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Abstract: In this paper we view the first order set theory  ZFC   under the canonical first 

order semantics and the second order set theory  ZFC2   under the Henkin semantics. 

Main results are:(i) Let  Mst
ZFC   be a standard model of  ZFC  ,then 

(i)�Con�ZFC � �Mst
ZFC�. (ii) Let  Mst

ZFC2   be a standard model of  ZFC2   with Henkin 

semantics, then  �Con�ZFC2 � �Mst
ZFC2�.  (iii) Let  k   be inaccessible cardinal then  

�Con�ZFC � ���  . 
Keywords:  Gödel encoding,Russell's paradox, standard model, Henkin semantics,  
inaccessible cardinal. 

I.Introduction. 
1.1.Main results. 
Let us remind that accordingly to naive set theory, any definable collection is a set. Let  
R  be the set of all sets that are not members of themselves. If  R  qualifies as a 
member of itself, it would contradict its own definition as a set containing all sets that 
are not members of themselves. On the other hand, if such a set is not a member of 
itself, it would qualify as a member of itself by the same definition. This contradiction is 
Russell's paradox. In 1908, two ways of avoiding the paradox were proposed, Russell's 
type theory and Zermelo set theory, the first constructed axiomatic set theory. Zermelo's 
axioms went well beyond Frege's axioms of extensionality and unlimited set abstraction, 

and evolved into the now-canonical Zermelo--Fraenkel set theory  ZFC. "But how do we 

know that  ZFC  is a consistent theory, free of contradictions? The short answer is that 
we don't; it is a matter of faith (or of skepticism)"--- E.Nelson wrote in his paper [1]. 

However, it is deemed unlikely that even  ZFC2    which is significantly stronger than  
ZFC   harbors an unsuspected contradiction; it is widely believed that if  ZFC   and  
ZFC2   were inconsistent, that fact would have been uncovered by now. This much is 

certain --- ZFC   and  ZFC2   is immune to the classic paradoxes of naive set theory: 
Russell's paradox, the Burali-Forti paradox, and Cantor's paradox. 

Remark 1.1.1. Note that in this paper we view (i) the first order set theory  ZFC   under      

the canonical first order semantics (ii) the second order set theory  ZFC2   under the 
Henkin semantics [2],[3],[4],[5],[6]. 
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Remark 1.1.2. Second-order logic essantially differs from the usual first-order predicate 
calculus in that it has variables and quantifiers not only for individuals but also for 

subsets of the universe and variables for  n  -ary relations as well [2],[6].The deductive 

calculus   DED2 of second order logic is based on rules and axioms which guarantee 
that thequantifiers range at least over definable subsets [6]. As to the semantics, there 

are two tipes of models: (i) Suppose  U  is an ordinary first-order structure and 
S   is a set of subsets of the domain  A   of  U . The main idea is that the set-

variablesrange over  S,  i.e.  �U,S� � �X��X� � �S�S � S���U,S� � ��S��.   

We call  �U, S�   a Henkin model, if  �U, S�   satisfies the axioms of  DED2   and 

truth in  �U,S�   is preserved by the rules of  DED2  . We call this semantics 
of second-order logic the Henkin semantics and second-order logic with the 
Henkin semantics the Henkin second-order logic. There is a special class of 

Henkin models, namely those  �U,S�   where  S   is the set of all subsets of  A.   
We call these full models. We call this semantics of second-order logic the full 
semantics and second-order logic with the full semantics the full second-order logic. 
Remark 1.1.3. We emphasize that the following facts are the main features of 
second-order logic: 

1.The Completeness Theorem:  A sentence is provable inDED2 if and only if it holds in   
  all Henkin models [2],[6]. 
2.The Löwenheim-Skolem Theorem:  A sentence with an infinite Henkin model has a   
   countable Henkin model. 
3.The Compactness Theorem:  A set of sentences, every finite subset of 
which has a Henkin model, has itself a Henkin model. 

4.The Incompleteness Theorem:  Neither  DED2   nor any other effectively 
given deductive calculus is complete for full models, that is, there are 
always sentences which are true in all full models but which are unprovable. 
5.Failure of the Compactness Theorem for full models. 
6.Failure of the Löwenheim-Skolem Theorem for full models. 

7.There is a finite second-order axiom system  �2 such that the semiring �  of natural 

numbers is the only full model (up to isomorphism) of  �2  . 

8. There is a finite second-order axiom system  RCF2   such that the field �of real 

numbers is the only (up to isomorphism) full model of RCF2  . 

Remark 1.1.4. For let second-order  ZFC   be, as usual, the theory that results obtained 

from  ZFC  when the axiom schema of replacement is replaced by its second-order   
universal closure,i.e. 

�X�Func�X� � �u���r�r � � � �s�s � u � �s, r� � X���, �1. 1. 1�   

where  X   is a second-order variable, and where  Func�X�   abbreviates "  X   is a 
functional relation",see [7]. 

Designation 1.1.1. We will denote (i) by  ZFC2
Hs

  set theory  ZFC2   with the Henkin 
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semantics, (ii) by  ZFC2
Hs

  set theory  ZFC2
Hs � �Mst

ZFC2
Hs

  and (iii) by  ZFCst   set theory  
ZFC � �Mst

ZFC  , where  Mst
Th   is a standard model of the theory  Th.   

Axiom   �MZFC.  [8]. There is a set  MZFC   and a binary relation  � � MZFC � MZFC   which 

makes  MZFC   a model for  ZFC.

Remark 1.1.3. (i)We emphasize that it is well known that axiom  �MZFC   a single 
statement   

in  ZFC   see [8], Ch. II, section 7.We denote this statement through all this paper by 

symbol  Con�ZFC;MZFC�  .The completeness theorem says that  �MZFC � Con�ZFC�.   

(ii) Obviously there exists a single statement in  ZFC2
Hs

  such that  

�MZFC2
Hs

� Con�ZFC2
Hs�.   

We denote this statement through all this paper by symbol  Con ZFC2
Hs;MZFC2

Hs

  and 

there exists a single statement  �MZ2
Hs

  in  Z2
Hs

 . We will denote this statement through 

all this paper by symbol  Con Z2
Hs;MZ2

Hs
.   

Axiom   �Mst
ZFC.  [8].There is a set  Mst

ZFC   such that if  R  is  
	�x,y�|x � y � x � Mst

ZFC � y � Mst
ZFC
  then  Mst

ZFC   is a model for  ZFC   under the relation  
R.   

Definition 1.1.1. [8].The model  Mst
ZFC   and  Mst

Z2
Hs

 is called a standard model since the 

relation  �   used is merely the standard  �  - relation. 

Remark 1.1.4. [8].Note that axiom  �MZFC   doesn't imply axiom  �Mst
ZFC.   

Remark 1.1.6. Note that in order to deduce: (i)  ~Con�ZFC2
Hs�   from  Con�ZFC2

Hs�,   

and (ii)  ~Con�ZFC�   from  Con�ZFC�,  by using Gödel encoding, one needs  something 

more than the consistency of  ZFC2
Hs

 , e.g., that  ZFC2
Hs

  has an omega-model  M�
ZFC2

Hs

  

or an standard model  Mst
ZFC2

Hs

  i.e., a model in which the integers are the standard 
integers. To put it another way, why should we believe a statement just because there's 

a  ZFC2
Hs

 -proof of it? It's clear that if  ZFC2
Hs

  is inconsistent, then we won't believe  
ZFC2

Hs
-proofs. What's slightly more subtle is that the mere consistency of  ZFC2   isn't 

quite enough to get us to believe arithmetical theorems of  ZFC2
Hs;   we must also 

believe that these arithmetical theorems are asserting something about the standard 

naturals. It is "conceivable" that  ZFC2
Hs

  might be consistent but that the only 

nonstandard models  MNst
ZFC2

Hs

  it has are those in which the integers are nonstandard, in 

which case we might not "believe" an arithmetical statement such as " ZFC2
Hs

  is 

inconsistent" even if there is a  ZFC2
Hs

 -proof of it. 

2.Derivation of the inconsistent definable set in set theory  
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ZFC2
Hs   and in set theory  ZFCst.

2.1.Derivation of the inconsistent definable set in set 
theory  ZFC2

Hs.   

We assume now that  Con Z2
Hs;Mst

Z2
Hs

.   

Designation 2.1.1. Let  �X
Hs

  be the collection of the all 1-place open wff of the set 

theory ZFC2
Hs.   

Definition 2.1.1. Let  �1�X�,�2�X�   be 1-place open wff's of the set theory  ZFC2
Hs.   

(i) We define now the equivalence relation  �� �X �� � �X
Hs � �X

Hs
  by                               

�1�X� � �2�X� � �X��1�X� � �2�X�� �2.1.1�

(ii) A subset  �X
Hs

  of  �X
Hs

  such that  �1�X� � �2�X�   holds for all  �1�X�   and  �2�X�   

in  �X
Hs,   

and never for  �1�X�   in  �X
Hs

  and  �2�X�   outside  �X
Hs

 , is called an equivalence class 

of  �X
Hs.   

(iii) The collection of all possible equivalence classes of  �X
Hs

  by  ~X  , denoted  �X
Hs/ �X                                              

�X
Hs/ �X 	 	���X��Hs|��X� � �X

Hs
. �2.1.2�

                  

(iv) For any  ��X� � �X
Hs

  let  ���X�� 	 	��X� � �X
Hs|��X� � ��X�
   denote the 

equivalence class to which  ��X�   belongs. All elements of  �X
Hs

  equivalent to each 
other are also elements of the same equivalence class. 

Definition 2.1.2. [9].Let  Th   be any theory in the recursive language  �Th 
 �PA ,  where  
�PA  is a language of Peano arithmetic.We say that a number-theoretic relation  
R�x 1 , . . . , x n �   of n   arguments is expressible in  Th   if and only if there is a wff  
�
R�x 1 , . . . , x n �   of  Th   with the free variables  x 1 , . . . , x n   such that, for any natural 

numbers  k 1 , . . . ,k n ,   the following hold: 

(i) If  R�k 1 , . . . ,k n �   is true, then  �Th

�
R k 1 , . . . ,k n .   

(ii) If  R�k 1 , . . . , kn �   is false, then  �Th �
�
R k 1 , . . . ,k n .   

Designation 2.1.2. (i) Let  gZFC2
Hs�u�  be a Gödel number of given an expression  u  of 

the set theory  ZFC2
Hs 	    ZFC2

Hs � �Mst
ZFC2

Hs

.    

 (ii) Let  Fr2
Hs�y, v�   be the relation  :   y   is the Gödel number of a wff of the set theory 

ZFC2
Hs

 that contains free occurrences of the variable  X   with Gödel number  v   [9]. 

(iii) Note that the relation  Fr2
Hs�y, v�   is expressible in  ZFC2

Hs
  by a wff  Fr2

Hs�y, v�   
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(iv) Note that for any  y,v � �   by definition of the relation  Fr2
Hs�y, v�   follows that  

Fr2

Hs
�y,v� � �!��X� gZFC2

Hs���X�� � y � gZFC2
Hs�X� � � , �2.1.3�

 where  ��X�   is a unique wff of  ZFC2
Hs

  which contains free  occurrences of the 

variable  X  with Gödel number  v.  We denote a unique wff  ��X�   defined by using 

equivalence (1.2.3) by symbol  �y,��X�,  i.e.    

(v) Let  �2
Hs�y, v,�1 �   be a Gödel number of the following wff:  �!X���X� � Y � X�,  where 

                  gZFC2
Hs���X�� � y,gZFC2

Hs�X� � �, gZFC2
Hs�Y� � �1 .   

(vi) Let PrZFC2
Hs�z�  be a predicate asserting provability in  ZFC2

Hs,   which defined by 
canonical formula, see for example [9],[11]. 

Definition 2.1.3. Let  �X
Hs

  be the countable collection of the all 1-place open wff's of 

the set theory ZFC2
Hs

  that contains free occurrences of the variable  X.

Definition 2.1.4. Let  gZFC2
Hs�X� � �.  Let  ��

Hs   be a set of the all Gödel numbers of the 

1-place open wff's of the set theory ZFC2
Hs

  that contains free occurrences of the 

variable  X  with Gödel number  v,  i.e.  

��
Hs � 	y � �|�y,�� � Fr2

Hs�y,v�
, �2. 1. 5�

  
or in the following equivalent form:  

�y�y � �� y � �� � �y � �� � Fr2

Hs
�y,v� . �2.1.6�

  

Remark 2.1.1. Note that from the axiom of separation it follows directly that  ��
Hs   is a set 

in the sense of the set theory  ZFC2
Hs.    

Definition 2.1.5.( i)We define now the equivalence relation 

�� �� �� � ��
Hs � ��

Hs �2.1.7�   

in the sense of the set theory  ZFC2
Hs

  by                               

y1 �� y2 � ��X��y1,��X� � �y2,��X��� �2. 1.8�

  
Note that from the axiom of separation it follows directly that the equivalence relation  

�� �� ��   is a relation in the sense of the set theory  ZFC2
Hs.   

(ii) A subset  ��
Hs   of  ��

Hs   such that  y1 �� y2   holds for all  y1   and  y1   in  ��
Hs  ,and 

never for  y1   in  ��
Hs   and  y2   outside  ��

Hs,   is an equivalence class of  ��
Hs.   

(iii) For any  y � ��
Hs   let  �y�Hs 	 	z � ��

Hs|y �� z
   denote the equivalence class to 
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which  y  belongs. All elements of  ��
Hs   equivalent to each other are also elements of 

the same equivalence class. 

(iv)The collection of all possible equivalence classes of  ��
Hs   by  ~� ,   denoted  ��

Hs/ ��                                              

��
Hs/ �� 	 	�y�Hs|y � ��

Hs
. �2. 1. 9�

  

Remark 2.1.2.  Note that from the axiom of separation it follows directly that  ��
Hs/ ��   is 

a set in the sense of the set theory  ZFC2
Hs.   

Definition 2.1.6. Let  �2
Hs

  be the countable collection of the all sets definable by 1-place 

open wff of the set theory  ZFC2
Hs

 , i.e.  

�Y	Y � �2
Hs � ���X������X��Hs � �X

Hs/ �X � � ��!X���X� � Y � X���
. �2. 1. 10�

  
Definition 2.1.7. We rewrite now (2.1.10) in the following equivalent form  

�Y	Y � �2
Hs � ���X������X��Hs � �X

�Hs/ �X � � �Y � X��
, �2.1.11�

  

where the countable collection  �X
�Hs/ �X   is defined by          

���X�	���X�� � �X
�Hs/ �X � �����X�� � �X

Hs/ �X � � �!X��X��
 �2. 1. 12�

  

Definition 2.1.8. Let  	2
Hs

  be the countable collection of the all sets such that  

�X�X � �2
Hs��X � 	2

Hs � X  X�. �2.1.13�

  

Remark 2.1.3.  Note that  	2
Hs � �2

Hs
  since  	2

Hs
  is a collection definable by 1-place 

open wff  

��Z,�2
Hs� 	 �X�X � �2

Hs��X � Z � X  X�.

  
From (2.1.13) one obtains 

	2
Hs � 	2

Hs � 	2
Hs  	2

Hs. �2.1.14�   
But (2.1.14) gives a contradiction  

�	2
Hs � 	2

Hs� � �	2
Hs  	2

Hs�. �2.1.15�

  

However contradiction (2.1.15) it is not a contradiction inside  ZFC2
Hs

  for the reason that 

the countable collection  �2
Hs

  is not a set in the sense of the set theory  ZFC2
Hs.   

In order to obtain a contradiction inside   ZFC2
Hs

  we introduce the following  
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definitions.  
  

Definition 2.1.9. We define now the countable set  ��
�Hs/ ��   by                  

�y �y�Hs � ��
�Hs/ �� � ��y�Hs � ��

Hs/ �� � � Fr2

Hs
�y,v� � ��!X�y,��X�� . �2. 1. 16�

   

Remark 2.1.4.  Note that from the axiom of separation it follows directly that  ��
�/  is a 

set in the sense of the set theory  ZFC2
Hs.   

Definition 2.1.10. We define now the countable set  �2
�Hs

  by formula 

�Y Y � �2
�Hs � �y ��y� � ��

�Hs/ �� � � gZFC2
Hs�X� � � � Y � X . �2. 1. 17�

  

Note that from the axiom schema of replacement (1.1.1) it follows directly that  �2
�Hs

  is 

a set in the sense of the set theory  ZFC2
Hs.   

Definition 2.1.11. We define now the countable set  	2
�Hs

  by formula  

�X�X � �2
�Hs��X � 	2

�Hs � X  X�. �2.1.18�

 Note that from the axiom schema of separation it follows directly that  	2
�Hs

  is a set in 

the sense of the set theory  ZFC2
Hs.   

Remark 2.1.5. Note that  	2
�Hs � �2

�Hs
  since  	2

�Hs
  is a definable by the following 

formula     

���Z� 	 �X�X � �2
�Hs��X � Z � X  X�. �2. 1.19�

  

Theorem 2.1.1. Set theory  ZFC2
Hs

  is inconsistent. 

Proof. From (2.1.18) and Remark 2.1.5 we obtain  	2
�Hs � 	2

�Hs � 	2
�Hs  	2

�Hs
   from 

which immediately one obtains a contradiction 
  

�	2
�Hs � 	2

�Hs� � �	2
�Hs  	2

�Hs�. �2.1.20�

  

  2.2.Derivation of the inconsistent definable set in set 
theory  ZFCst.   
Designation 2.2.1. (i) Let  gZFCst�u�  be a Gödel number of given an expression  u  of 

the set theory  ZFCst 	    ZFC � �Mst
ZFC.    

 (ii) Let  Frst�y, v�   be the relation:  y   is the Gödel number of a wff of the set theory 
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ZFCst  that contains free occurrences of the variable  X   with Gödel number  v   [9]. 

(iii) Note that the relation  Frst�y, v�   is expressible in  ZFCst   by a wff  Frst�y, v�   

(iv) Note that for any  y,v � �   by definition of the relation  Frst�y, v�   follows that  

Frst�y, v� � �!��X���gZFCst���X�� � y� � �gZFCst�X� � ���, �2. 2. 1�

 where  ��X�   is a unique wff of  ZFCst   which contains free  occurrences of the variable  

X  with Gödel number  v.  We denote a unique wff  ��X�   defined by using equivalence 

(2.2.1) by symbol  �y,��X�,  i.e.  

Frst�y, v� � �!�y,��X���gZFCst��y,��X�� � y� � �gZFCst�X� � ���, �2. 2.2�

 (v) Let  �st�y,v,�1 �   be a Gödel number of the following wff:  �!X���X� � Y � X�,  where 

                   gZFCst���X�� � y, gZFCst�X� � �, gZFCst�Y� � �1 .   

 (vi) Let PrZFCst�z�  be a predicate asserting provability in  ZFCst,   which defined by 
formula (2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [8]-[9]). 

Definition 2.2.1. Let  �X
st

  be the countable collection of the all 1-place open wff's of 

the set theory  ZFCst   that contains free occurrences of the variable  X.

Definition 2.2.2. Let  gZFCst�X� � �.  Let  ��
st   be a set of the all Gödel numbers of the 

1-place open wff's of the set theory  ZFCst   that contains free occurrences of the 

variable  X  with Gödel number  v,  i.e.       

��
st � 	y � �|�y,�� � Frst�y, v�
, �2. 2. 3�

  
or in the following equivalent form:  

�y�y � �� y � ��
st � �y � �� � Frst�y,v� .

Remark 2.2.1. Note that from the axiom of separation it follows directly that  ��
st   is a set 

in the sense of the set theory  ZFCst.    

Definition 2.2.3.( i)We define now the equivalence relation  �� �X �� � �X
st � �X

st
  by  

�1�X� �X �2�X� � ��X��1�X� � �2�X��� �2.2. 4�

(ii) A subcollection  �X
st

  of  �X
st

  such that  �1�X� �X �2�X�   holds for all  �1�X�   and  
�2�X�   in 

�X
st,   and never for  �1�X�   in  �X

st
  and  �2�X�   outside  �X

st,   is an equivalence 

class of  �X
st.   

(iii) For any  ��X� � �X
st

  let  ���X��st 	 	��X� � �X
st|��X� �X ��X�
   denote the 

equivalence class to which  ��X�   belongs. All elements of  �X
st

  equivalent to each 
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other are also elements of the same equivalence class. 

(iv) The collection of all possible equivalence classes of  �X
st

  by  ~X ,   denoted �X
st/ �X                                              

�X
st/ �X 	 	���X��st|��X� � �X

st
. �2.2.5�

  

Definition 2.2.4.( i)We define now the equivalence relation  �� �� �� � ��
st � ��

st   in the 

sense of the set theory  ZFCst   by                               

y1 �� y2 � ��X��y1,��X� � �y2,��X��� �2. 2. 6�

  
Note that from the axiom of separation it follows directly that the equivalence relation  

�� �� ��   is a relation in the sense of the set theory  ZFCst.   

(ii) A subset  ��
st   of  ��

st   such that  y1 �� y2   holds for all  y1   and  y1   in  ��
st  ,and 

never for  y1   in 

��
st   and  y2   outside  ��

st,   is an equivalence class of  ��
st.   

(iii) For any  y � ��
st   let  �y�st 	 	z � ��

st|y �� z
   denote the equivalence class to which  
y  belongs. All elements of  ��

st   equivalent to each other are also elements of the same 
equivalence class. 

(iv)The collection of all possible equivalence classes of  ��
st   by  ~� ,   denoted  ��

st/ ��                                              

��
st/ �� 	 	�y�st |y � ��

st
. �2.2.7�

Remark 2.2.2.  Note that from the axiom of separation it follows directly that  ��
st/ ��   is 

a set in the sense of the set theory  ZFCst.   

Definition 2.2.5. Let  �st   be the countable collection of the all sets definable by 1-place 

open wff of the set theory  ZFCst  , i.e.  

�Y	Y � �st � ���X������X��st � �X
st/ �X � � ��!X���X� � Y � X���
. �2.2.8�

  
Definition 2.2.6. We rewrite now (2.2.8) in the following equivalent form 
  

�Y	Y � �st � ���X������X��st � �X
�st/ �X � � �Y � X��
, �2. 2. 9�

  

where the countable collection  �X
�st/ �X   is defined by          

���X�	���X��st � �X
�st/ �X � �����X��st � �X

st / �X � � �!X��X��
 �2.2. 10�

  

Definition 2.2.7. Let  	st   be the countable collection of the all sets such that  

�X�X � �st ��X � 	st � X  X�. �2.2.11�
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Remark 2.2.3.  Note that  	st � �st   since  	st   is a collection definable by 1-place open 
wff  

��Z,�st � 	 �X�X � �st��X � Z � X  X�.

  
From (2.2.11) and Remark 2.2.3 one obtains directly 

	st � 	st � 	st  	st. �2.2.12�   
But (2.2.12) immediately gives a contradiction  

�	st � 	st � � �	st  	st �. �2.2.13�

  

However contradiction (2.2.13) it is not a true contradiction inside  ZFCst   for the reason 

that the countable collection  �st   is not a set in the sense of the set theory  ZFCst.   

In order to obtain a true contradiction inside  ZFCst   we introduce the following 
definitions.  

Definition 2.2.8. We define now the countable set  ��
�st/ ��   by formula                 

�y �y�st � ��
�st/ �� � ��y�st � ��

st/ �� � � Frst�y,v� � ��!X�y,��X�� . �2. 2. 14�

   

Remark 2.2.4.  Note that from the axiom of separation it follows directly that  ��
�st/ ��   is 

a set in the sense of the set theory  ZFCst.   

Definition 2.2.9. We define now the countable set  �st
�   by formula 

�Y	Y � �st
� � �y���y�st � ��

�st/ �� � � �gZFCst�X� � �� � Y � X�
. �2.2.15�

  

Note that from the axiom schema of replacement it follows directly that  �st
�   is a set in 

the sense of the set theory  ZFCst.   

Definition 2.2.10. We define now the countable set  	st
�   by formula  

�X�X � �st
� ��X � 	st

� � X  X�. �2.2.16�

  

Note that from the axiom schema of separation it follows directly that  	st
�   is a set in the 

sense of the set theory  ZFCst.

Remark 2.2.5. Note that  	st
� � �st

�   since  	st
�   is a definable by the following formula  

   

���Z� 	 �X�X � �st
� ��X � Z � X  X�. �2. 2. 17�

  

Theorem 2.2.1. [11].Set theory  ZFCst   is inconsistent. 

Jaykov Foukzon, Journal of Global Research in Mathematical Archives, 33-50

© JGRMA 2018, All Rights Reserved                                                                                           42



Proof. From (2.2.17) and Remark 2.2.5 we obtain  	st
� � 	st

� � 	st
�  	st

�    from which 
immediately one obtains a contradiction  

�	st
� � 	st

� � � �	st
�  	st

� �. �2.2.18�

  
Remark 2.2.6. Theorem 2.2.1 originally was proved in papers [11]-[13] by using another   
essentially complicated approach. 

  2.3.Derivation of the inconsistent definable set in  ZFCNst.   
Definition 2.3.1. Let  PA   be a first order theory which contain usual postulates of Peano 
arithmetic [9] and recursive defining equations for every primitive recursive function as 

desired. So for any ( n � 1  )-place function  f   defined by primitive recursion over any  n

-place base function  g   and ( n � 2  )-place iteration function  h   there would be the 
defining equations: 

(i)  f�0,y1 , . . . ,yn � � g�y1 , . . . , yn �,  (ii)  f�x � 1, y1 , . . . ,yn � � h�x, f�x, y1 , . . . ,yn �,y1 , . . . ,yn �.   

Designation 2.3.1.( i) Let  MNst
ZFC

  be a nonstandard model of  ZFC   and let  Mst
PA   be a 

standard model of  PA.  We assume now that  Mst
PA � MNst

ZFC
  and denote such 

nonstandard model of   the set theory  ZFC   by  MNst
ZFC�PA�.  (ii) Let  ZFCNst   be the 

theory  

ZFCNst � ZFC � MNst
ZFC�PA�.

  

Designation 2.3.2. (i) Let  gZFCNst�u�  be a Gödel number of given an expression  u  of 

the set theory  ZFCNst 	    ZFC � �MNst
ZFC�PA�.    

 (ii) Let  FrNst�y,v�   be the relation  :   y   is the Gödel number of a wff of the set theory  
ZFCNst  that contains free occurrences of the variable  X   with Gödel number  v   [9]. 

(iii) Note that the relation  FrNst�y,v�   is expressible in  ZFCNst   by a wff  FrNst�y,v�   

(iv) Note that for any  y,v � �   by definition of the relation  FrNst�y,v�   follows that  

FrNst�y, v� � �!��X���gZFCNst���X�� � y� � �gZFCNst�X� � ���, �2. 3. 1�

  

where  ��X�   is a unique wff of  ZFCst   which contains free  occurrences of the variable  

X  with Gödel number  v.  We denote a unique wff  ��X�   defined by using equivalence 

(2.3.1) by symbol  �y,��X�,  i.e.  

FrNst�y,v� � �!�y,��X���gZFCNst��y,��X�� � y� � �gZFCNst�X� � ���, �2. 3. 2�

  

(v) Let  �Nst�y,v,�1 �   be a Gödel number of the following wff:  �!X���X� � Y � X�,  
where 

                    gZFCNst���X�� � y, gZFCNst�X� � �, gZFCNst�Y� � �1 .   
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 (vi) Let PrZFCNst�z�  be a predicate asserting provability in  ZFCNst,   which defined by      
 the formula (2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [9]-[10]). 

Definition 2.3.2. Let  �X
Nst

  be the countable collection of the all 1-place open wff's of 

the set theory  ZFCNst   that contains free occurrences of the variable  X.

Definition 2.3.3. Let  gZFCNst�X� � �.  Let  ��
Nst   be a set of the all Gödel numbers of the 

1-place open wff's of the set theory  ZFCNst   that contains free occurrences of the 

variable  X  with Gödel number  v,  i.e.  

��
Nst � 	y � �|�y,�� � FrNst�y,v�
, �2.3.3�

  
or in the following equivalent form: 

�y�y � �� y � ��
Nst � �y � �� � FrNst�y,v� .

  

Remark 2.3.1. Note that from the axiom of separation it follows directly that  ��
st   is a set 

in the sense of the set theory  ZFCNst.    

Definition 2.3.3.( i)We define now the equivalence relation  �� �X �� � �X
Nst � �X

Nst
  by  

�1�X� �X �2�X� � ��X��1�X� � �2�X��� �2.3. 4�

  

(ii) A sub collection  �X
st   of  �X

st   such that  �1�X� �X �2�X�   holds for all  �1�X�   and  

�2�X�   in �X
st,   and never for  �1�X�   in  �X

Nst
  and  �2�X�   outside  �X

Nst,   is an 

equivalence class of  �X
Nst.   

(iii) For any  ��X� � �X
Nst

  let  ���X��Nst 	 	��X� � �X
Nst|��X� �X ��X�
   denote the 

equivalence class to which  ��X�   belongs. All elements of  �X
st

  equivalent to each 
other are also elements of the same equivalence class. 

(iv) The collection of all possible equivalence classes of  �X
Nst

  by  ~X ,   denoted  
�X

Nst/ �X                                              

�X
Nst/ �X 	 	���X��Nst|��X� � �X

Nst
. �2.3.5�

  

Definition 2.3.4.( i)We define now the equivalence relation  �� �� �� � ��
Nst � ��

Nst   in the 

sense of the set theory  ZFCNst   by                               

y1 �� y2 � ��X��y1,��X� � �y2,��X��� �2. 3. 6�

  
Note that from the axiom of separation it follows directly that the equivalence relation  

�� �� ��   is a relation in the sense of the set theory  ZFCNst.   

(ii) A subset  ��
Nst   of  ��

Nst   such that  y1 �� y2   holds for all  y1   and  y1   in  ��
Nst  ,and 
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never for  y1   in ��
Nst   and  y2   outside  ��

Nst,   is an equivalence class of  ��
Nst.   

(iii) For any  y � ��
Nst   let  �y�Nst 	 	z � ��

Nst|y �� z
   denote the equivalence class to 

which  y  belongs. All elements of  ��
Nst   equivalent to each other are also elements of 

the same equivalence class. 

(iv)The collection of all possible equivalence classes of  ��
Nst   by  ~� ,   denoted  ��

Nst/ ��                                              

��
Nst/ �� 	 	�y�Nst|y � ��

Nst
. �2. 3.7�

  

Remark 2.3.2.  Note that from the axiom of separation it follows directly that  ��
Nst/ ��  is 

a set in the sense of the set theory  ZFCNst.   

Definition 2.3.5. Let  �Nst   be the countable collection of the all sets definable by 1-

place open wff of the set theory  ZFCNst  , i.e.  

�Y	Y � �Nst � ���X������X��Nst � �X
Nst/ �X � � ��!X���X� � Y � X���
. �2.3.8�

  
Definition 2.3.6. We rewrite now (2.3.8) in the following equivalent form  

�Y	Y � �Nst � ���X������X��Nst � �X
�Nst/ �X � � �Y � X��
, �2. 3. 9�

  

where the countable collection  �X
�Nst/ �X   is defined by          

���X�	���X��Nst � �X
�Nst/ �X � �����X��Nst � �X

Nst/ �X � � �!X��X��
 �2. 3. 10�

  

Definition 2.3.7. Let  	Nst   be the countable collection of the all sets such that  

�X�X � �Nst ��X � 	Nst � X  X�. �2.3.11�

  

Remark 2.3.3. Note that  	Nst � �Nst   since  	Nst   is a collection definable by 1-place 
open wff  

��Z,�Nst � 	 �X�X � �Nst ��X � Z � X  X�.

  
From (2.3.11) one obtains 

	Nst � 	Nst � 	Nst  	Nst. �2.3.12�   

But (2.3.12) gives a contradiction  

�	Nst � 	Nst � � �	Nst  	Nst �. �2.3.13�

  

However a contradiction (2.3.13) it is not a true contradiction inside  ZFCNst   for the 
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reason that the countable collection  �Nst   is not a set in the sense of the set theory  
ZFCNst.   

In order to obtain a true contradiction inside   ZFCNst   we introduce the following    
definitions.  

Definition 2.3.8. We define now the countable set  ��
�Nst/ ��   by formula                 

�y �y�Nst � ��
�Nst/ �� � ��y�Nst � ��

Nst/ �� � � FrNst�y,v� � ��!X�y,��X�� . �2. 3. 14�

  

Remark 2.3.4.  Note that from the axiom of separation it follows directly that  ��
�Nst/ ��   

is a set in the sense of the set theory  ZFCst.

Definition 2.3.9. We define now the countable set  �Nst
�

  by formula 

�Y	Y � �Nst
� � �y���y�Nst � ��

�Nst/ �� � � �gZFCNst�X� � �� � Y � X�
. �2. 3.15�

  

Note that from the axiom schema of replacement it follows directly that  �st
�   is a set in 

the sense of the set theory  ZFCNst.   

Definition 2.3.10. We define now the countable set  	Nst
�

  by formula  

�X�X � �Nst
� ��X � 	Nst

� � X  X�. �2.3.16�

  

Note that from the axiom schema of separation it follows directly that  	Nst
�   is a set in 

the sense of the set theory  ZFCNst.   

Remark 2.3.5. Note that  	Nst
� � �Nst

�   since  	Nst
�   is a definable by the following formula  

   

���Z� 	 �X�X � �Nst
� ��X � Z � X  X�. �2. 3.17�

  

Theorem 2.3.1. Set theory  ZFCNst   is inconsistent. 

Proof. From (2.3.16) and Remark 2.3.5 we obtain  	Nst
� � 	Nst

� � 	Nst
�  	Nst

�   from    
which one obtains a contradiction  

�	Nst
� � 	Nst

� � � �	Nst
�  	Nst

� �. �2.3.18�

  

  3. Avoiding the contradictions from set theory  ZFC2
Hs   and   

set theory  ZFCst   using Quinean approach. 
In order to avoid difficultnes mentioned above we use well known Quinean approach 
[14]. 

  3.1.Quinean set theory  NF.   
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Remind that the primitive predicates of Russellian unramified typed set theory (TST), a 

streamlined version of the theory of types, are equality  �   and membership  �.   TST 

has a linear hierarchy of types: type  0   consists of individuals otherwise undescribed. 

For each (meta-) natural number  n,   type  n � 1   objects are sets of type  n   objects; 

sets of type  n   have members of type  n � 1.   Objects connected by identity must have 
the same type. The following two atomic formulas succinctly describe the typing rules:  
x n � yn   and  x n � yn�1 .   
The axioms of TST are: 
Extensionality:  sets of the same (positive) type with the same members are equal; 
Axiom schema of comprehension : 

If  ��x n�   is a formula, then the set  	x n � ��x n�
n�1   exists i.e., given any formula  
��x n�,   the formula 

�An�1�xn �x n � An�1 
 ��x n�� �3. 1. 1�   

is an axiom where  An�1   represents the set  	x n � ��x n�
n�1   and is not free in  ��x n�.   
Quinean set theory [14] (New Foundations) seeks to eliminate the need for such 
superscripts. 
New Foundations has a universal set, so it is a non-well founded set theory.That is to 
say, it is a logical theory that allows infinite descending chains of membership such as   
x n �    x n�1 ��x 3 � x 2 � x 1 .   It avoids Russell's paradox by only allowing stratifiable 

formulae in the axiom of comprehension. For instance  x � y   is a stratifiable formula, 

but  x �    x   is not (for details of how this works see below). 

Definition 3.1.1.  In New Foundations ( NF  ) and related set theories, a formula  �   in 
the language of first-order logic with equality and membership is said to be stratified if 

and only if there is a function σ which sends each variable appearing in  �   [considered 
as an item of syntax] to a natural number (this works equally well if all integers are 

used) in such a way that any atomic formula  x � y   appearing in  �   satisfies  
σ�x� � 1 � σ�y�   and any atomic formula  x � y   appearing in  �   satisfies  σ�x� � σ�y�.   
Quinean set theory. 
Axioms and stratification are:  

The well-formed formulas of New Foundations ( NF  ) are the same as the well-formed 

formulas of TST, but with the type annotations erased. The axioms of  NF   are: 
Extensionality:  Two objects with the same elements are the same object; 
A comprehension schema: All instances of TST Comprehension but with type indices 
dropped (and without introducing new identifications between variables). 
By convention, NF's Comprehension schema is stated using the concept of stratified 
formula and making no direct reference to types.Comprehension then becomes. 
Axiom schema of comprehension:  
	x � �s
   exists for each stratified formula  �s.   

Even the indirect reference to types implicit in the notion of stratification can be 
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eliminated. Theodore Hailperin showed in 1944 that Comprehension is equivalent to a 

finite conjunction of its instances,[15] so that  NF   can be finitely axiomatized without 
any reference to the notion of type.Comprehension may seem to run afoul of problems 
similar to those in naive set theory, but this is not the case. For example, the existence 

of the impossible Russell class  	x � x    x
   is not an axiom of  NF,   because  x  x   
cannot be stratified. 

3.2.Set theory  ZFC2
Hs,ZFCst   and set theory  ZFCNst   with 

stratified axiom schema of replacement. 
The stratified axiom schema of replacement asserts that the image of a set under any 

function definable by stratified formula of the theory  ZFCst   will also fall inside a set. 
Stratified Axiom schema of replacement:  

Let  �s�x, y,w1 , w2 ,� ,wn �   be any stratified formula in the language of  ZFCst   whose 

free variables are among  x, y, A, w1 ,w2 ,� ,wn ,   so that in particular  B  is not free in  
�s  . Then  

�A�w1�w2 . . .�wn ��x�x � A � �!y�s�x, y,w1 , w2 ,� ,wn �� �

� �B�x�x � A � �y�y � B � �s�x,y,w1 , w2 ,� ,wn ����,
�3.2.1�

  i.e.,if the relation  �s�x,y, . . . �   represents a definable function  f, A   represents its 

domain, and  f�x�   is a set for every  x � A,   then the range of  f   is a subset of some 

set  B.   
Stratified Axiom schema of separation:

Let  �s�x, w1 ,w2 ,� ,wn �   be any stratified formula in the language of  ZFCst   whose free 

variables are among  x, A, w1 ,w2 ,� ,wn ,   so that in particular  B  is not free in  �s  . 
Then  

�w1�w2 . . .�wn�A�B�x�x � B � �x � A � �s�x, w1 ,w2 ,� , wn ���, �3.2.2�

  
Remark 3.2.1.  Notice that the stratified axiom schema of separation follows from the 
stratified axiom schema of replacement together with the axiom of empty set. 
Remark 3.2.2.  Notice that the stratified axiom schema of replacement (separation) 
obviously violeted any contradictions (2.1.20),(2.2.18) and (2.3.18) mentioned above. 

The existence of the countable Russell sets  	2
�Hs,	st

�   and  	Nst
�  impossible, because  

x  x   cannot be stratified. 

4.Conclusion 
In this paper we viewed the first order set theory  ZFC   under the canonical first order 

semantics and the second order set theory  ZFC2   with the Henkin semantics. Main 

results are:(i) Let  Mst
ZFC   be a standard model of  ZFC  ,then  �Con�ZFC � �Mst

ZFC�.  (ii) 
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Let  Mst
ZFC2   be a standard model of  ZFC2   with Henkin semantics, then  

�Con�ZFC2 � �Mst
ZFC2�.  In order to obtain the statements (i) and (ii) an examples of the 

inconsistent countable set in a set theory  ZFC � �Mst
ZFC   and in a set theory  

ZFC2 � �Mst
ZFC2   were derived. It is widely believed that  ZFC � �Mst

ZFC   and  

ZFC2 � �Mst
ZFC2   are consistent, i.e.  ZFC   and  ZFC2   have a standard models.  

Unfortunately this belief wrong. 
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