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Abstract. A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, a field 
operator ���, �� no longer a standard tempered operator-valued distribution, but a non-classical operator-valued function. 
We prove using this novel approach that the quantum field theory with Hamiltonian 	���
 exists and that the 
corresponding �∗- algebra of bounded observables satisfies all the Haag-Kastler axioms except Lorentz covariance. We 
prove that the ���
�
 quantum field theory model is Lorentz covariant. 

INTRODUCTION 

Extending the real numbers ℝ to include infinite and infinitesimal quantities originally enabled Laugwitz [1] to 
view the delta distribution ���� as a nonstandard point function. Independently Robinson [2] demonstrated that 
distributions could be viewed as generalized polynomials. Luxemburg [3] and Sloan [4] presented an alternate re-
presentative of distributions as internal functions within the context of canonical Robinson's theory of nonstandard 
analysis. For further information on nonstandard real analysis, we refer to [5, 6]. 

Abbreviation 1.1.1In this paper we adopt the following notations. For a standard set � we often write ���. For a 
set ��� let ��� �  be a set��� = � � ∗ |� ∈ ���� � . We identify � with � �  i.e., � ≡ � �  for all � ∈ ℂ. Hence, �� = ��� �  if 
� ⊆ ℂ, e.g., ℂ � = ℂ, ℝ � = ℝ, 	 � = 	, "#↑ � = "#↑ , etc. Let ℝ ∗ ≈ , ℝ ∗ ≈# , ℝ ∗ &'( , ℝ ∗ ), and ℕ ∗ ) denote the sets of 
infinitesimal hyper-real numbers, positive infinitesimal hyper-real numbers, finite hyper-real numbers, infinite 
hyper-real numbers and infinite hyper natural numbers, respectively. Note that ℝ ∗ &'( = ℝ ∗ \ ℝ ∗ ) ,  ℂ = ∗ ℝ ∗ + i ℝ ∗ , 
ℂ ∗ &'( = ℝ ∗ &'( + i ℝ ∗ &'( .  

Definition 1.1Let �., /� be a standard topological space and let . ∗  be the nonstandard extension of .. Let /0 
de-note the set of open neighbourhoods of point � ∈ .. The monad 1234��� of � is the subset of  . ∗  defined by 
1234��� =∩ � / ∗ |/ ⊂ /0�.The set of near standard points of . ∗  is the subset of  . ∗  defined by 37� � . ∗ � =∪
�1234���|� ∈ .�. It is shown that �., /� is Hausdorff space if and only if � ≠  : implies 1234��� ∩ 1234�:� =
∅. Thus for any Hausdorff space�., /�, we can define the equivalence relation ≈4 on 37� � . ∗ � so that � ≈4 : if and 
only if � ∈ 1234��� and : ∈ 1234��� for some � ∈ .. 

Definition 1.2 The standard Schwartz space of rapidly decreasing test functions on ℝ<, 3 ∈ ℕ is the standard 
function space is defined by   =�ℝ<, ℂ� = >? ∈ �)�ℝ<, ℂ�|∀A, B ∈ ℕ<C‖?‖E,F < ∞IJ, where 

‖?‖E,F = sup0∈ℝN O�E PQF?���RO. 
Remark 1.1 If ? is a rapidly decreasing function, then for all A ∈ ℕ< the integral of S�EQF?���S exists 

T S�EQF?���SU<� < ∞
 

ℝN
 

Definition 1.3 The internal Schwartz space of rapidly decreasing test functions on ℝ<, 3 ∈ ℕ ∗ ∗  is the function 
space defined by  = ∗ � ℝ ∗ <, ℂ ∗ � = > ? ∗ ∈ � ) ∗ ∗ � ℝ ∗ < , ℂ ∗ �|∀A, B ∈ ℕ ∗ <C ‖ ? ∗ ‖E,F ∗ < ∞ ∗ IJ, where 



‖ ? ∗ ‖E,F ∗ = sup V�E PQF?���R |� ∈ ℝ  <W 
∗ . 

Remark 1.2 If ? is a rapidly decreasing function, ? ∈ =�ℝ<, ℂ�, then for all A, B ∈ ℕ ∗ < the internal integral of 
S � ∗ EQF ? ∗ ���S exists 

T S � ∗ EQF ? ∗ ���S
 

ℝ ∗ N 

∗
U<� < ∞ ∗ . 

Here QF ? ∗ ��� = PQF ?  ���R 
∗

. 

Definition 1.4 The Schwartz space of essentially rapidly decreasing test functions on ℝ<, 3 ∈ ℕ ∗ ∗  is the function 
space defined by 

=&'( ∗ � ℝ ∗ < , ℂ ∗ � = 

V ? ∗ ∈ � ) ∗ ∗ � ℝ ∗ <, ℂ ∗ �|∀�A, B��A, B ∈ ℕ ∗ <�∃YEFZYEF ∈ ℝ ∗ &'( [∀��� ∈ ℝ ∗ <� \O�E P Q ∗ F ? ∗ ���RO < YEF]W 

Remark 1.3 If ? ∗ ∈ =&'( ∗ � ℝ ∗ < , ℂ ∗ �, then for all A ∈ ℕ ∗ < the internal integral of S � ∗ EQF ? ∗ ���S exists and finitely 
bounded above 

^ S � ∗ EQF ? ∗ ���S 
ℝ ∗ N 

∗ U<� < UEF , UEF ∈ ℝ ∗ &'( . 
Abbreviation 1.2 The standard Schwartz space of rapidly decreasing test functions on ℝ< we will be denote by 

=�ℝ<�. Let =� ℝ< ∗ � ∗ , 3 ∈ ℕ ∗  denote the space of ℂ- ∗ valued rapidly decreasing internal test functions on ℝ< ∗ , 3 ∈ ℕ ∗  
and let =&'(� ℝ< ∗ � ∗ , 3 ∈ ℕ  ∗ denote the set of ℂ ∗ &'( -valued essentially rapidly decreasing test functions on ℝ< ∗ , 3 ∈ ℕ ∗ . 
If ℎ�`, ��: ℝ × ℝ< and ?: ℝ< → ℂ are Lebesgue measurable on  ℝ
< we shall write 〈 ℎ ∗ , ? ∗ 〉 for internal Lebesgue 
integral ^ ℎ ∗ ? ∗ U<� 

ℝ ∗ N 
∗

 with ? ∈ =&'(� ℝ< ∗ �. ∗ ∗  Certain internal functions ℎ ∗ �`, ��: ℝ ∗ × ℝ ∗ < → ℂ ∗  define classical 

distribution f�?� by the rule [3, 4]: 
 f�?� = st�〈 ℎ ∗ , ? ∗ 〉�. (1) 

Here st�h� is the standard part of h and st�〈 ℎ ∗ , ? ∗ 〉� exists [5]. 
Definition 1.5 We shall say that ℎ ∗ �`, �� with ` = i ∈ ℝ ∗ )  is an internal representative to distribution f�?� 

and we will write symbolically  f��j, … , �<� ≈ ℎ ∗ �`, �j, … , �<� if the equation (1) holds. 
Definition 1.6 [6] We shall say that certain internal functions ℎ ∗ �`, ��: ℝ ∗ × ℝ ∗ < → ℂ ∗   is a finite tempered 

distribution if  ? ∗ ∈ =&'(� ℝ< ∗ � ∗  implies | ℎ ∗ , ? ∗ | ∈ ℝ � = ℝ. A functions ℎ ∗ �`, ��: ℝ ∗ × ℝ ∗ < → ℂ ∗   is called 
infinitesimal tempered distribution if  ? ∗ ∈ =&'(� ℝ< ∗ � ∗  implies | ℎ ∗ , ? ∗ | ∈ ℝ ∗ ≈ .The space of infinitesimal tempered 
distribution is denoted b: =≈� ℝ< ∗ � ∗ . 

Definition 1.7 We shall say that certain internal functions ℎ ∗ �`, ��: ℝ ∗ × ℝ ∗ 
< → ℂ ∗   is a Lorentz ≈ -invariant 
tempered distribution if  ? ∗ ∈ =&'(� ℝ< ∗ � ∗  and Λ ∈ "#↑ � implies 〈 ℎ ∗ , ?�Λ�j, … , Λ�<� ∗ 〉 ≈ 〈 ℎ ∗ , ?��j, … , �<� ∗ 〉. 

Example 1.1 Let us consider Lorentz invariant distribution 

 Q��� = j
�mn�o ^ pqrs �'( tu

t Uvw = 
ℝo

j
mn ��xm − �m�sign���. (2) 

Here   ̀ = |r| = |wjm + wmm + wvm and  s = ��j, �m, �v�, x = |�jm + �mm + �vm. It easily verify that distribution 
Q��� has the following internal representative 

 Q��, ϖ� = j
�mn�o ^ pqrs �'( tu

t Uvw. 
|r|~� 

∗
 (3) 

Here i ∈ ℝ ∗ ). By integrating in (3) over angle variables we get 

 Q��, ϖ� = j
�n�� ^ >pqt���u� + p�qt���u� − pqt��#u� − p�qt��#u�J�

� 
∗ U`. (4) 

From (4) by canonical calculation finally we get 

 Q��, ϖ� ≈ j

n�� \�'( ����u�

��u − �'( ���#u�
�#u ] ≈ ����u�����#u�


n�� = j
mn ��xm − �m�sign���. (5) 

Example 1.2 We consider now the following Lorentz invariant distribution: 

 Qj��� = j
�mn�o ^ pqrs ��� tu

t Uvw = 
ℝo

j
mn�

j
0�. (6) 

It easily verify that distribution Q��� has the following internal representative 

 Qj��, ϖ� = j
�mn�o ^ pqrs ��� tu

t Uvw. 
|r|~� 

∗
 (7) 

Here i ∈ ℝ ∗ ). By integrating in (7) over angle variables we get 

 Qj��, ϖ� ≈ − q
�n�� ^ >pqt���u� − p�qt���u� + pqt��#u� − p�qt��#u�J�

� 
∗ U`. (8) 

From (8) finally we get 



 Qj��, ϖ� ≈ − q
�n�� \ �m

q���u� + �m
q��#u� + m��� ����u�

q���u� + m ��� ���#u�
q��#u� ] ≈ j

mn�
j

0�. (9) 

Example 3.We consider now the following Lorentz invariant distribution     

 Δ����  = j
m�mn�o ^ pq�rs���r�|u|� 

ℝo
�o�
��r� = − �

�n
�����P�q�||0�|R

�||0�|  . (10) 

Here −�m < 0, ��r� = ||rm| + 1m  and �j�m� is a Hankel function of the second kind. It easily verify that 
distribution Δ���� has the following internal representative 

 Δ���, i� = j
m�mn�o ^ pq�rs���r�|u|� 

|r|~� 
∗ �o�

��r� (11) 

From (10)-(11) it follows  Δ ∗ ���� = Δ���, i� + Δ����� where     

 Δ����� = j
m�mn�o ^ pq�rs���r�|u|� 

|r|�� 
∗ �o�

��r� . (12) 

Note that for all Λ ∈ "#↑ � ,   Δ���Λ�� ∈ =≈� ℝ< ∗ � ∗  and therefore for all Λ ∈ "#↑ , �  Δ��Λ�, i� ≈ Δ���, i�, i.e., Δ���, i�        is a Lorentz ≈ -invariant tempered distribution, see definition 4. Thus we can set � = 0 in (11). By 
integrating in (11) over angle variables and using substitution of variables |r| = 1 sinh��� we get   

 Δ���, i� ≈ �
�n�q� ^ expZ�1xsinh���[U�.�(�

��(� 
∗

 (13) 

Note that 

 �j�m���� = ∗ n
q ^ expZ�1xsinh���[U�) ∗� ) ∗ =Δ���, i� + ���, i�, (14) 

 Ξ��, i� = n
q ^ expZ�1xsinh���[U� + ^ expZ�1xsinh���[U�ℝ ∗�(�

��(�
� ℝ ∗ . (15) 

From (13)-(15) finally we obtain  Δ���, i� ≈ �j�m���� , since ���, i� ∈ =≈� ℝ< ∗ � ∗ . 
Example 1.4 Let us consider Lorentz invariant distribution 

 Δ�� − :� = ^�exp�−���� − :�� − exp����� − :��� ���m − 1m� ����U
�. (16) 
From (16) one obtains Δ�� − :� = Ξj�� − :� − Ξm�� − :�, where 

 Ξj�� − :� = ^>exp���¡�¢ − £�� − �`�¡���� − :���J �o¤
|¡¥#��, (17) 

 Ξm�� − :� = ^>exp��−�¡�¢ − £�� + �`�¡���� − :���J �o¤
|¡¥#�� , (18) 

`�¡� = |¡¥ + 1m. It easily verify that distribution (17) and (18) has the following internal representatives 

 Ξj�� − :, i� = ^ >exp���¡�¢ − £�� − �`�¡���� − :���J 
|r|~� 

∗ �o¤
|¡¥#��. (19) 

 Ξm�� − :, i� = ^ >−expC��¡�¢ − £�� + �`�¡���� − :��IJ 
|r|~� 

∗ �o¤
|¡¥#�� . (20) 

Note that   Δ�� − :� ∗ = �Ξj�� − :, i� + Ξm�� − :, i�� + CΞ¦j�� − :, i� + Ξ¦m�� − :, i�I, where 

 Ξ¦j�� − :, i� = ^ >exp���¡�¢ − £�� − �`�¡���� − :���J 
|r|�� 

∗ �o¤
|¡¥#��, (21) 

 Ξ¦m�� − :, i� = ^ >−expC��¡�¢ − £�� + �`�¡���� − :��IJ 
|r|�� 

∗ �o¤
|¡¥#�� . (22) 

Note that for all Λ ∈ "#↑ � ,  Ξ¦j�Λ�� − :�, i� + Ξ¦j�Λ�� − :�, i� ∈ =≈� ℝ< ∗ � ∗  and therefore for all Λ ∈
"#↑ , � ΔZΛ�� − :�[ ∗ ≈ Δ�Λ�� − :�, i� = Ξj�Λ�� − :�, i� + Ξm�Λ�� − :�, i�, i.e., Δ�� − :, i� is a Lorentz ≈-invariant tempered distribution, see definition 4. From (20) by replacement ¡ → −¡ we obtain 

 Ξj�� − :, i� = − ^ >exp���¡�¢ − £�� + �`�¡���� − :���J 
|r|~� 

∗ �o¤
|¡¥#�� . (23) 

From (19) and (23) we get 

 Δ�� − :, i� = Ξj�� − :, i� + Ξm�� − :, i� = ^ sin�`�¡���� − :���exp��¡�¢ − £�� 
|r|~� 

∗ �o¤
|¡¥#��. (24) 

Thus for any points � and : separated by space-like interval from (24) we obtain that 
 Δ�� − :, i� ≈ 0, (25) 

since Δ�� − :, i� is a Lorentz ≈-invariant tempered distribution. From (25) for any points � and : separated by 
spacelike interval we obtain that: stZΔ�� − :, i�[ ≡ 0. 

Definition 1.8 [7] Let for each 1 > 0: �� = �� ∈ ℝ
|� ∙ �© = 1m, 1 >, �� > 0�, 
where �ª = ���, −�j, −�m, −�v�. Here the sets �� which are standard mass hyperboloids, are invariant under "#↑ � . 
Let «�  be the homeomorphism of  �� onto ℝv given by  «�: ���, �j, �m, �v� → ��j, �m, �v� = ¡.  Define a measure Ω���� on �� by 



Ω���� = ^ �o¡
||¡|�#��

 
­®�¯�  . 

The measure Ω���� is "#↑ � -invariant [7]. 
Theorem 1.1 [7] Let ° is a polynomially bounded measure with support in ±²#. If °  is "#↑ � = "#↑ - invariant, there 

exists a polynomially bounded measure ³  on �0,∞ �  and a constant Y so that for any ? ∈ =� ℝ 
  � 

 ^ ? 
ℝ   ́ U ° = Y?�0� + ^ U ³ �1� µ^ ¶P||¡|�#��,¤�,¤�,¤oR�o¡

||¡|�#��
 
ℝ   o · .)  �  (26) 

Theorem 1.2 Let ° is a polynomially bounded "#↑ - invariant measure with support in ±²#. Let ℱ�?� be a linear   
∗-continuous functional ℱ: =&'( ∗    � ℝ 
 ∗ � → ℝ&'(  ∗  defined by ^ ? ∗ 

ℝ ∗  ́ 
∗ U ° and there exists a polynomially bounded 

measure ³  on �0,∞ � such that ̂ U ³  ∗ �1� ∈ ℝ&'(  ∗) ∗�  and a constant Y ∈ ℝ&'(  ∗ . Then for any ? ∈ =   ∗ &'( � ℝ 
 ∗ � and for 
any ¹ ∈ ℝ)  ∗  the following property holds 

 ℱ� ? ∗ � ≈ Y ? ∗ �0� + ^ U ³  ∗ �1� µ ^ ¶ ∗ P||¡|�#��,¤�,¤�,¤oR�#o¡
||¡|�#��

 
|¤|~» 

∗
·) ∗� 

∗
 (27) 

Definition 1.9 Let ¼�¹, ¡� be a function such that:  ¼�¹, ¡� ≡ 1 if |¡| ≤ ¹, ¼�¹, ¡� ≡ 0 if |¡| > ¹, ¹ ∈ℝ)  ∗ .Define internal measure Ω�,»  on � ∗ �  by 

 Ω�,» ��� = ^ ¿�»,¡��o¡
||¡|�#��

 
� ∗ ®  

∗
. (28) 

Theorem 1.3 [7] Let Àm��j, �m� be the two-point function of a field theory satisfying the Wightman axioms and 
the additional condition that �Á�, ��?�Á�� = 0 for all ? ∈ =�ℝ
�. Then there exists a polynomially bounded 
positive measure ³�1� on ⟦0,∞� so that for all for all ? ∈ =�ℝ
� 

 Àm�?� = ZÁ�, �Z?[̅��?�Á�[ = ^ ?�̅�j�?��m� Àm��j − �m�U
�U
: = ^ P^ ?ÄUΩ� 
�® R)

� U³�1�. (29) 

Theorem 1.4 Let Àm��j, �m� be the two-point function of a field theory mentioned in Theorem 1.3. Then for all ? ∈ =&'(� ℝ 
 ∗ � and for any ¹ ∈ ℝ)  ∗  the following property holds 

 À ∗ m�?� ≈ ^ P ^ ?ÄUΩ�,» 
�® ∗ 

∗ R) ∗� 
∗ U ³ ∗ �1�. (30) 

Definition 1.10 (1) Let "��� be algebra of the all densely defined linear operators in standard Hilbert space  �. 
Operator-valued distribution on ℝ  <, that is a map  �: =� ℝ  <� → "��� such that there exists a dense subspace Q ⊂ �  satisfying: 

1. for each ? ∈ =� ℝ  <�  the domain of  � contains Q, 
2. the induced map:  = →  �3U�Q�,  ? →  � �?� , is linear, 
3. for each ℎj ∈ Q and ℎm ∈ � the assignment  ? → 〈ℎm, ��?�ℎj〉 is a tempered distribution. 

(2) Certain operator-valued internal function � � ? ∗ , i�: = ∗ Z ℝ ∗  <[ → " ∗ � � ∗ � is an internal representative for standard 
operator valued distribution � �?� if for each near standard vectors  ℎÅj ∈ Q ∗  and ℎÅm ∈ � ∗  the equality holds 
 〈ℎm, ��?�ℎj〉 = stZ 〈ℎÅm, �� ? ∗ , i�ℎÅj〉 ∗ [, (31) 

where ℎj ≈ ℎÅj and ℎm ≈ ℎÅm. 
Definition 1.11 [8] Let � be a Hilbert space and denote by �< the 3-fold tensor product �< = �⨂ �⨂ ⋅⋅⋅ ⨂�. 

Set ��  =  ℂ and define ℱ��� = �< .  ℱ��� is called the Fock space over Hilbert space �. Notice ℱ��� will be 
separable if � is. We set now � =  "₂�ℝ³� then an element Á ∈  ℱ��� is a sequence of ℂ    -valued functions Á = �Á�, Áj��j�, Ám��j, �m�, Ám��j, �m, �v�, … , Á<��j, … , �<��, 3 ∈ ℕ   and such that the following condition holds  |Á�|m + ∑ �^|Á<��j, … , �<�|mUv<�� < ∞  <∈ ℕ  . 

Definition 1.12 [7] Let us define now external operator h��� on ℱË with domain QÌ by 
 �h���Á��<� = √3 + 1 Á�<#j���, wj, … w<�. (32) 

The formal adjoint of the operator h��� reads   

 �hÎ���Á��<� = j
√< ∑ ��v��� − wÏ�Á�<�j��wj, … , wÏ�j, wÏ#j, … , w<�<ÏÐj  (33) 

Definition 1.13 [7] Let Á&'( be a vector Á&'( = >Á�<�J<Ðj
)

 for which Á�<�  = 0 for all except finitely many 3 is 

called a finite particle vector. We will denote the set of finite particle vectors by Ñ�. The vector  Ω� = 〈1,0,0, … 〉  is 
called the vacuum. 

Definition 1.14 We let now Q Ì ∗   ∗ = > Á ∗ | Á ∗ ∈ Ñ� ∗ , Á�<� ∗ ∈ = ∗  � ℝ ∗ v<�, 3 ∈ ℕ ∗ J and for each � ∈ ℝ ∗ v<  we define 
an internal operator h��� ∗  on ℱ ∗ Ë with domain Q Ì ∗   ∗  by 



 � h���Á ∗ ��<� = √3 + 1 Á�<#j� ∗ ��, wj, … w<�. (34) 
The formal ∗-adjoint of the operator h ∗   reads   

 � h ∗ Î���Á��<� = j
√< ∑ ��v� ∗ �� − wÏ� Á�<�j� ∗ �wj, … , wÏ�j, wÏ#j, … , w<�.<ÏÐj  (35) 

We express the free internal scalar field and the time zero fields with hyperfinite momentum cut-off  ¹ ∈ ℝ ∗ ) in 
terms of h ∗ Î��� and h��� ∗  as quadratic forms on Q Ì ∗   ∗  by 

Φ ∗ �,» ��, �� = 

 �2Ô��v/m ^ >Zexp�°���� − ����[ h ∗ Î��� + Zexp�°���� + ����[ h  ∗ ���J 
|¤|~» 

∗ �o¤
|mÖ�¤� , (36) 

 φ ∗ �,» ��, �� = �2Ô��v/m ^ >Zexp�−����[ h ∗ Î��� + Zexp�����[ h  ∗ ���J 
|¤|~» 

∗ �o¤
|mÖ�¤� , (37) 

 π ∗ �,» ��, �� = �2Ô��v/m ^ >Zexp�−����[ h ∗ Î��� + Zexp�����[ h  ∗  ���J 
|¤|~» 

∗ �o¤
|Ö�¤�/m . (38) 

Theorem 1.5 LetΦ  � ��, �� and φ  � ��, ��, π  � ��, �� be the free standard scalar field and the time zero fields 
respectively. Then for any ¹ ∈ ℝ ∗ ) the operator valued internal functions (35)-(37) gives internal representatives 
for standard operator valued distributions Φ  � ��, �� and φ  � ��, ��, π  � ��, �� respectively. 

Definition 1.15 Let �., ‖∙‖�  be a standard Banach space. For � ∈ . ∗  and � > 0, � ≈ 0 we define the open ≈-ball 
about � of radius � to be the set Ù���� = �: ∈ . ∗ | ‖� − :‖ ∗ < ��. 

Definition 1.16 Let {�., ‖∙‖� be a standard Banach space, Ú ⊂ ., thus Ú ∗ ⊂ . ∗  and let � ∈ . ∗ .Then � is an ∗-

accumu-lotion point of Ú ∗  if for any � ∈ ℝ ∗ ≈# there is a hyper infinite sequence ��<�<Ðj) ∗ in Ú ∗  such that  ��<�<Ðj) ∗ ∩�Ù����\��� ≠ ∅�. 
Definition 1.17 Let {�., ‖∙‖� be a standard Banach space, letÚ ∗ ⊆ . ∗ , Ú ∗  is ∗ -closed if any ∗-accumulation point 

of Ú ∗  is an element of Ú ∗ . 
Definition 1.18 Let {�., ‖∙‖� be a standard Banach space. We shall say that internal hyper infinite sequence 

��<�<Ðj) ∗ in . ∗   is ∗ -converges to � ∈ . ∗  as 3 → ∞ ∗  if for any � ∈ ℝ ∗ ≈# there is Û ∈ ℕ ∗  such that for any 3 >Û: ‖� − :‖ ∗ < �. 
Definition 1.19 Let {�., ‖∙‖Ü�, {�Ú, ‖∙‖Ý� be a standard Banach spaces. A linear internal operator Þ: Q�Þ� ⊆

. ∗ → Ú ∗     is ∗ -closed if for every internal hyper infinite sequence ��<�<Ðj ) ∗ in Q�Þ� ∗ -converging to � ∈ . ∗  such 
that Þ�< → : ∈ Ú ∗  as 3 → ∞ ∗  one has � ∈ Q�Þ� and Þ� = :. Equivalently , Þ is ∗-closed if its graph is ∗ -closed in 
the direct sum . ∗ ⊕ Ú ∗ . 

Definition 1.20 Let � be a standard external Hilbert space. The graph of the internal linear transformation à: � ∗ → � ∗  is the set of pairs �〈�, à�〉|� ∈ Q�à��. The graph of à, denoted by Γ�Т�, is thus a subset of � ∗ × � ∗  
which is internal Hilbert space with inner product �〈�j, Áj〉, 〈�m, Ám〉� = ��j, �m� + �Áj, Ám�.The operator à is 
called a ∗-closed operator if  Γ�Т� is a ∗ -closed subset of Cartesian product �  ∗ × � ∗ . 

Definition 1.21 Let � be a standard Hilbert space. Let àj and à be internal operators on internal Hilbert 
space � ∗ . Note that if Γ�à₁� ⊃ Γ�à�, then àj is said to be an extension of à and we write àj ⊃ à. Equivalently, àj ⊃ à if and only if Q�àj� ⊃ Q�à� and àj� = à� for all � ∈ Q�à�. 

Definition 1.22 Any internal operator à on � ∗  is ∗-closable if it has a ∗-closed extension. Every ∗-closable 
internal operator à has a smallest ∗-closed extension, called its ∗-closure, which we denote by ∗-à². 

Definition 1.23 Let � be a standard Hilbert space. Let à be a ∗-densely defined internal linear operator on 
internal Hilbert space � ∗ . Let Q�à∗� be the set of � ∈ � ∗  for which there is a vector å ∈ � ∗  with �àÁ, �� = ��, å� 
for all Á ∈ Q�à�, then for each � ∈ Q�à∗�,  we define à∗� = å. à∗ is called the ∗-adjoint of à. Note that = ⊂ à 
implies à∗ ⊂ =∗. 

Definition 1.24 Let � is a standard Hilbert space. A ∗-densely defined internal linear operator à on internal 
Hilbert space � ∗  is called symmetric (or Hermitian) if à ⊂ à∗. Equivalently, T is symmetric if and only if  �à�, Á� = ��, àÁ� for all �, Á ∈ Q�à�. 

Definition 1.25 Let � be a standard Hilbert space. A symmetric internal linear operator à on internal Hilbert 
space � ∗  is called essentially self- ∗-adjoint if its ∗-closure ∗-à² is self- ∗-adjoint. If à is ∗-closed, a subset Q ⊂ Q�à� 
is called a ∗-core for à if   ∗- Zà ↾ Q²²²²²²²[  = à. If à is essentially self- ∗-adjoint, then it has one and only one self 
-∗-adjoint extension. 

Theorem 1.6 Let 3j, 3m ∈ ℕ   and suppose that ÀZwj, … w<� , �j, … , �<�[ ∈ "m ∗ Z ℝ ∗ v�<�#<��[ where 
ÀZwj, … w<� , �j, … , �<�[ is a ℂ ∗  -valued internal function on ℝ ∗ v�<�#<��. Then there is a unique operator àç on 
ℱ ∗ � " ∗ ₂� ℝ³ ∗ �� so that Q Ì ∗  ⊂ Q�àç� ∗  is a ∗ - core for àç and 



(1) as ℂ ∗ -valued quadratic forms on Q ∗ Ì ∗  × Q ∗ Ì ∗   

àç = T ÀZwj, … w<� , �j, … , �<�[ 
ℝ ∗ o�N�èN�� 

∗ éê h ∗ Î�wq�<�
qÐj ë éê h��q� ∗

<�
qÐj ë U<�wU<�� 

(2) As ℂ ∗ -valued quadratic forms on Q Ì ∗  × Q Ì ∗   

àç∗ = T ÀZwj, … w<� , �j, … , �<�[ 
ℝ ∗ o�N�èN�� 

∗ éê h ∗ Î�wq�<�
qÐj ë éê h��q� ∗

<�
qÐj ë U<�wU<�� 

(3) On vectors in Ñ� ∗  the operators  àç and  àç∗  are given by the explicit formulas   

Zàç� Á ∗ �[�Ï�<�#<�� = 

 ì�í, 3j, 3m� î ∗ ï ^ … ^ ÀZwj, … w<� , �j, … , �<�[ Á�Ï� ∗ Z�j, … , �<� , wj, … w<�[Uv<� 
S¤N�S~� � 

∗ 
|¤�|~� 

∗ ð, (39) 

Zàç∗ � Á ∗ �[< = 0 if 3 < 3j − 3m, 
 Zàç∗ � Á ∗ �[�Ï�<�#<�� = 

ì�í, 3m, 3j� î ∗ ï ^ … ^ ÀZwj, … w<� , �j, … , �<�[ Á�Ï� ∗ Z�j, … , �<� , wj, … w<�[Uv<� 
S¤N�S~� w 

∗ 
|¤�|~� 

∗ ð (40) 

Zàç∗ � Á ∗ �[< = 0, if 3 < 3m − 3j. 

Here î is the symmetrization operator defined in [8] and ì�í, 3m, 3j� = \Ï!�Ï#<��<��!
�Ï�<��� ]j/m

, 3j , 3m ∈ ℕ  , í ∈ ℕ ∗  . 
Proof. For vectors Á ∗ ∈ Q Ì ∗   we define àç� Á ∗ � by the formula (39). By the Schwarz inequality and the fact that î ∗  is a projection we get 

 é òZàç� Á ∗ �[�Ï�<�#<��ò 
∗ ë 

 
 m ≤ ì�í, 3j, 3m� óZ Á�Ï� ∗ [ó 

∗ m ‖À‖m ∗ . (41) 

Let us now define the operator àç∗ � Á ∗ � on Q Ì ∗   by the formula (39), then for all�  ∗ , Á ∈ ∗ Q Ì ∗  , then one obtains 
directly � �  ∗ , àç Á ∗ � = ∗ �àç∗ �  ∗ , Á ∗ � ∗ . Thus, àç is ∗ -closable and àç∗  is the restriction of the ∗ -adjoint of  àç on Q Ì ∗  . We will use àç to denote ∗ -à²ç and àç∗  to denote the ∗ -adjoint of àç. By the definition of  àç , Q Ì ∗  is a ∗ -core 
and further, since  àç is bounded on the í-particle vectors in Q Ì ∗  we get Ñ� ∗ ⊂ Q�àç�. Since the right-hand side of 
(39) is also bounded on the í-particle vectors, equation (38) represents àç on all í-particle vectors. The proof of the 
statement (2) about àç∗  is the same. 

Definition 1.26 [7] Define standard ô -space by ô =×�Ðj) ℝ. Let õ be the õ-algebra generated by infinite 
products of measurable sets in ℝ and set ° = ⨂�Ðj) °� with U°� = Ô�j/mexp�−��m/2�. Denote the points of ô by ö = 〈öj, öm, … 〉. Then 〈ô, °〉 is a measure space and the set of the all functions of the form 	<�ö� = 	�öj, öm, … , ö<�, 
where 	<�ö� is a polynomial and 3 ∈ ℕ is arbitrary, is dense in "m�ô, U°�. Remind that there exists a unitary map =: ℱË��� → "m�ô, U°� of Fock space ℱË��� onto "m�ô, U°� so that S��?��S�j = ö� and SΩ� = 1. Here �?���Ðj)  is 
an orthonormal basis for �. Then by transfer one obtains internal measure space 〈ô, °〉 ∗ = 〈 ô ∗ , ° ∗ 〉 and internal 

unitary map S ∗ : ℱË��� → "m ∗ � ô ∗ , U ° ∗ � so that S ∗ ��?�� S ∗ �j = ö� , x ∈ ℕ ∗   and S ∗ Ω� = 1. Here �?���Ðj) ∗  is an 
orthonormal basis for � ∗ . 

Theorem 1.7 Let �» ∗ ��, ��  be internal free scalar boson field of mass 1 at time � =  0 with hyperfinite 
momentum cutoff ϰ in four-dimensional space-time. Let ø��� be a real-valued internal function 
in "m� ℝ ∗ v� ∩ "j� ℝ ∗ v� ∗ ∗ . Then the operator 
 �ù,» ∗ �ø� = ��¹� ^ ø��� 

ℝ ∗ o 
∗ : �  ∗ »
 ���: Uv� (42) 

is a well-defined internal symmetric operator on Q Ì ∗ úûü ∗ . Here : �  ∗ »
 ��� ≔ �  ∗ »
 ��� + Um�¹� P �  ∗ »m ���R + Uj�¹�. 
where the coefficients Um�¹� and Uj�¹� are independent of �. Let S denote the unitary map of ℱË��� onto "m�ô, U°� 
considered in [7]. Then ± = S �ù,» ∗ �ø� ∗ S ∗ �j is multiplication by internal function ±ù,»�ö� which satisfies: 

(a) ±ù,»�ö� ∈ "¤� ô ∗ , U ° ∗ � ∗  for all � ∈ ℕ ∗ , (b) exp P−�±ù,»�ö�R ∈ "j� ô ∗ , U ° ∗ � ∗  for all � ∈ �0, ∞ ∗ �. 
Proof: Note that for each � ∈ ℝ ∗ v, the operator S ∗ � �»��� ∗ � S ∗ �j is just the operator on internal measurable space 

"m� Q, U ° ∗ ∗ � ∗  on which this operator acts by multiplying by the function   ∑ Y���, ¹�ö�) ∗�Ðj , where Y���, ¹� =
�2Ô�v/m é?�, Z°���[j/mexp�����ë. Furthermore, ∑ |Y���, ¹�|m) ∗�Ðj = �2Ô�v/m ó°���j/mó 

∗
m
m
 so S ∗ P �  ∗ »
 ���R S ∗ �jand 

S ∗ P �  ∗ »m ���R S ∗ �j are in "m� Q, U ° ∗ ∗ �  ∗ and the corresponding "m� Q, U ° ∗ ∗ �- ∗ norms are uniformly bounded in �. 



Therefore, since ø ∈ "j� ℝ ∗ v� ∗  the operator S ∗ P � ∗ ù,»�ø�R S ∗ �j is just the operator on internal measurable space 

"m� Ω, U ° ∗ ∗ � ∗  on which this operator acts by multiplying by the "m� Q, U ° ∗ ∗ �- ∗ function which we denote by ±»,��ö�. 
Let us consider now the expression for �ù,» ∗ �ø� Ω ∗ , obviously this is a vector �0,0,0,0, Á
, 0, … � with 

 Á
��j, �m, �v, �
� = ^ ��»���0�∏ �¿�»,¤��� 
�́�� ���P�q0 ∑ ¤���´

��� R�o0
�mn�o/�∏ �mÖ�¤����/�

�́��
 
ℝ ∗ o 

∗
. (43) 

Here ¼�¹, �� ≡ 1 if |�| ≤ ¹, ¼�¹, �� ≡ 0 if  |�| > ¹, ¹ ∈ ℝ ∗ ). We choose now the parameter � = ��¹� ≈ 0 such 

that ‖Á
‖ ∗ mm ∈ ℝ and therefore we obtain ó � ∗ ù,»,��»��ø�Ω�ó 
∗

m
m ∈ ℝ, since  ó � ∗ ù,»,��»��ø�	�ó 

∗
m
m = ‖Á
‖ ∗ mm. But, 

since S ∗  ∗Ω� = 1, we get the equalities 

  ó � ∗ ù,»,��»��ø�	�ó 
∗

m
 = ó S   ∗ �ù,»,��»��ø� S ∗  �jó


�� �,� Ö ∗ ∗ � ∗
 = ó±ù,»,��»��ö�ó 

∗

�� �,� Ö ∗ ∗ � ∗

 
. (44) 

From (43) we get that ó±ù,»,��»��ö�ó 
∗


�� �,� Ö ∗ ∗ � ∗
 ∈ ℝ and it is easily verify, that each polynomial 	�öj, öm, … , ö<�, 

is 3 ∈ ℕ ∗  in the domain of the operator  ±ù,»,��»��ö� and S   ∗ �ù,»,��»� ∗ �ø� S �j ∗ ≡ ±ù,»,��»��ö� on that domain. Since 
Ω� ∗  is in the domain of �¤ ∗ ù,»,��»��ø�, � ∈ ℕ ∗ , 1 is in the domain of the operator ±¤ù,»,��»��ö� for all � ∈ ℕ ∗ . Thus, 

for all � ∈ ℕ ∗   ±ù,»,��»��ö� ∈ "m¤� ô, U ° ∗ ∗ � ∗ , since ° ∗  � ô ∗  � is finite, we conclude that ±ù,»,��»��ö� ∈ "¤� ô, U ° ∗ ∗ � ∗  for 
all � ∈ ℕ ∗ . 

(b) Remind Wick's theorem asserts that  : � ∗ �,»­ ��� ≔ ∑ �−1�q�­/m�qÐ�
­!

�­�mq�!q! Y»q � ∗ �,»�­�mq���� with Y» =
ó � ∗ �,» ��� Ω� ∗ ó 

∗
m
m. For « = 4 we get −/�Y»m� ≤:  � ∗ �,»
 ���: and therefore    − P ^ ø��� 

ℝ ∗  o 
∗ Uv�R /�Y»m� ≤

� ∗ ù,»,��»��ø�. Finally we obtain ^ exp P−�Z:  � ∗ �,»
 ���: [R  
� ∗   

∗ U ° ∗  ≤ expZ/�Y»m�[ and this inequality 

finalized the proof. 
Theorem 1.8 [7] Let 〈
, °〉 be a õ-measure standard space with °�
� = 1and let �� be the generator of a 

hyper- contractive semigroup on "m�
, U°�. Let ± be a ℝ-valued measurable function on 〈
, °〉 such that ± ∈"¤�
, U°� for all � ∈ ⟦1, ∞�  and exp�−�±� ∈ "j�
, U°� for all � > 0. Then �� + ± is essentially self-adjoint on  
�)��� � ∩ Q�±� and is bounded below. Here  �)��� � = ⋂ QZ��¤[¤∈ℕ . 

Theorem 1.9 Let 〈
, °〉 be a õ-measure space with °�
� = 1and let �� be the generator of a hypercontractive 
semi-group on "m�
, U°�. Let± be a ℝ ∗ -valued internal measurable function on 〈 
 ∗ , ° ∗ 〉 such that ± ∈
" ∗ ¤� 
 ∗ , U ° ∗ � for all � ∈ �1, ∞ ∗ � and exp ∗ �−�±� ∈ " ∗ j� 
 ∗ , U ° ∗ � for all � > 0.  Assume that a set � ) ∗ � � ∗ � � ∩ Q�±� 

is internal. Then operator � ∗ � + ± is essentially self-∗ -adjoint internal operator on  � ) ∗ � � ∗ � � ∩ Q�±� and it is 
hyper finitely bounded below. Here  � ) ∗ � � ∗ � � = ⋂ QZ � ∗ �¤[¤∈ ℕ ∗ . 

Proof. It follows immediately by transfer from theorem 8. 
Remark 1.4 Let ±ù,»,� be operator on internal measurable space "m� Ω, U ° ∗ ∗ � ∗  on which this operator acts by 

multiplying by the "m� Q, U ° ∗ ∗ �- ∗ function±ù,»,� , see proof to Theorem 1.7. Note that for this operator a set 
� ) ∗ � � ∗ � � ∩ QZ±ù,»,�[ is not internal and therefore Theorem9 no longer holds. But without this theorem we cannot 
conclude that operator � ∗ � + ±ù,»,� is essentially self-∗ -adjoint internal operator on  � ) ∗ � � ∗ � � ∩ QZ±ù,»,�[. Thus 
Robinson’s transfer is of no help in the case corresponding to operator ±ù,»,�  considered above. In order to resolve 
this issue, we will use non conservative extension of the model theoretical nonstandard analysis, see [9-13]. 

NON CONSERVATIVE EXTENSION OF THE MODEL THEORETICAL 
NONSTANDARD ANALYSIS 

Remind that Robinson nonstandard analysis (RNA) many developed using set theoretical objects called super-
structures [2-6, 14]. A superstructure V�S� over a set S is defined in the following way: V��S� = S, V<#j�S� =
V<�S� ∪ PZV<�S�[, V�S� = ⋃ V<#j�S�<∈ℕ . Making S = ℝ will suffice for virtually any construction necessary in 
analysis. Bounded formulas are formulas where all quantifiers occur in the form:  ∀� �� ∈ : → ⋯  �, ∃� �� ∈ : →
⋯  �. A nonstandard embedding is a mapping  ∗∶ V�.� → V�Ú� from a superstructure  V�.�  called the standard 
universe, into another superstructure V�Ú� called nonstandard universe, satisfying the following postulates: 

1. Ú = . ∗   



2. Transfer Principle For every bounded formula Φ��j, … , �<�  and elements hj, … , h< ∈ ±�.� the property Φ�hj, … , h<�  is true for  hj, … , h<  in the standard universe if and only if it is true for hj , … , ∗ h< ∗  in the 
nonstandard universe ±�.� �  Φ��j, … , �<� ↔ ±�Ú� � Φ� hj , … , ∗ h< ∗ �. 

3. Non-triviality For every infinite set  Þ  in the standard universe, the set  � h|h ∈ Þ ∗ �  is a proper subset of Þ ∗ . 
Definition 2.1 A set � is internal if and only if � is an element of  Þ ∗  for some Þ ∈ V�ℝ�. Let  .  be a set and Þ = �Þq�q∈ù a family of subsets of  . .Then the collection  Þ has the infinite intersection property, if any infinite sub 

collection � ⊂ � has non-empty intersection. Nonstandard universe is  õ -saturated if whenever �Þq�q∈ù  is a 
collection of internal sets with the infinite intersection property and the cardinality of  � is less than or equal to õ. 

Remark 2.1 For each standard universe  � = ±�.� there exists canonical language "� and for each nonstandard 
universe À = ±�Ú�  there exists corresponding canonical nonstandard language  " = "ç ∗  [5, 14] 

4.The restricted rules of conclusion If Let Þ and Ù well formed, closed formulas so that Þ, Ù ∈ " ∗ . If À ⊨ Þ, 
then ¬Þ ⊬��� Ù. Thus, if a statement Þ holds in nonstandard universe, we cannot obtain from formula  ¬Þ 
any formula Ù whatsoever. 

Definition 2.2 [9-13] A set = ⊂ ℕ ∗  is a hyper inductive if the following statement holds in ±�Ú�: 

 �A ∈ = → A# ∈ =�.E∈ ℕ ∗
 

Here A# = A + 1.Obviously a set ℕ ∗  is a hyper inductive. 
5. Axiom of hyper infinite induction 

∀=�= ⊂ ℕ ∗ �>∀B�B ⊂ ℕ ∗ �C⋀ �A ∈ = → A# ∈ =�j~E"F I → = = ℕ ∗ J. 
Example 2.1 Remind the proof of the following statement: structure �ℕ, <, =� is a well-ordered set. 
Proof. Let . be a nonempty subset of  ℕ. Suppose X does not have a <-least element. Then consider the set ℕ\..  
Case1. ℕ\. = ∅. Then . = ℕ and so 0 is a < -least element but this is a contradiction. 
Case2. ℕ\. ≠ ∅.  Then 1 ∈ ℕ\. otherwise 1 is a < -least element but this is a contradiction. Assume now that 

there exists some 3 ∈ ℕ\. such that 3 ≠ 1, but since we have supposed that . does not have a < -least element, 
thus 3 + 1 ∉ .. Thus we see that for all 3 the statement 3 ∈ ℕ\. implies that 3 + 1 ∈ ℕ\.. We can conclude by 
axiom of induction that 3 ∈ ℕ\. for all 3 ∈ ℕ. Thus ℕ\. =  ℕ implies . = ∅. This is a contradiction to . being a 
non-empty subset of ℕ. Remind that structure � ℕ ∗ , <, =� is not a well-ordered set [5, 6, 14]. We set now .j = ℕ ∗ \ℕ 
and thusℕ\.j ∗ = ℕ. In contrast with a set . mentioned above the assumption 3 ∈ ℕ\.j ∗  implies that 3 + 1 ∈ℕ\.j ∗   if and only if 3 is finite, since for any infinite 3 ∈ ℕ\ ∗ ℕ the assumption 3 ∈ ℕ\.j ∗   contradicts with a true 
statement ±�Ú� ⊧ 3 ∉ ℕ\.j ∗ =ℕ and therefore in accordance with postulate 4 we cannot obtain from 3 ∈ ℕ\.j ∗  any 
closed formula Ù whatsoever. 

Theorem 2.1 [13] (Generalized Recursion Theorem) Let = be a set, Y ∈ = and ø: = × ℕ ∗ → = is any function 
with dom�ø� = = × ℕ ∗  and range�ø� ⊆ =, then there exists a function ℱ: ℕ → = ∗  such that: 1) dom�ℱ� = ℕ ∗  and range�ℱ� ⊆ =; 2) ℱ�1� = Y; 3) for all � ∈ ℕ ∗ , ℱ�3 + 1� = ø�ℱ�3�, 3�. 

Definition 2.3 [11-13] (1) Suppose that = is a standard set on which a binary operations �∙ + ∙� and �∙×∙� is 
defined and under which = is closed. Let �����∈ ℕ ∗  be any hyper infinite sequence of terms of = ∗ . For every hyper 
natural 3 ∈ ℕ ∗  we denote by ���- ∑ ��<�Ðj  the element of = ∗  uniquely determined by the following canonical 
conditions:  (a) ���- ∑ ��j�Ðj = �j;  (b) ���- ∑ ��<#j�Ðj = ���- ∑ ��<�Ðj + �<#j for all 3 ∈ ℕ. ∗  

(2) For every hyper natural 3 ∈ ℕ) ∗  we denote by ���-∏ ��<�Ðj  the element of = ∗  uniquely determined by the 
following canonical conditions: (a) ���-∏ ��j�Ðj = �j;  (b) ���-∏ ��<#j�Ðj = ����-∏ ��<�Ðj � × �<#j for all 3 ∈ ℕ. ∗  

Theorem 2.2. [13] (1) suppose that = is a standard set on which a binary operation �∙ + ∙� is defined and under 
which = is closed and that �∙ + ∙� is associative on S. Let �����∈ ℕ ∗  be any hyper infinite sequence of terms of = ∗ . 
Then for any 3, 1 ∈ ℕ ∗  we have: ���- ∑ ��<#��Ðj = ���- ∑ ��<�Ðj + ���-∑ ����Ðj ; 

(2) suppose that = is a standard set on which a binary operation �∙×∙� is defined and under which = is closed and 
that �∙×∙� is associative on S. Let �����∈ ℕ ∗  be any hyper infinite sequence of terms of = ∗ . Then for any 
3, 1 ∈ ℕ ∗  we have: ���-∏ ��<#��Ðj = ����-∏ ��<�Ðj � × ����-∏ ����Ðj �; (3) for any � ∈ = ∗  and for any 3 ∈ ℕ) ∗  we have: � × ����- ∑ ��<�Ðj � = ���- ∑ � × ��<�Ðj .  



External non-Archimedean Field ℝ+# ∗  by Cauchy Completion of the Internal Non -
Archimedean Field ℝ.   ∗  

Definition 2.4 A hyper infinite sequence of hyperreal numbers from ℝ ∗  is a function h: ℕ → ℝ ∗ ∗   from the 
hyper- natural numbers ℕ ∗  into the hyperreal numbers ℝ ∗ .We usually denote such a function by  3 ↦ h< , so the 
terms in the sequence are written as  �hj, hm, … , h< , … �.To refer to the whole hyper infinite sequence, we will write 

�h<�<Ðj) ∗  or �h<�<∈ ℕ ∗ . 
Abbreviation 2.1 For a standard set � we often write ���, let ��� = � � ∗ |� ∈ ���� � .We identify � with � �  i.e., � ≡ � �  for all � ∈ ℂ. Hence, ��� = ��� �  if � ⊆ ℂ, e.g., ℂ � = ℂ, ℝ � = ℝ, etc.Let ℝ�#, ∗  ℝ�,≈# ∗  , ℝ�,≈## ∗  , ℝ�,&'(# ∗  , ℝ�,)# ∗  , ℕ ∗ ) de-note the sets of Cauchy hyper-real numbers, Cauchy infinitesimal hyper-real 

numbers, Cauchy positive infinitesimal hyperreal numbers, Cauchy finite hyper-real numbers, Cauchy infinite 
hyper-real numbers and infinite hypernatural numbers, respectively. Note that ℝ�,&'(# ∗ = ℝ�# ∗ \ ℝ�,)# ∗ .  

Definition 2.5 Let �h<�<Ðj) ∗   be a hyper infinite ℝ ∗ - valued sequence mentioned above. We shall say that  

�h<�<Ðj) ∗    #-tends to 0 if, given any � ∈ ℝ ∗ ≈# , there is a hyper natural number Û ∈ ℕ ∗  such that for all  3 > Û, 
|h<| ≤ �. We denote this symbolically by h< →# 0. 

Definition 2.6 Let �h<�<Ðj) ∗   be a hyper infinite ℝ ∗ -valued sequence mentioned above. We shall say that  �h<�<Ðj) ∗   #-tends to ö ∈ ℝ ∗  if, given any � ∈ ℝ ∗ ≈# , there is a hyper natural number Û ∈ ℕ ∗  such that for all 3 > Û,         
|h< − ö| ≤ � and we denote this symbolically by h< →# ö or by  #- lim<→ ) ∗ h< = ö. 

Definition 2.7 Let �h<�<Ðj) ∗   be a hyper infinite ℝ ∗ -valued sequence mentioned above. We shall say that sequence  

�h<�<Ðj) ∗  is bounded if there is a hyperreal 
 ∈ ℝ ∗  such that for any  3 ∈ ℕ, ∗  |h<| ≤ 
. 

Definition 2.8 Let �h<�<Ðj) ∗   be a hyper infinite ℝ ∗ -valued sequence mentioned above. We shall say that  �h<�<Ðj) ∗   
is a Cauchy hyper infinite ℝ ∗ -valued sequence if , given any � ∈ ℝ ∗ ≈# , there is a hyper natural number Û��� ∈ ℕ ∗  
such that for any 1, 3 > Û, |h< − h�| < �. 

Theorem 2.3 If �h<�<Ðj) ∗  is a #-convergent hyper infinite ℝ ∗ -valued sequence, i.e., that is, h< →# ö for some 

hyper-real number  ö, ö ∈ ℝ ∗  then  �h<�<Ðj) ∗  is a Cauchy hyper infinite ℝ ∗ -valued sequence. 

Theorem 2.4 If �h<�<Ðj) ∗  is a Cauchy hyper infinite ℝ ∗ -valued sequence, then it is finitely bounded or hyper 
finitely bounded; that is, there is some finite or hyperfinite 
 ∈ ℝ ∗ # such that |h<| ≤ 
 for all 3 ∈ ℕ. ∗  

Definition 2.8 Let = be a set, with an equivalence relation  �⋅ ~ ⋅� on pairs of elements. For7 ∈ =, denote by Yí�7� the set of all elements in = that are related to 7. Then for any 7, � ∈ =, either Yí�7� = Yí���  or Yí�7� and Yí��� are 
dis-joint. 

Remark 2.2 The hyperreal numbers ℝ ∗ /# will be constructed as equivalence classes of Cauchy hyper infinite ℝ ∗ - 
valued sequences. Let ℱ� ℝ ∗ � denote the set of all Cauchy hyper infinite ℝ ∗ -valued sequences of hyperreal numbers. 
We define the equivalence relation on a set ℱ� ℝ ∗ �. 

Definition 2.9 Let �h<�<Ðj) ∗  and �0<�<Ðj) ∗  be in ℱ� ℝ ∗ �. Say they are #-equivalent if  h< − 0< →# 0 i.e., if and only 

if the hyper infinite ℝ ∗ -valued sequence �h< − 0<�<Ðj) ∗  #-tends to 0. 
Theorem 2.5 [13] Definition above yields an equivalence relation on a set ℱ� ℝ ∗ �. 
Definition 2.10 The external hyperreal numbers ℝ ∗ �# are the equivalence classes Yí��h<�� of Cauchy hyper 

infinite ℝ ∗ -valued sequences of hyperreal numbers, as per definition above. That is, each such equivalence class is 
an external hyperreal number. 

Definition 2.11 Given any hyperreal number ö ∈ ℝ ∗ , define a hyperreal number ö#to be the equivalence class of 

the hyper infinite ℝ ∗ -valued sequence �h< = ö�<Ðj) ∗ consisting entirely of ö ∈ ℝ ∗ . So we view ℝ ∗  as being inside ℝ ∗ /# 
by thinking of each hyperreal number ö ∈ ℝ ∗  as its associated equivalence class ö#. It is standard to abuse this 
notation, and simply refer to the equivalence class as q as well. 

Definition 2.12 Let 7, � ∈ ℝ ∗ �#, so there are Cauchy hyper infinite ℝ ∗ -valued sequences �h<�<Ðj) ∗ , �0<�<Ðj) ∗  of 
hyper-real numbers with 7 = Yí��h<�� and � =  Yí��0<��. 

(a) Define 7 + � to be the equivalence class of the hyper infinite sequence �h< + 0<�<Ðj) ∗ . 

(b) Define 7 × � to be the equivalence class of the hyper infinite sequence �h< + 0<�<Ðj) ∗ . 
Theorem 2.6 [13] The operations +,× in definition above by the requirements (a) and (b) are well-defined. 



Theorem 2.7 Given any hyperreal number 7 ∈ ℝ ∗ �#, 7 ≠ 0 there is a hyperreal number � ∈ ℝ ∗ �# such that 7 × � = 1. 
Theorem 2.8 If  �h<�<Ðj) ∗  is a Cauchy hyper infinite sequence which does not #-tend to 0, then there is some Û ∈ ℕ ∗  such that, for all 3 > Û, h<  ≠ 0. 
Definition 2.13 Let 7 ∈ ℝ ∗ �#. Say that 7 is positive if 7 ≠ 0, and if 7 =  Yí��h<�� for some Cauchy hyper infinite 

sequence of hyperreal numbers such that for some Û ∈ ℕ, h< > 0 ∗  for all 3 > Û. Then for a given two hyperreal 
numbers 7, �, say that 7 > � if 7 − � is positive. 

Theorem 2.9 Let 7, � ∈ ℝ ∗ �# be hyperreal numbers such that 7 > �, and let  x ∈ ℝ ∗ �#, then 7 + x > � + x. 
Theorem 2.10 Let 7, � ∈ ℝ ∗ �# be hyperreal numbers such that 7, � > 0. Then there is 1 ∈ ℕ ∗  such that 1 × 7 >�.  
Theorem 2.11 Given any hyperreal number x ∈ ℝ ∗ �#, and any hyperreal number � > 0, � ≈ 0, there is a 

hyperreal number ö ∈ ℝ ∗ �# such that |x − ö| < �. 
Definition 2.14 Let = ⊊ ℝ ∗ �# be a nonempty set of hyperreal numbers. A hyperreal number � ∈ ℝ ∗ �# is called an 

upper bound for = if � ≥ 7 for all 7 ∈ =. A hyperreal number � is the least upper bound (or supremum: sup=) for = 
if � is an upper bound for = and � ≤ : for every upper bound : of =. 

Remark 2.3 The order ≤ given by definition above obviously is ≤-incomplete. 
Definition 2.15 Let = ⊊ ℝ ∗ �# be a nonempty set of hyperreal numbers. We will say that: 
(1) = is ≤ -admissible above if the following conditions are satisfied: 
(a) = is finitely bounded or hyper finitely bounded above; 
(b) let Þ�=� be a set such that ∀��� ∈ Þ�=�⇔ � ≥ =� then for any � > 0, � ≈ 0 there are A ∈ = and B ∈ Þ�=� 

such that B − A ≤ � ≈ 0.  
(2) = is ≤ -admissible belov if the following conditions are satisfied: 
(a) = is finitely bounded or hyper finitely bounded below; 
(b) let "�=� be a set such that ∀��� ∈ "�=�⇔ � ≤ =� then for any � > 0, � ≈ 0 there are A ∈ = and B ∈ "�=� 

such that A − B ≤ � ≈ 0. 
Theorem 2.12 [13] (a) Any ≤-admissible above subset = ⊂ ℝ ∗ �# has the least upper bound property. 
(b) Any ≤-admissible above subset = ⊂ ℝ ∗ �# has the greatest lower bound property. 

Theorem 2.13 [13] (Generalized Nested Intervals Theorem) Let ��<�<Ðj) ∗ =  ��h< , 0<��<Ðj) ∗ , �h< , 0<� ⊂ ℝ ∗ �# be a 
hyper infinite sequence of #-closed intervals satisfying each of the following conditions: 

(a) �j ⊇ �m ⊇ �v ⊇ ⋯ ⊇ �< ⊇ ⋯       

(b) 0< − h< →# 0 as 3 → ∞ ∗ , Then ⋂ �<) ∗<Ðj consists of exactly one hyperreal number � ∈ ℝ ∗ �#.  
Theorem 2.14 [13] (Generalized Squeeze Theorem) Let  �h<�<Ðj) ∗ ,  �Y<�<Ðj) ∗  be two hyper infinite sequences 

#-converging to ", and  �0<�<Ðj) ∗  a hyper infinite sequence. If ∀3 > ì, ì ∈ ℕ  ∗ we have h< ≤ 0< ≤ Y<, then 0< also #-converges to ". 
Theorem 2.15 [13] If #-lim<→ ) ∗ ,| h<| = 0, then #-lim<→ ) ∗  , h< = 0. 
Theorem 2.16 [13] (Generalized Bolzano -Weierstrass Theorem) Any finitely or hyper finitely bounded hyper 

infinite ℝ ∗ �# -valued sequence has #-convergent hyper infinite subsequence. 

Definition 2.16 Let  �h<�<Ðj) ∗  be ℝ ∗ �#-valued sequence. Say that a sequence  �h<�<Ðj) ∗  #-tends to 0 if, given any � > 0, � ≈ 0, there is a hyper natural number Û ∈ ℕ ∗ ), Û = Û��� such that, for all 3 > Û, |h<| ≤ �. 
Definition 2.17 Let  �h<�<Ðj) ∗  be ℝ ∗ �#-valued hyper infinite sequence. We call  �h<�<Ðj) ∗  a Cauchy hyper infinite 

sequence if given any hyperreal number � ∈ ℝ�,≈## ∗ , there is a hypernatural number Û = Û��� such that for any 1, 3 > Û, |h< − h�| < �. 
Theorem 2.17 If �h<�<Ðj) ∗ is a #-convergent hyper infinite sequence i.e., h< →# 0 for some hyperreal number 0 ∈

ℝ ∗ �#, then �h<�<Ðj) ∗  is a Cauchy hyper infinite sequence. 

Theorem 2.18 If  �h<�<Ðj) ∗  is a Cauchy hyper infinite sequence, then it is bounded; that is, there is some 
 ∈ℝ ∗ �#  such that |h<| ≤ 
 for all 3 ∈ ℕ ∗ . 

Theorem 2.19 [13] Any Cauchy hyper infinite sequence �h<�<Ðj) ∗  has a #-limit in  ℝ ∗ �#; that is, there exists 0 ∈ ℝ ∗ �# such that h< →# 0. 
Remark 2.4 Note that there exists canonical natural embedding  ℝ ∗ ↪ ℝ ∗ �#. 



Remark 2.5 A nonempty set S of Cauchy hyperreal numbers ℝ ∗ �# is unbounded above if it has no hyperfinite 
upper bound, or unbounded below if it has no hyperfinite lower bound. It is convenient to adjoin to Cauchy 
hyperreal number system ℝ ∗ �# two points, +∞# = � +∞ ∗ �#    (which we also write more simply as ∞# ) and −∞#, 
and to define the order relationships between them and any Cauchy hyperreal number � ∈ ℝ ∗ �# by −∞# < � < ∞#. 

Definition 2.18 We will call −∞# and ∞# are points at hyper infinity. If = ⊂ ℝ ∗ �# is a nonempty set of Cauchy 
hyperreals, we write sup�=� = ∞# to indicate that = is unbounded above, and inf�=� = −∞# to indicate that = is un-
bounded below. 

Definition 2.19 That is ��, �� definition of the #-limit of a function ?: Q → ℝ ∗ �# is as follows: let ?��� is a ℝ ∗ �#- valued function defined on a subset Q ⊂ ℝ ∗ �# of the Cauchy hyperreal numbers. Let Y be a #-limit point of Q 
and let " ∈ ℝ ∗ �# be Cauchy hyperreal number. We say that  #- lim0→#� ?��� = "     if for every � ≈ 0, � > 0 there 
exists a � ≈ 0, � > 0 such that, for all � ∈ Q, if 0 < |� − Y| < �, then |?��� − "| < �. 

Definition 2.20 [12] The function ?: ℝ ∗ �# → ℝ ∗ �# is a #-continuous (or micro continuous) at some point Y of its 
domain if the #-limit of  ?���, as � #-approaches Y through the domain of ?, exists and is equal to ?�Y�: #-lim0→#� ?��� = ?�Y�. 

Theorem 2.20 [13] Let �h<�<Ðj) ∗  and  �0<�<Ðj) ∗  be ℝ ∗ �#- valued hyper infinite sequences. Then the following 
equalities hold for any 3, w, í, «, 1 ∈ ℕ ∗  : 
 0 × ����- ∑ hq<qÐj � = ���- ∑ 0 × hq<qÐj   (45) 
 ���- ∑ hq<qÐj ± ���- ∑ 0q =<qÐj ���- ∑ �hq ± 0q�<qÐj  (46) 

 ���- ∑ P���- ∑ hq­Ï�­ÐÏ8 R��qÐ�8 = ���- ∑ P���- ∑ hq­��qÐ�8 RÏ�­ÐÏ8  (47) 

 ����- ∑ hq<qÐj � × Z���- ∑ 0­<­Ðj [ = ���- ∑ Z���- ∑ hq × 0­<­Ðj [<qÐj  (48) 
 ����-∏ hq<qÐj � × ����-∏ 0q<qÐj � = ���-∏ hq<qÐj × 0q (49) 
 ����-∏ hq<qÐj �� =  ���-∏ hq� . <qÐj  (50) 

Theorem 2.21 [13] Let �h<�qÐj<  and  �0<�qÐj<  be ℝ ∗ �#- valued monotonically non-decreasing hyperfinite 
sequences. Suppose that hq ≤ 0q , 1 ≤ � ≤ 3, then the following equalities hold for any 3 ∈ ℕ ∗  :   
 ���-∏ hq<qÐj ≤ ���-∏ 0q<qÐj . (51) 

Theorem 2.22 [13] Let �h<�qÐj<  and  �0<�qÐj<  be ℝ ∗ �#- valued hyperfinite sequences. Then the following 
inequalities hold for any 3 ∈ ℕ ∗  :  
 ����-∏ hq<qÐj × 0q�m ≤ ����-∏ hqm<qÐj � × ����-∏ 0qm<qÐj �. (52) 

Definition 2.21 [12] Assume that �h<�<Ðj) ∗  is a ℝ ∗ �#- valued hyper infinite sequence, the symbol ���- ∑ h<) ∗<Ðj  is a 
hyper infinite series, and h< is the n-th term of the hyper infinite series. 

Definition 2.22 [12] We shall say that a series ���- ∑ h<) ∗<Ðj  #-converges to the sum Þ ∈ ℝ ∗ �#, and write 

���- ∑ h<) ∗<Ðj = Þ if the hyper infinite sequence  �Þ<�<Ðj) ∗  defined by Þ� = ���- ∑ h<�<Ðj  #-converges to the sum Þ. 

The hyperfinite sum Þ� is the 3-th partial sum of ���- ∑ h<) ∗<Ðj . If #-limÞ��→ ) ∗ , = ∞# or −∞#, we shall say that 

���- ∑ h<) ∗<Ðj #-diverges to ∞# or to −∞#. 

Theorem 2.23 [12] The hyper infinite sum ���- ∑ h<) ∗<Ðj   of a #-convergent hyper infinite series is unique. 

Hyper Infinite Sequences and Series of ℝ ∗ +#- Valued Functions 

Definition 2.23 [12] If ?j, ?m, … , ?�, ?�#j, … , ?<, … 3 ∈ ℕ ∗   are ℝ ∗ �#- valued functions on a subset Q ⊂ ℝ ∗ �# we say 

that �?<�<Ðj) ∗  is a hyper infinite sequence of  ℝ ∗ �#- valued functions on Q. 
Definition 2.24 [12] Suppose that �?<�<Ðj) ∗  is a hyper infinite sequence of ℝ ∗ �#- valued functions on Q ⊂ ℝ ∗ �# and 

the hyper infinite sequence of values �?<����<Ðj) ∗  #-converges for each � in some subset = of Q. Then we say that 

�?<����<Ðj) ∗  #-converges pointwise on = to the #-limit function ?, defined by ?��� = lim<→ ) ∗ ?<���. 

Definition 2.25 [12] If �?<����<Ðj) ∗  is a hyper infinite sequence of ℝ ∗ �#- valued functions on Q ⊂ ℝ ∗ �#, then 

 ���- ∑ ?<���) ∗<Ðj  (53) 
is a hyper infinite series of functions on Q. The partial sums of (1), are defined by Ñ<��� = ���- ∑ ?<���<�Ðj . If 

hyper infinite sequence 

�Ñ<����<Ðj) ∗ #-



converges pointwise to the #-limit function Ñ��� on a subset = ⊂ Q, we say that 

�Ñ<����<Ðj) ∗ #-
converges pointwise to the sum Ñ��� on =, and write Ñ��� = ���- ∑ ?<���) ∗<Ðj . 

Definition 2.26  [12] A hyper infinite series of the form ���- ∑ �� − ���<) ∗<Ðj , 3 ∈ ℕ ∗   is called a hyper infinite 
power series in � − ��. 

The #-Derivatives and Riemann #-Integral of ℝ ∗ +#-Valued Functions 9:: → ℝ ∗ +#; 
Definition 2.27 [12] A function ?: Q → ℝ ∗ +#  #-differentiable at an #-interior point � ∈ Q of its domain Q ⊂ ℝ ∗ +# 

if the difference quotient ?��� − ?���� � − ��⁄  has a #-limit:  #- lim0→#08�?��� − ?���� � − ��⁄ �.  
In this case the #-limit is called the #-derivative of ? at interior point ��, and is denoted by ?#=���� or by U#?  ���� U#�.⁄  

Definition 2.28 If ? is defined on an #-open set = ⊂ ℝ ∗ +#, we say that f is #-differentiable on = if ? is 
#-differentiable at every point of =. If ? is #-differentiable on =, then ?#=��� is a function on =.We say that ? is 
#-continuously #-differentiable on = if ?#=��� is #-continuous on =. 

Definition 2.29 If ? is #-differentiable on a #-neighbourhood of  ��, it is reasonable to ask if ?#>��� is #-differentiable at ��. If so, we denote the #-derivative of ?#>��� at �� by ?#>>���� or by ?#�m����� and this is the 
second #-derivative of ? at ��. Continuing inductively by hyper infinite induction, if ?#�<�j���� is defined on a #-neighbourhood of  ��, then the 3-th #-derivative of ? at �� denoted by ?#�<����� or by U#�<�?  ���� U#�<⁄ , where 3 ∈ ℕ. ∗  

Theorem 2.24 [12] If ? is #-differentiable at �� then ? is #-continuous at ��. 
Theorem 2.25 [12] If ? and ø are #-differentiable at ��, then so are ? ± ø and ? × ø with: 
(a) �? ± ø �#>���� = ?#>����± ø#>����, (b) �? × ø �#>���� = ?#>����ø���� + ø#>����?����. 
(c) The quotient ? ø⁄  is #-differentiable at �� if ø���� ≠ 0 with �? ø⁄ �#> = ¶#=�08���08���#=�08�¶�08���08�� . 
(d) If 3 ∈ ℕ ∗  and ?q , 1 ≤ � ≤ 3 are #-differentiable at ��, then so are ���- ∑ ?q<qÐj  with: 

����- ∑ ?q<qÐj �#>���� = ���- ∑ ?q#><qÐj ����. 
(e) If 3 ∈ ℕ ∗  and  ?#�<�����, ø#�<�����  exist, then so does �? × ø �#�<����� and 

�? × ø �#�<����� = ���-? P3
� R ? 

#�q�<
qÐ� ����ø #�<�q����� 

Theorem 2.26 [12] (The Chain Rule) Suppose that ø is #-differentiable at �� and ? is #-differentiable at ø(��). 
Then the composite function ℎ = ? ∘ ø defined by ℎ��� = ?�ø���� is #-differentiable at  �� with ℎ#>���� =
?#>Zø����[ø#>����. 

Theorem 2.27 [12] (Generalized Taylor's Theorem) Suppose that ?#�<��� �, 3 ∈ ℕ ∗  exists on an #-open interval � about ��, and let � ∈ �. Let 	<��, ��� be the 3-th Taylor hyper polynomial of ? about ��, 	<��, ��� =
���- ∑ ¶#�A��08��0�08�A

�!
<�Ð�    Then the remainder B��, ��� = ?��� − 	<��, ��� can be written as 

 B��, ��� = ¶#�Nè������0�08�N
�<#j�! . (54) 

Here Y depends upon � and is between � and ��. 
Definition 2.30 [12] Let �h, 0� ⊂ ℝ ∗ +#. A hyperfinite partition of  �h, 0� is a hyperfinite set of subintervals ���, �j�,…,��<�j, �<�, with 3 ∈ ℕ ∗ ), where h = �� < �j … < �< = 0. A set of these points ��, �j, … , �< defines a 

hyperfinite partition 	 of �h, 0�, which we denote by 	 = ��q�qÐ�< . The points ��, �j, … , �< are the partition points of 	.The largest of the lengths of the subintervals ��q�j, �q�, 0 ≤ � ≤ 3 is the norm of 	 = ��q�qÐ�<  denoted by ‖	‖; 
thus, ‖	‖ = maxj~q~< ��q − �q�j�. 

Definition 2.31 Let 	 and 	> are hyperfinite partitions of �h, 0�, then 	> is a refinement of 	 if every partition 
point of 	 is also a partition point of 	>; that is, if 	> is obtained by inserting additional points between those of 	.          
Definition 2.32 Let ? be ℝ ∗ +#- valued function ?: �h, 0� → ℝ ∗ +#, then we say that external hyperfinite sum õ¯0u 
defined by 
 õ¯0u = ���- ∑ ?�Yq�<qÐj ��q − �q�j�, �q�j ≤ Yq ≤ �q, (55) 



is a Riemann external hyperfinite sum of ? over the hyperfinite partition  	 = ��q�qÐ�< . 
Definition 2.33 [12] Let ? be ℝ ∗ +#- valued function ?: �h, 0� → ℝ ∗ +#, then we say that ? is Riemann #-integrable 

on �h, 0� if there is a number " ∈ ℝ ∗ +# with the following property: for every � ≈ 0, � > 0, there is a � ≈ 0, � > 0 
such that |" − õ¯0u| < � if õ¯0u is any Riemann external hyperfinite sum of ? over a partition 	 of �h, 0� such that ‖	‖ < �. In this case, we say that " is the Riemann #-integral of ? over �h, 0�, and we shall write 

 " = ���- ^ ?���U#�CD . (56) 
Thus the Riemann #-integral of ℝ ∗ +#- valued function  ?: �h, 0� → ℝ ∗ +# over �h, 0� is defined as #-limit of the 

external hyperfinite sums (55) with respect to partitions of the interval �h, 0�: 
 ���- ^ ?���U#�CD = #-lim<→ ) ∗ Z���- ∑ ?�Yq�<qÐj ��q − �q�j�[. (57) 

Definition 2.34 A coordinate rectangle B in ℝ ∗ +#;, 3 ∈ ℕ ∗   is the external finite or hyperfinite Cartesian product 
of 3 #-closed intervals; that is, B = ���- ×qÐj< �hq , 0q�. The content of B is ±�B� = ���-∏ �0q − hq�<qÐj . The 
hyperreal numbers 0q − hq, 1 ≤ � ≤ 3 are the edge lengths of B. If they are equal, then B is finite or hyperfinite 
coordinate cube. If hÏ = 0Ï  for some x, then ±�B� = 0 and we say that B is degenerate; otherwise, B is 
nondegenerate. 

Definition 2.35 If B = ���-×qÐj< �hq , 0q� and 	� = h�� < h�j <∙∙∙< h��A  is an external hyperfinite partition of 
�h� , 0��, 1 ≤ x ≤ 3, then the set of all rectangles inℝ ∗ +#; that can be written as ���- ×qÐj< Chq,­�E� , hq,­�I, 1 ≤ «� ≤ 1� , 
1 ≤ x ≤ 3 is a partition of B. We denote this partition by 	 = ���- ×�Ðj< 	� and define its norm to be the maximum 
of the norms of 	q , 1 ≤ � ≤ 3; thus, ‖	‖ = maxq�	q|1 ≤ � ≤ 3�. 

Definition 2.36 If  	 = ���- ×qÐj< 	q and 	> = ���- ×qÐj< 	q>   are partitions of the same rectangle, then 	> is a 
refinement of 	 if 	q>  is a refinement of 	q , 1 ≤ � ≤ 3 as defined above. 

Definition 2.37 Suppose that ? is a ℝ ∗ +#- valued function defined on a rectangle B in ℝ ∗ +#;, 3 ∈ ℕ ∗ , 	 =�	q�qÐj� is a partition of B, and �q is an arbitrary point in Bq, 1 ≤ « ≤ w. Then a Riemann external hyperfinite sum õ¯0u of ? over the partition  	 is defined by 
 õ¯0u = ���- ∑ ?��q��qÐj ±�Bq� (58) 

Definition 2.38 Let ? be a ℝ ∗ +#- valued function defined on a rectangle B in ℝ ∗ +#;, 3 ∈ ℕ ∗ . We say that ? is 
Riemann #-integrable on B if there is a number L with the following property: for every � ≈ 0, � > 0, there is a � ≈ 0, � > 0 such that |" − õ¯0u| < � if õ¯0u is any Riemann external hyperfinite sum of ? over a partition 	 of B 
such that ‖	‖ < �. In this case, we say that " is the Riemann #-integral of ? over B, and write 
 " = ���- ^ ?���U#<� � . (59) 

Thus the Riemann #-integral of ℝ ∗ +#- valued function  ? defined on a rectangle B in ℝ ∗ +#; is defined as #-limit of 
the external hyperfinite sums (58) with respect to partitions of the rectangle B: 
 ���- ^ ?���U#<� = � #-lim<→ ) ∗ P���- ∑ ?��q��qÐj ±�Bq�R. (60) 

The ℝ ∗ +#-Valued #-Exponential Function F¢G-HIJ�¢� and ℝ ∗ +#-Valued Trigonometric 
Functions F¢G-�KL�¢�,F¢G-/M��¢� 

We define the #-exponential function ���-exp��� as the solution of the #-differential equation 
 ?#>�� � = ?���, ?�0� = 1. (61) 

We solve it by setting  ?��� = ���- ∑ �<) ∗<Ð� , ?#>�� � = ���- ∑ 3�<) ∗<Ð� . Therefore 

 ���-exp��� = ���- ∑ 0N
<!

) ∗<Ð� . (62) 

From (1) we get Z���-exp���[Z���-exp�:�[ = ���-exp�� + :� for any �, : ∈ ℝ ∗ +#. 
We define the #- trigonometric functions ���- sin � and ���- cos � by 

 ���- sin � = ���- ∑ �−1�< 0�Nè�
�m<#j�!

) ∗<Ð� , ���- cos � = ���- ∑ �−1�< 0�N
�m<�!

) ∗<Ð�  . (63) 

It can be shown that the series (1) #-converges for all � ∈ ℝ ∗ +#  #-differentiating yields 
 ����- sin � �#> = ���- cos �, ����- cos � �#> = −����- sin � �. (64) 



ℝ ∗ /# -Valued Schwartz Distributions 

Definition 2.39 [12] Let � be an #- open subset of ℝ ∗ +#; and ?:� → ℝ ∗ +#.  The partial derivative of ? at the point � = ��j, �m, … , �q , … , �<� with respect to the �-th variable �q is defined as 
O#¶
O#0� =  #- limP→#�

¶�0�,0�,…,0�#P,…,0N��¶�0� ,0� ,…,0�,…,0N�
P . 

Definition 2.38 A multi-index of size 3 ∈ ℕ ∗   is an element in ℕ ∗ <, the length of a multi-index A =�Aj, … , A<�  ∈ ℕ ∗ < is defined as Ext-∑ Aq<qÐj  and denoted by |A|.    We introduce the following notations for a given 

multi-index A = �Aj, … , A<�  ∈ ℕ ∗ <:  �E = ���-∏ �qE�  ; <qÐj Q#E = ���-∏ O#R�
O#0�R�  

 <qÐj or symbolically Q#E =
���- O#R

O#0�R�…O#0NRN.. 

Definition 2.40 The Schwartz space of rapidly decreasing ℂ�# ∗ - valued test functions on ℝ�#< , 3 ∈ ℕ ∗ ∗  is the 
function space defined by 

S#� ℝ�#< ∗ , ℂ�# ∗ � = >? ∈ � ) ∗ � ℝ�#< ∗ , ℂ�# ∗ �|∀�A, B��A, B ∈ ℕ ∗ <�∀��� ∈ ℝ�#< ∗ �CS�E Q  #F ?  ���S < ∞#IJ. 
Remark 2.6 Note that if ? ∈ =#� ℝ�#< ∗ , ℂ�# ∗ � the integral of �ES Q  #F ?  ���S exists 

���- T S �EQ  #F ?  ���SU#< 
ℝS#N ∗

< ∞#. 
Definition 2.41 The Schwartz space of essentially rapidly decreasing ℂ�# ∗ - valued test functions on ℝ�#< , 3 ∈ ℕ ∗ ∗  

is the function space defined by 
S#� ℝ�#< ∗ , ℂ�# ∗ � = >? ∈ � ) ∗ � ℝ�#< ∗ , ℂ�# ∗ �|∀A�A ∈ ℕ  <�∀B�B ∈ ℕ ∗ <�∀��� ∈ ℝ�#< ∗ �CS�E Q  #F ?  ���S < ∞ IJ. 

Remark 2.7 Note that if ? ∈ =#� ℝ�#< ∗ , ℂ�# ∗ � the integral of �ES Q  #F ?  ���S, A ∈ ℕ  <, B ∈ ℕ ∗ < exists and 

���- T S �EQ  #F ?  ���SU#< 
ℝS#N ∗

< ∞ . 
Definition 2.42 The Schwartz space of rapidly decreasing ℂ�# ∗ - valued test functions on ℝ�,&'(#<  , 3 ∈ ℕ ∗ ∗  is the 

function space defined by 
ST#Z ℝ�,&'(#< ∗ , ℂ�# ∗ [ = >? ∈ � ) ∗ Z ℝ�,&'(#< ∗ , ℂ�# ∗ [|∀�A, B��A, B ∈ ℕ ∗ <�∀�Z� ∈ ℝ�,&'(#< ∗ [CS�E Q  #F ?  ���S < ∞#IJ. 

Remark 2.8 Note that if ? ∈  ST#Z ℝ�,&'(#< ∗ , ℂ�# ∗ [ the integral of �ES Q  #F ?  ���S, A ∈ ℕ ∗ <, B ∈ ℕ ∗ < exists and   

���- T S �EQ  #F ?  ���SU#< 
ℝS,úûü#N ∗

< ∞# . 
Definition 28.43 The Schwartz space of essentially rapidly decreasing ℂ�# ∗ - valued test functions on ℝ�,&'(#<  , 3 ∈ ℕ ∗ ∗  is the function space defined by 

ST&'(#  Z ℝ�,&'(#< ∗ , ℂ�# ∗ [ = 

V? ∈ � ) ∗ Z ℝ�,&'(#< ∗ , ℂ�# ∗ [|∀�A, B��A ∈ ℕ  < , B ∈ ℕ  <�∃YEFZYEF ∈ ℝ�,&'(# ∗ [∀�Z� ∈ ℝ�,&'(#< ∗ [ \O�E P Q  #F ?  ���RO < YEF]W. 

Remark 2.9 Note that if ? ∈ =&'(# � ℝ�#< ∗ , ℂ�# ∗ � the integral of S Q  0R #F ?  ���S exists and finitely bounded above 
���- ^ S �EQ  #F ?  ���SU#< 

ℝS,úûü#N ∗ < UEF , UEF ∈ ℝ�,&'(# ∗ . 

Abbreviation 2.2 1) The Schwartz space of rapidly decreasing test functions on ℝ�#<  ∗  we will be denoting by 
S#� ℝ�#< ∗ � and let S&'(# � ℝ�#<  ∗ �   denote the set of ℂ�# ∗ -valued essentially rapidly decreasing test functions on ℝ�#<  ∗ .    
2) The Schwartz space of rapidly decreasing ℂ�# ∗ - valued test functions on ℝ�,&'(#<   ∗  we will be denoting by 
ST#Z ℝ�,&'(#<   ∗ [ and let ST&'(# Z ℝ�,&'(#<   ∗ [   denote the set of ℂ�# ∗ -valued essentially rapidly decreasing test functions on 
 ℝ�,&'(#<   ∗ . 

Definition 2.44 A linear functional �: =#� ℝ�#< ∗ � → ℂ�# ∗  is a #-continuous if there exist �, w ∈ ℕ ∗  and constants 

YEF such that |����| ≤ �Z���- ∑ YEF |E|~�,|F|~� [. Here  ∀��� ∈ ℝ�#< ∗ � \O�E P Q  #F �  ���RO < YEF]. 
Definition 2.45 A linear functional �: =#Z ℝ�,&'(#< ∗ [ → ℂ�# ∗  is a strongly #-continuous if there exist �, w ∈ ℕ ∗  and 

constants YEF such that |����| ≤ �Z���- ∑ YEF |E|~�,|F|~� [ ∈ ℝ�,&'(# ∗ . 
Definition 2.46 A generalized function � ∈ =#>� ℝ�#< ∗ � is defined as a #-continuous linear functional on vector 

space =#� ℝ�#< ∗ �, symbolically it written as �: � → ��, ��. Thus space =#>� ℝ�#< ∗ � of generalized functions is the 
space dual to =#� ℝ�#< ∗ �. 



Definition 2.47 A generalized function � ∈ =#>Z ℝ�,&'(#< ∗ [ is defined as a strongly #-continuous linear functional 
on vector space =#Z ℝ�,&'(#< ∗ [, symbolically it written as �: � → ��, ��. Thus space =#>Z ℝ�,&'(#< ∗ [ of generalized 
functions is the space dual to =#Z ℝ�,&'(#< ∗ [. 

Definition 2.48 Convergence of a hyper infinite sequence ��<�<Ðj) ∗  of generalized functions in =#>� ℝ�#< ∗ � is 
defined as weak #-convergence of the hyper infinite sequence of functionals in =#>� ℝ�#< ∗ � that is: �< →# 0, as 3 → ∞ ∗ , in =#>� ℝ�#< ∗ � means that ��< , �� →# 0,  as 3 → ∞ ∗ , for all � ∈ =#� ℝ�#< ∗ �. 

Definition 2.49 Convergence of a hyper infinite sequence ��<�<Ðj) ∗  of generalized functions in =#>Z ℝ�,&'(#< ∗ [ is 
defined as weak #-convergence of functionals in =#>Z ℝ�,&'(#< ∗ [ that is: �< →# 0, as 3 → ∞ ∗ , in =#>Z ℝ�,&'(#< ∗ [ means 
that ��< , �� →# 0, as 3 → ∞ ∗ , for all � ∈ =#Z ℝ�,&'(#< ∗ [.  

Definition 2.50 1) Let � ∈ =#=� ℝ�#< ∗ � and let � = Þ: + 0 be a linear transformation of  ℝ�#< ∗  onto ℝ�#< ∗ . The 
generalized function ��Þ: + 0 � ∈ =#=� ℝ�#< ∗ �  is defined by 

 ���Þ: + 0 �, �� = P�, UCVE��0�C�I
|W��V| R. (65) 

Formula (1) enables one to define generalized functions that are translation invariant, spherically symmetric, 
centrally symmetric, homogeneous, periodic, Lorentz invariant, etc. 

2) Let the function A��� ∈ �#j� ℝ�# ∗ � have only simple zeros �� ∈ ℝ�# ∗ ,w ∈ ℕ ∗ , the function �ZA���[ is defined 
by 

 �ZA���[ = ���- ∑ ��0� 0X�
SE#=� 0X�S

) ∗�Ðj  . (66) 

3) Let � ∈ =#=� ℝ�#< ∗ �, the generalized (weak) #-derivative Q#E� of � of order A is defined as 
 �Q#E�, �� = �−1�|E|��, Q#E��. (67) 

4) Let � ∈ =#=� ℝ�#< ∗ � and ø��� ∈ �# ) ∗ � ℝ�#< ∗ �, The product ø� = �ø is defined by  
 �ø�, �� = ��, ø��. (68) 

5) Let �j ∈ =#=� ℝ�#< ∗ � and �m ∈ =#=� ℝ�#� ∗ � then their direct product is defined by the formula 
 ��j × �m, �� = Z�j�����m�:�, ��[,  ���, :� ∈ =# � ℝ�#< × ∗ ℝ�#� ∗ �. (69) 

6)  The Fourier transform ℱ��� of a generalized function � ∈ =#=� ℝ�#< ∗ � is defined by the formula 
 �ℱ���, �� = ��, ℱ����, (70) 
 ℱ��� = ���- ^ ��������-exp���å, ����U#<� 

ℝS#N ∗ . (71) 

Since the operation ���� → ℱ����å� is an isomorphism of S#� ℝ�#< ∗ � onto S#� ℝ�#< ∗ �, the operation � → ℱ��� is 
an isomorphism of  =#=� ℝ�#< ∗ � onto =#=� ℝ�#< ∗ � and the inverse of  ℱ��� is given by: ℱ�j��� = �2Ô��<ℱ���−å��. 
The following formulas hold for � ∈ =#=� ℝ�#< ∗ �: (a) Q#E ℱ��� = ℱ�����E��, (b) ℱ� Q#E�� = ��å�Eℱ���,(c) if  the 
generalized function �j ∈ =#=� ℝ�#< ∗ � has #-com-pact support, then ℱ��j ∗ �m� = ℱ��j�ℱ��m�. 

7) If the generalized function � is periodic with 3-period à = �àj, … , à<�, then � ∈ =#=� ℝ�#< ∗ �, and it can be 
expanded in a hyper infinite  trigonometric series 

 ���� = ���- ∑ Y��������-exp���w`, ����,) ∗|�|Ð� |Y����| ≤ Þ�1 + |w|�� . (72) 

The series (1) #-converges to ���� in =#=� ℝ�#< ∗ �, here ` = Pmn
Y� , … , mn

YNR and w` = Pmn��Y� , … , mn�NYN R. 

A NON-ARCHIMEDEAN METRIC SPACES ENDOWED WITH ℝ ∗ /# -VALUED 
METRIC 

Definition 3.1 A non-Archimedean metric space is an ordered pair �
, U#� where 
 a set and U# is a #-metric 
on 
 i.e., ℝ ∗ /## - valued function U#:
 ×
 → ℝ ∗ /## such that for any triplet �, :, � ∈ 
, the following holds: 

1. U#��, :� = 0⟹ � = :. 2. U#��, :� = U#�:, ��. 3. U#��, �� ≤ U#��, :� + U#�:, ��. 
Definition 3.2 A hyper infinite sequence ��<�<Ðj) ∗  of points in 
 is called #-Cauchy in �
, U#� if for every 

hyperreal � ∈ ℝ ∗ +##  there exists some  Û ∈ ℕ ∗  such that U#��<, ��� < � if 3, 1 > Û. 
Definition 3.3 A point � of the non-Archimedean metric space �
, U#� is the #-limit of the hyper infinite 

sequence ��<�<Ðj) ∗  if for all � ∈ ℝ ∗ +## , there exists some Û ∈ ℕ ∗  such that U#��<, �� < � if 3 > Û. 



Definition 3.4 A non-Archimedean metric space is #-complete if any of the following equivalent conditions are 
satisfied: 

1.Every hyper infinite #-Cauchy sequence ��<�<Ðj) ∗  of points in 
 has a #-limit that is also in 
. 
2.Every hyper infinite #-Cauchy sequence in 
, #-converges in 
 that is, to some point of 
. 
For any non-Archimedean metric space �
, U#� one can construct a #-complete non-Archimedean metric space �
>, U#� which is also denoted as �#-
[ , U#� and which contains 
 a #-dense subspace. 
It has the following universal property: if ì is any #-complete non-Archimedean metric space and ?:
 → ì is 

any uniformly #-continuous function from 
 to ì, then there exists a unique uniformly #-continuous function ?>:
> → ì that extends ?.The space #-
[ is determined up to #-isometry by this property (among all #-complete 
metric spaces #- isometrically containing non-Archimedean metric space �#-
[ , U#�, and is called the #-completion 
of �
, U#�. 

The #-completion of 
 can be constructed as a set of equivalence classes of Cauchy hyper infinite sequences in 
. For any two hyper infinite Cauchy sequences ��<�<Ðj) ∗   and �:<�<Ðj) ∗  in 
, we may define their distance as U#> = #- lim;→)# U#��<, :<�. This #-limit exists because the hyperreal numbers ℝ ∗ /# are #-complete. This is only a 
pseudo metric, not yet a metric, since two different hyper infinite Cauchy sequences may have the distance 0. But 
having distance 0 is an equivalence relation on the set of all hyper infinite Cauchy sequences, and the set of 
equivalence classes is a metric space, the #-completion of M. The original space is embedded in this space via the 
identification of an element � of 
>  with the equivalence class of hyper infinite sequences in 
  #-converging to � 
i.e., the equivalence class containing a hyper infinite sequence with constant value �. This defines a #-isometry onto 
a #-dense subspace, as required. 

Example 3.1 Both ℝ ∗  and ℂ ∗  are internal metric spaces when endowed with the distance function U��, :� =|� − :|. 
Definition 3.5 About any point � ∈ 
 we define the #-open ball of radius x ∈ ℝ�## ∗    about � as the set Ù���� =

�: ∈ 
|U#��, :� < x�. These #-open balls form the base for a topology on 
. 
Definition 3.6 A non-Archimedean metric space �
, U#� is called hyper finitely bounded if there exists some x ∈ ℝ ∗ �,&'(# such that U#��, :� < x for all �, : ∈ 
. 
Definition 3.7 A non-Archimedean metric space �
, U#� is called finitely bounded if there exists some x ∈ℝ ∗ �,)#  such that U#��, :� < x for all �, : ∈ 
. 
Definition 3.8 A non-Archimedean metric space �
, U#� is called hyper finitely bounded if there exists some x ∈ ℝ ∗ �,)# such that U#��, :� < x for all �, : ∈ 
. 
Definition 3.9 Let �
, U#�  be a non-Archimedean metric space. A set Þ ⊂  . is called finitely bounded if there 

exists some x ∈ ℝ ∗ �,&'(# such that Þ ⊂ Ù��h�, a∈ .. 
Definition 3.10 A non-Archimedean metric space �
, U#� is called #-compact if every hyper infinite sequence 

 ��<�<Ðj) ∗    in 
 has a hyper infinite subsequence that #-converges to a point in 
.  This sort of compactness is 
known as hyper sequential compactness and, in a non-Archimedean metric spaces is equivalent to the topological 
notions of hyper countable #-compactness. 

Definition 3.11 A topological space . is called hyper countably #-compact if it satisfies any of the following 
equivalent conditions: (a) every hyper countable open cover � of . (i.e., YhxU��� = YhxU� ℕ ∗ �) has a finite or 
hyperfinite sub-cover. 

For a function ?:
j → 
m with a non-Archimedean metric spaces �
j, Uj#� and �
m, Um#� the following 
definitions of uniform #-continuity and (ordinary) #-continuity hold. 

Definition 3.12 A function ? is called uniformly #-continuous if for every � ∈ ℝ�≈## ∗ there exists � ∈ ℝ ∗ �≈#  
such that for every �, : ∈ 
j with Uj#��, :� < � we get Um#Z?���, ?�:�[ < �. 

Definition 3.13 A function ? is called #-continuous at  � ∈ 
j if for every � ∈ ℝ�≈## ∗ there exists � ∈ ℝ�≈## ∗  
such that for every : ∈ 
j with Uj#��, :� < � we get Um#Z?���, ?�:�[ < �. 

LEBESGUE #-INTEGRATION OF ℝ ∗ /# -VALUED FUNCTIONS 

Let ��#� ℝ ∗ �#<� be the space of all ℝ ∗ �#-valued #-compactly supported #-continuous functions of ℝ ∗ �#<. Define a #-norm on ��#  by the Riemann #-integral [12]: 
 ‖?‖# = ���- ^|?���|U#<�, (73) 



Note that the Riemann #-integral exists for any #-continuous function ?: ℝ ∗ �#< → ℝ ∗ �# , see [12]. Then ��#� ℝ ∗ �#<� 
is a #-normed vector space and thus in particular, it is a non-Archimedean metric space. All non-Archimedean 
metric space, have a non-Archimedean #-completion �#-
[ , U#�. Let "j# be this #-completion. This space "j# is 
isomorphic to the space of Lebesgue #-integrable functions modulo the subspace of functions with #-integral zero. 
Furthermore, the Riemann integral (1) is a uniformly #-continuous linear functional with respect to the #-norm on ��#� ℝ ∗ �#<� which is #-dense in "j#. Hence the Riemann #- integral ���- ^ ?���U#<�  has a unique extension to all 
of "j#. This integral is precisely the Lebesgue #-integral. 

Definition 4.1 Suppose that 1 ≤  � < ∞ ∗ , and �h, 0� is an interval in ℝ ∗ �#. We denote by  "¤# ��h, 0�� the set of 

the all functions  ?: �h, 0� → ℝ ∗ �# such that ���- ^ |?���|¤U#�CD < ∞ ∗ .  We define the  "¤#  -#-norm of ? by 

 ‖?‖#¤ = P���- ^ |?���|¤U#�CD Rj/¤
. (74) 

More generally, if � is a subset ofℝ  ∗ �#<, which could be equal to ℝ ∗ �#< itself, then  "¤# ��� is the set of Lebesgue 
#-measurable functions ? ∶  � → ℝ ∗ �#    whose �-th power is Lebesgue #-integrable, with the #-norm 

 ‖?‖#¤ = Z���- ^ |?���|¤U#<� 
¯ [j/¤

. (75) 
Definition 4.2 A set . ⊂ ℝ ∗ �#< is #-measurable if there exists ���- ^ 1Ü U#<�, where 1Ü is the indicator 

function. 
Definition 4.3 A ℝ ∗ �# -valued function ? on ℝ ∗ �#< is a #-measurable if a set ��|?��� > �� is a #-measurable set 

for all � ∈ ℝ ∗ �#<. 
Remark 4.1 To assign a value to the Lebesgue #-integral of the indicator function 1Ü of a #-measurable set . 

consistent with the given #-measure °#, the only reasonable choice is to set: ���- ^ 1ÜU °# = °#�.�. 
Definition 4.4 A hyperfinite linear combination of indicator functions ? = ���- ∑ A�<�Ðj 1ÜX where the 

coefficients A� ∈ ℝ ∗ �#   and .�  are disjoint #-measurable sets, is called a #-measurable simple function. 
Definition 4,5 When the coefficients A� are positive, we set ���- ^ ?U °# = ���- ∑ A�<�Ðj °#�.�  �. For a non-

negative #-measurable function ?, let �?<����<Ðj) ∗ be a hyper infinite sequence of the simple functions ?<��� whose 

values is 
�

mN  whenever  
�

mN ≤ ?��� < �#j
mN  for w a non-negative hyperinteger less than 4<. Then we set 

���- ^ ?U °# = #- lim<→ ) ∗ ����- ^ ?<U °#�. 
Definition 4.6 If ? is a #-measurable function of the set E to the reals including ±∞#, then we can write ? =?# − ?�, where: 1) ?#��� = ?��� if ?��� > 0 and ?#��� = 0 if ?��� ≤ 0; 2) ?���� = ?��� if ?��� < 0 and ?���� = 0 if ?��� ≥ 0. Note that both ?# and ?� are non-negative #-measurable functions and |?| = ?# + ?�. 
Definition 4.7 We say that the Lebesgue #-integral of the #-measurable function ? exists, or is defined if at least 

one of ���- ^ ?#U °# and ���- ^ ?�U °# is finite or hyperfinite. In this case we define ���- ^ ?U °# = ����- ^ ?#U °#� + ����- ^ ?�U °#�. 
Theorem 4.1 Assuming that ? is #-measurable and non-negative, the function ?\��� = �� ∈ �|?��� > �� is 

monotonically non-increasing. The Lebesgue #-integral may then be defined as the improper Riemann #-integral of 

?\���: ���- ^ ?U 
¯ °# = ���- ^ ?\���U#�.) ∗�  

Definition 4.8 Let . be any set. We denote by 2Ü the set of all subsets of ..A family ℱ ⊂ 2Ü is called a #-õ-algebra on . (or õ#-algebra on .) if: 1) ∅ ∈ ℱ. 2) A family ℱ is closed under complements, i.e. Þ ∈ ℱ implies .\Þ ∈  ℱ.     3) A family ℱ is closed under hyper infinite unions, i.e. if �Þ<�<∈ ℕ ∗  is a hyper infinite sequence in 
ℱ then ⋃ Þ< ∈ ℱ. <∈ ℕ ∗  

Theorem 4.2 If ℱ is a #-õ-algebra on . then: (1) ℱ is closed under hyper infinite intersections, i.e., if �Þ<�<∈ ℕ ∗  
is a hyper infinite sequence in ℱ then ⋂ Þ< ∈ ℱ.<∈ ℕ ∗  (2) . ∈ ℱ.3) ℱ is closed under hyperfinite unions and 
hyperfinite intersections.(4) ℱ is closed under set differences. (5) ℱ is closed under symmetric differences. 

Theorem 4.3 If �ÞE�E∈ù is a collection of õ#-algebras on a set ., then⋂ ÞEE∈ù  , is also an  õ#-algebras on a 
set .. 

Theorem 4.4 If ì ⊂ " then õ#�ì� ⊂ õ#�"�. 
Definition 4.9 (Borel õ#-algebra) Given a topological space ., the Borel õ#-algebra is the õ#-algebra generated 

by the #-open sets. It is denoted by ℬ#�.�. We call sets in ℬ#�.� a Borel set. Specifically in the case . = ℝ ∗ �#< we 
have that ℬ#� ℝ ∗ �#<� = ��|� �7 #-open set�. Note that the Borel õ#-algebra also contains all #-closed sets and is the 
smallest õ#-algebra with this property. 



Definition 4.10 (#- Measures) A pair �., ℱ� where ℱ is an õ#-algebra on . is call a #- measurable space. 
Elements of ℱ are called a #-measurable sets. Given a #-measurable space �., ℱ�, a function °#: ℱ → �0, ∞ ∗ � is 
called a #-mea-sure on �., ℱ� if: 1)  °#�∅� = 0. 2) For all hyper infinite sequences �Þ<�<∈ ℕ ∗   of pairwise disjoint 
sets in ℱ 

  °# P⋃ Þ<) ∗<Ðj R = ���- ∑  °#�Þ<�.) ∗<Ðj  (76) 

A NON-ARCHIMEDEAN BANACH SPACES ENDOWED WITH ℝ ∗ /# -VALUED NORM 

A non-Archimedean normed space with ℝ ∗ �# -valued norm (#-norm) is a pair �., ‖∙‖#� consisting of a vector 
space . over a non-Archimedean scalar field  ℝ ∗ �#  or complex  field  ℂ ∗ �# = ℝ ∗ �# + i ℝ ∗ �#  together with a norm  ‖∙‖#: . → ℝ ∗ �#.   Like any norms, this norm induces a translation invariant distance function, called the norm 
induced non-Archimedean ℝ ∗ �# -valued metric U#��, :� for all vectors �, : ∈ ., defined by U#��, :� = ‖� − :‖# =‖: − �‖#. Thus U#��, :� makes . into a non-Archimedean metric space �., U#�. 

Definition 5.1 A hyper infinite sequence  ��<�<Ðj) ∗  in . is called U# - Cauchy or Cauchy in �., U#� or  ‖∙‖# -
Cauchy if for every hyperreal  � ∈ ℝ ∗ �##   there exists some  Û ∈ ℕ ∗  such that U#��<, :�� = ‖�< − :<‖# < � if  3, 1 > Û. 

Definition 5.2 The metric U# is called a #-complete metric if the pair  �., U#� is a #-complete metric space, 

which by definition means for every U#- Cauchy sequence ��<�<Ðj) ∗  in �., U#�, there exists some � ∈ . such that #- lim<→ ) ∗ ‖�< − �‖# = 0. 
Semigroups on Non-Archimedean Banach Spaces and Their Generators 

Definition 5.3 A family of bounded operators �à���|0 < � < ∞ ∗ � on external hyper infinite dimensional non- 
Archimedean Banach space . endowed with ℝ ∗ �# -valued #-norm ‖∙‖# is called a strongly #-continuous semigroup 
if: (a) à�0� = �, (b) à�7�à��� = à�7 + �� for all 7, � ∈ ℝ ∗ �,## , (c) For each ̂ ∈ ., � ↦ à��� is #-continuous map-
ping. 

Definition 5.4 A family �à���|0 < � < ∞ ∗ � of bounded or hyper bounded operators on external hyper infinite 
dimensional Banach space . is called a contraction semigroup if it is a strongly #-continuous semigroup and 
moreover ‖à���‖# < 1 for all � ∈ �0, ∞ ∗ �. 

Theorem 5.1 Let à��� is a strongly #-continuous semigroup on a non-Archimedean Banach space ., 
let  Þ� = #- lim�→#� Þ��  
where Þ� = x�jZ� − à�x�[ and let Q�Þ� = >�|∃Z#- lim�→#� Þ��[J, then the operator Þ is #-closed and #-densely 
defined. Operator Þ is called the infinitesimal generator of the semigroup à���. 

Definition 5.5 We will also say that Þ generates the semigroup à��� and write à��� = ���-exp�−�Þ�. 
Theorem 5.2 (Generalized Hille -Yosida theorem) A necessary and sufficient condition that #-closed linear 

operator Þ on a non-Archimedean Banach space . generate a contraction semigroup is that: (a) �− ∞, 0 ∗ � ⊂ ³�Þ�, 
(b)  ‖�� + Þ��j‖# ≤ ��j for all � > 0. 

Definition 5.6 Let . be a non-Archimedean Banach space, � ∈ ..An element í ∈ .∗ that satisfies ‖í‖# = ‖�‖# 
, and í��� = ‖�‖#m  is called a normalized tangent functional to �. By the generalized Hahn-Banach theorem, each � ∈ . has at least one normalized tangent functional. 

Definition 5.7 A #-densely defined operator Þ on a non-Archimedean Banach space . is called accretive if for 
each � ∈ Q�Þ�, ReZí�Þ��[ ≥ 0 for some normalized tangent functional to �. Operator Þ is called maximal 
accretive if Þ is accretive and Þ has no proper accretive extension. 

Remark 5.1 We remark that any accretive operator is #-closable. The #-closure of an accretive operator is again 
accretive, so every accretive operator has a smallest #-closed accretive extension. 

Theorem 5.3 A #-closed operator Þ on a non-Archimedean Banach space . is the generator of a contraction 
semigroup if and only if Þ is accretive and Ran��� + Þ� = . for some �� > 0. 

Theorem 5.4 Let Þ be a #-closed operator on a non-Archimedean Banach space .. Then, if both Þ and it adjoint Þ∗ are accretive, Þ generates a contraction semigroup. 



Theorem 5.5 Let A be the generator of a contraction semigroup on a non-Archimedean Banach space .. Let Q 
be a #-dense set, Q ⊂ Q�Þ�, so that ���- exp�−�Þ� : Q → Q. Then Q is a #-core for Þ, i.e.,#-Þ ↾ Q²²²²²²² = Þ. 

Hypercontractive Semigroups 

In the previous section we discussed "#¤ -contractive semigroups. In this section we give a self #- adjointness 
theorem for the operators of the form Þ + ±, where ± is a multiplication operator and Þ generates a "#¤ -contractive 
semigroup that satisfies a strong additional property. 

Definition 5.8 Let 〈
. °#〉 be a #-measure space with °#�
� = 1 and suppose that Þis a positive self-adjoint 
operator on "#m �
, U#°#�. We say that ���-exp�−�Þ� is a hyper contractive semigroup if: (a) ���-exp�−�Þ� is          "#¤ -contractive; (b) for some 0 > 2 and some constant �C, there is a à > 0 so that ‖����-exp�−�Þ���‖#C ≤ ‖�‖#m 
for all � ∈  "#m �
, U#°#�. 

Remark 5.2 Note that the condition (a) implies that ���-exp�−�Þ� is a strongly #-continuous contraction semi-
group for all � < ∞ ∗ . Holder's inequality shows that ‖∙‖#` ≤ ‖∙‖#¤ if  � ≥ ö. Thus the "#¤ -spaces are a nested family 
of spaces which get smaller as � gets larger; this suggests that (b) is a very strong condition. The following 
proposition shows that constant 0 plays no special role. 

Theorem 5.6 Let ���-exp�−�Þ� be a hypercontractive semigroup on "#m �
, U#°#�. Then for all �, ö ∈ �1, ∞ ∗ � 
there is a constant �¤,` and a �¤,` > 0 so that if > �¤,` , then ‖���-exp�−�Þ��‖#¤ < �¤,`‖�‖#`, for all � ∈  "#̀ . 

Theorem 5.7 Let 〈
, °#〉 be a õ#-measure space with °#�
� = 1and let �� be the generator of a 
hypercontractive semi-group on "m�
, U#°#�. Let ± be a ℝ ∗ �# -valued measurable function on 〈
, °#〉 such that ± ∈ "¤# �
, U#°#� for all  � ∈ ⟦1, ∞ ∗ � and ���-exp�−�±� ∈ "j#�
, U#°#� for all � > 0. Then �� + ± is essentially 

self#-adjoint on  � ) ∗ ��� � ∩ Q�±� and is bounded below. Here  � ) ∗ ��� � = ⋂ QZ��¤[¤∈ ℕ ∗ . 
A NON-ARCHIMEDEAN HILBERT SPACES ENDOWED WITH ℂ ∗ /# -VALUED INNER 

PRODUCT 

Definition 6.1 Let � be external hyper infinite dimensional vector space over complex field ℂ ∗ /# = ℝ ∗ +# + i ℝ ∗ +#. 
An inner product on � is a ℂ ∗ /#-valued function, 〈∙,∙〉: � × � → ℂ ∗ +#, such that (1) 〈h� + 0:, �〉 = 〈h�, �〉 + 〈0:, �〉, 
(2) 〈�, :〉²²²²²²² = 〈:, �〉. (3) ‖�‖m ≡ 〈�, �〉 ≥ 0 with equality 〈�, �〉 = 0 if and only if � = 0. 

Theorem 6.1 (Generalized Schwarz Inequality) Let ��, 〈∙,∙〉�be an inner product space, then for all �, : ∈ �: |〈�, :〉| ≤ ‖�‖‖:‖ and equality holds if and only if � and : are linearly dependent. 

Theorem 6.2 Let ��, 〈∙,∙〉�be an inner product space, and  ‖�‖# = |〈�, �〉 . Then ‖∙‖# is a ℝ ∗ �# -valued #-norm 
on a space �. Moreover 〈�, �〉 is #-continuous on Cartesian product � × �, where � is viewed as the #-normed 
space ��, ‖∙‖#�. 

Definition 6.2 A non-Archimedean Hilbert space is a #-complete inner product space. 
Example 6.1 The standard inner product on ℂ ∗ +#;, 3 ∈ ℕ ∗ ) is given by external hyperfinite sum 

 〈�, :〉 =Ext-∑ �a[<qÐj :q . (77) 
Here  � = ��q�qÐj< , : = �:q�qÐj<  , with �q , :q ∈ ℂ ∗ �#, 1 ≤ � ≤ 3 , see [13]. 

Example 6.2 The sequence space ím# consists of all hyper infinite sequences � = ��q�qÐj) ∗  of complex numbers in 
ℂ ∗ �# such that the hyper infinite series Ext-∑ |�q|m<qÐj  #-converges. The inner product on ím#  is defined by  

 〈�,b〉 =Ext-∑ �a[) ∗qÐj bq . (78) 

Here � = ��q�qÐj) ∗ , b = �bq�qÐj) ∗  and the latter hyper infinite series #-converging as a consequence of the 
generalized Schwarz inequality and the #-convergence of the previous hyper infinite series. 

Example 6.3 Let � #�h, 0� be the space of the ℂ ∗ +#- valued #-continuous functions defined on the interval �h, 0� ⊂ℝ ∗ �#, see [13]. We define an inner product on the space � #�h, 0� by the formula 

 〈?, ø〉 = ���- ^ ?���²²²²²²ø���CD U#�. (79) 
This space is not #-complete, so it is not a non-Archimedean Hilbert space. The #-complettion of � #�h, 0� with 

respect to the #-norm 

 ‖?‖# =  P���- ^ |?���|mCD U#�Rj/m, (80) 



is denoted by "m#�h, 0�.  
Example 6.4 Let � #����h, 0�be the space of the ℂ ∗ +#- valued functions with w ∈ ℕ ∗  #-continuous #-derivatives 

on �h, 0� ⊂ ℝ ∗ �#, see [13].We define an inner product on the space � #����h, 0� by the formula 

 〈?, ø〉 = ���- ∑ P���- ^ ?#�a����²²²²²²²²²²ø#�q����CD U#�R 
 �qÐ� . (81) 

Here ?#�q� and  ø#�q� denotes the �-th #-derivatives of ? and ø respectively.The corresponding #-norm is 

 ‖?‖# =  P���- ∑ P���- ^ S?#�q����SmCD U#�R�qÐj Rj/m. (82) 

This space is not #-complete, so it is not a non-Archimedean Hilbert space. The non-Archimedean Hilbert space 
obtained by #-complettion of � #����h, 0� with respect to the #-norm (1) is non-Archimedean Sobolev space, denoted 
by  �#��h, 0�.  

Definition 6.3 The graph of the linear transformation à: � → � is the set of pairs �〈^, à^〉|�^ ∈ Q�à���. The 
graph of the operator à, denoted by Γ�Т�, is thus a subset of � × � which is a non-Archimedean Hilbert space with 
the following inner product �〈^j, Áj〉, 〈^m, Ám〉�. Operator  à is called a #-closed operator if Γ�Т� is a #-closed subset 
of � × �. 

Definition 6.4 Let  à₁ and à be operators on H. If Γ�à₁� ⊃  Γ�Т�, then àj is said to be an extension of  à and we 
write àj ⊃ à. Equivalently, àj ⊃ à if and only if Q�à₁� ⊃ Q�à� and àj^ = à^ for all ̂ ∈ Q�à�. 

Definition 6.5 An operator à is #-closable if it has a #-closed extension. Every #-closable operator has a 
smallest #-closed extension, called its #-closure, which we denote by #-T. 

Theorem 6.3 If à is #-closable, then Γ�#-à²� = #-Γ�à�²²²²²². 
Definition 6.6 Let Q�à∗� be the set of � ∈ � for which there is an å ∈ � with �àÁ, �� = �Á, å� for all Á ∈Q�à�. For each � ∈ Q�à∗�, we define à∗� = å.The operator à∗ is called the #-adjoint of  à. Note that � ∈ Q�à∗� if 

and only if |�àÁ, ��| ≤ �‖Á‖# for all Á ∈ Q�à�. Note that = ⊂ à implies à∗ ⊂ =. 
Remark 6.1 Note that for å to be uniquely determined by the condition �àÁ, �� = �Á, å� one need the fact that Q�à� is #-dense in �. If the domain Q�à∗� is #-dense in �, then we can define  à∗∗ = �à∗�∗. 
Theorem 6.4 Let à be a #-densely defined operator on a non-Archimedean Hilbert space �. Then: (a) à∗ is #-closed. (b) The operator à is #-closabie if and only if Q�à∗� is -dense in which case à = à∗∗. (c) If T is #-closable, then �#-à²�∗ = à∗. 
Definition 6.7 Let à be a #-closed operator on a non-Archimedean Hilbert space �. A complex number � ∈ ℂ ∗ +# 

is in the resolvent set ³�à�, if �� − à is a bijection of  Q�à�  onto � with a finitely or hyper finitely bounded 
inverse. If complex number � ∈ ³�à�, B� = ��� − à��j is called the resolvent of à at �. 

Definition 6.8 A #-densely defined operator à on a non-Archimedean Hilbert space is called symmetric or 
Hermitian if à ⊂ à∗, that is, Q�à� ⊂ Q�à∗� and à� = à∗� for all � ∈ Q�à� and equivalently, à is symmetric if and 
only if �à�, Á� = ��, àÁ� for all �, Á ∈ Q�à�. 

Definition 6.9 A #-densely defined operator  à is called self-#-adjoint if à = à∗, that is, if and only if à is 
symmetric and Q�à� = Q�à∗�. 

Remark 6.2 A symmetric operator à is always #-closable, since Q�à� #-dense in �. If à is symmetric, à∗ is a #-closed extension of  à so the smallest #-closed extension à∗∗ of à must be contained in à∗. Thus for symmetric 
operators, we have à ⊂ à∗∗ ⊂ à∗, for #-closed symmetric operators we have à = à∗∗ ⊂ à∗ and, for self-#-adjoint 
operators we have à = à∗∗ = à∗. Thus a #-closed symmetric operator à is self-#-adjoint if and only if à∗ is sym-
metric. 

Definition 6.10 A symmetric operator à is called essentially self-#-adjoint if its #-closure #-à² is self-#-adjoint. 
If à is #-closed, a subset Q ⊂ Q�à� is called a core for à if  #- à ↾ Q²²²²²²²  = à. 

Remark 6.3 If à is essentially self-#-adjoint, then it has one and only one self-#-adjoint extension. 

Definition 6.11 Let Þ be an operator on a non-Archimedean Hilbert space �#.The set � ) ∗ �Þ� = ⋂ Q�Þ<�) ∗<Ðj  is 

called the � ) ∗ -vectors for Þ. A vector � ∈ � ) ∗ �Þ� is called an #-analytic vector for Þ if  Ext-∑ ‖VN‖#uN
<!

) ∗<Ð� < ∞ ∗  for 

some � > 0. If Þ is self-#-adjoint, then � ) ∗ �Þ� will be #-dense in Q�Þ�. 
Theorem 6.5 (Generalized Nelson's analytic vector theorem) Let Þ be a symmetric operator on a non-

Archimedean Hilbert space H. If Q�Þ� contains a #-total set of #-analytic vectors, then Þ is essentially self-#-adjoint. 
Definition 6.12 Operator Þ is relatively bounded with respect to operator à if Q�à� ⊂ Q�Þ� and ‖Þ�‖# ≤ h‖�‖# +  0‖à�‖#, � ∈ Q�à�. 



Theorem 6.6 Let à be self-#-adjoint. If Þ is symmetric and à-bounded with à-bound smaller than 1, then à +  Þ is also self-#-adjoint. In particular à + Þ is self-#-adjoint if Þ is bounded and symmetric with Q�à� ⊂Q�Þ�.   
Theorem 6.7 Let Þ be essentially self -#-adjoint on the domain  Q�Þ� and let Ù be a symmetric operator on Q�Þ�. If there exists a constant h ∈ ℝ ∗ �# such that for all Á ∈ Q�Þ� and for all B ∈ ℝ ∗ �# such that 0 ≤ B ≤ 1 and the 

inequality holds ‖ÙÁ‖# ≤ h‖�Þ + BÙ�Á‖#, then Þ +  Ù is essentίallv self -#-adjoint on Q�Þ� and its #-closure has 
domain :�#-d[�. 

Theorem 6.8 Let Þ and Ù be the same as in Theorem 6.7. Then Þ and Þ +  Ù have the same #-cores. If Þ is 
bounded from below, then Þ + Ù is bounded from below. 

GENERALIZED TROTTER PRODUCT FORMULA 

Theorem 7.1 Let Þ and Ù be self-adjoint operators on non-Archimedean Hilbert space �#. Suppose that the 
opera-tor Þ + Ù is self-#-adjoint on Q = Q�Þ� ∩ Q�Ù�, then the following equality holds 

 s-#- lim<→ ) ∗ \é���-exp PquV
< Rë é���-exp Pque

< Rë]< = ���-exp����Þ + Ù��. (83) 

Theorem 7.2 Let Þ and Ù be self-adjoint operators on non-Archimedean Hilbert space �#. Suppose that the 
opera-tor Þ + Ù is essentially self-#-adjoint on Q = Q�Þ� ∩ Q�Ù�, then the following equality holds  

 s-#- lim<→ ) ∗ \é���-exp PquV
< Rë é���-exp Pque

< Rë]< = ���-exp����Þ + Ù��. (84) 

Theorem 7.3 Let Þ and Ù be the generators of contraction semigroups on non-Archimedean Banach 
space Ù#.Suppose that the #-closure of �Þ + Ù� ↾ Q�Þ� ∩ Q�Ù� generates a contraction semigroup on  Ù#. Then the 
following equality holds 

 s-#- lim<→ ) ∗ \é���-exp P− uV
< Rë é���-exp P− ue

< Rë]< = ���-exp�−��#-Þ + Ù²²²²²²²²��. (85) 

FOCK SPACE OVER NONARCHIMEDEAN HILBERT SPACE 

Definition 8.1 Let  �# be a complex hyper infinite-dimensional non-Archimedean Hilbert space over field ℂ ∗ �# 
and denote by �#�<� the 3-fold tensor product: �#�<� = ���-⨂�Ðj< �#, 3 ∈ ℕ ∗ . Set �#��� = ℂ ∗ +# and define ℱ��#� =
���-⨁<∈ ℕ ∗ Z�#�<�[. ℱ��#� is called the Fock space over non-Archimedean Hilbert space �#. Set �# = "m#� ℝ ∗ �#v�, 
then an element Á ∈ ℱ��#� is a hyper infinite sequence of ℂ ∗ �#-valued functions Á = �Á�, Áj��j�, Ám��j, �m�,    Ám��j, �m, �v�, … , Á<��j, … , �<��, 3 ∈ ℕ ∗  and such that ‖Á‖# =  |Á�|m + ���- ∑ ����- ^|Á<��j, … , �<�|mU#v<�� < ∞ ∗<∈ ℕ ∗ . 

Actually, it is not ℱ��#� itself, but two of its subspaces which are used in quantum field theory. These two hyper 
infinite-dimensional subspaces are constructed as follows: Let 	< be the permutation group on 3 ∈ ℕ ∗  elements and 

let �����Ðj) ∗ be a basis for a space �#. For each õ ∈ 	< we define an operator (which we also denote by õ) on basis 
elements of �#�<� by õZ���-⨂qÐj< ���[ = ���-⨂qÐj< ��g���. The operator extends by linearity to a bounded operator 

(of #-norm one) on �# and we can define îT<# =  P j
<!R Z���- ∑ õ�∈�N [. It is easily to show by definitions that  

îT<#m = îT<#  and   îT<#∗ = îT<#  so îT<# is an orthogonal projection. The range of îT<# is called the 3-fold symmetric tensor 

product of �#. We now define ℱË#��# � = ���-⨁<∈ ℕ ∗ îT<#�#�<�. Non-Archimedean Hilbert space  ℱË#��# � is called 
the symmetric Fock space оvеr non-Archimedean Hilbert space  �# or the Boson Fock space over non-Archimedean 
Hilbert space �#. 

SEGAL QUANTIZATION OVER NONARCHIMEDEAN HILBERT SPACE 

Let  �# be a complex non-Archimedean Hilbert space over field ℂ ∗ +# and let ℱ��#� = ���-⨁<∈ ℕ ∗ Z�#�<�[, 
where �#�<� = ���-⨂�Ðj< �# be the Fock space over �#and let ℱË��#� be the Boson subspace of ℱ��#�. Let 
? ∈ �# be fixed. For vectors in �#�<� of the form h = ���-⨂qÐj< Áq , 3 ∈ ℕ ∗  we define a map 0��?�: �#�<� →
�#�<�j� by 0��?�h = �?, Áj�����-⨂qÐm< Áq� and 0��?� extends by linearity to finite and hyperfinite linear 
combinations of such h, the extension is well defined, and ‖0��?�h‖# ≤ ‖?‖#‖h‖#. Thus 0⁻�?� extends to a 



bounded map (of #-norm ‖?‖#) of  �#�<� into �#�<�j�. Since this holds for each 3 ∈ ℕ ∗  (except for 3 = 0 in which 
case we define 0��?�: �#��� → �0�), 0��?� is a bounded operator of #-norm ‖?‖# from ℱ��#� to ℱ��#�. It is easy 

to check that operator 0#�?� = Z0��?�[∗
takes each subspace �#�<� into �#�<#j�with the action 0#�?�h =?⨂���-⨂qÐj< Áq on product vectors. Note that the map ? → 0#�?�  is linear and the map  ? → 0��?� is antilinear. 

Let =< be the symmetrization operators introduced in previous section and then the operator jk # = ���-⨁<∈ ℕ ∗ îT<# is 

the projection onto the symmetric Fock space ℱË��#� = ���-⨁<∈ ℕ ∗ jk<#�#�<�, we will write îT<#�#�<� = �Ë#�<�and call 

�Ë#�<�the 3- particle subspace of ℱË��#�. Note that operator 0��?� takes space ℱË��#� into itself, but the operator 

0#�?� does not. A vector Á = >Á�<�J<Ðj
) ∗  with Á�<� = 0  for all except finite or hyperfinite set of number 3 is called 

a finite or hyperfinite particle vector correspondingly. We will denote the set of hyperfinite particle vectors by Ñ�. 
The vector Ω� = 〈1,0,0, … 〉 is called the vacuum vector. Let Þ be any self-adjoint operator on �# with domain of 
essential self-#-adjointness Q = Q�Þ�. Let QV = >Á ∈ Ñ�|Á�<� ∈ ���-⨂qÐj< Q, 3 ∈ ℕ ∗ J and define operator UΓ#�Þ� 

on QV ∩ �Ë#�<� by UΓ#�Þ�=Þ⊗ � ⋅⋅⋅⊗ � + � ⊗ Þ⊗⋅⋅⋅⊗ � +⋅⋅⋅ +⊗ � ⋅⋅⋅⊗ � ⊗ Þ. Note that UΓ#�Þ�is essentially 
self-#-adjoint on QV . Operator UΓ#�Þ� is called the second quantization of the operator Þ. For example, let Þ =�, then its second quantization Û# = UΓ#��� is essentially self-#-adjoint on Ñ� and for Á ∈ �Ë#�<�, Û#Á = 3Á. Û# is 
called the number operator. If � is a unitary operator on space �#, we define UΓ#��� to be the unitary operator on 

ℱË��#� which equals ���-⨂qÐj< � when restricted to �Ë#�<�for 3 > 0, and which equals the identity on �Ë#���. If 
���-exp���Þ� is a #-continuous unitary group on �#, then Γ#Z���-exp���Þ�[ is the group generated by UΓ#�Þ�, i.e., 
that expressed by the formula  Γ#Z���-exp���Þ�[ = ���-expZ��UΓ#�Þ�[. 

Definition 9.1 We define the annihilation operator h��?�   on ℱË��#� with domain Ñ� by the formula 
 h��?� = √Û + 10��?�. (86) 

Operator h��?� is called an annihilation operator because it takes each �3 + 1�-particle subspace into the 3-
particle subspace. For each Á and h in Ñ�, Z√Û + 10��?�Á, h[ = ZÁ, =#0#�?�√Û + 1[, then we get 

 Zh��?�[∗ ↾ Ñ� = =#0#�?�√Û + 1 . (87) 

The operator Zh��?�[∗ is called a creation operator. Both h��?� and Zh��?�[∗
  #-closable; we denote their 

#-closures by  h��?� and Zh��?�[∗
 also. The equation (1) implies that the Segal field operator ΦÌ#�?� on Ñ� defined 

by ΦÌ#�?� = j
√m Ch��?� + Zh��?�[∗I is symmetric and essentially self-#-adjoint. The mapping from �# to the self-

#-adjoint operators on ℱË��#� given by ? → ΦÌ#�?� is called the Segal quantization over �#. Note that the Segal 
quantization is a real linear map. 

Theorem 9.1 Let �# be hyper infinite dimensional Hilbert space over complex field ℂ ∗ �# = ℝ ∗ �# + i ℝ ∗ �# and ΦÌ#�?� the corresponding Segal quantization. Then: 
(a) (self-#-adjointness) for each ? ∈ �# the operator ΦÌ#�?� is essentially self-#-adjoint on Ñ �, the hyperfinite 

particle vectors; 
(b) (cyclicity of the vacuum) the vector Ω� is in the domain of all hyperfinite products ���-∏ ΦÌ#�?q�<qÐj , 3 ∈ ℕ ∗  

and the set ����-∏ ΦÌ#�?q�<qÐj |?q ∈ �#, 3 ∈ ℕ ∗ � is #-total in ℱË��#�; 
(c) (commutation relations) for each Á ∈ Ñ� and ?, ø ∈ �#: �ΦÌ#�?�ΦÌ#�ø� − ΦÌ#�ø�ΦÌ#�?��Á = �Im�?, ø��#Á;     

(Y>) (generalized commutation relations) assuming that �?, ø��# ≈ 0 and Á ∈ Ñ is a near standard vector we 
get �ΦÌ#�?�ΦÌ#�ø� − ΦÌ#�ø�ΦÌ#�?��Á ≈ 0 and therefore st��ΦÌ#�?�ΦÌ#�ø� − ΦÌ#�ø�ΦÌ#�?��Á� = 0; 

(d) let À�?�  denotes the external unitary operator ���-exp P�ΦÌ#�?�R then             

À�? + ø� = \���-exp P− q
m Im�?, ø��#R] À�?�À�ø�; 

(e) (#-continuity) if �?<�<Ðj) ∗   is hyper infinite sequence such as #- lim<→ ) ∗ ?< = ? in �# then: 
1)  #- lim<→ ) ∗ À�?<�Á exists for all Á ∈ ℱË��#� and #- lim<→ ) ∗ À�?<�Á = À�?�Á  
2)  #- lim<→ ) ∗ ΦÌ#�?<�Á  exists for all Á ∈ Ñ� and #- lim<→ ) ∗ ΦÌ#�?<�Á = ΦÌ#�?�Á 

(e) For every unitary operator � on �#, Γ#���: QZ#-ΦÌ#�?�²²²²²²²²[ → QZ#-ΦÌ#��?�²²²²²²²²²²[ and for all Á ∈ QZ#-ΦÌ#��?�²²²²²²²²²²[,      
Γ#���Z#-ΦÌ#�?�²²²²²²²²[Γ#�j���Á = #-ΦÌ#��?�²²²²²²²²²²Á for all  Á ∈ Ñ� and ? ∈ �#. 

Remark 9.1 Henceforth we use  ΦÌ#�?� to denote the #-closure  #-ΦÌ#�?�²²²²²²²² of ΦÌ#�?�. 
Definition 9.2 For each 1 > 0, 1 ∈ ℝ let ��# = �� ∈ ℝ ∗ �#
|� ∙ �© = 1m, �� > 0�, where �© = ���, −�j, −�m, −�v�, the sets ��# , are called mass hyperboloids, are invariant under canonical Lorentz 



group "#↑ � . Let «� be the #-homeomorphism of  ��#  onto ℝ ∗ �#v given by «�: 〈��, �j, �m, �v〉 → 〈�j, �m, �v〉 = ¡. 
Define a #-measure Ω�#  on  ��#  for any #-measurable set � ⊂  ��# by 

 Ω�# ��� = ���- ^ �#o¡
||¡|�#��

 
­®�¯�  . (88). 

Theorem 9.2 Let °# be a polynomially bounded #-measure with support 
in  #-±²#
. If °# is "#↑ � = "#↑ - invariant, there exists a polynomially bounded #-measure ³# on �0,∞#�  and a constant Y so that 
for any ? ∈ =#� ℝ�#
 ∗ � 

 ���- ^ ? 
ℝ ∗ S#´ U#°# = Y?�0� + ���- ^ U#³#�1� µ���- ^ ¶P||¡|�#�� ,¤�,¤�,¤oR�#o¡

||¡|�#��
 
ℝ ∗ S#o · .) ∗�  (89) 

Definition 9.3 Let n�?� be a linear #-continuous functional ℱ: =  &'(# � ℝ�#
 ∗ � → ℝ�# ∗ . Functional ℱ is "#↑ - ≈ - 
invariant if for any Λ ∈ "#↑  the following property holds ℱZ?�Λx�[ ≈ ℱ�?� for all ? ∈ =  &'(# � ℝ�#
 ∗ �. 

Theorem 9.3 Let °# be a polynomially bounded "#↑ - invariant #-measure with support in #-±²#. Let ℱ�?� be a 
linear #-continuous functional ℱ: =  &'(# � ℝ�#
 ∗ � → ℝ�,&'(# ∗  defined by ���- ^ ? 

ℝ ∗ S#´ U#°#  and there exists a 

polynomially bounded #-measure ³# on �0,∞#� such that ̂ U#³#�1� ∈ ℝ�,&'(# ∗) ∗�  and a constant Y ∈ ℝ�,&'(# ∗  so that 

(1) holds. Then for any ? ∈ =  &'(# � ℝ�#
 ∗ � and for any ¹ ∈ ℝ�,)# ∗  the following property holds 

 ℱ�?� ≈ Y?�0� + ���- ^ U#³#�1� µ���- ^ ¶P||¡|�#�� ,¤�,¤�,¤oR�#o¡
||¡|�#��

 
|¤|~» · .) ∗�  (90) 

Definition 9.4 Let ¼�¹, ¡� be a function such that:  ¼�¹, ¡� ≡ 1 if |¡| ≤ ¹, ¼�¹, ¡� ≡ 0 if |¡| > ¹. Define a #-measure Ω�,»#  on ��#  by 

 Ω�,»# ��� = ���- ^ ¿�»,¡��#o¡
||¡|�#��

 
­®�¯� . (91) 

We use the Segal quantization to define the free Hermitian scalar field of mass 1. We 
take � # = "m#Z ��# , U#Ω�,»# [. For each ? ∈ =&'(#  � ℝ�#
 ∗ � we define �? ∈  � # by �? = 2ÔZ���-?Ä[ ↾  ��#  where the 
Fourier transform is defined in terms of the Lorentz invariant inner product � ∙  �©: 

���-?Ä = j

n� P���- ^ ���-exp 

ℝS#´ ∗ ���� ∙  �©��U#
�R. If ΦÌ,»# �∙� is the Segal quantization over "m#Z ��# , U#Ω�,»# [, we 

define for each ℝ�# ∗ - valued ? ∈ =#� ℝ�#
 ∗ �: Φ�,»# �?� = ΦÌ,»# ��?� and for each ℂ�# ∗ - valued ? ∈ =#� ℝ�#
 ∗ � we define 
Φ�,»# �?� = Φ�,»# �Re?� + iΦ�,»# �Im?�. 

Definition 9.5 The mapping ? → Φ�,»# �?� is called the free non-Archimedean Hermitian scalar field of mass 1.  
Definition 9.6 On  "m#Z ��# , U#Ω�,»# [ we define the following unitary representation of the restricted Poincare 

group"#↑ :   ����h, Λ�Á���� = ����-exp���� ∙  h©���Á�Λ�j�� where we are using Λ to denote both an element of the 
abstract restricted Lorentz group and the corresponding element in the standard representation on ℝ
 � . 

Remark 9.2 Note that by Theorem 9.1(e) for all  Á ∈ Ñ� and ? ∈ "m#Z ��# , U#Ω�,»# [ we get 

Γ#Z���h, Λ�[Z#-Φ�,»# �?�²²²²²²²²²²²[Γ#�jZ���h,o�[Á = Γ#Z���h, Λ�[Z#-ΦÌ#��?�²²²²²²²²²²[Γ#�jZ���h,o�[Á = 

#-ΦÌ#����h, Λ��?�²²²²²²²²²²²²²²²²²²²²²Á. 
A change of variables for all ? ∈ =&'(#  � ℝ�#
 ∗ � gives that   ���h, Λ��? ≈ ����h, Λ�?. 
Therefore for all  Á ∈  QÌúûü#  ⊂ Ñ� such that ‖Á‖# ∈ ℝ�,&'(# ∗  and for  ℝ�,&'(# ∗ -valued function ? such that   ? ∈

=&'(#  � ℝ�#
 ∗ � we obtain that 

Γ#Z���h, Λ�[ P#-Φ�,»# �?�R Γ#�jZ���h, Λ�[Á ≈ #-Φ�,»# ����h, Λ�?�Á. 
Definition 9.7 The #-conjugation on a non-Archimedean Hilbert space � # is an antilinear #-isometry p# so that 

the following equality holds p#m = �. 
Definition 9.8 Let � # be a non-Archimedean Hilbert space over field ℂ ∗ �#, ΦÌ#�∙� the associated Segal 

quantization. Let  �  p## = �?|p#? = ?�. For each ? ∈  �  p##  we define �#�?� = ΦÌ#�?� and Ô#�?� = ΦÌ#��?�, the 
map ? → �#�?� is called the canonical free field over the doublet 〈q #,p#〉 and the map ? → Ô#�?� is called the 
canonical conjugate momentum. 



Theorem 9.4 Let � # be a non-Archimedean Hilbert space over field ℂ ∗ �# with #-conjugation p#. Let�#�∙� and 
Ô#�∙� be the corresponding canonical fields. Then: (a) For each ? ∈  �  p## , �#�?� is essentially self-#-adjoint on Ñ�. 
(b) >�#�?�|? ∈  �  p## J is a commuting family of self-#-adjoint operators. (c) Ω� is a #-cyclic vector for the family 

>�#�?�|? ∈  �  p## J. (d) If �?<�<Ðj) ∗   is hyper infinite sequence such as #- lim<→ ) ∗ ?< = ? in  �  p## , then 
#- lim<→ ) ∗ �#�?<�Á  exists for all Á ∈ Ñ� and #- lim<→ ) ∗ �#�?<�Á = �#�?�Á. (e) 
#- lim<→ ) ∗ ����-exp���#�?<��Á� = ���-exp���#�?��Á for all Á ∈ ℱË��#�. (f) Properties (a)-(e) hold with �#�?� 

replaced by Ô#�?�. (g) If ?, ø ∈  �  p##  , then ��#�?��#�ø� − �#�ø��#�?��Á = ��?, ø� for all Á ∈ ℱË��#� and 
����-exp���#�?�������-exp��Ô#�?��� = ����-exp���?, ø�������-exp��Ô#�?�������-exp���#�?���. 

Definition 9.9 We write now ? ∈  "m#Z ��# , U#Ω�,»# [ as ?���, ¡� and define the #-conjugation p# by p#�?����, ¡� = ?���, −¡�²²²²²²²²²²²²² . Note that p# is well-defined on ? ∈  "m#Z ��# , U#Ω�,»# [ since 〈��, −¡〉 ∈  ��#  if and only 
if 〈��, ¡〉 ∈  ��# . 

Definition 9.10 We denote the canonical fields corresponding to p# by � # �∙� and Ô # �∙� and define ��,»#  �?� =
� # ��?� and Ô�,»#  �?� = Ô # �°�¡��?�, °�¡� = |¡m + 1m  for ℝ�# ∗ - valued ? ∈  "m#� ℝ�#
 ∗ �, extending to all of  
 "m#� ℝ�#
 ∗ � by linearity. We let now QÌúûü#  = >Á|Á ∈  Ñ�, Á�<� ∈ S&'(#  � ℝ�#v< ∗ �J and for each � ∈ ℝ�#v ∗  we define the 

operator h��� on ℱË P"m#� ℝ�#v ∗ �R with domain QÌúûü#  by �h���Á��<� = √3 + 1 Á�<#j���, wj, … w<� and therefore the 

formal #-adjoint of the operator h��� reads �hÎ���Á��<� = j
√< ∑ ��v��� − wÏ�Á�<�j��wj, … , wÏ�j, wÏ#j, … , w<�<ÏÐj . 

Note that the formulas 
 h�ø� = ���- ^ h���ø�−��U#v� 

ℝS#o ∗ , (92) 

 hÎ�ø� = ���- ^ hÎ���ø���U#v� 
ℝS#o ∗  (93) 

hold for all ø ∈ =&'(#  � ℝ�#v ∗ �  if the equalities (92)-(93) are understood in the sense of quadratic forms. That is, 
(92) means that for Áj, Ám ∈ QÌúûü#  : �Áj, h�ø�Ám� = ���- ^ �Áj, h���Ám�ø�−��U#v� 

ℝS#o ∗  and similarly (93) means 

that for Áj, Ám ∈ QÌúûü#  : �Áj, h�ø�Ám� = ���- ^ �Áj, hÎ���Ám�ø���U#v� 
ℝS#o ∗ .  The particles number operator reads 

 Û�,» = ���- ^ hÎ���h��� 
|¤|~» U#v�. (94) 

The generator of time translations in the free scalar field theory of mass 1 is given by 
 ��,» = ���- ^ °���hÎ���h��� 

|¤|~» U#v�. (95) 

We express the free scalar field and the time zero fields in terms of hÎ��� and h��� as quadratic forms on   QÌúûü#  × QÌúûü#   by 

Φ�,�,»# ��, �� = 

 �2Ô��v/m���- ^ >Z���-exp�°���� − ����[hÎ��� + Z���-exp�°���� + ����[h ���J 
|¤|~»

�#o¤
|mÖ�¤� , (96) 

Φ�,�,»# ��� = 

 �2Ô��v/m���- ^ >Z���-exp�−����[hÎ��� + Z���-exp�����[h ���J 
|¤|~»

�#o¤
|mÖ�¤� , (97) 

π�,�,»# ��� = 

 �2Ô��v/m���- ^ >Z���-exp�−����[hÎ��� + Z���-exp�����[h ���J 
|¤|~»

�#o¤
|Ö�¤�/m . (98) 

Abbreviation 9.1 We shall write for the sake of brevity through this paper Φ�,»# ��, ��, Φ�,»# ��� and π�,»# ��� 
instead Φ�,�,»# ��, ��, Φ�,�,»# ��� and π�,�,»# ��� correspondingly. 

Theorem 9.5 Let 3j, 3m ∈ ℕ   and suppose that ÀZwj, … w<� , �j, … , �<�[ ∈ "m# P ℝ�#v�<�#<�� ∗ R where 

ÀZwj, … w<� , �j, … , �<�[ is a ℂ�,&'(# ∗  -valued function on ℝ�#v�<�#<�� ∗ . Then there is a unique operator àç on 

ℱË P"m#� ℝ�#v ∗ �R so that QÌúûü#  ⊂ Q�àç�   is a #- core for àç . 

1) As ℂ�# ∗ -valued quadratic forms on QÌúûü#  × QÌúûü#      
àç = ���- ^ ÀZwj, … w<� , �j , … , �<�[ 

ℝ ∗ o�N�èN��  Z∏ hÎ�wq , ��<�qÐj [Z∏ h��q , ��<�qÐj [U#v<�wU#v<��. 

2) As ℂ�# ∗ -valued quadratic forms on QÌúûü#  × QÌúûü#   
àç∗ = ���- ^ ÀZwj, … w<� , �j , … , �<�[²²²²²²²²²²²²²²²²²²²²²²²²²²²²²² 

ℝ ∗ o�N�èN��  Z∏ hÎ�wq , ��<�qÐj [Z∏ h��q , ��<�qÐj [U#v<�wU#v<��. 



3) If 1j and 1m are nonnegative integers so that 1j + 1m = 3j + 3m, then �1 + Û#����/màç�1 + Û#����/m ≤ �� 1j, 1m�‖À‖
�# . 

4) On vectors in Ñ�   the operators  àç and  àç∗  are given by the explicit formulas 

Zàç� Á  �[Ï�<�#<� = 

ì�í, 3j, 3m�îT \ ���- ^ … ���- ^ ÀZwj, … w<� , �j, … , �<�[ Á�Ï�  Z�j, … , �<� , wj, … w<�[U#v<� 
S¤N�S~» �   

|¤�|~»  ],  
Zàç� Á  �[< = 0 if  3 < 3j − 3m, 

Zàç∗ � Á  �[Ï�<�#<� = 

ì�í, 3m, 3j�îT r ���- T … ���- T ÀZwj, … w<� , �j, … , �<�[²²²²²²²²²²²²²²²²²²²²²²²²²²²²²² Á�Ï�  Z�j , … , �<� , wj, … w<�[U#v<�
 

S¤N�S~»
w  

 
|¤�|~»  s 

Zàç∗ � Á  �[< = 0 if and only if  3 < 3m − 3j. Here îT is the symmetrization operator. 

Q#-SPACE REPRESENTATION OF THE FOCK SPACE STRUCTURES 

In this section the construction of a non-Archimedean ô#-space and "m#�ô#, U#°#� , another representation of the 
Fock space structures are presented. In analogy with the one degree of freedom case where ℱ#� ℝ ∗ �# �  is isomorphic 
to "m#� ℝ ∗ �#, U#�� in such a way that ΦÌ#�1� becomes multiplication by�, we will construct a õ#-measure 
space 〈ô#, °#〉, with °#�ô#� = 1, and a unitary map S#: ℱË#��# � → "m#�ô#, U#°#� so that for each ? ∈ �t#, S#^»#�?� S#�j acts on "m#�ô#, U#°#� by multiplication by a °#-measurable function. We can then show that in the case of the 
free scalar field of mass 1 in 4-dimensional space-time 

#, ± = S#�ù,»# �ø�S#�j is just multiplication by a function 

±�ö� which is in "m#�ô#, U#°#� for each � ∈ ℕ ∗ . Let �ø<�<Ðj) ∗  be an orthonormal basis for �# so that each ø ∈ �t#  

and let  �ø<�<Ðju , Û ∈ ℕ ∗  be a finite or hyperfinite subcollection of the set �?<�<Ðj) ∗  .Let 	u be a set of the all external 
finite and hyperfinite polynomials ���-	��j, . . . , �u� and ℱu# be the #-closure of the set ����-	��»#�øj�, . . . , �»#�øu��|	 ∈ 	u� in ℱË#��#� and define a set Ñ�u = ℱu# ∩ Ñ�. From Theorem 55 it follows that �»#�ø�� and Ô»#�ø��, for all 1 ≤ w, í ≤ Û are essentially self-#-adjoint on Ñ�u and that ����-exp����»#�ø��������-exp���Ô»#�øÏ��� = Z���-expC−�7���Ï   I[����-exp���Ô»#�øÏ�������-exp����»#�ø���� . 

Therefore we have a representation of the generalized Weyl relations in which the vector  Ω� satisfies the 
equality ���»#�ø���m + �Ô»#�øÏ��m − 1�Ω� = 0 and is cyclic for the operators ��»#�ø����Ðju . Therefore there is a 

unitary map  S#�u�: ℱu# → "m#� ℝ ∗ �#u� such that: 1)  S#�u��»#�ø��ZS#�u�[�j = �� , 2) S#�u�Ô»#�ø��ZS#�u�[�j = − j
q

�#
�#0X 

and 3) S#�u�Ω� = Ô�u/
 \���-exp P−���- ∑ 0X�m
u�Ðj R]. It is convenient to use the non-Archimedean Hilbert space 

"m# v ℝ ∗ �#u, Ô�u/
 µ���-exp P−���- ∑ 0X�m
u�Ðj R·wU#u� instead of "m#� ℝ ∗ �#u� so we let U#°�#= ���-exp P− 0X�m R U#�� 

and define the operator �à?���� = Ôu/
 µ���-exp P���- ∑ 0X�m
u�Ðj R·, Then à is a unitary map of "m#� ℝ ∗ �#u� onto 

"m#Z ℝ ∗ �#u , ���-∏ U#°�#u�Ðj  [ and if we let   Sj#�u� = àS#�u� we get: 1) Sj#�u�: ℱu# → "m#Z ℝ ∗ �#u, ���-∏  U#°�#u�Ðj  [, 2) 

Sj#�u��»#�ø��ZSj#�u�[�j = ��, 3) Sj#�u�Ô»#�ø��ZSj#�u�[�j = − 0X
q + j

q
�#

�#0X and 4) Sj#�u�Ω� = 1, where 1 is the function 

identically one. Note that each #- measure °�# has mass one, which implies that 
 〈Ω�, Z���-∏ 	�Z�»#�ø��[u�Ðj [Ω�〉 = ^ ����-∏ 	�����u�Ðj � 

ℝ ∗ S#x Z���-∏ U#°�#u�Ðj [ = (99) 

= ���-∏ ^ 	����� 
ℝ ∗ S#x

u�Ðj U#°�# = ���-∏ ^ 〈Ω�, 	���»#�ø��Ω��〉 
ℝ ∗ S#x

u�Ðj . 

Here 	j, .∙. . , 	u are external finite and hyperfinite polynomials. Now we can to construct directly the õ#-measure 

space 〈ô#, °#〉. We define a space ô# =⤬�Ðj) ∗ ℝ ∗ �#. Take the õ#-algebra generated by hyper infinite products of 

#-measurable sets in ℝ ∗ �# and set °# =⊗�Ðj) ∗ °�#. We denote the points of  ô# symbolically by ö = 〈öj, öm, … 〉, then 〈ô#, °#〉 is a õ#- measure space and the set of functions of the form 	�öj, öm, … �, where 	 is a polynomial and 



3 ∈ ℕ ∗  is arbitrary, is #-dense in "m#�ô#, U#°#�. Let 	 be a polynomial in  Û ∈ ℕ ∗  variables 	��j, �m, … , �u� =
���- ∑ YÏ�,…,Ïx���

Ï�Ï�,…,Ïx ∙∙∙ ��x
Ïx  and define î#: 	 P�»#Zø��[, … , �»#Zø�x[R Ω� → 	Zö�� , ö�� , … , ö�x[. Then we get 

P�»#Zø��[, … , �»#Zø�x[R Ω� = ���-? YzY{̅ PΩ�, �»#Zø��[Ï�#�� , … , �»#Zø�x[Ïx#�xΩ�R 
z,{ = 

���-? YzY{̅T ö��
Ï�#�� 

ℝ ∗ S#x
× … × 

z,{ öuÏx#�x é���- ê U#°��#u
qÐj ë = ���- T S	Z��� , ��� , … , ��x[Sm 

�# U#°#. 
By the equation (99) and the fact that each measure °��#  has mass one. Since Ω� is cyclic for polynomials in the 

fields, î#extends to a unitary map of ℱË#��# � onto "m#�ô#, U#°#�. 
Theorem 10.1 [15] Let ��,»# ���, ¹ ∈ ℝ�,)# ∗ be the free scalar field of mass 1 (in 4-dimensional space-time) at 

time zero. Let ø ∈ "j#� ℝ ∗ �#v� ∩ "m#� ℝ ∗ �#v� and define �ù,»,��»��ø� = ��¹� P���- ^ ø��� 
ℝ ∗ S#o :  ��,»#
 ���: U#v�R, 

where ��¹� ∈ ℝ�,≈# ∗ . Let î # denote the unitary map  î #: ℱË#��# � → "m#�ô#, U#°#� constructed above. Then ± =
î #�ù,»,��ø�î #�jis multiplication by a function ±»,��ö� which satisfies: (a) ±»,��ö� ∈ "¤# �ô#, U#°#� for all � ∈ ℕ ∗ . 
(b) ���-exp P−�±»,��ö�R ∈ "j#�ô#, U#°#� for all � ∈ �0, ∞ ∗ �. 

Proof. (a) Note that  ��,»# ��� is a well-defined operator-valued function of � ∈ ℝ ∗ �#v. We define now 
:  ��,»#
 ���: by moving all the h  Î′s to the left in the formal expression for  ��,»#
 ���. By Theorem 59  :  ��,»#
 ���: is 
also a well-defined operator for each � ∈ ℝ ∗ �#v.  Notice that for each � ∈ ℝ ∗ �#v operator :  ��,»#
 ���: takes Ñ� into 
itself. Thus for each � ∈ ℝ ∗ �#v operator :  ��,»#
 ���: reads :  ��,»#
 ��� ≔  ��,»#
 ��� + Um�¹� ��,»#m ��� + Uj�¹� where the 
coefficients Uj�¹� and Um�¹� are hyperfinite constant independent of �. For each � ∈ ℝ ∗ �#v, î #��,»# ����ø�î #�jis the 
operator on #-measurable space "m#�ô#, U#°#� which acts by multiplying by the function 

���- ∑ Y���, ¹�ö�) ∗�Ðj  where Y���, ¹� =   �2Ô��v/mZø�, Z���-exp�����[¼�¹, ��°����j/m[ and ¼�¹, �� ≡ 1 if |�| ≤ ¹, ¼�¹, �� ≡ 0 if |�| > ¹. Note that 

 ���- ∑ |Y���, ¹�|m) ∗�Ðj = �2Ô��v/m‖¼�¹, ��°���‖#mm , (100) 
so the functions î #��,»#
 ����ø�î #�j and î #��,»#m ����ø�î #�j are in "m#�ô#, U#°#� and the "m#�ô#, U#°#� norms 

are uniformly bounded in �. Therefore, since ø ∈ "j#� ℝ ∗ �#v�, î #�ù,»,��»��ø�î #�joperates on "m#�ô#, U#°#� by 
multiplication by some "m#�ô#, U#°#�-function which we denote by ±ù,»,��»��ö�. Consider now the expression 
for �ù,»,��»��ø�Ω�. This is a vector �0,0,0,0, Á#
, 0, … � with 

 Á#
��j, �m, �v, �
� = ���- ^ ��»���0�¿�»,¤�é¯0u-���P�q0 ∑ ¤���´��� Rë�o0
�mn�o/�∏ �mÖ�¤����/��́��

 
ℝ ∗ S#o   = ��»�∏ ¿�»,¤���́�� é¯0u-�|P∑ ¤���´��� Rë

�mn�}/�∏ �mÖ�¤����/��́��  (101) 

Here |�q| ≤ ¹, 1 ≤ � ≤ 4. We choose now the parameter � = ��¹� ≈ 0 such that ‖Á#
‖#mm ∈ ℝ and therefore we 

obtain ó �ù,»,��»��ø�Ω�ó#m
m ∈ ℝ, since ó �ù,»,��»��ø�Ω�ó#m

m = ‖Á#
‖#mm . But, since î #Ω� = 1, we get the equalities 

  ó �ù,»,��»��ø�Ω�ó#m
 = óî #�ù,»,��»��ø�î #�jó
�#Z�#,�#Ö#[

 = ó±ù,»,��»��ö�ó
�#Z�#,�#Ö#[
 . (102) 

From (101)-(102) we get that ó±ù,»,��»��ö�ó
�#Z�#,�#Ö#[
 ∈ ℝ. It is easily verify that each polynomial 

	�öj, öm, … , ö<�, 3 ∈ ℕ ∗  is in the domain of the operator ±ù,»,��»��ö� and î #�ù,»,��»��ø�î #�j ≡ ±ù,»,��»��ö� on that 
domain. Since Ω� is in the domain of �¤ù,»,��»��ø�, � ∈ ℕ ∗ , 1 is in the domain of the operator ±¤ù,»,��»��ö� for all 
� ∈ ℕ ∗ . Thus, for all � ∈ ℕ ∗   ±ù,»,��»��ö� ∈ "m¤# �ô#, U#°#�, since °#�ô#� is finite, we conclude that ±ù,»,��»��ö� ∈
"¤# �ô#, U#°#� for all � ∈ ℕ ∗ .  (b) Remind Wick's theorem asserts that  

: ��,»#­ ��� ≔ ∑ �−1�q�­/m�qÐ�
­!

�­�mq�!q! Y»q ��,»#�­�mq���� with Y» = ó��,»# ���Ω�ó#m
m . For « = 4 we get −/�Y»m� ≤

:  ��,»#
 ���: and therefore    − P���- ^ ø��� 
ℝ ∗ S#o U#v�R /�Y»m� ≤ �ù,»,��»��ø�.Finally we obtain 

���- ^ ���-exp P−�Z:  ��,»#
 ���: [R �# U#°# ≤ ���-expZ/�Y»m�[ and this inequality finalized the proof. 

GENERALIZED HAAG KASTLER AXIOMS 

Definition 11.1 [15] A non- Archimedean Banach algebra Þ# is a complex #-algebra over field ℂ ∗ �# (or ℂ ∗ �,&'(# =
ℝ ∗ +,&'(# + i ℝ ∗ �,&'(#  )  which is a non-Archimedean Banach space under a ℝ ∗ �# -valued -norm which is sub 

multiplicative, i.e., ‖�:‖#  ≤ ‖�‖#‖:‖#for all �, : ∈ Þ#. An involution on a non- Archimedean Banach algebra Þ#  



is a conjugate-linear isometric antiautomorphism of order two denoted by � ↦ �∗, i.e.,�� + :�∗ = �∗ + :∗, and for 
all �, : ∈ Þ#: ��:�∗ = :∗�∗, ����∗ = �̅�,��∗�∗ = �, ‖�∗‖# = �, � ∈ ℂ ∗ �#. A Banach #- algebra is a non- 
Archimedean Banach algebra with an involution. 

Definition 11.2 An ∁#∗ -algebra is a Banach #-algebra Þ# satisfying the ∁#∗ -axiom: for all � ∈ Þ#, ‖�∗�‖# =‖�‖#m. 
Definition 11.3 1) A linear operator  h: �# → �# on a non-Archimedean Hilbert space �# is said to be bounded 

if there is a number ì ∈ ℝ ∗ �# with ‖hå‖# ≤ ì‖å‖# for all å ∈ �#. 2) A linear operator h: �# → �# a non-
Archimedean Hilbert space �# is said to be finitely bounded if there is a number ì ∈ ℝ ∗ �,&'(#  with ‖hå‖# ≤ ì‖å‖# 
for all å ∈ �#. The infimum of all such ì if exists, is called the #-norm of h, written ‖h‖#. 

Abbreviation 11.1 The set of all finitely bounded operators h: �# → �# we will be denoting by ℬ#��#�. 
Abbreviation 11.2 The set of all finitely bounded operators h: �# → �# we will be denoting by ℬ# ��#�. 
Remark 11.1 Note that ℬ# ��#� is a ∁#∗ -algebra over field ℂ ∗ �,&'(# . 
Definition 11.4 If = ⊆ ℬ#��#� (or ℬ# ��#� ) then the commutant => of = is => = �� ∈ ℬ#��#�|∀h ∈

=��h = h� ��.  
Remark 11.2 The algebra ℬ#��#� of bounded linear operators on a non-Archimedean Hilbert space �# is a ∁#∗ -algebra with involution à →  à∗, à ∈ ℬ#��#�. Clearly, any #-closed #-selfadjoint subalgebra of ℬ#��#� is also a ∁#∗ -algebra. 
Remark 11.3 We will be especially concerned with #-separable Hilbert Spaces where there is an orthonormal 

basis, i.e. a hyper infinite sequence , �åq�qÐj) ∗  of unit vectors with 〈åq , å­  〉 = 0 for � ≠ « and such that 0 is the only 
element of �# orthogonal to all the åq . 

Definition 11.5 1) The topology on ℬ#��#� (or ℬ# ��#� of pointwise #-convergence on �# is called the strong 
operator topology.  A basis of neighbourhoods of h ∈ ℬ#��#�  (or h ∈ ℬ# ��#� is formed by the following way Û�h, �åq�qÐj< , �� = �0|‖�0 − h�åq‖# < �, ∀��1 ≤ � ≤ 3��. 

2) The weak operator topology is formed by the basic neighbourhoods    Û�h, �åq�qÐj< , �hq�qÐj< , �� = �0|〈�0 − h�åq , hq〉 < �, ∀��1 ≤ � ≤ 3��. 
Theorem 11.1 If 
 =  
∗ is subalgebra of  ℬ#��#� (or ℬ# ��#� with 1 ∈  
, then the following statements are 

equivalent: 1)  
 = 
>> ; 2) 
 is strongly #-closed; 3) 
 is weakly #-closed. 
Definition 11.6 A subalgebra of ℬ#��#� (or ℬ# ��#� satisfying the conditions of Theorem 61is called a von 

Neumann #-algebra. 
Theorem 11.2 [15] (Generalized Gelfand-Naimark theorem) Let Þ be a ∁#∗ -algebra with unit. Then there exist a 

non-Archimedean Hilbert space �# and an #-isometric homomorphism � of Þ into Ù��#� such that ��∗  =  ��∗, �∈Þ. 
Abbreviation 11.3 We denote by 

# = � ℝ ∗ �#
, �∙,∙��, the vector space ℝ ∗ �#
 with the Minkowski product: ��, :� = ��:� − �q:q , � = 1,2,3. 
Statement of the Axioms [15]. Let 

#  be Minkowski space over field ℝ ∗ �# of four space-time dimensions. 
1. Algebras of Local Observables. To each finitely bounded #-open set / ⊂ 

# we assign a unital ∁#∗  -algebra / → ℬ#�/� 
2. Isotony. If  /j ⊂ /m , then ℬ�/j� is the unital ∁#∗  -subalgebra of the unital ∁#∗ -algebra ℬ�/m� : ℬ#�/j� ⊂ ℬ#�/m�. 
This axiom allow us to form the algebra of all local observables ℬ#��� = ⋃ ℬ#�/�4⊂�#́ .  
The algebra ℬ#��� is a well-defined ∁#∗  -algebra because given any /j, /m ⊂ 

#, both ℬ#�/j� and ℬ#�/m� are 

subalgebras of the ∁#∗  -algebraℬ#�/j ∪ /m�.  From there one can take the #-norm completion to obtain ℬ# = #-ℬ#���²²²²²²² , 
called the algebra of quasi-local observables. This gives a ∁#∗  -algebra in which all the local observable ∁#∗  -algebras 
are embedded. 

3. Poincare ≈ -Covariance. For each Poincare transformation ø ∈  	 � #↑ , there is a ∁#∗ - isomorphism A� ∶  ℬ#  → ℬ# such that   
A�Zℬ#�/�[ ≈ ℬ#Zø�/�[, 

for all bounded #-open / ⊂ 

#. For fixed ø ∈ ℬ# , the map ø → A��Þ� is required to be #-continuous. 
 3>. For each Poincare transformation ø ∈  	 � #↑ , there is a ∁#∗ - isomorphism A� ∶  ℬ#  →  ℬ# such that   



st PA�Zℬ#�/�[R = st Pℬ#Zø�/�[R, 
for all bounded #-open / ⊂ 

#. For fixed ø ∈ ℬ# , the map ø → A��Þ� is required to be #-continuous. 
4. ≈-Causality. If /j and /m are spacelike separated, then all elements of ℬ#�/j� ≈ -commute with all elements 

of a       ∁#∗  -algebra ℬ#�/m�  �ℬ#�/j�,ℬ#�/m�� ≈ 0.  4>. If /j and /m are space-like separated, then the standard part of the all elements of ∁#∗  -algebra  ℬ#�/j� 
commute with the standard part of the all elements of  ∁#∗  -algebra ℬ#�/m�  

stZℬ#�/j�,ℬ#�/m�[ = 0. 
Definition 11.7 If / ⊂ 

#, we say � belongs to the future causal shadow of / if every past directed time-like or 

light-like trajectory beginning at x intersects with /. Essentially, / separates the past light cone of �.Likewise, we 
say � belongs to the past causal shadow of / if every future-directed timelike or lightlike trajectory beginning at � 
inter-sects with /. The causal completion or causal envelope /� of / is the union of its future and past directed 
causal shadows. This definition of the causal completion /�  can be reformulated in terms of “causal complements,” 
which are computationally easier to deal with. If / ⊂  

#, we define the causal complement /> of / to be the set of 
all points with are spacelike to all points in /. Then />> = /� is the causal completion of /. One expects the 
observables localized to /� to be completely determined by the observables localized to /, carrying the same 
information. 

5. Time Evolution.  ℬ#Z/�  [ = ℬ#�/�.  
6. Vacuum state and positive spectrum. There exists a faithful irreducible representation Ô� ∶  ℬ#  → Ù��#�  

with a unique (up to a factor) vector Ω ∈  �# such that Ω is cyclic and Poincaré invariant, and such that 
unitary representation of translations, given by ����Ô� �Þ�Ω = Ô�A0�Þ��Ω, 

where Þ ∈  ℬ# and A0�∙� is the ∁#∗ -isomorphism from Axiom 3 associated with translation by � ∈  

#, has 
Hermitian generators 	Ö , ° = 1,2,3 whose joint spectrum lies in the forward light cone. The last phrase is the most 
physically important here; it simply states that we have energy-momentum operators whose spectrum satisfies �m − �m ≫ 0, i.e, or in other words, that the energy E ≥ 0 and nothing can move faster than the speed of light. The 
vector Ω is the vacuum state This axiom does not appear to be purely algebraic; we have had to introduce an non-
Archimedean Hilbert space �# . In fact, we can rewrite the axiom in a completely algebraic but less transparent way 
as follows. We postulate that there exists an vacuum state ̀ � on the ∁#∗  -algebra (i.e., a normalized, positive, 
bounded linear functional) such that the following holds  ̀ ��ô∗ô� = 0 for all ô ∈ ℬ# of the form ô�?, Þ� = ���-^ ?���A0�Þ� U#
� 
where Þ ∈ ℬ#  and ?��� is a #-smooth function whose Fourier transform has bounded support disjoint from the 
forward light-cone centered at the origin in 

#. 

Remind that in a quantum system with a Hamiltonian �, the Heisenberg picture dynamics is given by the 
canonical formula  Þ��� = ����-exp������Þ�0�����-exp�−�����. 

Then Þ��� is the observable at time � corresponding to the time zero observable Þ�0�. In our model we have 
hyper finitely locally correct Hamiltonians ��ø� but no hyper infinitely global Hamiltonian, and we construct the 
Heisenberg picture dynamics nonetheless. We do this by restricting the observables to lie in the local algebras ℬ#�/� and by using the finite propagation speed implicit in axiom 3.  

Definition 11.8 Let ℱ<# be the space of symmetric "m#� ℝ ∗ �#v<� functions defined on ℝ ∗ �#v<, ℱ�# = ℂ ∗ �# and 

let n # = ���-⨁<Ð�) ∗ ℱ<#, Ω� = 1 ∈ ℂ ∗ �# ⊂ ℱ #. Let =< be the projection of  "m#� ℝ ∗ �#v<� onto ℱ<#and let Q# be the #-dense domain in ℱ # spanned algebraically by Ω� and vectors of the form =<����-∏ ?��w<�<�Ðj � where ?� ∈=&'(#  � ℝ ∗ �#v, ℝ ∗ �#v�, 3 ∈ ℕ ∗ . 
Definition 11.9  We set now 

 ��,» = ���- ^ j
m : ZÔ»m�¢� + ∇#�»m�¢� + 1m�»m�¢�[: U#v¢. (103) 

Theorem 11.3 As the bilinear form on the domain Q# × Q# 
 ��,» = ���- ^ °�w� 

|r|~» hÎ�r�h�r�U#vr. (104) 

Theorem 11.4 (1) The operator �� = ��,» leaves each subdomain Q#⋂ℱ<# invariant. (2) The operator �� = ��,»  
is essentially self-#-adjoint as an operator on the domain Q#. 



Definition 11.10 We set now 
 �»,�# ��, �� = ���-exp�������»#������-exp�−����� (105) 
 Ô»,�# ��, �� = ���-exp������Ô»#������-exp�−����� (106) 
 �»,�# �?, �� = ���- ^ �»,�# ��, �� 

ℝ ∗ S#o ?���U#v� (107) 

 Ô»,�# �?, �� = ���- ^ Ô»,�# ��, �� 
ℝ ∗ S#o ?���U#v�. (108) 

Here �»#��� and Ô»#��� is given by formulas (97) and (98) respectively. 
Remark 11.4 Note that �»,�# ��, �� and Ô»,�# ��, �� are bilinear forms defined on Q# × Q#. 
Theorem 11.5 As bilinear forms on Q# × Q#. 

 �»,�# ��, �� = ���- ^ ∆#�� − :, �� 
ℝ ∗ +#� Ô»#���U#v: + ���- ^ �#

O#u∆#�� − :, �� 
ℝ ∗ +#� �»#���U#v: (109) 

 Ô»,�# ��, �� = ���- ^ O#
O#u ∆#�� − :, �� 

ℝ ∗ +#� Ô»#���U#v: + ���- ^ �#�
O#u� ∆#�� − :, �� 

ℝ ∗ +#� Ô»#���U#v: (110) 

Remark 11.5 Here ∆#�� − :, ��  is the solution of the generalized Klein-Gordon equation  

 
�#�
O#u�∆#��, �� − �#�

O#0�� ∆#��, �� − �#�
O#0�� ∆#��, �� − �#�

O#0o� ∆#��, �� + 1m∆#��, �� = 0 (111) 

with Cauchy data ∆#��, 0� = 0, �#
O#u  ∆#��, 0� = ����. 

Remark 11.6 Note the distribution ∆#��, �� has support in the double light-cone |�| ≤ |�|. 
Theorem 11.6 Let ?j, ?m ∈ =#� ℝ ∗ �#v, ℝ ∗ �#v�. The operator �»,�# �?, �� + Ô»,�# �?, �� is essentially self-#-adjoint on 

the domain Q#. 
Definition 11.11 We introduce now the class ℑZ=#� ℝ ∗ �#v�[  of bilinear forms on  Q# × Q#  expressible as a 

linear combination of the forms 

 ± = ∑ P<­R ���- ^ ��w� 
ℝ ∗ S#oN<­Ð� hÎ�wj� ∙∙∙ hÎZw­[hZw­#j[ ∙∙∙ h�w<�U#v<w (112) 

with symmetric kernels ��w� ∈ =#� ℝ ∗ �#v�  having real Fourier transforms. 
Theorem 11.7 Let ± ∈ ℑZ=#� ℝ ∗ �#v�[. Then ±is essentially self-#-adjoint on Q#. 
Theorem 11.8 Let / be a bounded #-open region of vector spaceℝ ∗ �#v and let ℳ#�/� be the von Neumann 

algebra generated by the field operators ���-exp���»#�? �� with ? ∈ =#� ℝ ∗ �#v, ℝ ∗ �#v� and supp? ⊂ /. Let ø��� = 0 
on ℝ ∗ �#v\�. Then ���-exp����ù�ø�� ∈ℳ#�/� for all � ∈ ℝ ∗ �#. 

Definition 11.12 Let / be a bounded #-open region of space and let ℬ#�/� be the von Neumann algebra 
generated by the operators ���-expC�Z�»#�?j� + Ô»#�?m�[I with ?j, ?m ∈ =#� ℝ ∗ �#v, ℝ ∗ �#v� and supp?j, supp?m ⊂ /. Let /u be the set of points with distance less than |�| to / for any instant of the time �. 

Theorem 11.9 ���-exp������ℬ#�/����-exp�−����� ⊂ ℬ#�/u�. 
Theorem 11.10 If /j and  /m are disjoint bounded open regions of vector spaceℝ ∗ �#v then the standard part of 

the operators in ℬ#�/j� commute with the standard part of the operators in operators in ℬ#�/m�. 
Theorem 11.11 Let ø ∈ "m#Z� ℝ ∗ �#v�[, and let ø = 0 on open region /, then ���-exp����ù�ø�� ∈ ℬ#�/ �> for all 

 � ∈ ℝ ∗ �#. 
Theorem 11.12 [15] (Free field ≈-Causality) Let ?j, ?m ∈ =  &'(# � ℝ ∗ �#
, ℝ ∗ �#
� with supp?j ⊂ /j, supp?m ⊂ /m. We 

set now    �»,�# �?j� = ���- ^ �»,�# ��, �� 
ℝ ∗ S#´ ?j ��, ��U#
� and �»,�# �?m� = ���- ^ �»,�# ��, �� 

ℝ ∗ S#´ ?m ��, ��U#
�. If region 

/j and region /m  are space-like separated, then  C�»,�# �?j�,  �»,�# �?m�IÁ ≈ 0 for all near standard vector Á ∈ �#. 
Proof. The commutator C�»,�# �?j�,  �»,�# �?m�I reads 

C�»,�# �?j�,  �»,�# �?m�I = ���- ^ U#v�jU# 
ℝ ∗ S#´ �j���- ^ U#v�mU#�j∆»# 

ℝ ∗ S#´ ��j − �m, �j − �m�?j��j, �j�?m��j, �j�, 

∆»#��j − �m, �j − �m� = Ξj��j − �m, �j − �m;¹� − Ξm��j − �m, �j − �m;¹�, where 

Ξj��j − �m, �j − �m;¹� = ���- ^ >exp���¡��j − �m�� − �`�¡���j − �m��J 
|¡|~»  �#o¡

|¡¥#��, 

Ξm��j − �m, �j − �m;¹� = ���- ^ >−expC��¡��j − �m�� + �`�¡���j − �m�IJ 
|¡|~»  �#o¡

|¡¥#�� . 

Here ¹ ∈ ℝ ∗ �,)#  , `��� = |¡¥ + 1m. Define ΞTj��j − �m, �j − �m;¹� and ΞTm��j − �m, �j − �m;¹� by  

ΞTj��j − �m, �j − �m;¹� = ���- T >exp���¡��j − �m�� − �`�¡���j − �m��J 
|¡|�»  

U#v¡
|¡¥ + 1m, 

Ξm��j − �m, �j − �m;¹� = ���- ^ >−expC��¡��j − �m�� + �`�¡���j − �m�IJ 
|¡|�»  �#o¡

|¡¥#��. 



Note that: (a) ΞTj��j − �m, �j − �m;¹� ≈ 0 and Ξm��j − �m, �j − �m;¹� ≈ 0, (b) Ξj��j − �m, �j − �m;¹� and     Ξm��j − �m, �j − �m;¹� are Lorentz ≈-invariant tempered distribution (see definition 4), since the distributions Ξj��j − �m, �j − �m� and Ξm��j − �m, �j − �m� defined by 

Ξj��j − �m, �j − �m;¹� + ΞTj��j − �m, �j − �m; ¹� = ���- ^ >expC��¡��j − �m�� − �`�¡���j − �m�IJ 
   �#o¡

|¡¥#��  

Ξm��j − �m, �j − �m;¹� + ΞTm��j − �m, �j − �m;¹� = ���- ^ >expC�−�¡��j − �m�� + �`�¡���j − �m�IJ 
   �#o¡

|¡¥#��  

are Lorentz invariant  by Theorem 56. From expression of the distribution Ξm��j − �m, �j − �m;¹� by 
replacement ¡ → −¡ we obtain    

Ξm��j − �m, �j − �m;¹� = −���- ^ >expC��¡��j − �m�� + �`�¡���j − �m�IJ 
|¡|�»  �#o¡

|¡¥#��.   
And therefore finally we get 

∆»#��j − �m, �j − �m� = ���- ^ sin�`�¡���j − �m��exp��¡��j − �m�� 
|¡|~»  �#o¡

|¡¥#��.  
Thus for any points ��j, �j� and ��m, �m� separated by space-like interval we obtain that ∆»#��j − �m, �j − �m� ≈ 0, 

since ∆»#��j − �m, �j − �m� is a Lorentz ≈-invariant tempered distribution. 
Theorem 11.13 (Time zero free field ≈ -locality) Let ?j, ?m ∈ =  &'(# � ℝ ∗ �#v, ℝ ∗ �#v� with supp?j ⊂ /j,  and 

supp?m ⊂ /m  are disjoint bounded open regions of vector spaceℝ ∗ �#v, then C�»,�# �?j, 0�, �»,�# �?m, 0�I ≈ 0. 
Proof. It follows immediately from Theorem 11.12. 
Theorem 11.14 Let / be a bounded #-open region of vector spaceℝ ∗ �#v, let � ∈ ℝ ∗ �# , let ø be a nonnegative 

function in "j#� ℝ ∗ �#v� ∩ "m#� ℝ ∗ �#v� and let ø be identically equal to one on /u.For Þ ∈ ℬ#�/�, then  õu�Þ� = ����-exp�����ø���Þ����-exp�−����ø��� 
is independent of ø and õu�Þ� ∈ ℬ#�/u�. 
Proof. Let  õu��Þ� = ����-exp�������Þ����-exp�−������ and õuù�Þ� = ����-exp����ù��Þ����-exp�−���ù��. 

Notice that generalized Trotter's product formula is valid for the unitary group ���-expC��Z�� + �ù�ø�[I. Thus we 
get the following product formula for the associated automorphism group: 

 õu�Þ� = #-lim<→ ) ∗ C Zõu/<� õu/<ù [<�Þ�I. (113) 
Each automorphism õuù maps each ℬ#�/Ë� into itself and is independent of ø on ℬ#�/Ë� for |7|≪ |�|. To see 

this, let ¼�/Ë�  be the characteristic function of a set /Ë. We assert that 
 õu/<ù ���  = >���-expC���/3��ùZ¼�/Ë�[IJ�>���-expC−���/3��ùZ¼�/Ë�[IJ (114) 

for any � ∈ ℬ#�/Ë� and that õuù��� ∈ ℬ#�/Ë�. In other words the interaction automorphism has propagation 
speed zero and is independent of ø on ℬ#�/Ë� for |7| ≪ |�|. The theorem follows from (113), (114) and Theorem 
11.9. To prove (113), we rewrite �ù�ø� = �ùZ¼�/Ë�[ + �ù�ø�1 − ¼�/Ë��� as a sum of commuting self-#-adjoint 
operators. By Theorem 11.15  ���-expC���ùZ¼�/Ë�[I ∈ ℬ#�/Ë� and so the right side of (8.3) belongs to ℬ#�/Ë�. By 
Theorem 70, ���-exp����ù�ø�1 − ¼�/Ë���� ∈ ℬ#�/Ë�> 
and (114) follows. 

Definition 11.13 Let Ù be a bounded #-open region of spacetime 

# and for any time �, let Ù���  = ��| �, � ∈  Ù� be the time � time slice of Ù. We define ℬ#�Ù� to be the von Neumann algebra generated by  

 ⋃ õË Pℬ#ZÙ���[R .Ë  (115) 

Theorem 11.16 The generalized Haag-Kastler axioms (1)-(5) are valid for all these local algebras ℬ#�Ù�. 
Proof (Except Lorentz rotations) The axioms (1) and (2) are obvious, while (4) follows easily from the finite 

propagation speed, Theorem 11.10, together with the time zero ≈-locality, Theorem 11.12. Because the time zero 
fields coincide with the time zero free fields, and because the time zero fields generate ℬ# by Theorem 11.12 and the 
definition of the local algebras, the free field result carries over to our scalar model with interaction �ù ≠ 0. In the 
Poincaré covariance axiom (3), the time translation is given by õu. Let Ù + �  be the time translate of the space time 
region Ù ⊂ 

#. Then �Ù + ���7� = Ù�7 − �� and so   

 õu \⋃ õË Pℬ#ZÙ�7�[RË ] = ⋃ õË#u Pℬ#ZÙ�7�[RË = ⋃ õË Pℬ#ZÙ�7 − ��[R = ⋃ õË#u Pℬ#ZÙ�7 + ��[RËË  (116) 

Thus õuZℬ#�Ù�[ = ℬ#�Ù + �� and axiom (3) is verified for time translations. Since the local algebras are #-norm dense in ℬ# and since automorphisms of ∁#∗ -algebras preserve the #-norm, õu extends to an automorphism 
of algebra ℬ#. 

Definition 11.14 To define the space translation automorphism õË, we set now 



 	Ö = ���- ^ �ÖhÎ���h��� 
‖¤‖≪» U#
�, ° = 1,2,3; õu�Þ� = ����-exp�−��	��Þ����-exp���	��. (117) 

Then we get  ����-exp�−��	���»�������-exp���	�� = �»�� + :�,  ����-exp�−��	��Ô»�������-exp���	�� =��� + :�.  
The following theorem completes the proof of Theorem 11.16 except for Lorentz rotations. 
Theorem 11.17 The automorphism õ0Zℬ#�Ù�[ = ℬ#�Ù + ��, st�õ0� extends up to  ∁#∗ -automorphism of ℬ#, and 〈�, �〉 → st�õ0�st�õu� = = st�õu�st�õ0�  defines a 4-parameter abelian automorphism group of ℬ#. 
Theorem 11.18 Let / be a bounded #-open region of space and let ℬ#�/� be the von Neumann algebra 

generated by the operators ���-expC�Z�»�?j� + Ô»�?m�[I where ?j, ?m ∈ ℰ&'(# � ℝ�# ∗ � and supp?j ⊂ Ù, supp?m ⊂ Ù. 
Then ���-exp������ℬ#�/����-exp�−����� ⊂ ℬ#�/u�.   

Remark 11.7 We reformulate the theorem by saying that �� has propagation speed at most one. 
In order to obtain automorphisms for the full Lorentz group and to complete the proof of Theorem 11.16, there 

are four separate steps. 
1. The first step is to construct a self-#-adjoint locally correct generator for Lorentz rotations. This generator 

then defines a locally correct unitary group and automorphism group. 
2. The second step is to prove this statement for the fields, by showing that the field �»��, ��, considered as a 

non-standard operator valued function on a suitable domain, and is transformed locally correctly by our 
unitary group. 

3. The third step is to show that the local algebras ℬ#�Ù� are also transformed correctly. 
4. The fourth final step is to reconstruct the Lorentz group automorphisms from the locally correct pieces given 

by the first three steps. This final step is not difficult as in in the case of the two dimensional spacetime U =2, see [16-18]. 
Let ��,»��� denote the integrand in (103), where  

 ��,» = ���-^ ��,»�¢�U#v¢ = ���- ^ j
m : ZÔ»m�¢� + ∇#�»m�¢� + 1m�»m�¢�[: U#v¢ . (118) 

The formal generator of classical Lorentz rotations is 
 
»�� = 
�,»�� +
ù,»�� = ���- ^ ����»,�¢�U#v¢ + ���- ^ ��: 	 ��»�¢��: U#v¢, w = 1,2,3. (119) 

The local Lorentzian rotations are   

 
»��Zøj���, øm���[ = ���,» + ��,»Zøj���[ + �ù,»Z, øm���[, ��,»Zøj���[ = ���- ^ ��,»�¢�øj����¢�U#v¢. (120) 

We require that 0 < � and that: øj�����j, �m, �v�, øm�����j, �m, �v�, w = 1,2,3  be nonnegative ��) ∗  functions. In the 

second step we require more, for example that � + øj�����j, �m, �v� = �� and øm�����j, �m, �v� = ��, w = 1,2,3 in 
some local space region. This region is contained in the Cartesian product ��, ∞ ∗ � × ��, ∞ ∗ � × ��, ∞ ∗ �. By using 

decomposing  ��,»Zøj���[ into a sum of a diagonal and an off-diagonal term we obtain ��,»Zøj���[ = 
���- ^ � �,»��� �r, z� h∗�r�h�z�U#vrU#vz + ���- ^ � ��,»��� �r, z� �h∗�r�h∗�z� +  h�−r�h�−z��U#�rU#�z =   

= ��,»� Zøj���[ + ��,»��Zøj���[, 
where � �,»��� �r, z� = Yj¼�r, z, ¹��°�r�°�z� + 〈r , z 〉 + 1m��°�r�°�z���j/mø|j����−wj + íj, −wm + ím, −wv + ív�,  
� ��,»��� �r, z� = Ym¼�r, z, ¹��−°�r�°�z� − 〈r , z 〉 + 1m��°�r�°�z���j/mø|j�j��−wj − íj, −wm − ím, −wv − ív�,  

and where r = �wj, wm, wv�, z = �íj, ím, ív�, 〈r , z 〉 = ∑ wqvqÐj íq , ¼�r, z, ¹� =1 if |r| ≤ ¹ and |z| ≤ ¹, otherwise ¼�r, z, ¹� = 0. 
Theorem 11.19 (a) � ��,»��� ∈ "m#� ℝ ∗ �#v�. (b) Function � �,»���  is the kernel of a nonnegative operator and 

�°�r���r − z� + B� �,»���  is the kernel of a positive self-#-adjoint operator, for B ≥ 0, these operators are real in 
configuration space. 

Proof. The statement (a) is obvious. The statement (b) is proved by using a finite sequence of Kato 

perturbations. Let�F��� = �°�r���r − z� + B� �,»���  and let ±F and ±� denote the operators with kernels �F��� and � �,»���  

correspondingly. The operator ±�  is a sum of three terms of the form Þ∗
��Þ in configuration space, where 
��is 
multiplication by øj ≥ 0. Thus 0 ≤ ±�. Moreover for � sufficiently small, but chosen independently of B, we 

obtain �±� ≤ j
m ±� ≤ j

m �±� + B±�� = j
m ±F and therefore ±F#� = ±F + �±� is a Kato perturbation, in the sense of 



bilinear forms. Consequently if the operator ±F is self-#-adjoint, so is ±F#� and Q P±F#�j/m R = QZ±�j/m[. Thus 

canonical finite induction starting from ±� = ±�∗ shows that ±F is self-adjoint, for all B ≥ 0. 
Theorem 11.20 The operator ���Zøj���[ is nonnegative and ��� + B���Zøj���[ is self-#-adjoint, for all B > 0. 
The main purpose of the third step is to give a covariant definition of the local algebras ℬ#�Ù�. Le ? ∈ ℰ&'(# �Ù� 

be the ℝ ∗ �#v-valued function with support in Ù. Let �Aq�qÐj< , 3 ∈ ℕ ∗  be finite hyperreal numbers and consider the 
expressions 
 �»#�?� = ���-^ �»#��, �� ?��, ��U#v�U#� (121) 
 �»#�?, �� = ���-^ �»#��, �� ?��, ��U#v� (122) 
 ℜ�?� = ���-∑ Aq�»#�?, �q�<qÐj  (123) 
 Ô»#�?, �� = ���-^ Ô»#��, �� ?��, ��U#v�. (124) 

For ø ≡ 1  on a sufficiently large set (the domain of dependence of the region Ù), the time integration in (1) 
#-converges strongly, and all four operators above are symmetric and defined on QZ��ø�[. 

Theorem 11.21 The operators (1)-(4) are essentially self-#-adjoint on any #-core for ��ø�j/m. 
Theorem 11.22 The algebra ℬ#�Ù� is the von Neumann algebra generated by finitely bounded functions of 

operators of the form (121). 
Proof. Note that if a hyper infinite sequence  �Þ<� of self-#-adjoins operators #-converges strongly to a self #-adjoint #-limit Þ on a core for Þ then the unitary operators ���-exp���Þ<� #-converge strongly to ���-exp���Þ�. 

Using this fact, one can easily show that the operators (1) and (4) generate the same von Neumann algebra, ℬ#j�Ù� 
and that ℬ#j�Ù� ⊃ ℬ#�Ù�. To show that ℬ#j�Ù� ⊂ ℬ#�Ù�, recall that a self- #-adjoint operator Þ commutes with a 
finitely bounded operator � provided �Q ⊂  Q�Þ� and �Þ =  Þ� on Q, for some core Q of Þ. Equivalently is the 
condition that the operator � commutes with all finitely bounded functions of Þ. Also equivalent is the relation �Þ =  Þ� on Q�Þ�. We choose Q =  Q���ø��. If the operator � commutes with all operators of the form (122), it 
also commutes on Q���ø�� with all operators of the form (123). Hence we get ℬ#�Ù�> ⊂ ℬ#j�Ù�> and so ℬ#j�Ù� =ℬ#j�Ù�>> ⊂ ℬ#�Ù�>> = ℬ#�Ù�>>. 

Remark 11.8 The Poincare group 	#↑ �  is the semidirect product of the space-time translations group ℝj,v with 
the Lorentz group  O�1,3� such that �hj + Λj��hm + Λm� = �hj + ojhm,ojom�. Here h ∈ ℝj,v and Λ�B�: ��q , �� →
Z�q × cosh�B� + � × sinh�B�, �q × sinh�B� + � × cosh�B�[, � = 1,2,3. We prove that there exists a representation 
õ�h, Λ� of the Poincare group  	#↑ �  by ∗ - automorphisms of ℬ#, such that õ�h,o�Zℬ#�/�[ = ℬ#��h,o�/� for all 
bounded open sets / and all �h,o� ∈ 	#↑ � . The Lorentz group composition law gives õ�h,o� = õ�h, ��õ�0,o�. 
Obviously the existence of the automorphism representation õ�h,o� follows directly from the construction of the 
pure Lorentz transformation õ�0,o� = õ�o�. One obtains õ�o� by constructing locally correct infinitesimal 
generators. Formally, the operators, 

 
»�� = 
�,»��  +
ù,»��  = ���- ^ j
m V: Ô»���m: +: Z∇�»���[m: +1m: �»���m: W 

ℝ ∗ S#o ��U#v� + �ù,»���ø� (125) 

w = 1,2,3 s infinitesimal generators of Lorentz transformations in a region / if the cutoff function ø equals one 
on a sufficiently large interval. We consider now the regions /j contained in the sets �� ∈ ℝ ∗ �#v| �j, �m, �v > |�| +
1�. Thus for such regions /j  we may replace (1) by 
�� =  ���- ^ �(�) 

ℝ ∗ S#o ��ø(�)U#v�, with a nonnegative 

functions ��ø(�), w = 1,2,3.  Here �(�) is the formally positive energy density: 

�(�) = 1
2 V: Ô»(�)m: +: Z∇#�»(�)[m: +1m: �»(�)m: W + �ù,»(�) = ��,»(�) + �ù,»(�). 

Therefore 
�� is formally positive. In fact it is technically convenient to use different spatial cutoffs in the free 
and the interaction part of 
�� , w = 1,2,3. Final formulas for 
»

�� reads 
 
»�� = 
»��Zø�

�
 , ø�[ = A��,» + ��,»(��ø�

�) + �ù,»(��ø ). (126) 
Here 0 < A  and 0 ≤ ��ø�

�(�), 0 ≤ ��ø (�), w = 1,2,3 and in order that (126) be formally correct, we assume 
that: A + ��ø�

� = �� = ��ø 
  on �1,B�v = �1,B� × �1,B� × �1,B� with B sufficiently large. For technical reasons 

we assume that: A + ��ø�
�(�) = ��, w = 1,2,3 on supp(ø).  By above restrictions on ø�

� and ø� we have that 
supp(ø�

�), supp(ø ) ⊂ ��|A ≤ ��, w = 1,2,3� and we show that the operator 
»
�� is essentially self- #-adjoint and it 

generates Lorentz rotations in an algebra  ℬ#(/j) 
 ���-exp(�B
»

��)ℬ#(/j)���-exp(−�B
»
��) ⊂ ℬ#(�h, Λ(B)�/j) (127) 

provided that /j and �h, Λ(B)�/j are contained in the region 
 �� ∈ ℝ ∗ �#v, � ∈ ℝ ∗ �#| |�| + 1 < �� < B − |�|, w = 1,2,3�, (128) 



where 
�� is formally correct. These results permit us to define the Lorentz rotation automorphism õ�o� on an 
arbitrary local algebra ℬ#�/ �. Using a space time translation õ�h�, h ∈ ℝ ∗ �#
 we can translate / into a region   / + h = /j ⊂ �� ∈ ℝ ∗ �#v, � ∈ ℝ ∗ �#| �j > |�| + 1� and for B ∈ ℝ ∗ �

# large enough, /j and �h, Λ(B)�/j are contained 
in the region (1) we define õZ0, Λ(B)[ = õZΛ(B)[ by 

õZΛ(B)[ ↾  ℬ#(/ ) = õ(�−Λ(B)h, ��)õ(�0, Λ(B)�)õ(�h, ��) ↾  ℬ#(/ ). 
Theorem 11.23 Let 
��(ø�, ø), w = 1,2,3 be given by (126), with  A, ø�(�), ø(�) restricted as mentioned 

above. Then 
��(ø�, ø) is essentially self #-adjoint on � ) ∗ (� ∩ ��). 
Theorem 11.24 Let /j and �0, Λ(B)�/j be contained in the set (1). Then the following identity holds between 

self- #-adjoint operators: 

 ���-exp(�B
��)�»
#(?)���-exp(�B
��) ≈  �»

#Z?(�0, Λ(B)��)[ = ^ �»
# P?Z�0, Λ(B)�(�, �)[R 

ℝ ∗ S#´ U#v�U#�. (129) 

Here provided  supp(?) ⊂ /j. 
The proof of the Theorem 11.24 is reduced to the verification of the following equations 

 V��
O#

O#u + � O#

O#0XW �»
#(�, �) = ��
��, �»

#(�, �)�, w = 1,2,3. (130) 

Here (130) that is equation for bilinear forms on an appropriate domain. Since 
�� is self #-adjoint, we can 
integrate (130), thus we compute formally for � = ��,» + �ù,»(ø),    

��
�� , �»#(�, �)� = ��
�� , ���-exp(���)�»#(�, �)���-exp(−���)� = 
 ���-exp(���)��
��(−�), �»

#(�, 0)����-exp(−���). (131) 
Here 
��(−�) = ���-exp(−���)
�����-exp(���). Formally one obtains that   

 
��(−�) = ���-? (−�)<

3!
) ∗

<Ð�
hU<(��)(
��), w = 1,2,3. 

Note that if 
�� and � were the correct global Lorentzian generators and Hamiltonian they would satisfy 
 ���,
��� = hU (��)(
��) = 	� , C��, ���,  
���I = 0,  
��(−�) =  
�� − 	��. (132) 

Here 	�, w = 1,2,3 are the generators of space translations. Thus from (131) we get 
� �
��, �»#(�, 0)� = ��
�

��� = �Ô»#(�, 0), ��	� , �»#(�, 0)� = −∇#(�»#)(�, 0). 
Formally we have (130).However the difficulty with this formal argument is that � and  
��   do not obey (132) 

exactly, since they are correct only in /j. We have instead (132) the equations 
 ���,
��� = 	Ï��� , C��, ���,  
���I = B�

Ï�� , w = 1,2,3. (133) 
Here 	Ï���  acts like the momentum operators only in the region /j, i.e. 

C	Ï��� , �»
#(�, �)I = �	� , �»

#(�, �)�, (�, �) ∈ /j. 
Hence C��, 	Ï��� I = B�

Ï�� , w = 1,2,3 is not identically zero, but commutes with ℬ#(/j). Formally, further 
commutators of B�

Ï�� , w = 1,2,3 with � are localized outside region /j, and (130) follows formally even for our 
approximate, but locally correct � and 
��. In order to convert this formal argument into a rigorous mathematical 
result, we apply now generalized Taylor series expansion [12] for the quantities  
 ��(−�) = 〈Ω, � �
��(−�), �»

#(�, 0)�Ω〉, w = 1,2,3. (134) 
Here Ω ∈ � ) ∗ (�) and thus we obtain 

��(−�) = ��(0) − � �#¯X(�)
�#u  + u

�

m
�#�¯X(�)

�#u�  , where å ∈ �−�, ��. 
From (133) we obtain 

U#m��(−å)
U#�m = 〈���-exp(�å�)Ω, C�B�

Ï�� , �»
#(�, å)I���-exp(�å�)Ω〉. 

Note that (�, �) ∈ /j, so that with å ∈ �−�, ��, (�, å) ∈ /j and therefore  
 CB�

Ï�� , �»#(�, å)I ≡ 0. (135) 
After integration over � ∈ ℝ ∗ �#v with a function ? ∈ =&'(

# ( ℝ ∗ �#v) we obtain the operator identity: 
 ���-^ CB�

Ï�� , �»#(�, å)I?(�)U#v� 
ℝ ∗ S#o ≡ 0, w = 1,2,3. (136) 

Therefore    
�#�¯X(�)

�#u� ≡ 0 if |å| ≤ |�| and 

��(−�) = ��(0) − � �#¯X(�)
�#u = 〈Ω, >� �
��, �»

#(�, 0)� − �C	Ï��� , �»
#(�, 0)IJΩ〉 =  

= 〈Ω, ��Ô»
#(�, 0) + �∇#(�»

#)(�, 0)} Ω 〉. 
Thus we get  

 � �
��(−�), �»#(�, 0)� = �Ô»#(�, 0) + �∇#�»#(�, 0) (137) 



Inserting the relation (137) in (131) finally we obtain (130).This completes the proof of Lorentz covariance. 
Definition 11.14 For the local free field energy we set à��ø� = à�j�ø� + à�m�ø�, where 

 à�j�ø� = Yj���- ^ U#v 
|r�|~» rj���- ^ U#v 

|r�|~» rmø|�wjj − wmj, wjm − wmv, wjv − wmv� �Ö�r��Ö�r��#〈r�,r�〉#��
|Ö�r��Ö�r�� � × (138) 

hÎ�rj�h�rm�,         
à�m�ø� = Ym���- ^ U#v 

|r�|~» rj���- ^ U#v 
|r�|~» rmø|�wjj − wmj, wjm − wmv, wjv − wmv� ��Ö�r��Ö�r��#〈r�,r�〉#��

|Ö�r��Ö�r�� �× (139) 

 × �hÎ�rj�hÎ�−rm� + h�−rj�h�rm��.   
Here rj = �wjj, wjm, wjv�, rm = �wmj, wmm, wmv�, 〈rj, rm〉 = ∑ wjqvqÐj wmq ,  ø|�¡� = ���- ^ ����-��〈¡, ¢〉��ø��� 

ℝ ∗ +#� U#v¢. 
Similarly, for the local momentum we set 	q  �ø� = 	 qj�ø� + 	 qm�ø�, � = 1,2,3 where 

 	 qj�ø� = Yj���- ^ U#v 
|r�|~» rj���- ^ U#v 

|r�|~» rmø|�wjj − wmj, wjm − wmv, wjv − wmv� × (140) 

× �Z���#���#��o[Ö�r��#Z���#���#��o[Ö�r��
|Ö�r��Ö�r�� � hÎ�rj�h�rm�,   

 	 m�ø� = Ym���- ^ U#v 
|r�|~» rj���- ^ U#v 

|r�|~» rmø|�wjj − wmj, wjm − wmv, wjv − wmv� × (141) 

× �Z���#���#��o[Ö�r���Z���#���#��o[Ö�r��
|Ö�r��Ö�r�� � �−hÎ�rj�hÎ�−rm� + h�−rj�h�rm��.  

Definition 11.15 Let 	T»�?� be the local operator, defined for ? ∈ =&'(# � ℝ ∗ �#v� by  
 	T»�?� = ��»,�?� − 1m ^ : 

ℝ ∗ S#o �»#m���: ?���U#v� (142) 

Theorem 11.25 Let the operators 
�� , w = 1,2,3 are given by 
�� = A�� + à�Z��ø����[ + àùZ��øj���[, � ≜
��,» +   where �� ≜ ��,» and àù ≜ �ù,» . Then the following statements hold. 

(1) For w = 1,2,3, Q��
���m� ⊂ Q�� �, Q��m� ⊂ Q�
���. 
(2) For w = 1,2,3,  Q�
��� ⊂ Q P�� + 0��

�R, Q�� � ⊂ Q P�
�� + 0��
�R. 

Theorem 11.26 Let the operators  
�� , w = 1,2,3 are given by 
�� = A�� + à�Z��ø����[ + àùZ��øj���[, where 
�� ≜ ��,» and  àù ≜ �ù,» .  Then the following statements hold. 

(1) For í = 2,3, 4,  
: Q��Ï� → Q��Ï�m�.   
(2) As operator equalities on Q��v� for w = 1,2,3, 

 ���,
��� = 	 µ�#P0X�8�X�R
�#0X ·. (143) 

(3) As operator equalities on Q��
�, for w = 1,2,3, 
 C��, ���,
���I = 	T» µ∑ �#�P0X�8�X�R

�#0��
qÐvqÐj · − àù é∑ �#���X�

�#0�
qÐvqÐj ë. (144) 

(4) For  í = 2,3, 4,  �: Q��
���Ï� → Q��
���Ï�m�. 
The equalities (143) hold on the domain Q��
���v�, and on the domain Q��
���
�, for w = 1,2,3, 

 C�
�� , ��
�� , ��I = à� vµ �#
�#0X Z��ø����[·

mw+ àù µµ �#
�#0X Z��øj���[·

 
· − 	T» µZA + ��ø����[ �#�

�#0X� Z��ø����[· (145) 

Theorem 11.27 As bilinear forms on Q���� × Q���� for ?, ø ∈ =&'(# � ℝ ∗ �#v� 

 ��à��?�, à��ø�� = 	 µ? P∑ �#�
�#0�

qÐvqÐj R − ø P∑ �#¶
�#0�

qÐvqÐj R·, (146) 

 ��à��?�, 	�ø�� = 	T µ? P∑ �#�
�#0�

qÐvqÐj R· −à� µø P∑ �#¶
�#0�

qÐvqÐj R·. (147) 

The equalities (146)-(147) also hold if ? = 1 or ø = 1. In particular from (147) we get  

 �����?�, 	�ø�� = 	T P∑ �#�
�#0�

qÐvqÐj R. (148) 

Proof. The operators à�, 	, 	T are #-closable (symmetric), defined on Q���� and bounded as operators relative to �� + �. Therefore (146)-(147) are defined as bilinear forms on Q���� × Q����  and it suffices to establish equality 
on a core for ��, e.g. on Q# = >Á ∈ ℱ#|Á�<� ∈ =&'(# � ℝ ∗ �#v<�, Á��� = 0 for all sufficiently large mJ. By direct 
calculations on Q# × Q# one obtains the equalities (146)-(147). For example 

 ����, à�j�ø�� = Yj���- ^ U#v 
|r�|~» r ���- ^ U#v 

|r�|~» ¡ø|�wj − �j , wm − 2, wv − �v � �Ö�r �Ö�¡�#〈r,¡〉#��
|Ö�r�Ö�¡� � × (149) 

 ���, hÎ�r�h�¡�� = 



�Yj���-^ U#v 
|r�|~» r ���- ^ U#v 

|r�|~» ¡ø|�wj − �j , wm − 2, wv − �v �Z°�r � − °�¡�[ �Ö�r �Ö�¡�#〈r,¡〉#��
|Ö�r�Ö�¡� � hÎ�r�h�¡�   

=Yj���- ^ U#v 
|��|~» r ���- ^ U#v 

|��|~» ¡�Z∑ �wq − �q �qÐvqÐj [ø|�wj − �j , wm − 2, wv − �v � ���� #�� #�o �Ö�¡�#�¤� #¤� #¤o �Ö�r �
|Ö�r�Ö�¡� � 

 = 	�j� µP∑ �#�
�#0�

qÐvqÐj R· 

By a similar calculation on Q# × Q# one obtains 

C�à��j��?�, à��j��ø�I + C�à��m��?�, à��m��ø�I = 	�j� v? µ? U#ø
U#�q

qÐv
qÐj · − ø µ? U#?

U#�q
qÐv
qÐj ·w. 

Theorem 11.28 As bilinear forms on QZ��,»Û»[ × QZ��,»Û»[ 
 ��àù�ℎ�, à��?�� = −4����- ^ ?��� 

ℝ ∗ S#o ℎ���: �»#v���Ô»#���: U#v�, (150) 

 ��àù�ℎ�, 	�?�� = −àù P∑ �#�¶P�
�#0�

qÐvqÐj R. (151) 

Proof. The operators à�, àù , 	 are #-closable, defined on QZ��,»Û»[, and are bounded as operators relative to 
Z��,»Û» + �[. Note that the right hand side of (150) is a bilinear form on QZ��,»Û»[ × QZ��,»Û»[, and that  

Z��,»Û» + �[�j \���- ^ ?��� 
ℝ ∗ S#o ℎ���: �»#v���Ô»#���: U#v�] Z��,»Û» + �[�j

 is a bounded operator. Hence each term 

in (150)-(151) is a bilinear form on QZ��,»Û»[ × QZ��,»Û»[. It suffices to establish equality on Q# × Q#, as in the 
proof of the Theorem 84, since Q# is a #-core for ��,»Û». Note that on the domain Q# × Q#, the equalities (150)-
(151) are seen to hold by direct computation in momentum space similarly to proof of the Theorem 11.27. 

Remark 11.9 We assume now the relations: 

 0 < A, ��øq�����j, �m, �v� = Cℎq�����j, �m, �v�Im, w = 1,2,3; � = 0,1;ℎq��� ∈ =&'(# � ℝ ∗ �#v�. (152) 
On a neighbourhood of a polyhedron �h, 0�v ⊂ ℝ ∗ �#, we assume for w = 1,2,3  

 A + ��ø������j, �m, �v� = �� = ��øj ��j, �m, �v�. (153) 
For all �� ∈ ℝ ∗ �#v, w = 1,2,3, we assume 

 ��øj ��j, �m, �v� = PA + ��ø������j, �m, �v�R øj ��j, �m, �v�. (154) 

The conditions (154) are satisfied if A + ��ø������j, �m, �v� = �� is valid on the support of øj  for w = 1,2,3. The 
condition (154) makes the required commutators densely defined operators, rather than bilinear forms. 

Definition 11.16 Let ℜ�D,C�
  be a set 
 ℜ�D,C�


 = ���j, �m, �v, �� ∈ ℝ ∗ �#
|h + |�| < �� < 0 − |�| for all w = 1,2,3�. (155) 

Remark 11.10 Note that the operators 
�� , w = 1,2,3 are formally a Lorentz generators for the space-time 
region ℜ�D,C�
 , also note that (152) implies that interval � = �h, 0� lies in the positive half line. Of course, we can also 

consider the operators 
��� = −A�� + à�Z��ø©����[ + àùZ��ø©j���[ with ø©q������ = øq����−�� and therefore the 
operators 
��� , w = 1,2,3 are locally correct generators for ℜ� �D,C�


 = ℜ��D,�C�
 . 
Definition 11.17  We also write ℜù
 instead ℜ�D,C�


  for � = �h, 0�  and we write � Ëv for �v = �h − 7, 0 + 7�v. The 

conditions (152)-(1544) are satisfied since we can choose øq��� so that for some �, 0 <  � <  h/3, 
 suppøj ⊂ � m�v ; suppø���� ⊂ � v�v ,  w = 1,2,3 (156) 

and A + ��ø������j, �m, �v� = �� , �� ∈ � m�v  . Hence the conditions (154) hold. We can also letøj = 1, �� ∈ � �v; so the 

conditions (153) hold on � �v.  The Hamiltonian 
 � = ��» + àù�øj � (157) 

 is correct in the region ℜù
. We shall work as above with this particular choice of the Hamiltonian. 
Theorem 11.29 For the operators 
�� in Theorem 11.25 and � in (157) the following hold: 
(1) Q��
���m� ⊂ Q�� �, Q��m� ⊂ Q�
���, w = 1,2,3 
(2) Q�
��� ⊂ Q P�� + 0��

�R , Q�� � ⊂ Q P�
�� + 0��
�R w = 1,2,3 

where 0 is an constant sufficiently large so that the operators  � +  0 and 
�� +  0 are positive. 
Theorem 11.30 Ander the conditions (152) and (154) the equalities (143)-(145) hold as bilinear forms on Q��m� × Q��m� and on Q��
���m� × Q��
���m�. 



Proof. As bilinear forms on Q��m� × Q��m� or Q��
���m� × Q��
���m� for w = 1,2,3 the following equalities 

hold ���,
��� = C���, à�Z��ø����[I + V����, àù���øj �� + ��àù�øj �, A��� + C�àù�øj �, à�Z��ø����[IW. In order to 

compute these commutators we apply Theorem 11.27 and Theorem 11.28.  

���,
��� = 	 µ�#P0X�8�X�R
�#0X · + 4����- ^ V��øj ��� − Aøj ��� − ��øj ���ø�������W 

ℝ ∗ S#o : �»#v���Ô»#���: U#v� =
	 µ�#P0X�8�X�R

�#0X ·,  
This equality holds by the conditions (154). Hence the equality (143) holds on Q��m� × Q��m� and on the 

domain  Q��
���m� × Q��
���m�. 
Theorem 11.31 If n≥2, Q��<� is a #-core for 
 and Q��
���<� is a #-core for �. 
Theorem 11.32 Let ? ∈ =&'(# � ℝ ∗ �#v� and supp? ⊂ ℜ�D,C�


 , then the operator �#�?� is defined on Q��
���m�, 

�#�?�: ��
���m� → Q�
���, w = 1,2,3 and, as the operator equalities on Q�
���, w = 1,2,3 
 ��
��, �»# �?�� = −�»# P� O#¶

O#0X + �� O
#¶
O#uR. (158) 

Remark 11.11 Note that for ? real, the operator �»# �?� is essentially self #-adjoint on Q��<� for any 3 ≥ 1/2  
and 

 �»# �?�: Q��� + 0�<� → Q P�� + 0�<��
�R. (159) 

Proof The terms in (158) are operators on Q��v� since �»# �?�Q��v� ⊂ Q��m� ⊂ Q�
���, w = 1,2,3 and 
��Q��v� ⊂ Q�� � ⊂ QZ�»# �?�[ by (157) and Theorem 11.26. Note that by Theorem 11.40 (158) holds on the 
domain Q����. Assuming this, we now can to prove the theorem. Let Á ∈ Q��
���m�, w = 1,2,3. By Theorem 
11.29, Q��
���m� ⊂ Q�� � and by (159) we get Á ∈ QZ�»# �?�[. Let us prove now that 
 �»# �?�Á ∈ Q�
���, w = 1,2,3. (160) 

Note that 
��Á ∈ Q�
��� ⊂ Q P�� + 0��
�R ⊂ QZ�»# �?�[ by Theorem 11.29 and (159), also for w = 1,2,3 

Á ∈ Q v�»# µ� Q#?Q#�� + ��
Q#?Q#� ·w. 

Therefore by the assumption mentioned above that (158) holds on domain Q����, we get for all w = 1,2,3  and 
for all ¼ ∈ Q���� that  

 〈
��¼, �»# �?�
��Á〉 = 〈¼, �»# �?�
��Á〉 + � 〈¼, �»# P� O#¶
O#0X + �� O

#¶
O#uR Á〉. (161) 

So �»# �?�Á ∈ QZZ
�� ↾ Q����[∗[ for w = 1,2,3. By Theorem 11.31, Q���� is a #-core for the  
�� , w = 1,2,3 
and therefore we get inclusion (160). By using (160) we can rewrite (161) in the following equivalent form 

 〈¼, �
�� , �»# �?��Á〉 = 〈¼, ��»# P� O#¶
O#0X + �� O

#¶
O#uR Á〉. (162) 

Since Q���� is #-dense, we get�
�� , �»# �?��Á = ��»# P� O#¶
O#0X + �� O

#¶
O#uR Á, proving (158) on the stated domain 

Q�
���, w = 1,2,3. 
Remark 11.12 Let us consider the self #-adjoint operators 
����� = ���-exp�−����
�����-exp�����, w =1,2,3. Since the operator ���-exp����� leaves Q��<� invariant, we have by Theorem 11.29 and Theorem 11.26 that 

Q��m� ⊂ QZ
�����[, w = 1,2,3. And for í = 2, 3, 4 we have that  
 
�����: Q��Ï� → Q��Ï�m�, w = 1,2,3. (163) 

Let ? ∈ =&'(# � ℝ ∗ �#
� with supp? ⊂ ℜù
  for � = �h, 0�. By (159) and (160) we can to conclude that �#�?�Q��v� ⊂
Q��m� ⊂ QZ
�����[, w = 1,2,3 and  
�����Q��v� ⊂ Q�� � ⊂ Q��»#�?� � or more generally, we can replace the 
operator �»#�?� by ���-exp������»#�?����-exp�−����. Thus for Á ∈ Q��v� and ? ∈ =&'(# � ℝ ∗ �#
� with supp? ⊂ℜ∆
 , we can to define the functions  
 Ñ���� = 〈Á, ��
�����, �»#�?��Á〉 = 〈Á���, ��
�� , ���-exp������»# �?����-exp�−�����Á���〉, (164) 
 Á��� = ���-exp�����Á. (165) 

Let � = �h, 0�, �� = �h − �, 0 + ��  and let ℜ∆� be the causal shadow of ∆�= �� ×  �� ×  ��. Let ℜË
  be a set  

 ℜË
 = ℜ∆E|�| ∩ V��, ��||�| < j
m �W = V��, ��||�| < j

m �, h + |7| + |�| < 0 − |7| − |�|W. (166) 

Note that the points of  ℜË
 have small times, and ℜË
 translated by times less than |7| lies in ℜ∆
. 



Theorem 11.33  Let Á ∈ Q����, then Ñ����, w = 1,2,3 in (161) is twice #-continuously differentiable. If 

function ? has #-compact support in ℜË, then for |�| ≤ |7|, �#��X�u�
�#u� ≡ 0. 

Proof First we prove the differentiability of Ñ����, w = 1,2,3. Let ∆< be the difference quotient for the 3-derivative of ���-exp����� at � = 0. For instance, ∆j��� = ��j����-exp����� − � �. Note that for a given vector 
 Á ∈ Q��<�, and 1 + « ≤ 3, as � →# 0, we get ó��>∆­��� − ����­JÁó# = ó>∆­��� − ����­J��Áó# →# 0. Hence, 

for Á ∈ Q��<�, the operator valued functions  
������-exp����� � is 3 − 2 times #-differentiable, since for 
« ≤ 3 − 2 we get ó
������-exp����� �>∆­��� − ����­JÁó# ≤ ó>∆­��� − ����­J�� + 0�mÁó# →# 0. All these 

functions Ñ���� has the following form Ñ���� = �〈
������-exp����� �Á, ���-exp������»# �?�Á〉 − �〈���-exp������»# �?�Á,
������-exp����� �Á〉. 
For a given vector  Á ∈ Q����, �»# �?�Á ∈ Q��
� and Ñ���� is three times #-continuously #-differentiable. 

Note that 

 
�#�X�u�

�#u  = 〈
���Á���, ���-exp������»# �?�Á〉 − 〈
��Á���, �����-exp����� �Á〉 − (167) 

〈���-exp������»# �?�Á, �
��Á���〉 + 〈���-exp������»# �?�Á,
���Á���〉. 
By rearranging the terms in (167) and using the domain relations of Theorem 11.26.1) we obtain by (143) that 

 
�#�X�u�

�#u  = 〈Á, ��,
�������»# �?�Á〉 − 〈�»# �?�Á, ��,
������Á〉 = (168) 

−� 〈Á, ����-exp�−���� �	vU#Z��ø����[
U#�� w ����-exp����� ��»# �?�Á〉 + 

� 〈�»# �?�Á, ����-exp�−���� �	vU#Z��ø����[
U#�� w ����-exp����� �Á〉. 

By #-differentiating (168) and writing 	� for the operator 	 µ�#P0X�8�X�R
�#0X · we obtain 

 
�#��X�u�

�#u� = −〈Á, ����-exp�−���� ���, 	������-exp����� �Á〉 + (169) 

〈�»# �?�Á, ����-exp�−���� ���, 	������-exp����� �Á〉 = 

� 〈Á���, ï	T µ�#�P0X�8�X�R
�#0X� 

· − àù P�#����
�#0X R , ����-exp����� ��»# �?�����-exp�−���� �Áð〉. 

Note that the all terms in (169) are well defined. For instance, �	�����-exp����� ��»# �?�Á is well defined 
since, for a given vector Á ∈ Q����, ����-exp����� ��»# �?�Á ∈ Q��
�, and by Theorem 11.26 for all w = 1,2,3 
we obtain 	�����-exp����� ��»# �?�Á = ���,
�������-exp����� ��»# �?�Á.  

Note that �
��ZQ��
�[ ⊂ Q�� � and 
���ZQ��
�[ ⊂ Q�� �, so �	�����-exp����� ��»# �?�Á is well 

defined.         Now, assuming that supp? ⊂ ℜË
, |�| ≤ |7| we can to show that 
�#��X�u�

�#u� ≡ 0, w = 1,2,3, this proof is 

based on the locality of the operators =�, w = 1,2,3 
 =� = 	T» µ∑ �#�P0X�8�X�R

�#0��
qÐvqÐj · − àù P∑ �#�� 

�#0�
qÐvqÐj R. (170) 

The operators =� are symmetric on Q���Û� and by (153) for w = 1,2,3 and � = 1,2,3    �#�P0X�8�X�R
�#0�� = 0 = �#�� 

�#0�  in 

a neighbourhood of ∆= �h, 0�v. We prove that =� , w = 1,2,3 commutes with the von Neumann algebra  À��� =
>���-expZ��»# �ℎj� + �Ô»# �ℎm�[|ℎq = ℎa[ ∈ =&'(# � ℝ ∗ �#v�, suppℎq ⊂ ℜùJ>>generated by the spectral projections of the 
time zero fields  ���- ^ �»#��� 

ℝ ∗ S#o ℎj���U#v� and ���- ^ Ô»#��� 
ℝ ∗ S#o ℎm���U#v�, ℎq = ℎa[ ∈ =&'(# � ℝ ∗ �#v�, suppℎq ⊂ ℜù. 

Theorem 11.34 On the domain Q��m� for w = 1,2,3 the equalities hold 
 �=� , À����Q��m� = 0. (171) 

Proof Let Q# be the domain of well-behaved vectors. 
 Q# = >Á ∈ ℱ#|Á�<� ∈ =&'(# � ℝ ∗ �#v<�, Á��� = 0 for all sufficiently large mJ. (172) 

For ¼j, ¼m ∈ Q#, direct momentum space computation gives for all 3 ∈ ℕ ∗  

 〈=�¼j, Z�»# �ℎj� + Ô»# �ℎm�[<¼m〉 = 〈Z�»# �ℎj� + Ô»# �ℎm�[<¼j, =�¼m〉 (173) 



By easy computation we get the inequality óZ�»# �ℎj� + Ô»# �ℎm�[<¼ ó ≤ YjYm<�3!��
� for constants Yj and Ym 

depending on vector ¼ ∈ Q#. Therefore ¼ ∈ Q# are entire vectors for the operator Z�»# �ℎj� + Ô»# �ℎm�[,  and the 
sum 

 �¼ = ���- ∑ PqU�#  �P��#qn�#  �P��R;
<!

) ∗<Ð� ¼ = ���-expC�Z�»# �ℎj� + Ô»# �ℎm�[I¼ (174) 

#-converges strongly. Now, we multiply (173) by � <�3!��j and by summation over 3 using the #-convergence of 
the hyper infinite series (174) we get for all w = 1,2,3 that 〈=�¼j ,�¼m〉 = 〈�∗¼j, =�¼m〉 = 〈¼j,�=�¼m〉 for ¼q ∈ Q#, � = 1,2. Note that this equality extends to ¼q ∈ Q���»Û�, � = 1,2 since Q# is a core for operators ��»Û and =� and ‖=�¼‖# ≤ °‖���»Û + ��¼‖# where ° is finite constant. Therefore for ¼ ∈ Q���»Û�, we have proved that �¼ ∈Q�=�∗� and =�∗�¼ = �=� ¼, w = 1,2,3. For the next step we now prove that ¼ ∈ Q���»Û� ⇒ �¼ ∈ Q���»Û�, so that =� �¼ = �=�¼, w = 1,2,3, since the operators =�  are symmetric on Q���»Û�. We define on Q���»Û� a #-norm by ‖¼‖# = ‖���»Û + ��¼‖#; Note that the corresponding scalar product makes Q���»Û� a non-Archimedean Hubert 
space, say �#j . For the next step we now prove that the operator ℬ = �»# �ℎj� + Ô»# �ℎm� generates a one parameter 
group  ��A� = ���-exp��Aℬ� = ���-expC�AZℬ = �»# �ℎj� + Ô»# �ℎm�[I on �#j  and therefore we need to prove that 
the operator 
 ℬ  = ���»Û + ��ℬ���»Û + ���j (175) 

is a generator to one parameter group on a corresponding Fock space.  Since ℬ  is essentially self #-adjoint on Q#, 
and on this domain we have that ℬ  = ℬ + ���»Û,ℬ����»Û + ���j = ℬ + �Û,ℬ���»���»Û + ���j + Û���» ,ℬ����»Û + ���j = ℬ + Þ. 

Hear Þ is bounded operator. Note that  ℬ  ↾ Q# is a bounded perturbation of an essentially self #-adjoint operator. 

Hence it #- closure #- Zℬ  ↾ Q#[²²²²²²²²²²²² generates a one parameter group on Fock space ℱ#, and operator ℬ ↾ ���»Û +��Q# has a #- closure in �#j  that generates a one parameter group on �#j . Since the topology of �#j  is stronger than 
that of ℱ#,  the #-closure of ℬ ↾ ���»Û + ��Q# in �#j  is a restriction of #- ℬ[ in ℱ# and the one parameter group in �#j  is a restriction of the one parameter group generated by #- ℬ[ in ℱ#. This proves that  �: Q���»Û� → Q���»Û� 

Therefore we have proved that  =� �¼ = �=�¼, w = 1,2,3. Now by passing to strong limits of linear combinations 
of such operators � we obtain (165) on restricting to the domain Q��m� ⊂ Q���»Û�. This makes precise the 
statement that operators =� , w = 1,2,3 are localized outside ∆= �h, 0�v. 

Remark 11.13 Note that for each �j, |�j| ≤ |7j|, the spectral projections of  ���- ^ �»#���?��, �j�U#v� 
ℝ ∗ S#o  

belong to À P#-intZ∆�|Ë|[R, where #-intZ∆�|Ë|[ is the #-interior of  ∆�|Ë|= ��|��, �j� ∈ ℜË
� = ���j, �m, �v�|h +
|7| < �� < 0 − |7|�. Note that supp? ⊂ ℜË
, hence the spectral projections of 

 ���-exp����� + �j�� P���- ^ �»#���?��, �j�U#v� 
ℝ ∗ S#o R ���-exp�−���� + �j�� (176) 

belong to À P#-intZ∆|u|�|Ë|[R. For |�| ≤ |7|, #-�3�Z∆|u|�|Ë|[ ⊂ ∆; so the spectral projections of  (170) belong to 

À�∆�. Now we use the locality property of the operators =� , w = 1,2,3. Note that for vector ¼ ∈ Q��m�,Á ∈ Q��v� 

we have that Á ∈ Q P���- ^ �»#��, 0�?��, �j�U#v� 
ℝ ∗ S#o R, and for �»#�?� = ���- ^ �»#��, ��?��, � �U#v� 

ℝ ∗ S#o U#�, by 

(159) it follows 
 ���-exp������»#�?����-exp�����Á ∈ Q��m�. (177) 

Therefore by (171) and the localization of (176) for all w = 1,2,3 we get 

 〈=� ¼, ���-exp����� + �j�� P���- ^ �»#���?��, �j�U#v� 
ℝ ∗ S#o R ���-exp�−���� + �j��Á〉 = (178) 

〈���-exp����� + �j�� P���- ^ �»#���?��, �j�U#v� 
ℝ ∗ S#o R ���-exp�−���� + �j��¼, =� Á〉.  

Note that for |�| ≤ |7| and ? ∈ =&'(# � ℝ ∗ �#
� with supp? ⊂ ℜË
  we can integrate the equality (178) over �j to 
obtain 
 〈=� ¼, ���-exp��������»#�?����-exp�−������Á〉 = 〈���-exp��������»#�?����-exp�−������¼, =� Á〉 = (179) 〈¼, =� ���-exp��������»#�?����-exp�−������Á〉.    

Here the last equality in (179) follows by (177) and the fact that =�  is a symmetric operator on Q���»Û� ⊃
Q��m�. From (179) we obtain that =� Á ∈ QZZ����-exp��������»#�?����-exp�−������� ↾ Q��m�[∗[ and therefore 
that =� Á ∈ Q����-exp��������»#�?����-exp�−�������, since Q��m� is a #-core for �»#�?�. Finally from (179) we 
get for |�| ≤ |7| and ? ∈ =&'(# � ℝ ∗ �#
� with supp? ⊂ ℜË
  for all w = 1,2,3 that 



 =� ���-exp��������»#�?����-exp�−������Á = ���-exp��������»#�?����-exp�−������=� Á. (180) 

We apply the relation (180) to (169). In that case Á��� ∈ Q���� ⊂ Q��v�, so  
�#��X�u�

�#u� ≡ 0, for |�| ≤ |7|. 
Theorem 11.35 [15] Let ? ∈ =&'(# � ℝ ∗ �#
� and supp? ⊂ ℜË
 , then on domain Q���� the operator equalities hold 

for all w = 1,2,3 
 ��
���7�, �»#�?� � = ��
�� , �»#�?� � − 7 ï	 µ�#P0X�8�X�R

�#0X · , �»#�?�ð. (181) 

The next step in the proof of Theorem 11.32 is to pass to the sharp time #-limit of Theorem 11.35, thus we need 
to choose a hyper infinite sequence of functions ?< ∈ =&'(# � ℝ ∗ �#
�, 3 ∈ ℕ ∗  which pick out a time zero contribution in 
the #-limit. Let us define now 
 Þ»�?, �� = ���- ^ �»#���?��, ��U#v� 

ℝ ∗ S#o , (182) 

 Ù»�?, �� = ���- ^ Ô»#���?��, ��U#v� 
ℝ ∗ S#o . (183) 

Where �»#��� and Ô»#��� the canonical time-zero fields. For real ? ∈ =&'(# � ℝ ∗ �#
�, with #-compact support, Þ»�?, �� 

and Ù»�?, �� are essentially self-#-adjoint on Q P�� + 0��
�R. Let ? ∈ �  �) ∗ � ℜù
� and let ?<��, �� ∈ =&'(# � ℝ ∗ �#
�, 3 ∈ ℕ ∗  

be a hyper infinite sequence of functions of the following form ?<��, �� = ?<��, 7��<��� with support in ℜË
 and #-converging in the weak sense to ?<��, 7�� ��� as 3 → ∞. ∗  For the vector  Á ∈ Q����, the vectors 
���7�Á, w =
1,2,3, and the vectors 
��Á, 	 µ�#P0X�8�X�R

�#0X · Á the same as in the proof of Theorem 11.35. Note that the bilinear 

form  �»#��, �� for ��, �� ∈ ℜù
 determines a bounded operator 

 ¡��, �� = �� + 0��
� �»#��, ���� + 0���

�. (184) 
Note that the operator valued function ¡��, ��  is #-continuous in variable ��, ��. 
Theorem 11.36 Let ? ∈ =&'(# � ℝ ∗ �#
� and supp? ⊂ ℜ∆
. Then, in the sense of bilinear forms on Q����, for all w = 1,2,3 

 ��
���7�, Þ»�?, 7�� = ��
�� , Þ»�?, 7�� − 7��	� , Þ»�?, 7�� (185) 

Here 	� = 	 µ�#P0X�8�X�R
�#0X ·. 

Theorem 11.37 [15] Let ? ∈ �  �) ∗ � ℜ∆
�. As an equality of bilinear forms on Q�� � × Q�� � 

 �� 	� , Þ»�?, 7�� = Þ P �#¶
�#0X , 7R. (186) 

And where  	�  is defined in Theorem 11.36. 
Theorem 11.38 As the equalities of bilinear forms on Q��m� × Q��m� for all w = 1,2,3 

 ��
�� , Þ»�?, 7�� = ���, Þ»���?, 7�� = Ù»���?, 7�. (187) 

Theorem 11.39 [15] Let |?|#j be the #-norm |?|#j = Y P���- ^ V‖?�∙, ��‖#m + ∑ óQ0�# ?�∙, ��ó#m
vqÐj W U#� 

ℝ ∗ +#� R. 

Let  |?|#j is finite. Then on the domain  Q P�� + 0�o
�R, ), the field �»#�?� satisfies the following equation 

 �Qu#�»#��?� = −�»#�Qu#?� = Ô»#�?� = ���, �»#�?��. (188) 
Proof Note that the first equality in (188) is the definition of a distribution #-derivative. The out the difference 

quotient ∆�?��, �� to #-derivative  Qu#? reads ∆�?��, �� = �¶�0#�,u��¶�0,u��
� ,  note that #-lim�→#� ∆�?��, �� =

Qu#?��, ��. Note that for any vector Á such that Á ∈ Q P�� + 0��
�R by canonical consideration we get  

#-lim�→#� ó�»#�Qu#?�Á − �»#Z∆�?��, ��[Áó# = 0. 
We have for Á ∈ Q P�� + 0�o

�R that   

�»#Z∆�?��, ��[Á = ��j�� − ���-exp������ V���- ^ �»#��, � − ��?��, ��U#v�ÁU#� 
ℝ ∗ +#� W+ 

��j ¢���- T Þ»�?, ������-exp����� − ��ÁU#� 
ℝ ∗ +#�

£. 
Here the last term #-converges as � →# 0 and it #-limit is: � P���- ^ Þ»�?, ���ÁU#� 

ℝ ∗ +#� R. Since �»#Z∆�?��, ��[Á  

#-converges as � →# 0, the remaining term in expression for �»#Z∆�?��, ��[Á  #-converges also to a #-limit Áj. For ¼ ∈ Q��� we obtain that 



〈¼, Áj〉 = #-lim�→#� 〈¼, ��j�� − ���-exp������ V���- ^ �»#��, � − ��?��, ��U#v�ÁU#� 
ℝ ∗ +#� W〉 = 〈��¼, �»#�?�Á〉. 

Since � = �∗, it follows that �»#�?�Á ∈ Q��� and Áj = ���»#�?�Á and therefore: −�»#�Qu#?�Á =���, �»#�?��Á. From the above equation we obtain 

〈Á, �»#�Qu#?�Á〉 = ���- T 〈�Á���, ���- T �»#��, 0�?��, ��U#v�Á���  
ℝ ∗ +#�

〉 
ℝ ∗ +#

U#� − 

���- T 〈���- T �»#��, 0�?��, ��U#v�Á���, �Á��� 
ℝ ∗ +#�

〉 
ℝ ∗ +#

U#�. 
Here Á��� = ���-exp�����Á. Note that Á��� ∈ Q���»� ∩ QZ�ù,»[, and ó�ù,»ZÁ��� − Á�7�[ó# ≤ hó�� +
0�ZÁ��� − Á�7�[ó# →# 0, as |� − 7| →# 0. Therefore we may substitute ��» + �ù,» for � and consider each term 

separately. Note that the operators �ù,» and ���- ^ �»#��, 0�?��, ��U#v�   
ℝ ∗ +#�  commute and therefore �ù,» contribute 

zero to equality above. The following identity by canonical computation holds for any  Á ∈ Q���»�, in particular for Á��� = ���-exp�����Á ∈ Q���»� 〈��»Á, ���- ^ �»#��, 0�?��, ��U#v�Á   
ℝ ∗ +#� 〉 − 〈���- ^ �»#��, 0�?��, ��U#v�Á   

ℝ ∗ +#� , ��»Á〉 =  

〈Á, −����- T Ô»#��, 0�?��, ��U#v�Á   
ℝ ∗ +#�

〉. 
Therefore finally we get �〈Á, �»#�Qu#?�Á〉 = ���- ^ 〈Á���, −����- ^ Ô»#��, 0�?��, ��U#v�Á  

ℝ ∗ +#� 〉 
ℝ ∗ +# U#� = 〈Á, −�Ô»#�?�Á〉. 

This equality finalized the proof. 
Theorem 11.40 As the operator equalities on Q���� for all w = 1,2,3 

 ��
��, �»# �?�� = −�»# P� O#¶
O#0X + �� O

#¶
O#uR. (189) 

Proof We first prove (189) as equalities of bilinear forms on Q���� × Q����. Let Á is a near standard vector 
and Á ∈ Q����. By Theorems 11.37-11.39, for all w = 1,2,3 we get   

〈Á, �
���7�, Þ»�?, 7�Á〉 = 〈Á, Ù»���?, 7�Á, 〉 − 〈Á, Þ µ U#?
U#�� , 7· Á〉. 

Substituting ���-exp���7� for Á, we obtain that 
 〈Á, ��
�� , ���-exp���7�Þ»�?, 7����-exp�−��7��Á〉 = (190) 

〈Á, ���-exp���7� ¢Ù»���?, 7� − Þ µ7 U#?
U#�� , 7·£���-exp�−��7�Á〉. 

From (188) we get   

 ���- ^ ���-exp����� 
ℝ ∗ +#� Ô»#������-exp�����?��, ��U#v�U#� = −�»# PO #¶

O #uR. (191) 

Using (191) we integrate (190) over s to obtain for all w = 1,2,3  the equalities of bilinear forms 

 〈Á, �
�� , �»# �?�Á〉 = − 〈Á, �»# P� O#¶
O#0X + �� O

#¶
O#uR Á〉. (192) 

Since 
���»# �?�, �»# �?�
��, and �»# P� O#¶
O#0X + �� O

#¶
O#uR are operators on Q���� for all w = 1,2,3, the operator 

equalities (189) follows by polarization and the #-density of  Q����. This final remark completes the proof of the 
theorem and hence it completes the proof of Theorem 11.32. 

Theorem 11.41 [15] Let ℜ ⊂ ℝ ∗ �,&'(#
  be an bounded region in ℝ ∗ �,&'(#
   and let Ñ��B, �, ��, w = 1,2,3 be a functions 

such that Ñ��B, �, ��, B ∈ ℝ ∗ �,&'(#  and 
O#�X�F,0,u�
O#F  are #- continuous in �B, �, ��, where the partial #-derivative exists for 

each point ��, �� ∈ ℝ ∗ �,&'(#
 . Assume that for all ?��, �� ∈ �  �,&'() ∗ � ℜ� the following equalities hold for all w = 1,2,3, 
 ���- ^ O#�X�F,0,u�

O#F ?��, ��U#v�U#� 
ℝ ∗ +#� = −���- ^ Ñ��B, �, �� \�� O

#¶
O#u + � O#¶

O#0X] U#v�U#� 
ℝ ∗ S#o . (193) 

Then for all �B, �, �� such that Λ�F��, �� ∈ ℜ for 0 ≤  � ≤  1, w = 1,2,3 
 Ñ��B, �, �� = Ñ� P0,o�F��, ��R + ��B, �, �� = (194) 

Ñ��0, �� cosh B + � sinh B, �� sinh B + � cosh B� + ��B, �, ��. 
Here ��B, �, �� is a nonzero function such that ��B, �, �� ≠ 0 and ��B, �, �� is #- differentiable with zero partial 

#-derivatives �F#>�B, �, �� ≡ 0, �0X#
=�B, �, �� ≡ 0, �u#=�B, �, �� ≡ 0. 



Proof Obviously (194) is a solution to the equations (193). Thus we need prove uniqueness (194) for a given 
function ��B, �, �� and for all w = 1,2,3 and it is sufficient to prove uniqueness for the case Ñ��0, �, �� = ��0, �, ��. 
Let Þ� be the operator Þ� = �� O

#
O#u + � O#

O#0X. Note that by (177), provided supp? Po�F=��, ��R ⊂ ℜ we get   

 
O#
O#F= P���- ^ Ñ��B>, �, ��? Po�F=��, ��R U#v�U#� 

ℝ ∗ S#o R = (195) 

���- T ¢Q#Ñ��B>, �, ��Q#B> ? Po�F=��, ��R + Ñ��B>, �, ��Þ�? Po�F=��, ��R£U#v�U#� 
ℝ ∗ S#o = 0. 

Let  ℜk = ⋂ o�F  � ~ �~ j ℜ and ?��, �� ∈ �  �,&'() ∗ Z ℜk[, then (195) holds for all B> such that 0 ≤ B> ≤ B. Note that 

for all functions ?��, �� ∈ �  �,&'() ∗ � ℜ� the following equalities (196) hold for all w = 1,2,3, 
 ���- ^ Ñ��B, �, ��? Po�F=��, ��R U#v�U#� 

ℝ ∗ S#o = 0.  (196) 

Thus, in the sense of distributions we obtain that 
 Ñ��B, �, �� = 0, ��, �� ∈ ℜk . (197) 

Since Ñ��B, �, �� is #-continuous, (197) holds in usual sense everywhere in ℜ¤. This establishes required 
uniqueness, and completes the proof of the theorem. 

Definition 11.18 (1) Let ��#, ‖∙‖#� be a linear normed space over field ℂ ∗ +#. An element � ∈ �# is called finite 
or norm finite if ‖�‖# ∈ ℝ ∗ �,&'(#  and we let Fin��#� denote the set of the all finite elements of �#; the element 
� ∈ �# is called infinitesimal if ‖�‖# ≈ 0 and we write � ≈ : for ‖� − :‖# ≈ 0. (2)Let ��#, 〈∙,∙〉#� be a non-

Archimedean Hilbert space over field ℂ ∗ +# endowed with a canonical  #-norm ‖�‖# = |〈�, �〉#, then we apply the 
same definition as in (1). 

Definition 11.19 Let Þ be a linear operator Þ: �# → �# with domain Q�Þ�. Let Q&'(�Þ� ⊂ Q�Þ� be a subdomain 
such that for all  Á ∈ Q�Þ�: Á ∈ Q&'(�Þ�⟺ ‖�‖# ∈ ℝ ∗ �,&'(#  and let Q&'(# �Þ� be a subdomain Q&'(# �Þ� ⊂ Q&'(�Þ� such 
that for all  Á ∈ Q&'(�Þ�: Á ∈ Q&'(# �Þ�⟺ ‖Þ�‖# ∈ ℝ ∗ �,&'(# . 

Definition 11.20 Let ö�∙,∙� be a bilinear form with domain Q�ö� × Q�ö� on �# such that Q�ö� × Q�ö� ⊊ �# ×�# and Q�ö� × Q�ö� → ℂ ∗ �#. Let Q&'(�ö� × Q&'(�ö� ⊂ Q�ö� × Q�ö� be a subdomain such that for all �Áj, Ám� ∈Q&'(�ö� × Q&'(�ö�⟺ |〈Áj, Ám〉#| ∈ ℝ ∗ �,&'(# . Let Q&'(# �ö� × Q&'(# �ö� ⊂ Q&'(�ö� × Q&'(�ö� be a subdomain such that for 
all �Áj, Ám� ∈ Q&'(�ö� × Q&'(�ö�: �Áj, Ám� ∈ Q&'(# �ö� × Q&'(# �ö�⟺ ö�Áj, Ám� ∈ ℂ ∗ �,&'(# . 

Theorem 11.42 [15] Assume that the operators 
�� = 
»�� = 
�,»��  +
ù,»��  , w = 1,2,3  satisfy conditions (152)-

(154) and where the operators 
�,»��   are defined by (125). We set now ��B, �, �� ≈ 0. 
(1) If ? ∈ =&'(# � ℝ ∗ �#
�, supp? ⊂ #-int� ℜ∆
�, ∆= �h, 0�v  and supp?¦�F� ⊆ #-int� ℜ∆
� = ℘
̈ , then for all w =

1,2,3 on domains Q&'(��
���m� 
 ���-exp��
��B��»#�?����-exp�−�
��B� ≈ �»#Z?¦�F�[. (198) 

Here the ≈ - equalities (198) hold as ≈ -equalites for self #-adjoint operators. 
(2) If ��, �� ∈ ℜ∆
 and ΛF��, �� ∈ ℜ∆
, then for all w = 1,2,3 

 ���-exp��
��B��»#��, �����-exp�−�
��B� ≈ �»# P ΛF��, ��R (199) 

Here the ≈ - equalities (199) hold in the sense of ℝ ∗ �,&'(# - valued bilinear forms on domains Q&'(# �
��� ×
Q&'(# �
��� and on domains Q&'(# �
��� × Q&'(# �
���. 

Remark 11.15 Note that (1) for real-valued ? ∈ =&'(# � ℝ ∗ �#
� is a self-#-adjoint operator �»#�?�, essentially 
self -#-adjoint operator on a variety of appropriate domains. It is for this self #-adjoint operator that (198) is valid; 
(2) on the subdomains Q&'(# ��
���m�  ≈ -equalites (198) entail for all w = 1,2,3 the equalities  

stZ���-exp��
��B��»#��, �����-exp�−�
��B�[ = st é�»# P ΛF��, ��Rë ;  
(3) on the subdomains Q&'(# ��
���m� the ≈ -equalites (198) entail for all w = 1,2,3 the equalities  

stZ���-exp��
��B��»#�?����-exp�−�
��B�[ = st P�»#Z?¦�F�[R. 
Proof Let Á ∈ Q�
��� and let Ñ��B, �, �� be the function is defined by  

 Ñ��B, �, �� = 〈���-exp�−�
��B�Á, �»#��, ������-exp�−�
��B�Á�〉. (200) 
For all �B, �, �� ∈ ℝ ∗ �,&'(# × ℝ ∗ �,&'(#
  and for ? ∈ =&'(# � ℝ ∗ �#
�, let Ñ��B, ?� be the function is defined by  

Ñ��B, ?� = 〈���-exp�−�
��B�Á, �»#�?�����-exp�−�
��B�Á�〉 = 



 ���- ^ Ñ��B, �, ��?��, ��U#v�U#� ℘©́ . (201) 

Note that �»#��, �� is a bilinear form defined on Q P�� + 0�o
�R × Q P�� + 0�o

�R, #-continuous in ��, �� ∈ ℝ ∗ �,&'(#
 . 

By Theorem 11.29 Q�
��� ⊂ Q P�� + 0��
�R and therefore Ñ��B, �, �� is well defined and #-continuous in ��, ��. 

Note   that a function Ñ��B, �, �� is #-continuously #-differentiable in B ∈ ℝ ∗ �,&'(#  and for all w = 1,2,3 
 

O#�X�F,0,u�
O#F = −〈���-exp�−�
��B��
��Á, �»#�?�����-exp�−�
��B�Á�〉 (202) 

−〈���-exp�−�
��B�Á, �»#�?�����-exp�−�
��B��
��Á�〉.  
By the canonical argument, we have for all w = 1,2,3 that  

 
O#�X�F,¶�
O#F = 〈���-exp�−�
��B�Á, ��
�� , �»#�?������-exp�−�
��B�Á�〉 = (203) 

���- T Ñ��B, �, ��?��, ��U#v�U#� 
℘©́

. 
By Theorem 11.40 under the condition supp? ⊂ #-int� ℜ∆
� we have for all w = 1,2,3 that  Q#Ñ��B, ?�

Q#B = − 〈���-exp�−�
��B�Á, �»# µ��
Q#?Q#� + � Q#?Q#��· ���-exp�−�
��B�Á〉 = 

 −���- ^ Ñ��B, �, �� P�� O
#¶
O#u + � O#¶

O#0XR ?��, ��U#v�U#� 
ℝ ∗ S#o . (204) 

Therefore by Theorem 11.40 under the condition   
 ⋃  o�F��, �� ∈ ℜ∆
 �~�~j  (205) 

we have for all w = 1,2,3 that  

 Ñ��B, �, �� = Ñ� P0,  o�F��, ��R + ��B, �, �� (206) 

That is, if (205) holds, then (206) also holds for all w = 1,2,3 and finally we get 

 ���-exp��
��B��»#��, �����-exp�−�
��B� = �»# P oF��, ��R + ��B, �, ��. (207) 

Here the equations (207) hold in the sense of bilinear forms on Q��
���m� × Q��
���m�, i.e. 

 〈Áj, ���-exp��
��B��»#��, �����-exp�−�
��B�Ám〉 = 〈Áj, �»# P oF��, ��R Ám〉 + ��B, �, ��〈Áj, Ám〉. (208) 

From (208) on the domain Q&'(#  ��
���m� × Q&'(# ��
���m� ⊂ Q&'(��
���m� × Q&'(��
���m� ⊂ Q��
���m� ×
Q��
���m� we get the ≈ -equality 

 〈Áj, ���-exp��
��B��»#��, �����-exp�−�
��B�Ám〉 ≈ 〈Áj, �»# P oF��, ��R Ám〉, (209) 

since 〈Áj, Ám〉  is finite and therefore  ��B, �, ��〈Áj, Ám〉 ≈ 0. 
Note that in the #-limit � →# 0 by (125) we get 

 #- lim→#�
 �� = 
»��. (210) 
Therefore in the #-limit � →# 0 from (208) and (210) we obtain that     

 lim�→#� 〈Áj, ���-exp��
��B��»#��, �����-exp�−�
��B�Ám〉 = (211) 
〈Áj, ���-exp��
»��B���,»# ��, �����-exp�−�
»��B�Ám〉 = 

Lim�→#� 〈Áj, �»# P oF��, ��R Ám〉 + ��B, �, ��〈Áj, Ám〉 = 〈Áj, ��,»# P oF��, ��R Á〉 + ��B, �, ��〈Áj, Ám〉. 
From (211) on the domain Q&'(#  ��
���m� × Q&'(# ��
���m� ⊂ Q&'(��
���m� × Q&'(��
���m� ⊂ Q��
���m� ×

Q��
���m� we get the ≈ -equality for free quantum field ��,»# ��, ��  

 〈Áj, ���-exp��
»��B���,»# ��, �����-exp�−�
»��B�Ám〉 ≈ 〈Áj, ��,»# P oF��, ��R Ám〉. (212) 

Remark 11.16 Note that the ≈ -equality required by (212) is necessary, see Remark 9.2. 
The ≈ -equality (209) extends by #-closure to Q&'(#  �
� × Q&'(# �
�, since Q&'(#  �
� ⊂ Q&'(#  Z�� + 0�j/m[ by 

Theorem 11.29, and the estimate 
 |〈Á, ���-exp��
��B��»#��, �����-exp�−�
��B�Á 〉| ≈ (213) 

O〈Á, �»# P oF��, ��R Á〉O ≤ Yó�� + 0�j/mÁóm.  
Here Y is finite constant. Furthermore Q��
���m� for any w = 1,2,3 is a #-core for �, by Theorem 11.31, and 

therefore a #-core for �� + 0��
�. Thus (208) extends to Q��
���m� × Q��
���m� and on this domain we also have 

#-continuity of the form in ��, �� ∈ ℝ ∗ �,&'(#
 . Note that it is necessary to assume that ⋃  o�F��, �� ∈ ℜ∆
 �~�~j . 



However for the regions ℜ∆
 this statement follows from the condition ��, �� ∈ ℜ∆
 ⇒  oF��, �� ∈ ℜ∆
. This final 
remark completes the proof of this theorem part (2). Now we go to prove the operator ≈ -equality (198) for the case 

? ∈ =&'(# � ℝ ∗ �#
�, supp? ∪ supp? «¬ . By Theorem 11.29, the operators �»#�?� and �»# P? «¬R  are defined on domain 

Q��
���m�. Integrating (207) against ?��, ��, we get the equalities   

 ���-exp��
��B��»#�?����-exp�−�
��B� = �»# P? «¬R + ���- ^ ��B, �, ��?��, ��U#v�U#�. ℜ∆́  (214) 

Obviously the equalities (213) hold on the domains Q��
���m� with w = 1,2,3 correspondingly. For any vector Á such that Á ∈ Q��
���m� from (207) we obtain the equalities 

 �»#�?����-exp�−�
��B�Á = ���-exp�−�
��B��»# P? «¬R Á + P���- ^ ��B, �, ��?��, ��U#v�U#� ℜ∆́ R Á. (215) 

Since   ò�»# P? «¬R Áò ≤ Yj ò�� + 0��
�Áò 

and Q��
���m� for any w = 1,2,3 is a #-core for �, by Theorem 

11.31, the equalities (215) extends by #-closure to Q��� and (215) holds for Á ∈ Q���. Since the domain  Q��� is 

a #-core for the operator �»# P? «¬R, we conclude that (214) extends by #-closure to Q é�»# P? «¬Rë and therefore the 

equalities (215) hold for all w = 1,2,3 and for any Á such that  Á ∈ Q é�»# P? «¬Rë. Thus we have proved that 

���-exp�−�
��B�Q é�»# P? «¬Rë ⊂  QZ�»#�?�[. 
By similar consideration one obtains that 

���-exp�−�
��B�Q é�»# P? «¬Rë ⊂  QZ�»#�?�[. 
This proves (214) as an equality between self- #-adjoint operators, completing the proof of the theorem. 

CONCLUSION 

A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, a field 
operator ���, �� no longer a standard tempered operator-valued distribution, but a non-classical operator-valued 
function. We prove using this novel approach that the quantum field theory with Hamiltonian 	���
 exists and that 
the canonical �∗- algebra of bounded observables corresponding to this model satisfies all the Haag-Kastler axioms 
except Lorentz covariance. We prove that the ���
�
 quantum field theory model is Lorentz covariant. For each 
Poincare transformation h ,o  and each bounded region / of Minkowski space we obtain a unitary operator � which 
correctly transforms the field bilinear forms ���, �� for ��, �� ∈ /. The von Neumann algebra  ℭ�/� of local 
observables is obtained as standard part of external nonstandard algebra ℬ#�/�. 
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