider now the expression
for Hy ,, 100 (9) Q. This is a vecto(0,0,0,0,1%*,0, ...) with

(oo pepaps) = Ext- | A(x)g(x)x(x,p)(Ext-exp(—ixzéi‘{pi))d3x:A(x)n?=1x(x,pi)(sxt-g(zﬁiipi)) (101)
L F2 P304 RE? (2m)3/2 [TE,[2u(pp]1/2 (2m)°/2 [T, [21(p)] /2

Here|p;| < »,1 < i < 4. We choose now the parameter A(») ~ 0 such thaf|)**||Z, € R and therefore we
obtain|| H:,M(x)(g)ﬂo”; € R, since]| HIM(;{)(Q)%"; = |lp**||2,. But, sinces*Q, = 1, we get the equalities
” HIJ{A(H)(g)QOH#Z - ”S#HIJ{A(;:)(Q)S# 1||L#(Q# a# #) ”Vlul(x)(Q)”L#(Q# a# #) (102)

From (101)-(102) we get thaﬂV,_,{_M,{)(q)||L§(Q#'d###)

P(q1,9z, -, qn),n € *N is in the domain of the operatWr,, ;. (q) andS*H, 1, (9)S*™* = Vi, 100(q) on that

domain. Since, is in the domain ofi®;, ;,,(g),p € *N, 1 is in the domain of the operatBP,,, ;) (q) for all
p € "N. Thus, for allp € *N V;,, 100 (q) € L5,(Q*,a*u*), sinceu®(Q*) is finite, we conclude thaf;, ;. (q) €

€R. It is easily verify that each polynomial

Ly (Q*, d*u™) for aII p € *N. (b) Remind Wick's theorem asserts that
; 2 .
Lo 00 = DL D e ckond @) with ¢, = [loh )y, For j=4 we get —0(c?) <
it (x):and  therefore - (Ext- f*m#39(x) d#3x) 0(c?) < Hjy200(g)-Finally we  obtain

Ext- [ Ext-exp( t(: it () )) d*u* < Ext-exp(0(c2)) and this inequality finalized the proof.

GENERALIZED HAAG KASTLER AXIOMS

Definition 11.1 [15] A non- Archimedean Banach algebtais a complext-algebra over fieldC# (or *(Ccfm =
‘Rig, +1"R¥s, ) which is a non-Archimedean Banach space undelRf -valued -norm which is sub
multiplicative, i.e. ||xylls < |lx|l4|lyllxfor all x,y € A4. An involution on a non- Archimedean Banach algebra



is a conjugate-linear isometric antiautomorphismomfer two denoted by — x*, i.e.{x + y)* = x* + y*, and for
all x,y € 4y: (xy)* =y'x*, (Ax)" =x,(x)* =x, ||x*|ls =x, 1€ *C¥. A Banach #- algebra is a non-
Archimedean Banach algebra with an involution.

Definition 11.2 An (Ci-algebra is a Banach-algebraA, satisfying theCi-axiom: for allx € Ay, ||x*x||y =
1113

Definition 11.3 1) A linear operatora: H; — Hy; on a non-Archimedean Hilbert spadg is said to be bounded
if there is a numbek € *R¥ with ||a&|l; < K||&|l; for all & € Hy. 2) A linear operatora: Hy, —» H, a non-
Archimedean Hilbert spadg, is said to be finitely bounded if there is a numi§es *]Rff_ﬁn with ||aé|lx < K||€]14
for all ¢ € H,. The infimum of all suclk if exists, is called th&-norm ofa, written||a||.

Abbreviation 11.1 The set of all finitely bounded operaters?, — H, we will be denoting bB*(H,).

Abbreviation 11.2 The set of all finitely bounded operatersH; — Hy we will be denoting b, (Hy).

Remark 11.1 Note thatB, (Hy) is aCj-algebra over fieldC g .

Definition 11.4 If S < B¥(H,) (orBy (Hy) ) then the commutans’ of S is §' = {x € B¥(H,)|Va €
S(xa = ax)}.

Remark 11.2 The algebraB*(H,) of bounded linear operators on a non-Archimededheri spaceH, is a
C;-algebra with involutiol — T*,T € B¥(H,). Clearly, any#-closed#-selfadjoint subalgebra @&*(H,) is also a
Cy-algebra.

Remark 11.3 We will be especially concerned withiseparable Hilbert Spaces where there is an orthaedor
basis, i.e. a hyper infinite sequer)({éi}:f1 of unit vectors wit&;,&; ) = 0 for i # j and such thad is the only
element ofH, orthogonal to all thé;.

Definition 11.5 1) The topology orB*(H,) (or By (H,) of pointwise#-convergence ofi, is called the strong
operator topology. A basis of neighbourhooda & B*(H,) (ora € By (H,) is formed by the following way

N(a (£ €) = (bIll(b — D&l < & Vil < i <)}
2) The weak operator topology is formed by the dasighbourhoods
N(a (&), ey ©) = (bI{(b — )&, ) < &, Vi(1 < i < m)}.

Theorem 11.11f M = M* is subalgebra o8#(H,) (or B, (H,) with1 € M, then the following statements are
equivalent: )M = M"" ; 2) M is strongly#-closed; 3)M is weakly#-closed.

Definition 11.6 A subalgebra oB*(H,) (orB, (H,) satisfying the conditions of Theorem 61is callesiom
Neumann#-algebra.

Theorem 11.2 [15] (Generalized Gelfand-Naimark theorem) Uelbe aCj-algebra with unit. Then there exist a
non-Archimedean Hilbert spadé, and an#-isometric homomorphisry of A into B(Hy) such thalx* = Ux™,
X€EA.

Abbreviation 11.3 We denote by# = {*R#*, (-,)}, the vector spacéR#* with the Minkowski product:
(x'}’) = XoYo — XiYis i= 1!2!3'

Statement of the Axioms[15]. Let M} be Minkowski space over field®R¥ of four space-time dimensions.

1. Algebras of Local Observables. To each finitely bounded-épen seb c M we assign a unitd; -algebra

0 - B4(0)
2.Isotony. If 0; c 0, , thenB(0,) is the unitalC; -subalgebra of the unit@}-algebraB(0,) :
By(0,) < By(0,).
This axiom allow us to form the algebra of all Ibcbservables
Byioc = Uoch By(0).

The algebraBy,. is a well-definedC; -algebra because given a@y, 0, c M, bothB,(0;) andB,(0,) are

subalgebras of thg; -algebr&,(0;, U 0,). From there one can take thexorm completion to obtain

By = #-Byioc »
called the algebra of quasi-local observables. Ghiss aC}; -algebra in which all the local observalile-algebras
are embedded.

3. Poincare ~ -Covariance. For each Poincare transformatigre °P; , there is aj- isomorphisn, : By —

By such that
ag(B4(0)) = B4(g(0)),
for all boundedt-open0 c M. For fixedg € B, , the magy — a,4(A4) is required to bé-continuous.
3'. For each Poincare transformatipe °P] , there is &j- isomorphismy, : B, — By such that



st (ag(B#(O))) = st (B#(g(O))),

for all boundedt-openO c M. For fixedg € By , the mapy — a,(A) is required to bé-continuous.

4. =~-Causality. If 0, and0, are spacelike separated, then all elemen®;, ;) =~ -commute with all elements
ofa  ( -algebraB,(0,)

[B4(0,),B4(02)] = 0.

4'. If 0, and 0, are space-like separated, then the standard painecall elements o€} -algebra B, (0,)

commute with the standard part of the all element§;, -algebraB,(0,)
st(B4(0,),B4(0,)) = 0.

Definition 11.7 If 0 c M, we sayx belongs to the future causal shadow)df every past directed time-like or
light-like trajectory beginning at x intersects kwi®. Essentially,0 separates the past light conexdfikewise, we
sayx belongs to the past causal shadovodf every future-directed timelike or lightlike jectory beginning at
inter-sects with0. The causal completion or causal envel@pef 0 is the union of its future and past directed
causal shadows. This definition of the causal cetignhd can be reformulated in terms of “causal complemén
which are computationally easier to deal witho Iic M¥, we define the causal compleméitof O to be the set of
all points with are spacelike to all points éh Then0” = 0 is the causal completion 6f One expects the
observables localized t6 to be completely determined by the observablesliloed to0, carrying the same
information.

5. Time Evolution.

By(0 ) = B4(0).

6. Vacuum state and positive spectrum. There exists a faithful irreducible representatign: B, — B(Hy)
with a unique (up to a factor) vectr € Hy such thatQ is cyclic and Poincaréavariant, and such that
unitary representation of translations, given by

U(x)my (A)Q = m(ay(A4))Q,

whered € By, and a, (") is the Cj-isomorphism from Axiom 3 associated with transliatiby x € M}, has
Hermitian generatorB*, u = 1,2,3 whose joint spectrum lies in the forward light eoithe last phrase is the most
physically important here; it simply states that thave energy-momentum operators whose spectrursfisati
E? — P2 > 0,i.e, or in other words, that the ener§y 0 and nothing can move faster than the speedjbf. [The
vectorQ is the vacuum state This axiom does not appebe tpurely algebraic; we have had to introduce am no
Archimedean Hilbert spadé; . In fact, we can rewrite the axiom in a comphetabebraic but less transparent way
as follows. We postulate that there exists an vacstatew, on the(, -algebra (i.e., a normalized, positive,
bounded linear functional) such that the followhads w,(Q*Q) = 0 for all Q € By of the form

Q(f, A) = Ext-[ f(x)a,(A) d*x
wheredA € By andf(x) is a#-smooth function whose Fourier transform has bourslgiport disjoint from the
forward light-cone centered at the originMi.

Remind that in a quantum system with a Hamiltoifarthe Heisenberg picture dynamics is given by the
canonical formula

A(t) = {Ext-exp[itH]}A(0){Ext-exp[—itH]}.

Then A(t) is the observable at timecorresponding to the time zero observat(@). In our model we have
hyper finitely locally correct Hamiltoniang(g) but no hyper infinitely global Hamiltonian, and wenstruct the
Heisenberg picture dynamics nonetheless. We dohthigestricting the observables to lie in the loaljebras
B4(0) and by using the finite propagation speed impiiciéxiom 3.

Definition 11.8 Let £ be the space of symmetrid (*R#3") functions defined ofiR#3", F# = *C* and
let F# = Ext-ea;io}"n#, Qo =1€*Cf c F*. Let S, be the projection of Li(*R#3™) onto F¥and letD, be the
#-dense domain iIF* spanned algebraically b§, and vectors of the forn§, (Ext-[[?-, fi (k) wheref, €
SEy CRE,*R¥#3),n € *N.

Definition 11.9 We set now

Ho, = Ext- f% (m2(x) + V¥p2(x) + m*@2(x)): d*x. (103)
Theorem 11.3 As the bilinear form on the domaiiy x D,
Hy, = Ext- f|k|s;:'u(k) at(k)a(k)d* k. (104)

Theorem 11.4 (1) The operatoH, = H,, leaves each subdomayNF, invariant. (2) The operatdf, = Hy,,
is essentially self-adjoint as an operator on the domajn



Definition 11.10 We set now

@f o(x, t) = Ext-exp(itHy) @) (x) Ext-exp(—itH,) (105)
J{_O(x t) = Ext-exp(itH,)m} (x) Ext-exp(—itH,) (106)
‘Pﬁ,o(f; t) = Ext- f*Rgs ‘Pﬁ,o (x,t) f(x)d#3x (107)
o (f,t) = Ext- f*nx§3 o (x, t) f(x)d"3x. (108)

Hereo# (x) andrf(x) is given by formulas (97) and (98) respectively.
Remark 11.4 Note thatp} ,(x, t) andz}: o (x, t) are bilinear forms defined dby x Dy.
Theorem 11.5 As bilinear forms oy X Dy.

a#
Pr0(x,t) = Ext- [pus Ay (x — y, ) T (x)d™y + Ext- f*R#zaTA#(x = 9,t) @r()d*y (109)

a#
Th (6, 1) = Ext- [.ps 5By (x — 3,0 Th () A"y + Ext- [y 2 By (x =y, D T) Py (110)
Remark 11. 5 HereA#(x - y, t) is the solutlon of the generahzed Klein-Gordgui&ion
——= 0 (x,t) — = Au(x, t) — A#(x t) — a# 2A#(x t) + m2Au(x,t) =0 (111)

a#tz a# 2 a# 2

with Cauchy data,(x,0) = O,WA# (x,0) = 8 (x).

Remark 11.6 Note the distributior, (x, t) has support in the double light-coné < |¢|.

Theorem 11.6 Letf;, f, € S*(*RE, *RE). The operatop o(f, t) + n} o (f, t) is essentially self~adjoint on
the domairDy.

Definition 11.11 We introduce now the claé};(S#(*IR{?)) of bilinear forms on D, x D; expressible as a
linear combination of the forms

V=3 () Ext- Jogpn v () @t () = at (ky)a(ly ) - allen) d*mk (112)
with symmetric kernelg(k) € S*(*R#3) having real Fourier transforms.

Theorem 11.7 LetV € J(S*(*R#%)). ThenVis essentially selft-adjoint onDy.

Theorem 11.8 Let O be a boundedt-open region of vector spa@®® and letM,(0) be the von Neumann
algebra generated by the field operatBzs-exp[ipf(f)] with £ € S¥(*R#3, *R#3) andsuppf < 0. Let g(x) =0
on *"R¥3\0. ThenExt-exp[itH,(g)] € M,(0) for allt € *R¥.

Definition 11.12 Let O be a boundedt-open region of space and 1B (0) be the von Neumann algebra
generated by the operatdtst-exp[i(@f (f,) + mfi(f,))] with £,, £, € S*("RE3, *R¥%) andsuppf;, suppf, < 0. Let
0, be the set of points with distance less thtgho O for any instant of the time

Theorem 11.9 Ext-exp(itH,) By (0)Ext-exp(—itHy) € By(0,).

Theorem 11.10 If 0, and 0, are disjoint bounded open regions of vector sfRiethen the standard part of
the operators iB,(0,) commute with the standard part of the operatooperators irB,(0,).

Theorem 11.11 Letg € LE(("R#%)), and letg = 0 on open regior®, thenExt-exp[itH,(g)] € B4(0)’ for all
t € *R¥.

Theorem 11.12 [15] (Free field~-Causality) Letf;, f, € S f, CR#*, *R#4) with suppf, c 0,,suppf, c 0,. We
set now ¢ ,(f,) = Ext- f*u@ﬁ‘* oio(x, ) fi (x, )d*x andef o (f,) = Ext- f*u@ﬁ‘* @i o (x, ) fo (x, )d**x. If region
0, and regior0, are space-like separated, thhm‘fjjo (f), <pfj,0(f2)]1p ~ 0 for all near standard vectgre H,.

Proof. The commutatofp? ,(f,), ¢f ,(f,)] reads

[0} o (f), 0fo(f)] = Ext- f*Rﬁz’: d*3x,d* t, Ext- f*]RaCM dBx,d"t, A (X1 — %, t — t) f1 (61, t) o (0, t1),
Af(xy — xp,t1 — t3) = Eq(xy — X, ty — tg; ) — Ep (X1 — Xp, ty — ty; %), where

E1(x — xp,t — ty;3) = Ext- f|p|s;,{exp{[ip(x1 —x)] —iw(p)(t; — tz)}}%,

E2(xy — xp, 8y — ty; %) = Ext- f|p|<,f{ exp[[ip(x, — x,)] + iw(P)(t; — tz)]}% .

Herex € *Rg'oo ) a)(p) =4/ pz + mz. Deflne.:l(xl — Xy, tl - tz,}f) andéz(xl — Xy, tl - tz, }f) by
#3
= , . 4
B G = oty = 30 = Bat- | [expllipGa — x)] - i0®) @~ £)))

Ipl>x Jpr+m?
- . . a#3
Ea(xy — x5ty — ty; ) = Ext- f|p|>,{{ eXp[[lp(x1 - xz)] +iw(p)(t, — tZ)]}pZ\/—+—:12'



Note that. (a.) El(xl — X, tl - tz,}f) =0 and Ez(xl - Xy, tl - tz,}‘[) =~ 0, (b) El(xl — Xy, tl - tz,}f) and
E,(xq — x,,t; — ty; ) are Lorentz=-invariant tempered distribution (see definition, 4)nce the distributions
:.1(x1 — X, tl - tz) andsz(xl — X, tl - tz) def'ned by

- = . . a#s
Bi(xg — x5ty —to; ) + 21(x) — xp,t; — ty; ) = Ext- f {eXp[[lp(x1 - xz)] —iw(P)(t, - tZ)]}pZ\/—+_:12

= . = _ N ) . _ , _ a#3p

By (2 — Xp, by — ty520) + E5 (0 — x5,y — ty5%) = Ext- [{exp[[—ip(xy — x5)] + iw(p)(t, tZ)]}W

are Lorentz invariant by Theorem 56. From expmssof the distributionZ,(x; — x,,t; — t,; %) by
replacemenp — —p we obtain

- . , a#3
Ea(xy — x5, ty — ty; ) = —Ext- f|p|>,{{eXp[[lp(x1 - xz)] +iw(P)(t, — tz)]}ﬁfnz-
And therefore finally we get

3
By =gty = 1) = Ext- [, sinfo@)(ty — t)]explip(n — 1)) 7L

Thus for any point§x,, t;) and(x,, t,) separated by space-like interval we obtain Mdtc, — x,,t; — t,) = 0,
sinceA’ (x; — x,,t; —t,) is a Lorentzs-invariant tempered distribution.

Theorem 11.13 (Time zero free field~ -locality) Let f;, f, € S £, CR#3,*R#3) with suppf; c 0,, and
suppf, c 0, are disjoint bounded open regions of vector st then[of (£, 0), o ,(f,, 0)] = 0.

Proof. It follows immediately from Theorem 11.12.

Theorem 11.14 Let O be a bounded-open region of vector spa@®¥®, lett € *R¥ , let g be a nonnegative
function inL¥ ("R#3) n L% ("R#3) and letg be identically equal to one @h.ForA € B,(0), then

o (A) = {Ext-exp[itH (g)JA{Ext-exp[—itH (g)]}

is independent of ando,(A4) € B4(0,).

Proof. Let ¢2(A) = {Ext-exp[itH,|}A{Ext-exp[—itH,]} and o/(4) = {Ext-exp[itH,]}A{Ext-exp[—itH,]}.
Notice that generalized Trotter's product formslaalid for the unitary groupxt-exp|it(H, + H,(g))]. Thus we
get the following product formula for the assoaibéeitomorphism group:

0, (4) = #-limp, o[ (050 1m)" (A)]- (113)

Each automorphism/ maps eactB,(0;) into itself and is independent gf on B,(0,) for |s| < |t|. To see
this, lety(0s) be the characteristic function of a gtWe assert that

at’/n(C) = {Ext-exp[i(t/n)H,()((Os))]}C{Ext-exp[—i(t/n)H,()((OS))]} (114)

for any C € B,(0,) and thats{(C) € B,(0,). In other words the interaction automorphism hespagation
speed zero and is independentgobn B, (0;) for |s| « |t|. The theorem follows from (113), (114) and Theorem
11.9. To prove (113), we rewritd;(g) = H,;(x(05)) + H;(g[1 — x(0s)]) as a sum of commuting settadjoint
operators. Byrheorem 11.15 Ext-exp|itH;(x(0s))] € B4(0,) and so the right side of (8.3) belongBid0;). By
Theorem 70,

Ext-exp[itH;(g[1 — x(0:)])] € B4(05)'
and (114) follows.
Definition 11.13 Let B be a boundedt-open region of spacetimgff and for any time, let B(t) =
{x| x,t € B} be the time time slice ofB. We defineB,(B) to be the von Neumann algebra generated by

U, 0, (B# (B(®))). (115)

Theorem 11.16 The generalized Haag-Kastler axioms (1)-(5) afiel ¥ar all these local algebr& (B).

Proof (Except Lorentz rotations) The axioms (1) anddB) obvious, while (4) follows easily from the fimi
propagation speed, Theorem 11.10, together withithe zero~-locality, Theorem 11.12. Because the time zero
fields coincide with the time zero free fields, @etause the time zero fields gene®@dy Theorem 11.12 and the
definition of the local algebras, the free fielduk carries over to our scalar model with intdmacH; # 0. In the
Poincaré covariance axiom (3), the time translasogiven byo,. LetB + t be the time translate of the space time
regionB ¢ M}. Then(B + t)(s) = B(s — t) and so

0¢ [Us 05 (Ba(B()) )| = Us 0sse (Ba(B(5))) = Us 05 (Ba(B(s = 1)) = Uy 0e (Bo(B(s 1)) (116)

Thus at(B#(B)) = Bs(B +t) and axiom (3) is verified for time translationan& the local algebras are

#-norm dense irBy and since automorphisms @f-algebras preserve tlenorm, g, extends to an automorphism

of algebraB,.
Definition 11.14 To define the space translation automorphignwe set now



P* = Ext- f”p”«% p*at(p)a(p) d*p,u = 1,2,3; 0,(4) = {Ext-exp[—ixP]}A{Ext-exp[ixP]}. (117)

Then we get {Ext-exp[—ixP]}q, (x){Ext-exp[ixP]} = @, (x + v), {Ext-exp[—ixP]}m, (x){Ext-exp[ixP]} =
P(x +y).

The following theorem completes the proof of TheorkEL.16 except for Lorentz rotations.

Theorem 11.17 The automorphisrmx(B#(B)) = By(B + x), st(o,) extends up toCi-automorphism o8B, and
(x, t) - st(o,)st(o,) = = st(o;)st(o,) defines a 4-parameter abelian automorphism gro@®.of

Theorem 11.18 Let 0 be a boundedt-open region of space and I8(0) be the von Neumann algebra
generated by the operatoBxt-exp|i(¢,(fi) + 7, (f;))] where f;, f, € & ('R¥) and suppf; < B,suppf,  B.
Then

Ext-exp(itHy)By(0)Ext-exp(—itH,) < By(0,).

Remark 11.7 We reformulate the theorem by saying tHathas propagation speed at most one.

In order to obtain automorphisms for the full Lazgroup and to complete the proof of Theorem 11tiére

are four separate steps.

1. The first step is to construct a s#Hadjoint locally correct generator for Lorentz ratas. This generator
then defines a locally correct unitary group antbenorphism group.

2. The second step is to prove this statementh@ffields, by showing that the fiedg,(x, t), considered as a
non-standard operator valued function on a suitdolmain, and is transformed locally correctly by ou
unitary group.

3. The third step is to show that the local alge®g B) are also transformed correctly.

4. The fourth final step is to reconstruct the lmdzegroup automorphisms from the locally corregcpis given
by the first three steps. This final step is ndtidilt as in in the case of the two dimensionahagtimed =
2, see [16-18].

Let Hy, (x) denote the integrand in (103), where

Hy, = Ext-[ Hy, (x)d*3x = Ext-f%: (m2(x) + V¥ p2(x) + m2p2(x)): d*x . (118)
The formal generator of classical Lorentz rotatins
MY = MJ¥ + MP% = Ext- [ x*H,,, (x)d®3x + Ext- [ x*: P (¢,,(x)):d*3x, k = 1,2,3. (119)
The local Lorentzian rotations are
M ({9, 959) = eHo + Hon(917) + Hise( 95°), Hon(91) = Ext- [ o (%) g{ (x)d*x. (120)

We require thad < & and thatg™ (x;, x,, x3), 95 (x1, %5, x3), k = 1,2,3 be nonnegativégw functions. In the

second step we require more, for example thatgik)(xl,xz,xg,) = Xy andggk)(xl,xz,x3) =x, k=123 in
some local spaceegion. This region is contained in the Cartesiandpct [g,*0) X [g,*0) X [g,"). By using
decomposingH,, (g*) into a sum of a diagonal and an off-diagonal terenobtainH,, ,,(g.*) =

Ext- [v® (kD) a* () a(D)d**kd**1 + Ext- [v{) (kD [a*(®)a*(D) + a(—k)a(-D]d*3kd®1 =
= HE,(9{) + H3%(9{*),
where

v ) (k1) = ¢ x (e, L) () pD + (k, 1) + m2) [u(u®] 772G (—ky + by, —ky + L, —ks + 13),
v (1) = ¢k, 1) (—p()p(D) — (k1) +m?) [u() ]2 g (—key = 1y, —ky = L, —ks — 13),

and wherek = (ky,ky, k3), 1= (1,15, 13),(k, 1) =Y3 ki l;, x(k,1,3) =1 if |k| < x and|l| < x, otherwise
x(k,1,x) =0.

Theorem 1119 (a) v, € L3("R¥). (b) Functionv() is the kernel of a nonnegative operator and
eu(k)s(k—1) +ﬁvg‘_; is the kernel of a positive seff-adjoint operator, fop > 0, these operators are real in
configuration space.

Proof. The statement (a) is obvious. The statement (bprisved by using a finite sequence of Kato
perturbations. L@tlgk) =eu(k)s(k—-1 + ﬁvg‘}f and letV; andV;, denote the operators with kerne{ﬁ) andv%’?{
correspondingly. The operatby is a sum of three terms of the fodnM, A in configuration space, whend, is
multiplication by g; = 0. Thus 0 < V,. Moreover fory sufficiently small, but chosen independentlyfofwe

obtainyV, < %VO < %(V0 +BVp) = %VB and thereford/z,,, = Vp +yVp is a Kato perturbation, in the sense of



bilinear forms. Consequently if the operatds is self#-adjoint, so isVz,, and D(V;ﬁ,) =D(v,/?). Thus

canonical finite induction starting froly = V5 shows that; is self-adjoint, for alp = 0.

Theorem 11.20 The operatot? (¢{¥) is nonnegative aneH, + BHL (g) is self#-adjoint,for all g > 0.

The main purpose of the third step is to give aadawt definition of the local algebra (B).Le f € £, (B)
be the*R#3-valued function with support iB. Let {a;}*-;,n € *N be finite hyperreal numbers and consider the
expressions

@i (f) = Ext-[ ¢ji(x,t) f (x,)d"xd"t (121)
@i (f, ) = Ext-[ ¢fi(x,t) f(x,)d"x (122)

R(f) = Ext-3I_, a;pi(f, t)) (123)
i (f,t) = Ext-[ w}i(x, t) f(x, t)d"x. (124)

Forg =1 on a sufficiently large set (the domain of depamet of the regioR), the time integration in (1)
#-converges strongly, and all four operators aboeesgmmetric and defined (D(H(g)).

Theorem 11.21 The operators (1)-(4) are essentially selidjoint on any#-core forH (g)*/2.

Theorem 11.22 The algebraB,(B) is the von Neumann algebra generated by finitelynbled functions of
operators of the form (121).

Proof. Note that if a hyper infinite sequenci,,} of self#-adjoins operatorgt-converges strongly to a self
#-adjoint#-limit A on a core fol then the unitary operatoBxt-exp(itA,) #-converge strongly t&xt-exp(itA).
Using this fact, one can easily show that the dpesg1) and (4) generate the same von Neumanbrald®,, (B)
and thatBy, (B) o By(B). To show thaBy,(B) c B4(B), recall that a self#-adjoint operatod commutes with a
finitely bounded operataf providedCD < D(A) andCA = AC onD, for some cord of A. Equivalently is the
condition that the operatat commutes with all finitely bounded functions &f Also equivalent is the relation
CA = AC onD(A). We choos® = D(H(g)). If the operatolC commutes with all operators of the form (122), it
also commutes oh (H(g)) with all operators of the form (123). Hence we Bg{B)' c By, (B)' and sdBy,(B) =
By1(B)" © By(B)" = By(B)".

Remark 11.8 The Poincare groupP; is the semidirect product of the space-time tegisis groupR™? with
the Lorentz group0(1,3) such that{a; + A, }a, + A,} = {a; + A;,a,,4;4,}. Herea € RV and A(B): (x;,t) -
(xi x cosh(B) + t X sinh(B), x; X sinh(B) + t X cosh(ﬁ)),i = 1,2,3. We prove that there exists a representation
a(a,A) of the Poincare groufP] by = - automorphisms 0B, such thaw(a, 4)(B4(0)) = B, ({a, 430) for all
bounded open se®® and all{a, A} € °P]. The Lorentz group composition law give$a, A) = a(a,1)a(0, A).
Obviously the existence of the automorphism rempegion o(a, A) follows directly from the construction of the
pure Lorentz transformatiom(0,4) = a(A). One obtainso(A) by constructing locally correct infinitesimal
generators. Formally, the operators,

MR* = My + MPE = Ext- f*nx“%{: e ()% +: (Ve () : +m: (p,{(x)z:}xkd“x + H,,(x*g) (125)
k = 1,2,3 s infinitesimal generators of Lorentz transformas in a regior® if the cutoff functiong equals one
on a sufficiently large interval. We consider ndve tregions), contained in the sefx € *R¥3| x;, x,, x5 > |t| +
1}. Thus for such region®; we may replace (1) by = Ext- [ 4 H(x) x*g(x)d**x, with a nonnegative
functionsx*g(x), k = 1,2,3. HereH (x) is the formally positive energy density:

H(x) = %{ T ()2 (V0 (1)) s +m%: 0, ()% |+ i () = Hoe () + Hy ().
ThereforeM ¢ is formally positive. In fact it is technically oeenient to use different spatial cutoffs in theefr
and the interaction part 81°%, k = 1,2,3. Final formulas foM2* reads
MR = MR*(g8 ,g*) = aHo, + Ho, (x*gb) + H, (x*g). (126)
Here0 < a and0 < x*gk(x),0 < x*g (x),k = 1,2,3 and in order that (126) be formally correct, weuass
that:a + x*g¥ = x¥ = x¥g on[1,R]® = [1,R] x [1,R] x [1,R] with R sufficiently large. For technical reasons
we assume thatr + x*g¥(x) = x*¥,k = 1,2,3 onsupp(g). By above restrictions og¥ and g* we have that
supp(g&), supp(g) c {x|a < x*, k = 1,2,3} and we show that the operafdf* is essentially self¢-adjoint and it
generates Lorentz rotations in an alge®g0,)
Ext-exp(iBMy*)B,(01)Ext-exp(—iBMg*) c By({a, A(8)}0,) (127)
provided thaD, and{a, A(8)}0, are contained in the region
{x € "R¥,t € *R¥| |t| + 1 < x, <R —|t|,k =1,2,3}, (128)



where M% is formally correct. These results permit us tdinrdgethe Lorentz rotation automorphissf4) on an
arbitrary local algebr®,(0). Using a space time translatiofa), a € *R¥* we can translat® into a region
0+a=0, c{xe "R te 'R¥ x, > |t| + 1} and forR € *R¥ large enoughQ, and{a, A(£)}0, are contained
in the region (1) we define(0, A(8)) = a(A(B)) by
a(A(B)) I B4(0) = a({-=A(B)a, INa ({0, A(BIN)a({a,I}) I B4(0).

Theorem 11.23 Let M°*(g,,9), k = 1,2,3 be given by (126), with a, go(x), g(x) restricted as mentioned
above. The %% (g,, g) is essentially sel#-adjoint onC " (H N H,).

Theorem 11.24 Let 0, and{0, A(8)}0, be contained in the set (1). Then the followingniity holds between
self- #-adjoint operators:

Ext-exp(iBM°) g} () Ext-exp(ifM°) ~ ¢} (f ({0, A(B)}1)) = [.pps 0% (f({O AP 1)) d¥xdt. (129)
Here providedsupp(f) c 0;.
The proof of the Theorem 11.24 is reduced to thidization of the following equations

o* " ) 4 — [inf0k
{xk—+t }(p,f(x,t)— [iMO%, o#(x, )], k = 1,2,3. (130)

o*t a#xk
Here (130) that is equation for bilinear forms anappropriate domain. Sindé’* is self #-adjoint, we can
integrate (130), thus we compute formally fbe= H, ,, + H; ,,(g),
[iM°%, f(x,t)] = [iIM*, Ext- exp(LtH)goff(x t)Ext-exp(—itH)] =
Ext-exp(itH)[iM°* (—t), ¢} (x, 0)]Ext-exp(—itH). (131)
HereM% (—t) = Ext-exp(—itH)M°*Ext- eXp(ltH) Formally one obtains that
*oo n
MO%(=t) = Ext-z ( n)

n=0
Note that ifM°* andH were the correct global Lorentzian generatorskachiltonian they would satisfy
[iH,M°] = ad (iH)(M°*) = P¥, [iH, [iH, M°]] = 0, M%*(—t) = M — P¥¢. (132)
HereP¥, k = 1,2,3 are the generators of space translations. Thus (t81) we get
[iMO, @i (x, 0)] = [iMg"] = xmfi(x, 0), [iP¥, 0} (x,0)] = —=V*(9}) (x, 0).
Formally we have (130).However the difficulty withis formal argument is th& and M°* do not obey (132)
exactly, since they are correct onlydn We have instead (132) the equations
[iH,M°%] = Pk, [iH, [iH, M°*]] = Rl*‘, k = 1,2,3. (133)
HerePf . acts like the momentum operators only in the negig i.e.
[Plsc, 9} (x, )] = [P¥, 0 (x, )], (x,£) € O;.

Hence [lH Pmc] =R,k =1,2,3 is not identically zero, but commutes wBR(0,). Formally, further
commutators oR’¢, k = 1,2,3 with H are localized outside regi@n, and (130) follows formally even for our
approximate, but locally correéi andM . In order to convert this formal argument intoigorous mathematical
result, we apply now generalized Taylor series agjwa [12] for the quantities

E (—t) = (Q,[ iM% (—t), o} (x,0)]1Q), k = 1,2,3. (134)

HereQ € C"°(H) and thus we obtain

Ex(=t) = Ex(0) -t
From (133) we obtain
d"?E (%) . loc
g = (Ext-exp(iéH)Q, [le ol (x, f)]Ext exp(iéH)Q).
Note that(x, t) € 0,, so that witkf € [—t, t], (x, §) € 0, and therefore
[Rice, o (x, )] = 0. (135)

After integration over € *R¥*® with a functionf € Sf, (*R¥?) we obtain the operator identity:

Ext-], #3[R,lg’f, P, O)f()d*x =0,k = 1,2,3. (136)

=0if |¢| < |t| and
d Ek(O)
da#

ad™(iH)(M°%), k = 1,2,3.

d*E(0) L8 d*2E,(©)
dtt 2 d*t?

, Wheref € [—t, t].

d*E (@) _
a#t2

Ep(—t) = E,(0) —

Therefore

(Q { MOk! ‘Pu(x O) t[Plow <p}t(x 0)]}9-)
— (0, (et (x,0) + (V¥ () (x, 0 Q).
Thus we get
[iMO%(=1), pf (x,0)] = xmf(x, 0) + tV¥ i (x, 0) (137)



Inserting the relation (137) in (131) finally wetalm (130).This completes the proof of Lorentz atasace.
Definition 11.14 For the local free field energy we §8(g) = Td(g) + TZ(g), where

T(g) = c,Ext- f|k1|5;f 43 klExt_fl d#3 k,g(k} — kb k2 — k3, k3 — k) {H(k1)ﬂ(k2)+<k1.k2)+mz} y (138)

kea|=x u(k1)u(kz)
aT(k1)a(k2);
A —u(ky)u(kz)+(ky kp)+m?
T3(9) = ¢,Ext- f, |, AP kyExt- [, d* kzg(k%—k%,kf—k%,kf—kS){ T ey *’”}x (139)

x {a'(k))a®(—k,) + a(‘—kl)a(kz)}.
Herekl = (k%! k%! k13)! k2 = (k%! k%' k%); (k].! kZ) = i3=1 ki ké! g(p) = Ext' fo#S(Ext'[i(p' x)])g(x) d#3x'
Similarly, for the local momentum we it (g) = Pi*(g) + P**(g),i = 1,2,3 where
Pi(g) = ciBxt- [, A" kyExt- [, P ko — kb, kE — k3, k] — k3) (140)
(k1+k1+k§)ﬂ(k2)+(k2+kz+kz)#(k1)} +
NICAICS) (kyaky),
P2(g) = c,Ext- [, |, A" kiExt- [, d* kgt — K, k? — K3,k — k) x (141)

ki+kZ+k3)uky)—(k3+k3+k3)u(k
 flibsiidety Gend g “}{—a*(kaa*(—kz) + a(-kya(k,)).

Definition 11.15 Let B,(f) be the local operator, defined fbie S£, (*R*3) by
B,(f) = Hy,, (f) —m? RS 02 (x): f(x)d*x (142)

Theorem 11.25 Let the operator$f®, k = 1,2,3 are given byM® = aH, + Ty(x,g{?) + T; (. g), H 2
Hy, + whereH, £ H,,, andT, 2 H;,. Then the following statements hold.

(1) Fork = 1,2,3, D((M°)?) € D(H ), D(H?) € D(M°).

1 1

(2) Fork = 1,2,3, DM®) < D ((H +b)2), D(H) < D ((M° + b)z2).

Theorem 11.26 Let the operatorsM®, k = 1,2,3 are given byM% = aH, + To(x,.9{) + T; (x.9*), where
Hy 2 Hy,, and T; £ H;,,. Then the following statements hold.

(1) Forl = 2,3,4, M:D(H"Y) - D(H'™?).

(2) As operator equalities anWH?) for k = 1,2,3,

[iH,M°%] =P <M> (143)

d#xk

(3) As operator equalities dWH*), for k = 1,2,3,
T ok 5 [ sizs 4 (xx98”) i=3 a*g%
[iH, [iH, M| = B, ( 25— — | - T (2] ) (144)

(4) For L = 2,3,4, H:D((M°*)Y) -» D((M°F)\=2).
The equalities (143) hold on the dom&@(M°%)3), and on the domaih ((M°*)*), for k = 1,2,3,

(iM%, [iMO%, H]] = T, ((d (xkgok))> )+r, ((d (xkglk))>> <(a +xgll) 2 (xkgok))> (145)

Theorem 11.27 As bilinear forms oD (H,) X D(H,) for f,g € Sfi‘n(*IR“)

[iTo(f), To(9)] = P (f (Zzss) - g (zin st )) (146)
[iTo(f), P(9)] = P <f (zﬁziL—i)) ( (ziz - )) (147)

The equalities (146)-(147) also holdfit= 1 or g = 1. In particular from (147) we get
[iHo(), P(9)] = P (ZiZ3 552). (148)

Proof. The operatorg,, P, P are #closable (symmetric), defined @dn(H,) and bounded as operators relative to
H, + I. Therefore (146)-(147) are defined as bilinear fmonD (H,) X D(H,) and it suffices to establish equality
on a core forH,, e.g. onD* ={y € F¥|lY™ € S§ ("RE"), ™ = 0 for all sufficiently large m}. By direct
calculations oD# x D* one obtains the equalities (146)-(147). For exampl

; 1 — #3 #3 )~ u(k)puP)+{kp)+m
[iHy, Td(9)] = ¢  Ext- flk1|5x d*3 k Ext- f|k2|5% d®pg(k, —py, ky, — 2, ks — p3) {W} x  (149)
[Ho, a®(k)a(p)] =



iciExt-|

|kqlsa

#3 #3501 _ _ _ p()p@)+Hkp)+m?] .
4% K Ext-f, 4% pgle = pu,k, = 2.k; = p3) (k) — u(p) 4D ot geya )

_ . = ~ (kq+ky+k3)u(@)+(@1+py+p03)0(k)
=¢,Ext- [, |, " kExt- [\ d* pi(ZiZ3(k; — p))G(ky — pr Ky — 2,k —p3){ AR AR e b }

Juu)
— pQ) i=3 d*g
P <(Zl:1 d#xi)>

By a similar calculation oP# x D# one obtains

) ) i=3 d# i=3 g#f
(157 (. 17 @] + [ (0. T2 (9)] = P (f (Zd—g> - (Zd—>>

Theorem 11.28 As bilinear forms o (H,,,N,,) x D(Hq,N,)

[iT;(h), To(f)] = —4AExt- f*Rﬁg F() h(x): @2 (0)mh(x): d*3x, (150)
(17,00, P(D] = =T, (52 SL0), (151)

Proof. The operatorgy, T;, P are #-closable, defined oD(HOI;,NH), and are bounded as operators relative to
(Ho,N, +1). Note that the right hand side of (150) is a b#indorm onD(H,,N,) X D(H,,N,),and that
(Ho N, + I)_1 [Ext- Lmﬁf(x) h(x): @i (x)mi (x): d#3x] (Ho, N, + I)_1 is a bounded operator. Hence each term
in (150)-(151) is a bilinear form ob(H,,N,,) x D(H,,N,). It suffices to establish equality & x D¥, as in the
proof of theTheorem 84, sinceD” is a#-core forH,,N,. Note that on the doma* x D*, the equalities (150)-

(151) are seen to hold by direct computation in motum space similarly to proof of the Theorem 11.27
Remark 11.9 We assume now the relations:

2
0<a, xkgi(k)(xl,xz,x3) = [hgk)(xl, xz,x3)] Jk=1,23;i = 0,1;h§k) € Sﬁn(*R§3). (152)
On a neighbourhood of a polyhedienb]® c *R¥, we assume far = 1,2,3
a+ xkgék)(xl,xmxs) = X = X1 g1 (X1, X2, X3). (153)
For allx, € *R¥3,k = 1,2,3, we assume
X ga (%1, X2, X3) = (0-’ + xkgék’)(xl,xz,x;;)) 91 (x1, X2, X3). (154)

The conditions (154) are satisfiednif+ xkgék)(xl,xz,x3) = x,, is valid on the support gf, fork = 1,2,3. The
condition (154) makes the required commutators elgrdefined operators, rather than bilinear forms.
Definition 11.16 Let R{, ,, be a set
Riup = (01,25, %3, 1) € "RE*a + [t| <x; <b—|t|forallk =1,2,3}. (155)
Remark 11.10 Note that the operatof®®*, k = 1,2,3 are formally a Lorentz generators for the spaceti
regioniR‘[‘a,b], also note that (152) implies that interva¥ [a, b] lies in the positive half line. Of course, we @so

consider the operatord’% = —aH, + Ty (xG°) + T; (e g*) with G (x) = g®(~x) and therefore the
operators %%, k = 1,2,3 are locally correct generators f8f, ,; = R{ o ;.

Definition 11.17 We also writéR} insteadR{, ,; for I = [a,b] and we WriteI§ forI1®> =[a—s,b+s]3. The
conditions (152)-(1544) are satisfied since wedmoseg.(") so that for some, 0 < ¢ < a/3,

13
suppg; € I:g; suppgék) c I;g, k=123 (156)
anda + x,9%° (%1, %5, %3) = xp, X € I3, . Hence the conditions (154) hold. We can alsg, let 1, x, € I?; sothe
conditions(153) hold on(i. The Hamiltonian
H = Hy, + T;(91) (157)
is correct in the regioR}. We shall work as above with this particular cleodt the Hamiltonian.
Theorem 11.29 For the operator® °* in Theorem 11.25 ané in (157) the following hold:
(1) D((M*)*) = D(H), D(H?) € D(M*), k =1,2,3
1 1
(2) D(M®¥) < D ((H +b)z),D(H) © D ((M% + b)z) k = 12,3
whereb is an constant sufficiently large so that the apes H + b andM® + b are positive.

Theorem 11.30 Ander the conditions (152) and (154) the equalitf@43)-(145) hold as bilinear forms on
D(H?) x D(H?) and onD ((M°%)?) x D((M°%)?).



Proof. As bilinear forms oD (H?) x D(H?) or D((M°%)%) x D((M°*)?) for k = 1,2,3 the following equalities
hold [iH, M] = [iHo, To(xcgs®)] + {[iHo, Ty (xegi)] + [T (1), atto] + [iTi (g0, To (e gg"))]}. In order to
compute these commutators we apply Theorem ldn@7Theorem 11.28.

) a#(x g(k)
[iH, M%] = P <(d+x:) + 4AExt- f*Rﬁg{xkgl(x) —ag,(x) - xkgl(x)ggk)(X)} LB O (x):dPx =
d#(xkggk))
d#xk ’

This equality holds by the conditions (154). Hetke equality (143) holds oP(H?) x D(H?) and on the
domain D((M°%)?) x D((M%)?).

Theorem 11.31 If n>2, D(H™) is a#-core forM andD((M°*)™) is a#-core forH.

Theorem 11.32 Let f € S§, ('R¥®) and suppf c R}, ,;, then the operatop®(f) is defined orD((M°*)?),

©*(f): (M°*)2) - D(M®*),k = 1,2,3 and, as the operator equalitiesbiM %), k = 1,2,3
. a* a*
(iM%, 0% ()] = =0} (t372+ x50 (158)
Remark 11.11 Note that forf real, the operatap} (f) is essentially selft-adjoint onD(H™) for anyn = 1/2
and

o2 (F): D(CH + b)) - D ((H +b)"3). (159)
Proof The terms in (158) are operators DH3) since ¢ (f)D(H?) c D(H?) € D(M°*),k = 1,2,3 and
M°D(H®) c D(H) < D(¢f (f)) by (157) and Theorem 11.2Blote that by Theorem 11.4058) holds on the
domainD(H®). Assuming this, we now can to prove the theoreet. i€ D((M°%)?),k = 1,2,3. By Theorem
11.29,D((M°*)?) ¢ D(H) and by (159) we gep € D(¢f (f)). Let us prove now that
o ()Y € DM, k = 1,2,3. (160)

1
NotethatM% ) € D(M°%) c D ((H + b)E) c D(¢} (f)) by Theorem 11.29 and (159), also ko= 1,2,3

a*f  atf
Y ED (go,’f <t 7xs + xp E))

Therefore by the assumption mentioned above tHg)(fholds on domaif (H®), we get for allk = 1,2,3 and
for all y € D(H®) that

(MO, 0} (DMOP) = (. ok (M) + i of (¢ 5L + x50 ) (161)

Sow} (f)y € D((M 1 D(H®))") for k = 1,2,3. By Theorem 11.31D(H®) is a#-core for theM®, k = 1,2,3
and therefore we get inclusion (160). By using {88 can rewrite (161) in the following equivaldéotm

G %, 0 (A1) = ik (¢ 5% + 1 5L ) (162)
SinceD (H®) is #-dense, we g%, o (Ay = ie# (t o'

a*xy,
D(M®), k =1,2,3.

Remark 11.12 Let us consider the seif-adjoint operatorsf®* (t) = Ext-exp(—itH)M°*Ext-exp(itH), k =
1,2,3. Since the operatdfxt-exp(itH) leavesD (H") invariant, we have by Theorem 11.28d Theorem 11.26 that
D(H?) c D(M°(t)), k = 1,2,3. And forl = 2,3,4 we have that

M%(t):D(HY) -» D(H"?),k = 1,2,3. (163)

Let f € Sf, ("R¥*) with suppf < R} for I = [a, b]. By (159) and (160) we can to conclude thé&{f)D(H?)
D(H?) c D(M°%(1)),k = 1,23 and M°*(t)D(H®) c D(H) < D(¢}i(f)) or more generally, we can replace the
operatore(f) by Ext-exp(itH)o/(f)Ext-exp(—itH). Thus fory € D(H?) and f € Sf (*R¥*) with suppf c
R1, we can to define the functions

#
+ x ‘;T’;)lp, proving (158) on the stated domain

Fi(8) = (W, [iM°* (©), 9 (N]Y) = (Y (©), [iM°*, Ext-exp(itH) g}, (f)Ext-exp(—itH)]i(t)), (164)
Y (t) = Ext-exp(itH). (165)

Let! = [a,b], Is = [a — §,b + 8] and letR,, be the causal shadowbf= I5 X I5 X Is. LetR? be a set
®E =9, 0 {0l < %s} = {(x, Dlltl <Ze.a+ sl +1tl < b—|s| - |t|}. (166)

Note that the points oR? have small times, artd? translated by times less thps lies inR3.



Theorem 11.33 Let y € D(H®), then F,(t),k = 1,2,3 in (161) is twice#-continuously differentiable. If

function f has#-compact support ik, then for|t| < [s], a! 5;‘2“) =0.

Proof First we prove the differentiability df,(t),k = 1,2,3. Let A,, be the difference quotient for the
n-derivative ofExt-exp(itH) att = 0. For instance); (¢) = e (Ext-exp(icH) — I ). Note that for a given vector
¥ € D(H™), andm + j < n, ase -, 0, we get|H™{4;(e) — GH)' Y|, = ||{4;(e) — GH) }H™ ||, -4 0. Hence,
fory € D(H™), the operator valued functiongV®* (Ext-exp(itH)) is n — 2 times #-differentiable, since for
j<n-2 we get|M%(Ext-exp(itH) ){A;(e) — (iH)f}¢||# < |{a;(e) — GH) }(H + b)2¢||# -4 0. All these
functionsF, (t) has the following form

F (t) = i{M°* (Ext-exp(itH) Yy, Ext-exp(itH) o} () — i(Ext-exp(itH) @i (f), MO* (Ext-exp(itH) ).

For a given vectory € D(H®), ¢ (f)y € D(H*) and F,(t) is three times#-continuously#-differentiable.

Note that
a*Fr(®)
da*t

= (M Hy(t), Ext-exp(itH) ;i (f)yp) — (M y(t), H(Ext-exp(itH) )y) — (167)

(Ext-exp(itH) @} (), HM® 4 (t)) + (Ext-exp(itH) @} (f)ih, MO H(¢)).
By rearranging the terms in (167) and using theaanelations of Theorem 11.26.1) we obtain by {1that
d*Fr(t) _

= (W, [H, M (®O]ex (DY) — (ox (Y, [H,M* (O)]Y) = (168)
. . #(xkgok)) . #
—i{yY, (Ext-exp(—itH) )P T, (Ext-exp(itH) )@, (f)Y) +

(Ext-exp(itH) )).

x)
i{of (Y, (Ext-exp(—itH) )p( ( kgo ))

k
k95"

By #-differentiating (168) and writing,, for the operatoP <M> we obtain

a* Fk(t)
datt?

—(y, (Ext-exp(—itH) )[H, P, ](Ext-exp(itH) )y) + (169)
(@ ()W, (Ext-exp(=itH) )[H, P ](Ext-exp(itH) )i) =

#2 ()
(), [13 (%) — 1, (4522), (Bxt-expiet) Yo} () (Ext-exp(~itH) )¢]>
Note that the all terms in (169) are well defin€dr instance H P, (Ext-exp(itH) )¢ (f)y is well defined
since, for a given vectay € D(H®), (Ext-exp(itH) Yo (f)y € D(H*), and by Theorem 11.26 for atl= 1,2,3
we obtain
P (Ext-exp(itH) )} (f)Y = [iH, M*](Ext-exp(itH) )5 (f ).
Note that HM®*(D(H*)) € D(H) andM°*H(D(H*)) € D(H), so HP,(Ext-exp(itH) )oi (f)y is well

defined. Now, assuming thatppf c R, |t| < |s| we can to show théft;—"z(t) =0,k = 1,2,3, this proof is
based on the locality of the operatSysk = 1,2,3
o a¥?(xg® gt
se= £ (3 0et)) - (s ), (170
. ) a*?(xg$?) _ d*g,
The operators,, are symmetric oW (H,N) and by (153) fok = 1,2,3 andi = 1,2,3 e 0= T in

a neighbourhood af= [a, b]®. We prove thafs,, k = 1,2,3 commutes with the von Neumann algebva(l) =

{Ext-exp(ip} (hy) + inf (hy))|h; = h, € SE,('R#3), supph; ;) 'generated by the spectral projections of the

time zero fieldsExt- [, 4s @5 (x) hy (x)d*x andExt- [, s 15 (x) hy (X)d*2x, by = h, € SE, ("RE3), supph; © R,
Theorem 11.34 On tﬁe domaid (H?) fork = 1,2,3 ti‘cle equalities hold

[Sx, W(D]D(H?) = 0. (171)
Proof Let D* be the domain of well-behaved vectors.
# = {y e F¥yp™ e SE,('RE™), ™ = 0 for all sufficiently large m}. (172)

For x,, x, € D*, direct momentum space computation gives fon al*N
n n
(Skx1s (90;’3é (hy) + ”ﬁ (hz)) X2) = <(<ﬂf§ (hy) + ”ﬁ (hz)) X1 SkX2) (173)



1
By easy computation we get the inequalltfps (hy) + 7 (h,))"x || < cicl(n!)z for constantsc; and c,
depending on vectgy € D*. Thereforey € D* are entire vectors for the opera{as; (hy) + m (h;)), and the
sum

; i - "
Uy = Ext- Zniowx = Ext-exp|i(¢f (hy) + 7 (h2))]x (174)

#-converges strongly. Now, we multiply (173) bY(n!)~! and by summation over using the#-convergence of
the hyper infinite series (174) we get for falk 1,2,3 that(S,x1, Uxz) = (U* x1, Skx2) = {1, USkx2) fory; € D¥,
i = 1,2. Note that this equality extends tp€ D (H,,N),i = 1,2 sinceD* is a core for operatoi,, N andS, and
1Sexlls < ull(HoeN + Dxlls wherepu is finite constant. Therefore for € D(H,, N), we have proved thdfy €
D(Sy) andSyUy = US,x, k = 1,2,3. For the next step we now prove thya€ D(Hy, N) = Uy € D(H,, N), so that
S Ux = US,x, k = 1,2,3, since the operatot$, are symmetric o (H,,,N). We define orD(H,, N) a #-norm by
lxllx = lI(Ho, N + Dxll4; Note that the corresponding scalar product mdk@s,,,N) a non-Archimedean Hubert
space, sayl,,. For the next step we now prove that the opefBter ¢ (h,) + n}: (h,) generates a one parameter
group U(a) = Ext-exp(iaB) = Ext-exp|ia(B = ¢# (h,) + n}i (h,))] onH,, and therefore we need to prove that
the operator

B = (Ho, N + DB(Ho,,N + )71 (175)
iS a generator to one parameter group on a comeamp Fock space. Sin@is essentially sel#-adjoint onD*,
and on this domain we have that

B =B+ [Hp,N,Bl(HoyN + )™* = B + [N, B]Hy,,(HoN + 1) + N[Hg,, Bl(Ho,eN + 1)~ = B+ A.

HearA is bounded operator. Note thatI D* is a bounded perturbation of an essentially#eitijoint operator.
Hence it#- closure#- (@ FD#) generates a one parameter group on Fock spAcand operatoB I (Hy, N +
1)D* has a#- closure inH,, that generates a one parameter grouf,gnSince the topology of,, is stronger than
that of F#, the#-closure ofB I' (Hy, N + I)D* in H,, is a restriction o#- B in F# and the one parameter group in
H,, is a restriction of the one parameter group geagray#- B in F*. This proves that

U:D(Hoy,N) = D(Ho,N)

Therefore we have proved th8tUy = US,x, k = 1,2,3. Now by passing to strong limits of linear combioas
of such operatorg/ we obtain (165) on restricting to the domdhiH?) c D(H,,N). This makes precise the
statement that operatafs, k = 1,2,3 are localized outsidé= [a, b]°.

Remark 11.13 Note that for eacht;, |t;| < |s;], the spectral projections ofExt- f*Rgg 0F ) f(x, t)d3x

belong toW (#-int(A_|S|)), where #-int(A_s) is the #-interior of A_g= {x|(x,t;) € RE} = {(x1, %2, x3)|a +
Is| < x, < b — |s|}. Note thasuppf < R%, hence the spectral projections of

Ext-exp[iH(t + t;)] (Ext- f*n&? (O f(x, tl)d#3x) Ext-exp[—iH(t + t;)] (176)
belong toW(#-int(Am_m)). For|t| < |s|, #-int(A;,s)) € A; so the spectral projections of (170) belong to
W (A). Now we use the locality property of the operat§rs = 1,2,3. Note that for vectoy € D(H?),y € D(H?)
we have that) € D (Ext- f*u&’? o (x,0)f(x, tl)d#3x), and for @f(f) = Ext- f*u&’ﬁ o (x, ) f(x,t)d*x d*t, by
(159) it follows

Ext-expl[itH]@# (f)Ext-exp[itH|y € D(H?). 177)
Therefore by (171) and the localization of (176)dt k = 1,2,3 we get
(S, Ext-exp[iH (¢ + t1)] (Ext- [0 @ (0)f (x, £,)d"x ) Ext-exp[—iH (¢t + t,)1)) = (178)

(Ext-exp[iH (t + t;)] (Ext- Jops 02 COf (x, tl)d#3x) Ext-exp[—iH(t + t)]x, S¥).

Note that for|t| < |s| and f € S, (*R¥*) with suppf c R* we can integrate the equality (178) ovgrto
obtain

(Sx, Ext-exp[iH ()]@} (f)Ext-exp[—iH (t)]y) = (Ext-exp[iH ()] @} (f)Ext-exp[—iH()]x, Sep) = (179)

(X, SkExt-exp[iH ()] @} (f) Ext-exp[—iH (t)]i).

Here the last equality in (179) follows by (177)athe fact thatS, is a symmetric operator @(H,,N) >
D(H?). From (179) we obtain tha}y € D(((Ext-exp[iH (t)]p} (f)Ext-exp[—iH(t)]) ! D(H?))") and therefore
that S,y € D(Ext-exp[iH (t)]p}(f)Ext-exp[—iH(t)]), sinceD(H?) is a#-core forp(f). Finally from (179) we
get for|t| < |s| andf € SE, ("R¥#*) with suppf c R? for allk = 1,2,3 that



S Ext-exp[iH ()]} (f)Ext-exp[—iH ()] = Ext-exp[iH (t)]pf (f)Ext- exp[ iH()]S, . (180)
We apply the relation (180) to (169). In that cg€e) € D(H5) ¢ D(H?), so —%—= 22RO =0, for |t] < |s].

d# 2
Theorem 11.35 [15] Letf € S£ ("R#*) andsuppf < R¥, then on domaid (H%) the operator equalities hold
forallk =1,2,3

d*x
The next step in the proof of Theorem 11.32 isasspo the sharp tim&limit of Theorem 11.35, thus we need
to choose a hyper infinite sequence of functifing Sf, ("R¥#*),n € *N which pick out a time zero contribution in
the #-limit. Let us define now
Ay (f,8) = Ext- [gus 0 () f (x, )d ", (182)
B, (f,t) = Ext- f*R#g i (x)f(x, t)d*3x. (183)
Wherep (x) andr(x) the canonical time-zero fields. For rgaE S (*R#4), with #-compact supportd,, (f,t)
andB,(f,t) are essentially se-adjoint onD ((H + b)%). Letf eC ;°°( R and letf, (x,t) € S§ CR¥*),n € *N
be a hyper infinite sequence of functions of thikofaing form f;, (x, t) = f,(x, s)8,(t) with support inR* and
#-converging in the weak sensefidx, s)d (t) asn — *oo. For the vectory € D(H®), the vectorsd % (s)y, k =
e

1,2,3, and the vectorgf°%y, P (M%{; the same as in the proof of Theorem 11.35. Nad¢ tthe bilinear

(k)
[iM% (), ()] = [iM**, 5 (f) ] - S[ <(L°)> : %’?(f)]- (181)

form ¢f(x,t) for (x,t) € R} determines a bounded operator
1
G(x,t) = (H+ b)z ©F(,t)(H + b) 2. (184)
Note that the operator valued functi6tx, t) is#-continuous in variabléx, t).

Theorem 11.36 Let f € Sf, ("R#*) andsuppf < R1. Then, in the sense of bilinear forms bigH®), for all
k=123

(iM% (), A, (f, )] = [iM°, A, (f, )] = s[iPy, A, (f, 5] (185)

HerepP, = P <_ (xkg(k))_)

d*xp
Theorem 11.37[15] Letf € C ;°°( R1). As an equality of bilinear forms dh(H ) x D(H )
[i P Ay (,5)] = (d#x ,5). (186)

And where P, is defined in Theorem 11.36.
Theorem 11.38 As the equalities of bilinear forms &(H?) x D(H?) for allk = 1,2,3

[iM°%, A, (f,$)] = [iH, A, (xf, 5)] = By (i f,5). (187)
Theorem 11.39[15] Let |f|4, be thett-norm|fl,; = c (Ext- f*R#g{nf( Bl + a0 G0, b d¥e).

Let |f]|4, is finite. Then on the domaip ((H + b)z ) ), the fieldp} (f) satisfies the following equation
0F o) (f) = =i 0ff) = ni(f) = [iH, 9 (f)]. (188)
Proof Note that the first equality in (188) is the defiiom of a distributiont-derivative. The out the difference
quotient A.f(x,t) to #-derivative 0ff readsA.f(x,t) = w note that#-lim,_ oA f(x,t) =

&

0f f(x, t). Note that for any vectap such thatp € D ((H + b)%) by canonical consideration we get
#liml| o (0w — wi(8f (. O)v |, =0.
We have forp € D ((H +b)2 ) that
0E(Af (x,6) ) = e71(I — Ext-exp[icH]) {Ext- f*u@” elx,t —o)f(x, t)d#3xt,bd#t}+

-1 {Ext-f A, (f, t)(Ext-explieH] — I)l,bd#t}.
*]RC#S

Here the last terni-converges as —, 0 and it#-limit is: i(Ext- f*]R#;; A, (f, O HYd*t ) Sincegp? (Asf(x t))l[)

#-converges as —4 0, the remaining term in expression fpﬁ(Aef(x, t))l,b #-converges also to#limit y,. For
x € D(H) we obtain that



Qo) = #olim (g, e7 (1~ Ext-explieH]) {Ext- [y 0 (x, t = ) Ge, )" pd"t) = (it o (1Y),
SinceH = H*, it follows that ¢f(f)y € D(H) and vy, = iHpZ(f)y and therefore: —pf (3} )y =
[iH, Z(f)]p. From the above equation we obtain

W, 0} (0F FYv) = Ext- f (HW(e), Ext- f 0 (x, 0)f (x, )P xp(e) ) d*t —
*IRC# *IRC#S

Ext-f (Ext-f @ (x, 0)f(x, )d*3xp(t), Hp(t)) d*t.
*]Rg *Rg:’,

Herey(t) = Ext-exp[itH]y. Note thatp(t) € D(Hp,) N D(Hyy), and ||H,, (¥ (&) =), < all(H +
b)) = 9(s))||, =4 0, as|t — s| -4 0. Therefore we may substituté, + H,,, for H and consider each term
separately. Note that the operatélig, andExt- f*R% @i(x,0)f (x, t)d"x commute and thereforg, ,, contribute

zero to equality above. The following identity lgnonical computation holds for any € D(H,,,), in particular for
Y(t) = Ext-explitH]|yY € D(H,,)
(Hos, Ext- [ s 0 (x, 0)f (x, A" xtp ) = (Ext- [Lpas 0 (x, 0f (x, )d™xyp , Hoytp) =

(t,b,—iExt-f i (x,0)f(x, )d*3x ).
R#3
Therefore finally we get
l<lzb (9] (6 f)ll)) = Ext- f*]RC# <1,b(t), —iExt- f*]Rc#s ﬂﬁ(x’ O)f(x' t)d#3x¢ )d#t = (110 _”Tx(f)lpb>

This equality finalized the proof.
Theorem 11.40 As the operator equalities &(H®) for allk = 1,2,3

. a* a*
(iM%, 0} (D] =~} (¢375 + i 5F). (189)
Proof We first prove (189) as equalities of bilinear f<sran(H5) x D(H®). Let ¢ is a near standard vector
andy € D(H®). By Theorems 11.37-11.39, for &l= 1,2,3 we get

#
(W, iM(5), Ay, (f, YY) = (P, B, Cei f, ), ) — (W, A( f' )1,0)-

SubstitutingExt-exp(iHs) fory, we obtain that

(, [iM°, Ext-exp(iHs) A, (f, s)Ext-exp(—iHs)|y) = (190)
#

(Y, Ext-exp(iHs) {BH (xxf,s) —A <s %, s)} Ext-exp(—iHs)).
k
From (188) we get

Ext- [.pua Ext-exp(iHt) m; (x)Ext-exp(iHt) f (x, t)d**xd"t = —¢}; (a#f) (191)
Using (191) we integrate (190) over s to obtaindibk = 1, 2 3 the equalities of bilinear forms
(W, iM%, (f)¢> ~ w0k (e L+ 0w (192)

SinceM% @ (), # (FIM, andpf (t ( l f) are operators of (H%) for all k = 1,2,3, the operator

equalities (189) follows by polarization and th&iensny of D(H®). This final remark completes the proof of the
theorem and hence it completes the proof of Thedrerd2.
Theorem 11.41[15] Let® < *R!%, be an bounded region 1?4, and letF, (8, x, t), k = 1,2,3 be a functions

such tha#, (8, x,t), B € "R¥ 5, and%@xﬂ

each poin(x, t) € *IR{C fin- ASsume that for alf (x,t) € C ;";’m(ﬂ%) the following equalities hold for all = 1,2,3,

are#- continuous in(g, x, t), where the partia#-derivative exists for

Ext- fxmgg%i"” f o O)dBxd?t = —Ext- [.4s Fe (B, %) [xk Lt o ] d*3xd*t. (193)
Then for all(B, x, t) such that\, z(x,t) e Rfor0 < y < 1,k =123
Fe(B,2%,6) = F (0,4,5(x,0)) + 6(B,x,6) = (194)

F; (0, x), cosh B + t sinh 8, x;, sinh § + t cosh B) + 6 (B, x, t).
Hered (B, x,t) is a nonzero function such th&gs, x,t) # 0 andd(B, x, t) is #- differentiable with zero partial

#-derivativess}' (8, x,t) = 0,84, (,x,t) = 0,8f (B, x,t) = 0.



Proof Obviously (194) is a solution to the equations {193%us we need prove uniqueness (194) for a given
functiond (B, x,t) and for aIIk = 1 2,3 and it is sufficient to prove uniqueness for theear, (0,x,t) = §(0, x, t).

Let A, be the operatat, = x;, — + ti . Note that by (177), prowdesthpf( g (%, t)) c R we get

6#t

o (B fxmga Fe(B,2,0f (Ayp (1, 1)) dPxd?t) = (195)

"F (B, x,1) ,
Ext- J;]R#S {](6#7]‘: (Ayﬁ/(x, t)) + Fk(.B )X, t)Akf (Ayﬁ/(x, t))} d®3xd*t = 0.

Let R = Ng<y<14yp R andf(x,t) €C Oafjm(iﬁ) then (195) holds for aj’ such thad < g’ < . Note that
for all functionsf (x,t) € C ;?m( R) the following equalities (196) hold for &l= 1,2,3,

Ext- [ Fe(B, %, 0f (A, (x,8)) dPxd?t = 0. (196)
Thus, in the sense of distributions we obtain that
Fo(B,x,t) =0,(x,t) € R. (197)

Since F,(B,x,t) is #-continuous, (197) holds in usual sense everywhaef®. iThis establishes required
uniqueness, and completes the proof of the theorem.

Definition 11.18 (1) Let (Hy, ||]ls+) be a linear normed space over fisdd. An elementx € H, is called finite
or norm finite if ||x||4 € *]Rcfm and we letFin(H,) denote the set of the all finite elementsHyf the element
X € Hy is called infinitesimal if||x|ls = 0 and we writex = y for |[[x — y|lx = 0. (2)Let (Hg, (",')») be a non-
Archimedean Hilbert space over figl@? endowed with a canonicak-norm ||x||» = +/{x, x)s, then we apply the
same definition as in (1).

Definition 11.19 Let A be a linear operatot: Hy — H# with domainD (4). Let Dg;,,(A) < D(A) be a subdomain
such that for ally € D(A): Y € Dy (4) & ||x||4 € IRC fn and letdf (A) be a subdomainf, (4) c D, (A) such
that for all IP € Dﬁn(A) 1!’ € Dfln(A) = ”Ax”# € ]Rcfm

Definition 11.20 Let g(-,-) be a bilinear form with domail(q) x D(q) on Hy such thaD(q) X D(q) & Hy X
H, and D(q) x D(q) - *C¥. Let Dg,(q) X Dan(q) € D(q) X D(q) be a subdomain such that for @h,,y,} €
Dfln(Q) X Dfln(Q) A d |<¢1! 1!’2)#| € *Rc fin" Let Dfm(q) X Dfm(Q) c Dfm(q) X Dfm(Q) be a subdomain such that for
all {1#1, 1!’2} € Dfln(q) X Dfln(Q) {7’01' Ebz} € Dﬁn(q) X Dfm(Q) Ad Q(lpl! Ebz) € (Cc fin*

Theorem 11.42 [15] Assume that the operataVt’ = M2* = MJ% + MPX, k = 1,2,3 satisfy conditions (152)-
(154) and where the operatddg®, are defined by (125). We set né\§p, x, t) = 0.

(1) If feSECREY), suppf c #-int(RY), A= [a, b]® andsuppfy gy S #-int(R}) = o3, then for all k =

1,2,3 on domainDg, (M°%)?)
Ext-exp(iM° B) g} (f)Ext-exp(—iM**B) = ¢ (fa))- (198)

Here thex - equalities (198) hold as -equalites for self-adjoint operators.

(2) If (x,t) € R andAg (x, t) € R}, then for allk = 1,2,3

Ext-exp(iM° B) @ (x, t) Ext-exp(—iM*B) =~ ¢} ( Ap(x, t)) (199)

Here thex - equalities (199) hold in the sense *tIRCfm valued bilinear forms on domaim3, (M%) x
DE (M) and on domainBfi, (M%) x Df (M°K).

Remark 11.15 Note that (1) for real-valued € Sf ("R#4) is a self#-adjoint operatop(f), essentially
self-#-adjoint operator on a variety of appropriate dorealhis for this self-adjoint operator that (198) is valid;
(2) on the subdomaing ((M°%)?) =~ -equalites (198) entail for &l = 1,2,3 the equalities

st(Ext-exp(iM° B) @k (x, t) Ext-exp(—iM°*p)) = st ((pﬁ (Aﬁ (x, t))) ;
(3) on the subdomair, ((M°*)?) the~ -equalites (198) entail for all = 1,2,3 the equalities
st(Ext-exp(iMOk[)’)@f:(f)Ext-exp(—iMOk[)’)) =st (gof{‘(fA(ﬁ))).
Proof Lety € D(M°F) and letF, (5, x, t) be the function is defined by

Fi (B, x,t) = (Ext-exp(—iM " B)ip, ¢y (x, t) (Ext-exp(=iM°* [))). (200)
For all(B,x,t) € *Rf g, x “RE%, and forf € S§ ("REY), letF. (B, f) be the function is defined by

Fi (B, f) = (Ext-exp(—iM**BY, ¢ (f) (Ext-exp(—iM°* B)y)) =



Ext- fgoz Fk(ﬁ! X, t)f(x; t)d#3Xd#t. (201)

Note thate?(x,t) is a bilinear form defined dﬂ((H + b)g) X D ((H + b)%), #-continuous in(x, t) € *R*

¢ fin*
By Theorem 11.2D (M%) c D ((H + b)%) and therefore, (B, x,t) is well defined andt-continuous in(x, t).

Note that a functiof, (B, x, t) is #-continuously#-differentiable ing € *IR{if'ﬁn and for allk = 1,2,3

PPED — —(Ext-exp(—iMB)iM% 3, gl () (Ext-exp(—iM*B))) (202)

—(Ext-exp(—iM**B), o} (f) (Ext-exp(—iM**B)iM ).
By the canonical argument, we have forka# 1,2,3 that

PIED — (Ext-exp(~iMO* B, [iM*, @ ()] (Bxt-exp(~iMP*B)p) = (203)
Ext- f F (B, x, ) f(x, t)d*3xd*t.
[04

A
By Theorem 11.40 under the conditisuppf c #-int( R}) we have for alk = 1,2,3 that

a#Fk(.B! f) .10k # a#f a#f -0k
g (Ext-exp(—iM°*B)Y, ¢y (xk FIras tm) Ext-exp(—iM™*B)y) =
—Ext- [, 43 Fe (B i #xd*
L FeBx,0) (i S5+ 6550 f(x, 00d™xde. (204)
Therefore by Theorem 11.40 under the condition
Uosysl Ay,B (x’ t) € mg (205)
we have for alk = 1,2,3 that
Fe(Bx,6) = Fi (0, Ayp(x, t)) +8(8,x,t) (206)
That is, if (205) holds, then (206) also holdsdbrk = 1,2,3 and finally we get
Ext-exp(iM°* B)pf (x, t) Ext-exp(—iM*B) = ¢f (/15 (x, t)) +8(B, x, t). (207)

Here the equations (207) hold in the sense ofdaliriorms oD ((M°%)?) x D((M°%)?), i.e.
(1, Ext-exp(iM°* B) ), (x, ) Ext-exp(—iM°* B)ip,) = (1, 5 ( Ap(x, t)) P2) + 8(B,x, )1, P2) (208)
From (208) on the domaiDf, ((M°)?) x DE,(M°%)?) € Dg, (M°%)?) X Dgip (M®%)?) € D((M®¥)?) x
D((M°%)2) we get thex -equality
(s, Ext-exp(iM*B)pf (x, O) Ext-exp(~iMB)z) = (b, o ( 4gCx D) 2, (209)

since(y,,¥,) is finite and therefores (B, x, t)(Y4,¥,) = 0.
Note that in the#-limit 4 -4 0 by (125) we get

#-lim_,, o Mo = MJk, (210)
Therefore in thet-limit 1 —, 0 from (208) and (210) we obtain that
limy, o (Y5, Ext-exp(iM°* B) @} (x, ) Ext-exp(—iM°* B)yp,) = (2112)

(Y1, Ext-exp(iMY*B)@f . (x, t) Ext-exp(—iMy*),) =
Limao,o (s, 05 (45Ce0)) 2) + 88,2, 01, P2} = (W, 0 (4506, 0)P) + 68,2, ) (Wb, ).
From (211) on the domaimf, (M°)?) x Df,(M*)?) € Dgy(M*)?) X Dgn (M*¥)?) € D((M*¥)?) x
D((M°%)?) we get thes -equality for free quantum fielg{ ,, (x, t)
(1, Ext-exp(iM* B)f .. (x, ) Ext-exp(—iMg B)ip;) = (1, 9§ ( Ag(x, t)) 9% (212)
Remark 11.16 Note that thex -equality required by (212) is necessary, see Re®ark
The ~ -equality (209) extends byt-closure toDf, (M) x Df (M), since D, (M) c D, ((H + b)'/?) by
Theorem 11.29, and the estimate
|, Ext-exp(iM% )} (x, ) Ext-exp(—iMO B)p )| ~ (213)
2
w0 (45 00) )| < el + b)2|"
Herec is finite constant. Furthermoi@((M°%)?) for anyk = 1,2,3 is a#-core forH, by Theorem 11.31, and

1
therefore a#-core for(H + b)z. Thus (208) extends B ((M°%)?) x D((M°*)?) and on this domain we also have
#-continuity of the form in(x,t) € *Rﬁ"gn. Note that it is necessary to assume that<; 4,z(x,t) € R:.



However for the region&} this statement follows from the condition t) € R} = Ag(x,t) € Ri. This final
remark completes the proof of this theorem partK@w we go to prove the operater-equality (198) for the case

f € SE CREY), suppf U suppfa,- By Theorem 11.29, the operatapd () and e (fAB) are defined on domain
D((M°%)?). Integrating (207) againgit(x, t), we get the equalities
Ext-exp(iM° B) @} (f)Ext-exp(—iM%*B) = @} (fAﬁ,) + Ext- fmg 85(B,x, ) f (x, t)d*3xd*t. (214)

Obviously the equalities (213) hold on the domaigéM °%)?) with k = 1,2,3 correspondingly. For any vector
Y such thatp € D((M°*)?) from (207) we obtain the equalities

OE()Ext-exp(—iM°*B)yY = Ext-exp(—iM°*B)p} (fAB) Y+ (Ext- f%ga(ﬁ, x,t)f(x, t)d’”xd#t) Y. (215)

Since ||<p,’f (fAB)l,b" <q ”(H + b)%lﬂ” and D((M°%)?) for any k = 1,2,3 is a#-core for H, by Theorem
11.31, the equalities (215) extends#byglosure taD (H) and (215) holds foy € D(H). Since the domairD (H) is
a#-core for the operatap; (fAB)' we conclude that (214) extends #yclosure toD (gojj (fAﬁ)> and therefore the

equalities (215) hold for ald = 1,2,3 and for anyp such thatyy € D (qoff (fAﬁ,)). Thus we have proved that

Ext-exp(—iM°* §)D (<pj;* (fAB)) < D(ex(f).

By similar consideration one obtains that

Ext-exp(~iM™*F)D (¢f (£4,)) € D).
This proves (214) as an equality between- sefidjoint operators, completing the proof of the tieeo.

CONCLUSION

A new non-Archimedean approach to interacted qumarfields is presented. In proposed approach, & fiel
operatorg(x,t) no longer a standard tempered operator-valuediliitbn, but a non-classical operator-valued
function. We prove using this novel approach thatquantum field theory with Hamiltonid(¢), exists and that
the canonical*- algebra of bounded observables correspondingidarthdel satisfies all the Haag-Kastler axioms
except Lorentz covariance. We prove that X@*), quantum field theory model is Lorentz covariantr Each
Poincare transformatiom, A and each bounded regionof Minkowski space webtain a unitary operatdf which
correctly transforms the field bilinear forms(x,t) for (x,t) € 0. The von Neumann algebra&(0) of local
observables is obtained as standard part of exteomatandard algeb®,(0).
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