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2.1  Introduction

The Aristotelian tradition has seen definitions as paradigmatically in the 
category of substance, such as the definition ‘rational animal’ that states 
what humans really are. But in practice definition has been much more 
successful in mathematics, that is (in Aristotelian language) in the category 
of quantity. It is Euclid and his mathematical successors who have most 
convincingly – indeed almost solely – realised the ideal of the Posterior 
Analytics, of a science laid out as a deductive structure of theorems proved 
from a set of absolutely clear definitions laying out the essential features of 
the subject matter.

Why that should be so is far from obvious. We examine how definitions 
in the category of quantity differ from those in substance, and consider in 
some detail the ancient definitions of two concepts central to mathematics, 
the circle and ratio. It becomes clear that the structural nature of quantity – 
quantity’s being essentially related to parts – enables definitions of quanti-
tative concepts to support complex proofs of theorems.

2.2  Definitions in the Category of Substance Versus Definitions 
in Other Categories

In the Aristotelian tradition, the examples of definitions discussed are 
almost all either in the category of substance or the category of quantity. 
Definitions work very differently in the two categories.

The Aristotelian/Porphyrian/Linnean classification of substances builds 
on and systematises the metaphysics implicit in at least Indo- European 
grammars, with their clear distinction between common nouns and adjec-
tives. According to that metaphysics, the world is, by and large, uniquely 
divided into things, and those things are uniquely classified into species. The 
point of a definition (of a substance) is to state what attributes of a thing are 
characteristic of its species (Figure 2.1).

2 Definition and Demonstration 
in the Category of Quantity 
and the Ancient Search for the 
Definition of Ratio

James Franklin
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In more detail:

 1 The world is uniquely divided into things – for example (live) human 
hands are not things but parts of a unique human person

(But there are also stuffs, which are natural but whose division into 
individual things is artificial; wood is natural but its division into arte-
facts like beds, salad bowls and fragments of the True Cross is artificial)

Things (and stuffs) have attributes like colour and shape, contain 
parts, and stand in relations, all of which facts are real and independent 
of human response.

Figure 2.1  The traditional Tree of Porphyry.
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 2 Things (and stuffs) are uniquely divided into species
(which appear in the classification of the Tree of Porphyry)

 3 The uniqueness of division into species implies that some of a thing’s attri-
butes are essential (characteristic of the species, such as rationality for 
humans) and some accidental (such as whiteness for humans); the defini-
tion of a thing, reached by division down the tree of classification, states 
its essence which it shares fully with all other members of the species

Essentialism, the commitment to the reality of the essential/accidental dis-
tinction among properties, is thus a thesis additional to the mere realism 
about universals defended by Armstrong and others.1

The Porphryrean/Linnean tree classification of species suggests that spe-
cies are distributed discretely (unlike for instance colours, which vary con-
tinuously). However, that is not a central part of the theory, and Aristotle 
himself admitted continuous variation between species among the more 
primitive life forms.2

It is certainly possible to deny that full Aristotelian metaphysics to vary-
ing degrees, from radical views that deny any reality to things3 to those 
that take a realist view of things and their properties but deny the essential/
accidental distinction (so there is only prime matter clothed with various 
properties such as shape, whiteness, and rationality).

For present purposes, the significance is that these debates, and the place 
of definitions in them, only make sense in the category of substance. They 
concern things (or stuffs) – full- bodied existing substances, not properties 
of substances.

2.3  Definitions in Categories Other than Substance

In principle, all categories other than substance ought to have Porphyrian- 
style classification trees. For example, the different genera of relations 
ought to be laid out (spatial, logical, social, mereological, kind- of, and so 
on), and then subclassified. It is mysterious why one never sees such trees 
(except to some small degree in recent Artificial Intelligence- related efforts 
at ‘formal upper ontology’4).

A fundamental difference between classification of substances versus the 
other categories is that there seems to be no essential–accidental distinction 
in the other categories. While an individual person can be rational essen-
tially but white accidentally, surely it makes no sense to say that an indi-
vidual piece of the world is green essentially but triangular accidentally? If 
on the other hand, we consider properties of green itself, like resembling 
blue, those seem all necessarily true of green and not in any sense detach-
able in the way accidental properties are. It is true that ‘being favoured by 
Titian’ could be a relation that a certain shade of green enters into 
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accidentally, but that does not correspond to the way in which ‘white’ is a 
genuinely inherent property of a human yet accidental.

Given that definition is possible in categories other than substance, it fol-
lows that definition in those categories must be fulfilling some purpose 
other than distinguishing between essential and accidental properties. There 
are both ‘Aristotelian’ and ‘Euclidean’ possibilities as to what that purpose 
could be. The ‘Aristotelian’ purpose would be for a definition to grasp what 
is ‘deep’ about an entity, in the way that in the category of substance ‘ratio-
nal animal’ is a better definition of ‘human’ than is ‘featherless biped’; it 
would give a philosophically satisfying account of what something ‘really 
is’. That would contrast with a merely nominal definition, which might 
explain our linguistic usage and might be a useful starting point for investi-
gation but would not get to grips with reality. As W. D. Ross explains 
Aristotle’s thinking, using the definition of an eclipse (which is fundamen-
tally geometrical though about the properties of physical bodies),

If the moon is eclipsed because the light of the sun is shut off from the 
moon by the interposition of the earth, the definition of lunar eclipse is 
‘the moon’s deprivation of light owing to the interposition of the earth’. 
The true definition, the only definition which is more than the mere 
account of the usage of a word, is a definition which states the efficient 
or final cause of the attribute’s occurrence … If we are to reach a defini-
tion by the aid of demonstration, we must start with a partial knowl-
edge of the nature of the definiendum, i.e. with the nominal definition of 
it such as the definition of eclipse as a loss of light.

(Ross 1995, 49)

The ‘Euclidean’ possibility is that definition should identify axioms from 
which all truths about the entity should follow conveniently as theorems. 
One might surmise that a truly good definition would fulfil both purposes, 
as a ‘deep’ definition that explained what an entity really was might be the 
very one to generate theorems. But there seems no a priori guarantee of 
that. As we will see, a classic definition of ‘circle’ does fulfil both tasks well, 
but it proved hard to find a definition of ‘ratio’ that did both.

Since later sections deal just with definitions in the category of quantity, 
it should be mentioned that there are two puzzles in that category that do 
not apply to the other (non- substance) categories. They set the scene for 
the examples to be considered later.

The first puzzle is that there is something ‘substancy’ about quantities, 
reflected in the prominence of common nouns in mathematics – geometry is 
full of lines and circles, arithmetic of units and expressions like ‘three tens’, 
modern mathematics of sets, vectors, and the like. (That is different from 
the use of abstract nouns for properties like ‘green’ as in ‘green resembles 
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blue more than orange’ – there the nouns refer to the universal itself, like 
‘triangularity’, but triangles and sets are individuals.) That is evident in 
Aristotle’s (and Euclid’s) own language, which has been said to treat math-
ematical objects as ‘quasi- substances’.5 David Bronstein writes:

Aristotle’s theory of science is built around a fundamental ontological 
distinction between subjects (e.g., moon, human being, triangle) and 
their attributes (e.g., being eclipsed, being two- footed, having interior 
angles equal to two right angles).

(Bronstein 2016, 6)

Triangles are subjects, but they are not substances. They are shapes. That 
difference was the source of tangled and unresolved ancient debates about 
whether mathematics needed some sort of ‘intelligible matter’ in which to 
draw figures.6

The same closeness between the categories of substance and quantity 
appears in the way they cut across the important division between two 
kinds of entity in Aristotle. Bronstein summarises them in this table:7

A B

Those whose causes are the same Things whose causes are different.
Primary and subordinate 

subject- kinds
Things that have a middle term – i.e. 

demonstrable attributes
Things whose essences are in no 

way demonstrable
Things whose essences are in some way 

demonstrable
Essences discovered by induction 

or division
Essences discovered by demonstration

Causally simple essences Causally complex essences
E.g., human, moon, god, soul, 

unit.
E.g., eclipse, harmony, thunder, ice, 2R 

[angle sum in triangle is two right angles].

The kind of intellectual operation described in the left- hand column 
involves a deepening of understanding of, for example, the nature of 
humans, resulting in a definition of humans by division (that is, by reach-
ing a leaf of Porphyry’s Tree). The kind of intellectual operation in the 
right- hand column involves putting together connections in a syllogism, to 
demonstrate the cause of a complex phenomenon like an eclipse. It is to be 
expected that definitions of substances should be on the left and definitions 
of complex phenomena on the right. That is approximately so (noting that 
ice means a state of a substance rather than a substance itself), but it is 
significant that items from the category of quantity appear in both col-
umns. A unit, or a circle, is in some way a ‘thing’, whose definition ideally 
should be reached by induction or division.
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The second puzzle about the category of quantity, related to the 
‘Euclidean’ purpose of definitions, is why axiomatisation has been so suc-
cessful in that category compared to anywhere else.

These two puzzles are not easily solved. We will explain the issues and 
clarify them by looking in detail at two ancient examples, the circle and 
ratio.

2.4  Definitions in the Category of Quantity and the Success of 
Axiomatisation in Mathematics

What mathematicians want from a definition is theorems. That is premised 
on their acceptance of the Aristotelian- Euclidean model of a deductive 
structure for their science, with definitions and axioms supporting a super-
structure of theorems deduced from them by strict logic.8

Aristotle hoped that all sciences would follow mathematics in becoming 
so organised, but that has not come to pass. One of the most salient facts 
of the history of science is that while axiomatisation has gone from strength 
to strength in mathematics, and in allied mathematisable disciplines such 
as logic and Newtonian mechanics, it has proved close to useless every-
where else. Spinoza’s failed attempt to lay out ethics more geometrico is an 
icon of many similar wild goose chases after convincing axiomatisations of 
this body of knowledge or that. Why is that so?

And even where demonstration is available in sciences other than math-
ematics, the demonstration often happens in virtue of mathematical prop-
erties. In Aristotle’s example of eclipses, the opacity of the Earth and the 
travelling of light in straight lines are physical facts, but those facts translate 
the problem into geometry and it is there that the demonstration proceeds. 
It is the same in the rare cases where demonstration is possible in biology: 
‘to know that circular wounds heal more slowly belongs to the doctor, but 
to know the reason why belongs to the geometrician’, Aristotle says, pre-
sumably because wounds heal from the outside in.9 No doubt his example 
with broad- leaved trees shedding their leaves10 works somehow the same 
way; it is unclear quite how but ‘broad’ is a geometrical property.

So the question is: Is there something about the category of quantity 
that makes definitions in it especially apt for supporting a deductive 
structure?

Let us, in Aristotelian fashion, begin with an example. We will look at 
the classic case, Euclid’s definition of a circle and its use in proving propo-
sition 1 of Book I, and see if we can generalise.

What is a circle? (Figure 2.2)
The Oxford English Dictionary reports, surely correctly, the common 

understanding of what a circle is:
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Circle: 1.a. A perfectly round plane figure.

‘Plane figure’ correctly situates the circle in its category and subcategory, 
that is, it begins a definition by division. But what is ‘round’? According to 
the OED again,

Round: 1. Having the form of a circle or ring; shaped like a circle; 
circular.

That is not helpful. It makes the definition circular. At best it is a rough 
first- cut or nominal definition, as in Aristotle’s first definition of an eclipse 
as the loss of light.

Euclid’s definition is quite different:

A circle is a plane figure contained by one line such that all the straight 
lines falling upon it from one point among those lying within the figure 
are equal to one another.11

Bernard Lonergan’s Insight rightly praises this definition as a significant 
intellectual achievement.12 The first- cut definition above does not refer to 
the centre at all – it needs a conscious intellectual act to understand that 
the equality of lines from the centre determines and is determined by the 
perfect roundness of the circle (Figure 2.3).

The advantages of this definition for deriving theorems become apparent 
immediately in the very first proof (Figure 2.4).

Figure 2.2  A circle, as naively conceived.

Figure 2.3  A circle, with radii illustrating Euclid’s definition.
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Euclid’s proof is (with some names of points omitted):

Describe the circle with centre A and radius AB. [Postulate 3: to describe 
a circle with any centre and radius]

Again describe the circle with centre B and radius BA. Join the 
straight lines CA and CB from the point C at which the circles cut one 
another to the points A and B. [Postulate 1: to draw a straight line from 
any point to any point]

Now, since the point A is the centre of the first circle, therefore AC 
equals AB. Again, since the point B is the centre of the second, therefore 
BC equals BA.

But AC was proved equal to AB, therefore each of the straight lines 
AC and BC equals AB.

And things which equal the same thing also equal one another, [com-
mon notion 1] therefore AC also equals BC.

Therefore the three straight lines AC, AB, and BC equal one another.
Therefore the triangle ABC is equilateral [definition 20: an equilat-

eral triangle is one with three sides equal], and it has been constructed 
on the given finite straight line AB.

(The very elaborate geometry of circles that the definition makes possible 
is then developed in Elements Book III.13)

What that brings to the fore is the structural nature of two- dimensional 
space (the quantity being studied here) – that is, its parts, their properties 
such as equality (e.g., of length), and their overlapping. That is what allows 
the parts and their properties to be ‘followed around’ in the different steps 
of the proof. The role of partedness is announced in Euclid’s first definition: 
‘A point is that which has no part’. In contrast, everything else does have 
parts (lines, circles, planes, and so on) and indeed consists of many identical 
parts (e.g., the parts of a line are lines or points). The definition of the circle 
works well in the proof because the radii are parts of space equal in length – 
the proof works by laying out well- chosen equal circles, then equal radii.

Figure 2.4  Euclid I.1: To construct an equilateral triangle on a given straight line AB.

A B

C
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That is not the case for definitions reached by division. ‘A human is a 
rational animal’, or ‘A circle is a plane figure which is perfectly round’ or 
(see below) ‘A ratio is a sort of relation in respect of size between two mag-
nitudes of the same kind’, however true and philosophically helpful they 
may be, do not give proofs much to latch onto. Given such a definition, 
where could a proof start?

Proof has to proceed through certain steps. So, it must be able to follow 
through a chain of necessary connections. It can therefore be thought of as 
exposing connections between the per se attributes of the subject of dem-
onstration.14 The syllogistic schema, where A’s being necessarily B and B’s 
being necessarily C implies A’s being necessarily C, is reasonable when all 
of A, B, and C are per se attributes of something. The Euclidean model of 
demonstration, which involves in addition the construction of geometrical 
entities with parts whose necessary connections can be followed through 
from part to part, still fits that model but adapts it to the parted nature of 
the category of quantity.

The relation of quantity and partedness is especially clear for ‘extensive’ 
quantities, the paradigmatic quantities like length and mass that distribute 
over parts – if something has a length of two metres, it consists of two 
parts of length of one metre. Those are the kinds of quantities most easily 
measured (e.g., by laying out unit rods) and are most suited to mathemati-
cal treatment generally. It is harder with ‘intensive’ quantities like velocity 
and temperature, which are not easily related to the quantity of parts – a 
velocity of two metres per second does not consist of two parts of one 
metre per second each.15 Not surprisingly, measurement and demonstra-
tion for intensive quantities is difficult, whereas for extensive quantities it 
is relatively easy, being just geometry.

The complex and parted nature of quantity is different not only from 
substance but from the other categories such as quality. That is brought 
out by a comment from D. C. Williams:

Experience contains some characters, such as yellowness, which are in 
some sense phenomenally simple, as well as other characters, such as 
triangularity, which are in the corresponding sense phenomenally com-
plex. A triangle may be analytically described as a plane closed rectilin-
ear figure with three sides and three angles. But, as a matter of fact, 
most persons actually recognize the proper occasions for the application 
of the word ‘triangular’ by a massed effect, a gestalt- quality, without 
ever having verbally formulated or being cognitively aware of the single 
details of this elaborate constitution. As Ducasse has it, they know the 
meaning of ‘triangularity’ intuitively but not discursively.

(Williams 1937, 417)
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It is the fact that triangularity, unlike yellowness, is ‘phenomenally com-
plex’ that allows the complexity, initially confused and gestalt- like, to be 
teased out discursively, that is, expressed in a definition.

2.5  The Concept of Ratio and Incidents in the History of Ratio

All these themes – of quantity and relation, of demonstration needing a 
complex definition not simply arising from division, of complexity and 
partedness – are evident in the ancient search for a satisfactory definition 
of ratio.

Ratio or proportion is one of the most basic concepts of mathematics. It 
is the fundamental relation in which quantities of the same kind stand: a 
length can be double or triple or one and a third times another length, and 
given any two lengths whatsoever they stand in some ratio. It is the same for 
two areas or two velocities. As Euclid puts it, ‘a ratio (logos) is a sort of rela-
tion in respect of size between two magnitudes of the same kind’.16 Indeed, 
in Aristotle it is the paradigmatic example of relation.17 A ratio is not the 
same thing as a number: the number two is how many, the double is a ratio. 
It is true that if one clones an apple, the ratio of the mass of the pair to the 
mass of one is the double. But ‘two’ counts, whereas ‘double’ compares size.

Ratio is in a sense abstract in that the same ratio is realisable between 
different quantities: the ratio the triple can be found between heights, 
between masses, between time intervals, and so on. It is not ‘substancy’ 
like a circle, because it is a relation. But it is easily visible (or ponderable, 
or estimable by time sense, as the case may be), as in the following diagram 
where the ratio of height to width is immediately perceptible18 (Figure 2.5).

John Bigelow writes, concerning the reality of ratio and the relation 
between different kinds of ratio, as well as explaining how ratio is unlike a 
simple physical property:

Physical objects, like elephants and Italians, humming- birds and 
Hottentots, have many physical properties and relations: volume and 
surface area, for example. And the physical properties of these objects 
stand in important relations to one another. In particular, such physical 
properties stand in relations of proportion to one another. There is a 
relation between the surface area of the humming- bird and that of the 
Hottentot; and this may or may not be the same as the relationship that 
holds between the surface areas of an Italian and an elephant. 
Relationships such as proportion will hold not only between surface 
areas but also between volumes …19

Mice can scurry but elephants can’t because mass scales up differently from 
the muscle cross- section that determines strength: if animal B is twice the 
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length of animal A (and otherwise in proportion), its mass is eight times 
but its muscle cross- section only four times. In such examples, ratio, 
though abstract, is intimately involved in scientific explanation.

A few incidents in the history of ratio will indicate its ubiquity in math-
ematical science. It can lay claim to be the key to the mathematisation of 
nature. These incidents will also give some sense of the varied perspectives 
on ratio that might need to be captured in a definition.

As soon as mathematical skills developed, there were demands to fix the 
calendar. The calendar problem is generated by the fact that the ratios of 
the day, (mean) lunar month and year appear to have been designed to 
make the calendar as difficult as possible. If 12 months of 30 days each 
fitted in the year, the calendar would be easy, but that is not the case. Old 
Babylonian astronomy addressed the problem and calculated vigorously in 
sexagesimals, which is equivalent to regarding ratios as all representable as 
indefinitely long decimals.20

Ratio is conceived quite differently in the earliest surviving Greek math-
ematical proof, the quadrature of lunes by Hippocrates of Chios (about 
450 BCE) – not by coincidence, the oldest text in which the deductive struc-
ture of Greek geometry is visible. Hippocrates proved that, in the following 
diagram, the area of the lune (the shaded curved area between the outer 
and inner semicircles) is exactly the same as the area of the shaded triangle.  

Figure 2.5  Sheldon’s ‘somatotypes’ of human body shapes.  https:// en. wikipedia. org/ 
wiki/ Somatotype_and_constitutional_psychology#/ media/ File: Bodytypes. jpg
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No reference to π or formula for the area of a circle is involved – indeed, it 
is impossible to do anything similar with a circle (that is, construct a figure 
with straight sides which has the same area as the circle) (Figure 2.6).21

Simplicius’s text transmitting Hippocrates’ proof begins by stating: 
‘Similar segments of circles have the same ratio to one another as the 
squares on their bases’.22 So ratio appears in the first step, and it means a 
ratio of the areas of perfect geometrical figures. The justification for that is 
not stated, but the claim is very close to obvious: if any shape, such as a 
segment of a circle, is thought of as filled up with little squares, then if it is 
scaled up by some factor, the squares expand by the square of that factor, 
so the whole area does too. (A similar argument in Euclid XII.2 may or 
may not go back to Hippocrates.)

But the square on the base AOC of the large semicircle is (in area) twice 
the square on the base ADB of the smaller semicircle. That is by Pythagoras’ 
theorem applied to the right triangle AOB – but in this simple case the 
result is exactly the one proved directly by the slave boy in Plato’s Meno: if 
we delete the semicircles from Hippocrates’ diagram and add the squares 
he mentions, we get exactly the diagram of the Meno. The result there is 
also about exact ratios of perfect figures (Figure 2.7):

It follows that in the lunes diagram, the small semicircle (ADBE) has the 
same area as the quarter of the big semicircle (AOBF). On subtracting from 
both their common area, the unshaded segment (ADBF), we conclude that 
the shaded lune is the same area as the shaded right triangle. The proof has 
been accomplished solely in terms of ratios and equality of areas.

The other most celebrated discovery of early Greek mathematical sci-
ence was the role of ratios in music. Myles Burnyeat writes of

Figure 2.6  Hippocrates’ quadrature of the lune After  https:// en. wikipedia. org/ wiki/ 
Lune_of_Hippocrates#/ media/ File: Lune. svg
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… the all- pervasive role of ratio in Greek mathematics. From arithmetic 
through plane and solid geometry to astronomy, ratio and proportion 
keep turning up in the proofs. Harmonics, though mathematically sim-
pler than advanced geometry and astronomy, is the first discipline to 
take ratio itself as the primary object of study.23

That led to perhaps the most extraordinary event in the history of ratio, 
the attempt by Plato and in some circumstances Aristotle to actually 
identify the Good with ratio. Plato conceives the Good on the model of 
harmony in music.24 Harmony can be heard and can sound beautiful, 
but the superior science of music involves an intellectual study of why 
that is so, of the mathematics of integer ratios such as the octave and 
fifth that explain (heard) harmony.25 His ‘ethics’ is then identified with 
harmony – that is, with the mathematical system of ratios that stands 
behind heard harmonies and so can be realised in other categories (such 
as planetary motions in the ‘music of the spheres’). Justice is defined as 
an attunement, in the first instance in the soul26 and later in the struc-
ture of the perfect state. Thus, in Plato, ‘the Good is described formally, 
even mathematically, it is ratio’. Or at least, if the Good is strictly 
speaking ineffable, ‘Measure is the Good in so far as it can be grasped 
by reason’.27

Aristotle’s mathematical account of ‘justice’ betrays the same close con-
ceptual connection between the ‘just’ and ratio as in Plato, even though it 
does discuss cases of justice that are closer to our ethical meaning of the 
word, such as compensation for fraud. His argument that a just division is 
a proportional one does not rely on any ethical premises. The reason he 
gives is simply that the just is a species of the proportional, and he feels 
that needs no further justification.28

Figure 2.7  The diagram of Plato’s Meno (In the Meno diagram, the large square, 
with diameter AC, is twice the area of the inner square in ‘diamond 
position’, with side AB.).

A CO

B
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Discussions of a similar tendency on proportion in art, architecture, and 
the human body, often involving the Golden Ratio, have of course been 
vast.29

The later history of ratio is too extensive for a survey to be attempted 
here, but a simple list of the laws of nature characteristic of the Scientific 
Revolution will indicate the crucial role that ratio plays at the core of mod-
ern science. It is notable in these laws that a proportion (sameness of ratio) 
is asserted between magnitudes of different kinds – for example, force and 
acceleration are quite different kinds of quantities, but twice the force 
causes twice the acceleration:

 • Kepler’s Second Law: The area swept out by a radius from the sun to a 
planet is proportional to the time taken

 • Snell’s Law: The sine of the angle of refraction is proportional to the 
sine of the angle of incidence

 • Galileo’s Law of Uniform Acceleration: The speed of a heavy body fall-
ing from rest is proportional to the time from dropping

 • Pascal’s Law: The pressure in an incompressible fluid is proportional to 
depth

 • Hooke’s Law: The extension of a spring is proportional to the force 
exerted to stretch it

 • Boyle’s Law: For a fixed quantity of gas at constant temperature, pres-
sure is inversely proportional to volume

 • Newton’s proposition on the prism: there is some kind of proportional-
ity between refrangibility and colour of light

 • Newton’s Second Law of Motion: The acceleration of a body is propor-
tional to the total force acting on it

 • Newton’s Law of Gravity: The force of gravity exerted by one body on 
another is proportional to the masses of each and inversely proportional 
to the square of the distance between them

 • Newton’s Law of Cooling: The rate of temperature loss from a body is 
proportional to the difference in temperature between the body and its 
surroundings.

2.6  Ancient Definitions of Ratio

That leaves the question of how to define ratio. Ideally, it should be defined 
in a way like the definition of a circle, suitable for supporting the deduction 
of theorems about it. The typical sort of theorem that one might want to 
deduce is the alternation of ratios: supposing a, b, c, and d to be quantities 
of the same kind, if the ratio of a to b equals the ratio of c to d, then the ratio 
of a to c equals the ratio of b to d. (A favourite example of Aristotle’s.30)
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The previously mentioned definition of Euclid, that ‘A ratio (logos) is a 
sort of relation in respect of size between two magnitudes of the same kind’ 
(Euclid V.3) is a true description but incomplete as a definition. What sort 
of relation? It correctly approaches the question by division: the category 
of ratio is relation and the subcategory relation between quantities. But 
that characterisation also fits, for example, ‘greater than’, and if we look 
for some differentia to explain how ‘greater than’ differs from ‘ratio’, noth-
ing springs to mind and Euclid does not offer anything. It is like defining 
humans as ‘a sort of animal’. The process of division has not reached a 
definition useful for proving theorems, which explains the fact that it does 
not appear in any of Euclid’s proofs.

A natural thought, implicit in the Babylonian approach of reducing 
everything to calculation with sexagesimals, is that all ratios of quantities 
should be reduced to ratios of whole numbers by choosing a suitable unit 
for each quantity. It should be easy to compute the ratio of two quantities 
of the same kind, say two lengths, by finding a unit small enough to mea-
sure both and counting how many of the unit is in each length.

That still needs some explication of the ratio of whole numbers, but that 
seems reasonably clear: the ratio of 9 to 6 is explained by saying that the 
unit 3 fills up 6 twice and 9 three times, hence the ratio is 3 to 2. The ratio 
of two numbers is definable and computable exactly via their relation to 
the common unit. Equality, at least, of such ratios is as laid out in the defi-
nition of Euclid Book VII (on number theory), Definition 20: ‘Numbers are 
proportional when the first is the same multiple, or the same part, or the 
same parts, of the second that the third is of the fourth’.

Furthermore, given two lengths, there is a straightforward computational 
procedure for finding their common measure. The procedure is variously 
called ‘reciprocal subtraction’/anthyphairesis/the Euclidean algorithm, or 
in Aristotle antanairesis.31

Given two lengths A and B, we see how many times the smaller one (say 
B) fits into the larger one A (in the example of Figure 2.8, 3 times). If it 
does not fit exactly a whole number of times, there is a remainder R that is 
smaller than both A and B. (If B does fit exactly, then of course B itself is 
the unit that measures both A and B.) Any unit that measures both A and 
B must also measure R (since R is just A minus a whole number of B’s).  

Figure 2.8  Anthyphairesis of lengths A and B to find their common measure.

A   

B  

R
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So we can repeat the process with R and B, either finding that R measures 
B (and hence A as well), or that there is a smaller remainder R , which must 
also be measured by any unit that measures A and B. And so on. Since we 
always get smaller remainders at each step, we work our way down until 
the last remainder is the unit that measures all previous remainders and 
hence also measures A and B.

Now, what happens if we apply anthyphairesis to those two very natu-
rally occurring lengths, the side and diagonal of a square?

The side fits once into the diagonal, with a remainder left over (in bold 
in Figure 2.9). That remainder appears three times in the diagram.

It fits twice into the (original) side (Figure 2.10), and when we take the 
(small) side length out of the (small) diagonal (the diagonal of the small 
square in ‘diamond position’), we are in the same position as we were 
originally with the larger square: taking a side out of a diagonal. Thus, the 
small square, with its diagonal, is a repeat of (the same shape as) the large 
square with its diagonal, so anthyphairesis goes into a loop and keeps 
repeating: at each stage, one side- length is taken out of one diagonal. 
Therefore, the remainders just keep getting smaller and smaller and the 
process never ends. There is thus no unit that measures the original diago-
nal and side. The diagonal and side of a square are ‘incommensurable’.32

The later legend that the discovery of incommensurability created a 
foundational crisis in mathematics is not supported by ancient evidence.33 
Incommensurability is first mentioned in Plato without any suggestion that 
it created a crisis. Nevertheless, there is something surprising about it. 
Aristotle remarks that ‘the incommensurability of the diagonal of a square 
with the side … that there is a thing which cannot be measured even by the 
smallest unit’ is surprising to the uninformed but the opposite would be 
even more surprising for experts who understand the reason.34 It does 

Figure 2.9  Anthyphairesis of diagonal and side of a square.
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suggest two natural conclusions. One is that the discrete and the continu-
ous are fundamentally different mathematically, and must each be 
approached on their own terms; continuous versus discrete has remained a 
fundamental theme of mathematics since.35

The second conclusion is that some definition of ratio is needed that will 
apply to continuous quantities as well as discrete ones, and hence it cannot 
rely on units.36 And if anthyphairesis has created the problem, it can also 
supply the solution. Sameness of ratio can be defined by sameness of anthy-
phairesis. That is what Aristotle says:

But it also resembles what happens in mathematics where some things 
are not easily proved due to a deficiency of definition, e.g., that the line 
parallel to the side that cuts the plane similarly divides both the line and 
the area. But when the definition is stated it is straight- away obvious 
what is meant. For the areas and the lines have the same antanairesis. 
But this is the definition of the same ratio.

(Aristotle, Topics 8.3, 158b29–35)37

Figure 2.11 makes that clear: whatever operations of subtraction are under-
taken with the two lines at the bottom can also be undertaken with the 
parallelograms standing on them, so (the areas of) the parallelograms must 
stand in the same ratio (as defined by anthyphairesis) as the lines (bases).

Sameness of anthyphairesis is however an awkward definition of same-
ness of ratio. It suits computation with individual pairs of quantities, but it 
does not easily support proofs of general truths about ratio, such as the 
principle of alternation of ratios.38

That brings us to Book V of Euclid’s Elements.39 It is a self- contained 
treatise on ratios in general and does not require results from the earlier 

Figure 2.10  Anthyphairesis of diagonal and side: second stage.
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books on geometry. After the statement that ‘A ratio is a sort of relation in 
respect of size between two magnitudes of the same kind’ (Definition 3), 
which is not used in any proof, there is no further attempt to define ratio 
as such. Instead, Euclid states the crucial Definition 5, of equality of ratio:

Magnitudes are said to be in the same ratio, the first to the second and the 
third to the fourth, when, if any equimultiples whatever are taken of the 
first and third, and any equimultiples whatever of the second and fourth, 
the former equimultiples alike exceed, are alike equal to, or alike fall short 
of, the latter equimultiples respectively taken in corresponding order.

Note that here the ‘first and second’ are magnitudes of the same kind, the 
‘third and fourth’ magnitudes of a possibly different kind, while ‘equimul-
tiples’ refers to multiplying by whole numbers (whereas the magnitudes 
themselves may be numerical, geometrical or other). In that context, it 
would not be possible to define equality of ratios in the modern fashion as 
‘a to b equals c to d if ad = bc’, since it is impossible in general to multiply 
quantities – for example, if they are all areas, it is impossible to multiply 
two areas. It is hard to see how a simpler definition could be thought of 
that was capable of dealing with the ratios of arbitrary quantities.

That is certainly an awkward definition to use, but just feasible. Its first 
use is in Proposition 4, ‘If a first magnitude has to a second the same ratio 
as a third to a fourth, then any equimultiples whatever of the first and third 
also have the same ratio to any equimultiples whatever of the second and 
fourth respectively, taken in corresponding order’.

In Book VII, on number theory, Euclid starts again by defining propor-
tionality, or equality of ratio, by Definition 20:

Numbers are proportional when the first is the same multiple, or the 
same part, or the same parts, of the second that the third is of the fourth.

That is simpler than the definition in Book V since all quantities involved 
are whole numbers. There is no need for the awkward interleaving of 

Figure 2.11  Two parallelograms have the same anthyphairesis as their bases.
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numbers with other kinds of quantities nor for the use of many equimulti-
ples to cope with the possibility that the quantities are incommensurable.

Those definitions may be more complicated than might be desirable, but 
as Euclid proceeds to show, they support the theorems. It must be admitted 
however that these two definitions, driven as they are by mathematical 
requirements (to generate theorems) have diverged from what is philo-
sophically satisfying. Only Euclid’s incomplete first definition, that ratio is 
‘a sort of relation in respect of size’ addresses the question of what ratio 
really is. Unlike in the case of the circle, it seems to be impossible to find a 
definition of ratio that is both philosophically satisfying and mathemati-
cally productive.

2.7  Modern Times

From late antique through Arabic to medieval and early modern times, 
there were many complaints about Euclid’s definitions of ratio, both about 
their complexity and there being three of them.40 Attempts to do better 
were not notably successful, but there was a general tendency to move in 
the direction of arithmetisation, that is, to translate all quantities into 
numbers.

From the mid- seventeenth century, ratios came to be identified with num-
bers, including irrational numbers, instead of as relations between various 
kinds of quantities.41 It proved, in the end, possible to unite ratio theory of 
magnitudes and of numbers, but only at enormous mathematical expense 
and philosophical unclarity. The costs appear in two places, in the pure 
mathematical theory of the ‘construction of the continuum’ and in the ‘the-
ory of measurement’ that connects pure mathematics to extra- mathematical 
quantities.

The continuum is the set of all possible ratios, if we identify ratios with 
numbers, rational and irrational.42 Officially, in the modern foundations of 
mathematics, the continuum is the (infinite) set of (infinite) Cauchy sequences 
(themselves infinite sets) of rational numbers, while rational numbers them-
selves are (infinite) equivalence classes of pair of integers.43 It is possible to 
believe in those infinite sets of infinite sets with practice, and no contradic-
tions have been found to arise. But the procedure does hide the intuitions by 
which we recognise which set of infinite sets does have the structure that we 
recognised a priori as the continuum, that is, the real line.44

Additionally, to apply the theory of the continuum to ratios between 
real- world quantities like lengths, one needs a (Platonist) theory of mea-
surement to associate numbers with parts of the world. ‘Measurement 
theory officially takes homomorphisms of empirical domains into 
(intended) models of mathematical systems as its subject matter’, as one 
recent writer puts it.45 That is enjoyable mathematics, but it is 
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philosophically in vain as the system of ratios has to exist in the magni-
tudes for the homomorphism to exist. As Joel Michell puts in, in language 
reflecting the Aristotelian realism about ratios of quantities that lies at the 
heart of Euclid’s Book V definitions:

The commitment that measurable attributes sustain ratios has a further 
implication, viz., that the real numbers are spatiotemporally located 
relations. It commits us to a realist view of number. If Smith’s weight is 
90 kg, then this is equivalent to asserting that the real number, 90, is a 
kind of relation, viz., the kind of relation holding between Smith’s 
weight and the weight of the standard kilogram. Since these weights are 
real, spatiotemporally located instances of the attribute, any relation 
holding between them will likewise be real and spatiotemporally located. 
This kind of relation is what was referred to above as a ratio. So the 
realist view of measurement implies that real numbers are ratios. By 
way of contrast, the standard view within the philosophy of mathemat-
ics is that numbers are abstract entities of some kind, entities not intrin-
sic to the empirical context of measurement, but related externally to 
features of that situation by human convention.

(Michell 2005, 287)46

The significance of those complexities is to lay bare the difficulty of the 
task that Euclid and his predecessors faced in searching for a correct defini-
tion of ratio. From the philosophical point of view, Euclid’s definitions of 
ratio (and the debates leading up to them) remain at least as illuminating 
as their modern replacement in the complex superstructure of infinite sets 
of the ‘construction of the continuum’.

2.8  Conclusion

The history of the definitions of ‘circle’ and ‘ratio’ confirms the power of 
the Aristotelian ideal that definitions should explain ‘what a thing is’ and 
as a result should support a superstructure of demonstrated theorems 
about that thing. Definitions in the category of quantity, and the resulting 
mathematics, have turned out to confirm that ideal more convincingly than 
definitions in other categories. And even though mathematical require-
ments and philosophical requirements can sometimes come apart, the ideal 
is still a live one in mathematics. Jamie Tappenden writes:

The idea that discovering the proper definition can be a significant 
advance in knowledge has overtones of a classical distinction between 
‘real’ and ‘nominal’ definition. ‘Real definition’ has fallen on hard times 
in recent decades. Enriques’ The Historic Development of Logic, 
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published in 1929, addresses the topic throughout, in a whiggish 
recounting of the emergence of the idea that ‘real definition’ is empty 
and that all definitions are nominal. That seems to be where things 
stand now. We might need to rework too many entrenched presupposi-
tions to revive the distinction in its traditional form, but it would help 
to reconstruct a minimal doctrine to support the distinctions we want to 
draw and connections we want to make. The core motivation is that in 
mathematics (and elsewhere) finding the proper principles of classifica-
tion can be an advance in knowledge.

(Tappenden 2008, 269)47

The ‘distinction in its traditional form’ remains live, and a study of Euclid 
as much as a study of modern mathematical definitions shows why.
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