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ABSTRACT. I will now describe several applications of the theory of n-universes across
different  probabilistic  scenarios.  First,  I  will  explain  how  n-universes  can  extend  the
probability spaces used in traditional probability theory. These extended probability spaces
enable more refined modelling of complex probabilistic situations and align more intuitively
with our perceptions of the physical universe. Next, I will demonstrate the use of n-universes
as a methodological tool through two thought experiments described by John Leslie. Finally,
I will model Goodman's paradox within the framework of n-universes, showing how they
closely resemble Goodmanian worlds.

The concept of n-universes was introduced in Franceschi (2001, 2002) to study probabilistic situations
related  to  several  paradoxes  currently  under  intensive  investigation  in  the  field  of  analytical
philosophy, such as Goodman's paradox and the Doomsday Argument.1 The purpose of this article is
twofold: first, to describe how modeling within the n-universes framework extends the properties of
classical  probability  spaces  used  in  probability  theory  by  providing  finer  modeling  of  certain
probabilistic situations and better support for intuition; second, to demonstrate how using n-universes
significantly simplifies the study of complex probabilistic situations, such as those that arise in the
analysis of paradoxes.

For instance, when modeling the situation of drawing a ball from an urn, a restricted temporal space
is considered, limited to the few seconds immediately before and after the draw. Events that occurred
the day before or an hour before, as well as those that will happen the day after, can be completely
disregarded.  A very  restricted  time interval,  reducible  to  one  or  two discrete  temporal  positions,
suffices to characterize the corresponding situation. Similarly, our universe can be restricted to the
space occupied by the urn, ignoring the space in the neighboring room and its contents. Additionally,
variables such as the number of copper or molybdenum atoms in the urn, the number of photons
interacting with the urn at the time of the draw, or the presence or absence of a 75 dB sound source
can be omitted. In this context, it is unnecessary to account for such variables. It suffices to mention
only the variables and constants relevant to the corresponding probabilistic situation, as enumerating
all the constants and variables describing our entire universe would be exceedingly complicated and
unnecessary. Therefore, one can legitimately limit the description to a simplified universe, mentioning
only the constants and variables that play a genuine role in the corresponding probabilistic situation.

Consider the drawing of a ball from an urn containing several balls of different colors. Probability
theory, to calculate the likelihood of different events related to drawing one or several balls, relies on
modeling based on probability spaces. The determination of these likelihoods does not depend on
modeling the physical forces governing the conditions of the draw, such as the mass and dimensions
of the balls, the material they are made of, their initial spatiotemporal positions, or the characteristics
of the forces applied to perform a random draw. Instead, the modeling of random phenomena using
probability spaces retains only simplified elements of the physical situation, specifically the number
and  color  of  the  balls  and  their  spatiotemporal  positions.  This  methodological  approach  can  be
generalized to  other  probabilistic  situations  involving random processes,  such  as  drawing dice  or
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cards. This methodology is not an axiom of probability theory but an important tenet that could benefit
from further formalization. It is also useful to explain in more detail how elements of our physical
world  are  converted into  probability  spaces.  In  what  follows,  I  will  demonstrate  how probability
spaces can be extended using the theory of n-universes to better capture the structure of the part of our
universe being modeled. 

1. Introduction to n-universes

It  is  important  to  preliminarily  describe  the  basic  principles  underlying  n-universes.  N-universes
represent  a simplified model  of  the  physical  world,  studied within a  probabilistic framework.  By
applying Occam's razor, we aim to model a physical situation using the simplest possible universe
model, while still preserving the inherent structure of the corresponding physical situation. At this
stage, it is necessary to highlight several important features of n-universes.

1.1. Constant-criteria and variable-criteria
The criteria of a given n-universe include both constants and variables. Although n-universes allow for
modeling situations that do not correspond to our physical world, our focus here will be exclusively on
n-universes that correspond to common probabilistic situations, in alignment with the fundamental
characteristics of our physical universe. These corresponding n-universes must include at least one
temporal constant or variable, as well as one location constant or variable. Among n-universes, we
distinguish: a T0L0 (an n-universe including a temporal constant and a location constant), a T0L (a
temporal constant and a location variable), a  TL0 (a temporal variable and a location constant), a
TL (a temporal variable and a location variable). Other n-universes may also include constants or
variables related to color, direction, etc. 

1.2. N-universes with a unique object or with multiple objects
Every  n-universe  includes  one or  several  objects.  We distinguish,  for  example:  a  0TL0 (an n-
universe including a unique object, a temporal variable, and a location constant), a TL0 (multiple
objects, a temporal variable, and a location constant). 

1.3. multiplication with regard to a variable-criterion
It  is worth highlighting the property of  multiplication of a given object with regard to a variable-
criterion in a given n-universe. Hereafter, we shall denote a variable-criterion  with multiplication by
*.  Any  variable-criterion  of  a  given  n-universe  can  be  multiplicated  in  this  manner.  The
multiplication of an object with respect to a criterion   is defined as the property of this object to
exemplify several taxa of criterion . For example, consider the time criterion. The multiplication of
an object with respect to time means that the object exemplifies several temporal positions. In our
physical  world,  an  object  0 can  exist  at  several  (successive)  temporal  positions,  and  thus,  it  is
multiplicated with regard to the time criterion. Common objects exhibit temporal persistence, which
constitutes a special case of temporal multiplication. Therefore, in our universe, where time is one of
the variable-criteria, it is common to observe that a given object 0 that exists at T1 also exists at T2, ...,
Tn. Such an object has a lifespan that spans the period from T1 to Tn. The corresponding n-universe can
thus be represented by the structure 0T*L0 (T* for simplicity). 

1.4. Relation one/many of multiple objects with a given criterion
At this stage, it is essential to make an important distinction. We need to differentiate between two
types of situations. An object can exemplify, as previously mentioned, several taxa of a given variable-
criterion. This corresponds to the case of multiplication, as described in relation to a given variable-
criterion. However, another situation must  be considered,  which pertains only to n-universes with
multiple objects. Specifically, multiple objects can instantiate the same taxon of a given criterion.

First, consider the temporal criterion. Let's imagine an n-universe with multiple objects, including a
temporal  variable  and  a  constant  location  L0.  This  can  correspond  to  two  different  types  of  n-
universes. In the first type, there is a single object at each temporal position. At any given time, only
one object can exist in L0 within the corresponding n-universe. In this case, every object in the n-
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universe  has  a  one-to-one relationship  with  the  temporal  taxa.  We denote  such  an  n-universe  as
T*L0 (simplified as T).

Now, consider an n-universe with multiple objects, including a temporal variable and a constant
location, where several objects 1, 2, 3 can exist simultaneously. Here, multiple objects can occupy
the same temporal position in L0.  This situation fundamentally differs from  T*L0,  as several
objects can co-exist at a given time. In this case, the objects have a many-to-one relationship with the
temporal taxa. We denote this n-universe as *T*L0 such n-universe (simplified as *T) . 

Next,  consider  the  location  criterion.  Imagine  an  n-universe  with  multiple  objects,  a  temporal
variable, and a location variable, where the objects have a many-to-one relationship with the temporal
criterion. We need to distinguish between two types of n-universes here. In the first type, a single
object can be found at a given location taxon at any given time. This scenario models, for example, the
positions  of pieces  in  a  chess  game. We denote  such an n-universe  as  *TL such n-universe
(simplified as  *TL).  In this case, the objects have a  one-to-one relationship with the location
criterion.

In the second type of n-universe, several objects can occupy the same location taxon at the same
time. For instance, objects  1,  2,  3 can all be in L1 at  T1.  This situation is analogous to an urn
(assimilated to a given location taxon) containing multiple balls at a given time. We denote this n-
universe as *T*L, where the objects have a many-to-one relationship with the location taxa. 

Finally,  this  differentiation  also  applies  to  the  variable-criterion  of  color.  We  can  distinguish
between: (i) *T0*L0C (simplified as  C) where several objects co-existing at the same time in
a given spatial position must all have different colors, indicating a  one-to-one relationship with the
color criterion; and (ii)  *T0*L0*C (simplified as  *C) where several objects which can co-
exist at the same time at a given space position can present the same color, because the objects are in
relation many-to-one with the color criterion there, where several objects co-existing at the same time
in a given spatial position can have the same color, indicating a  many-to-one relationship with the
color criterion. 

1.5. Notation
At this stage, it is important to highlight a crucial point regarding the notation used in this discussion.
We have employed both extended and simplified notations. The extended notation explicitly specifies
all  criteria  of  the  considered  n-universe,  including  both  variable-criteria  and  constant-criteria.  In
contrast, the simplified notation only explicitly specifies the variable-criteria of the n-universe. The
constant-criteria of time and location for the n-universe can be inferred from its variable-criteria. This
inference is possible because the studied n-universes systematically include one or several objects, as
well as either a variable-criterion or a constant-criterion of time and location.

Let  us  illustrate  this  with  an  example.  Consider  an  n-universe  that  includes  multiple  objects,  a
constant-criterion  of  time,  and  a  constant-criterion  of  location.  In  this  case,  the  multiple  objects
necessarily exist at T0. As a result, in this n-universe, the multiple objects are inherently related to the
constant-criterion of time. Similarly, there are necessarily multiple objects at L0, establishing a many-
to-one relationship  with  the  constant-criterion  of  location.  Thus,  we  describe  this  situation  as
*T0*L0.  However,  given  the  aforementioned  reasons,  this  n-universe  can  be  denoted  in  a
simplified way as . 

he preceding observations suggest a general simplification of the notation used. Since an n-universe
includes multiple objects and a constant-criterion of time, the multiple objects are necessarily related
to this constant-criterion. The n-universe can thus be denoted as *T0. However, this notation can be
simplified to  .  Similarly, if  an n-universe includes multiple objects and a constant-criterion of
location, the multiple objects are necessarily in many-to-one relationship with this constant-criterion of
location. This n-universe can be denoted as  *L0, which can be simplified to  .  Consequently,
notations such as  *L0*T0 can be simplified to  ,  *L0T to  T,  *L0*T to  *T,
*L0*T* to *T*, and so on. 
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2. Modeling random events with n-universes

In traditional probability theory, situations often involve dice, coins, card games, or urns containing
balls. It is valuable to describe how these objects can be modeled within the framework of n-universes.
Additionally, it is necessary to extend the notion of a ‘toss’ to probability spaces within n-universes.
The following models can be used:2

2.1. Throwing a die
How can we model a toss where the result of throwing a die is "5"? Here, we model the die as a
unique object located at a space location L0. This object can present one discrete direction from the set
{1,2,3,4,5,6} at a specific time T0. The corresponding n-universe includes a unique object, a direction
variable, and a temporal constant. The unique object can present only one direction at time T0 and is
not subject to multiplication concerning the direction criterion. The n-universe is denoted as O (with
extended notation 0T0L0O). Traditionally, we have the sample space  = {1,2,6} and the event {5}.
In this  case,  drawing ‘5’  means the unique object  has  direction 5 among {1,2,6} at  time T0 and
location L0. Thus, the sample space is denoted by 0T0L0O{1,2,...,6} and the event by 0T0L0O{5}.3

How can we model two successive throws of the same die, where the results are "5" and then "1"?
Traditionally, we have the sample space  = {1,2,...,6}2 and the event {5,1}. Here, this corresponds to
the die 0 having directions 5 and 1 at times T1 and T2. In the corresponding n-universe, we have now
a  time  variable,  including  two  positions:  T1 and  T2.  Moreover,  the  time  variable  is  subject  to
multiplication  because  the  unique  object  exists  at  different  temporal  positions.  Therefore,  the
considered n-universe is T*O (with extended notation 0T*L0O). The sample space is denoted by
0T*{1,2}L0O{1,2,...,6} and the event by {0T*{1}L0O{5}, 0T*{2}L0O{1}}. 

2.2. Throwing a coin
How can we model the outcome of a coin toss, for example, landing on Tails? We model the coin as a
unique object presenting two distinct outcomes: {P, F}. The corresponding n-universe is identical to
that used for modeling a dice roll, with the sole difference being that the direction criterion includes
only  two  outcomes:  {P,  F}.  Thus,  the  corresponding  n-universe  is  O  (with  extended  notation
0T0L0O). Classically, we have:  = {P,F} and {P}. Here, the Tails outcome is associated with the
unique object taking direction {P} from {P, F} at time T0 and location L0. The sample space is then
denoted by 0T0L0O{P,F} and the event by 0T0L0O{P}. 

How can we model two successive tosses of the same coin, such that the result is "Heads" followed
by  "Tails"?  Classically,  we  have  the  sample  space   =  {P,F}2 and  the  event  {F,P}.  Similar  to
modeling successive throws of a  die,  the  corresponding n-universe  here  is  T*O (with extended
notation  0T*L0O).  The  sample  space  is  denoted  by  0T*{1,2}L0O{P,F},  and  the  event  by
{0T*{1}L0O{F}, 0T*{2}L0O{P}}. 

2.3. Throwing multiple discernible dice
How can we model the throwing of two discernible dice simultaneously, for example, one showing a
"3" and the other a "5"? These discernible dice are modeled as multiple objects, each occupying a
specific spatial position and capable of displaying one of six possible outcomes {1, 2, 3, 4, 5, 6} at
time T0.  The multiple  objects  coexist  at  the  same temporal  position,  indicating  that  they share  a
temporal constant. Additionally, each object can only present one outcome at time T0, thus avoiding
any multiplication with regard to the direction criterion. The fact that both dice could display the same
outcome demonstrates that the objects are in relation many-to-one with the direction criterion. There
exists also a location variable, each of the dices 1 and 2 being at one distinct space position.

Moreover, each die, denoted as α1 and α2, occupies a distinct spatial position, which makes the dice
discernible.  Here,  the  objects  maintain  a  one-to-one relationship  with  the  location  criterion.
Furthermore, the objects can only occupy one spatial position at time T0, ensuring no multiplication
with respect to the location criterion. The n-universe is then denoted as  L*O (with extended

2 It should be noted that these different models do not exhaust the possibilities for representing the corresponding
objects within n-universes. Nevertheless, they resonate with our common intuitions about these objects.
3 We can alternatively use the notation 0T0L0O5 instead of 0T0L0O{5}. However, the latter notation is preferred
here because it is more compatible with classical event notation.
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notation *T0L*O). Traditionally, we have:  = {1,2,3,4,5,6}2 and {3,5}. This corresponds to the
dice 1 and 2 being found at locations L1 and L2, respectively, and displaying a given outcome among
{1,2,6} at time T0. Thus, the sample space is represented by {1,2}*T0L{1,2}*O{1,2,...,6} and
the event is denoted as  {{1}*T0L{1}*O{3}, {2}*T0L{2}*O{5}}. 

2.4. Throwing several indiscernible dice
How can we model the throwing of two indistinguishable dice, such as simultaneously tossing one "3"
and one "5"? Both indistinguishable dice are modeled as multiple objects located at the spatial position
L0, each capable of presenting, at time T0, one of the six possible spatial directions {1, 2, 3, 4, 5, 6} at
a given location. These multiple objects coexist at the same temporal position, so that the objects are
in relation many-to-one with the temporal constant. The multiple objects can only present one single
direction at time T0, and thus are not subject to multiplication with respect to the criterion of direction.
The fact that both dice may exhibit the same direction indicates that the objects are in relation many-
to-one with the  direction criterion.  Both dice,  denoted as  1 and  2 are  at  the  same location L0,
rendering them indiscernible. Additionally, the multiple objects are in relation many-to-one with the
constant-criterion of location. Finally, the objects can only occupy one single spatial position at time
T0,  and  are  not  therefore  subject  to  multiplication  with  respect  to  the  location  criterion.  The
corresponding n-universe is then *O (with the extended notation *T0*L0*O). Classically, we
have:  = (i, j) with 1  i  j  6 and {3,5}. This corresponds to the fact that dice 1 and 2 are both in
L0 and  present  a  given  direction  among  {1,2,...,6}  at  T0.  The  sample  space  is  then  denoted  by
{1,2}*T0*L0*O{1,...,6} and the event by {{1}*T0*L0*O{3}, {2}*T0*L0*O{5}}. 

2.5. Drawing a card
How can we model the drawing of a card, for example, card #13, from a set of 52 cards? In this model,
cards are represented as distinct objects, each associated with a unique color from the set {1, 2, ...,
52}. The numbers of the cards are equated with color taxa, numbered from 1 to 52. Each object can
only exhibit one color at any given time, ensuring that there is no multiplication concerning the color
criterion. Consequently, a specific card can display only one color at any given moment. Thus, the
objects are uniquely related to the color criterion. In addition, a given card can only present one single
color  at  the  same  time.  Thus,  the  objects  are  in  relation  one-to-one with  the  color  criterion.
Furthermore, multiple objects can occupy the same spatial location simultaneously (e.g., on a table).
The objects are then in relation many-to-one with the location criterion. Lastly, the objects can coexist
at  the  same  temporal  point.  Thus,  they  are  in  relation  many-to-one with  the  time  criterion.  The
corresponding n-universe can be denoted as  C (with the extended notation  *T0*L0C). To
model the drawing of a card, we traditionally consider the sample space  = {1,2,...,52} and the event
{13}. In this framework, drawing card #13 corresponds to the object whose color is #13 being at T 0

and location L0. Thus, the sample space is denoted by  {1,2,...,52}*T0*L0C{1,2,...,52} and the
event is denoted by {1}*T0*L0C{13}. 

The same modeling approach applies to drawing two cards simultaneously or drawing two cards in
succession.

2.6 Drawing of a ball from an urn containing red and blue balls
How can we model the drawing of, for example, a red bowl, from an urn containing 10 balls among
which 3 red balls and 7 blue balls? Here, the balls are modeled as distinct objects, each presenting a
colour from the set {R, B}. Consequently, a color variable exists in the corresponding n-universe.
Moreover, multiple objects can share the same color. These objects are therefore in a relation many-
to-one with the variable-criterion of color. Additionally, the objects are also related by the constant
criteria of time and location. Hence, the corresponding n-universe is represented as *T0**L0*C
(with  the  simplified  notation  *C).  Classically,  the  sample  space  is  given  by   =
{R,R,R,B,B,B,B,B,B,B} and the event of drawing a red ball is represented by {R}. Thus, the sample
space  can  be  denoted  by  {1,2,...,10}*T0**L0*C{R,B},  and  the  event  is  denoted  by
{{1}*T0**L0*C{R}}. 

The process of drawing two balls simultaneously or the successive drawing of two balls is modelled
in the same manner.
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3. Dimorphisms and isomorphisms

The comparison of the structures of the extended (to n-universes) sample spaces corresponding to two
given probabilistic situations allows us to determine whether these situations are isomorphic from a
probabilistic  viewpoint.  Examining  the  structures  of  the  sample  spaces  helps  identify  the
isomorphisms or, conversely, the dimorphisms. Let us provide some examples.

Consider  a  first  type  of  application  where  we  examine  whether  two probabilistic  situations  are
comparable in nature. To do this,  we model the two distinct probabilistic situations within the n-
universes. The first situation is modeled in a  *T0*L0*C (simplified notation  *C), and the
second one in a *T0*L0C (simplified notation C). We then observe a dimorphism between
the n-universes that model the two probabilistic situations. In the first situation, multiple objects are in
many-to-one relationship with the color criterion,  indicating that several objects can share the same
color at a given moment and location.  In contrast, in the second situation, the multiple objects are in
relation  one-to-one with  the  color  criterion,  what  corresponds  to  the  fact  that  each  object  has  a
different color at a given time and location. This dimorphism at the level of the multiplication of the
variable-criterion of color in the two n-universes indicates that the two probabilistic situations are not
comparable in nature.

Now consider a second type of application. The throwing of two discernible dice is modeled, as we
did see it, in a {1,2}T0*L{1,2}*O{1,...,6}. Next, let us consider a headlight that can display one
of  six  colors  numbered  from  1  to  6  at  a  given  time.  If  we  consider  two  such  headlights,  the
corresponding  situation  can  be  modeled  in  a  {1,2}T0*L{1,2}*C{1,...,  6}.  In  this  case,  the
variable-criterion of color replaces the criterion of orientation. At this stage, it becomes evident that
the structure of this n-universe (simplified notation L*C) is isomorphic to the n-universe where
the throwing of two discernible dice was modeled (simplified notation L*O). This allows us to
conclude that the two probabilistic situations are of a comparable nature. 

Let us now consider a concrete example. John Leslie (1996, 20) describes the Emerald case in the
following terms: 

Imagine an experiment planned as follows. At some point in time, three humans would each be given an
emerald.  Several  centuries  afterwards,  when  a  completely  different  set  of  humans  was  alive,  five
thousands humans would again each be given an emerald in the experiment. You have no knowledge,
however, of whether your century is the earlier century in which just three people were to be in this
situation, or the later century in which five thousand were to be in it. Do you say to yourself that if yours
were the earlier century then the five thousand people wouldn't be alive yet, and that therefore you'd have
no chance of being among them? On this basis, do you conclude that you might just as well bet that you
lived in the earlier century?

Leslie draws a parallel between a real situation involving some emeralds and a probabilistic model
concerning balls in an urn. Let's model the real, concrete situation described by Leslie in terms of n-
universes. Firstly, the situation is characterized by the presence of multiple objects: the emeralds.
Thus, we find ourselves in an n-universe with multiple objects. Additionally, the emeralds are located
in one place: the Earth. Hence, the corresponding n-universe has a constant location (L0). Leslie also
distinguishes two discrete temporal positions in the experiment: one corresponding to a given time and
the other several centuries later. Therefore, the corresponding n-universe includes a time variable with
two positions: T1 and T2. Moreover, the emeralds existing in T1 do not exist in T2, and vice versa.
Consequently, the n-universe corresponding to the  emerald case is an n-universe which is not with
temporal multiplication. Furthermore, multiple emeralds can exist at the same temporal position T i:
three emeralds exist in T1 and five thousand in T2. Hence, the objects have a many-to-one relation with
the time variable. Lastly, several emeralds can coexist in L0, indicating a many-to-one relation with the
location  constant.  Considering  the  above,  it  appears  that  the  Emerald  case occurs  in  an  *T
(extended notation *T*L0), an n-universe with multiple objects, a constant location, and a time
variable to which the objects have a many-to-one relation. 

Now, let's compare this with the situation of the Little Puddle/London experiment, also described by
Leslie (1996, 191): 
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Compare the case of geographical position. You develop amnesia in a windowless room. Where should
you think yourself more likely to be: in Little Puddle with a tiny situation, or in London? Suppose you
remember that Little Puddle's population is fifty while London's is ten million, and suppose you have
nothing but those figures to guide you. (…) Then you should prefer to think yourself in London. For what
if you instead saw no reason for favouring the belief that you were in the larger of the two places? Forced
to bet on the one or on the other, suppose you betted you were in Little Puddle. If everybody in the two
places developed amnesia and betted as you had done, there would be ten million losers and only fifty
winners. So, it would seem, betting on London is far more rational. The right estimate of your chances of
being there rather than in Little Puddle, on the evidence on your possession, could well be reckoned as ten
million to fifty.

The latter  experiment  is  based  on  a  real,  concrete  situation,  which  can  be related  to  an  implicit
probabilistic model. First, the situation is characterized by the presence of multiple inhabitants: 50 in
Little  Puddle  and 10  million  in  London.  Consequently,  the  corresponding n-universe  is  one with
multiple objects. Second, the experiment occurs at a single point in time, thus the corresponding n-
universe has a single time constant (T0). Additionally, two spatial positions, Little Puddle and London,
are distinguished, allowing us to model the situation with an n-universe comprising these two spatial
positions: L1 and L2. Each inhabitant is either in Little Puddle or London, but no one can be in both
places  simultaneously,  indicating  that  the  corresponding  n-universe  does  not  involve  local
multiplication. Moreover, several inhabitants can be at a given spatial position Li simultaneously: there
are 50 inhabitants in Little Puddle (L1) and 10 million in London (L2). Therefore, the objects are in a
many-to-one relation with the spatial variable. Similarly, multiple inhabitants can be in either Little
Puddle or London at time  T0, establishing a  many-to-one relation between the objects and the time
constant. Considering these factors, the Little Puddle/London experiment occurs in a *L (extended
notation *T0*L), an n-universe with multiple objects that includes a time constant and a spatial
variable, with the objects in a many-to-one relationship with both.

In contrast, the emerald case occurs in a *T, whereas the Little Puddle/London experiment occurs
in a *L. This comparison highlights the isomorphic structure of the two n-universes modeling the
experiments.  Consequently,  the  probabilistic  model  applicable  to  one  is  also  valid  for  the  other.
Furthermore, both *T and *L are isomorphic with *C, facilitating the determination of the
corresponding  probabilistic  model.  Thus,  the  situations  in  both  the  emerald  case  and  the  Little
Puddle/London experiment can be modeled by drawing a ball from an urn containing red and blue
balls.  In  the  emerald  case,  the  urn  contains  3  red  balls  and  5000  green  balls.  In  the  Little
Puddle/London experiment, the urn includes 50 red balls and 107 green balls. 

4. Goodman's paradox

The n-universes serve as a valuable methodological tool for elucidating complex situations, such as
those encountered in the study of paradoxes. In the following, I will illustrate the contribution of n-
universes in this context through the analysis of Goodman's paradox.4

Goodman's  paradox  was  described  in  Fact,  Fiction  and  Forecast (1954,  pp.  74-75).  Goodman
explains his paradox as follows: All emeralds observed so far have been green. Intuitively, we predict
that the next observed emerald will also be green. This prediction is based on the generalization that
all emeralds are green. However, if we consider the property ‘grue,’ defined as ‘observed before today
and green, or observed after today and not-green,’,5 we notice that this property is also satisfied by all
previously observed emeralds. The resulting prediction, based on the generalization that all emeralds
are grue, is that the next observed emerald will be not-green. This contradicts the earlier conclusion,
which aligns with our intuition. The paradox arises because applying enumerative induction to the
same  instances,  with  the  predicates  green and  grue,  leads  to  contradictory  predictions.  This
contradiction lies at  the heart  of  the paradox.  Therefore,  one of the inductive inferences must  be
fallacious.  Intuitively,  the  conclusion  that  the  next  observed  emerald  will  be  not-green  seems
erroneous. 

4 This analysis of Goodman's paradox, presented in a simplified form with several adaptations, corresponds to
the version originally described by Franceschi (2001). The variation of the paradox considered here is derived
from Goodman's original (1954) formulation, but it is applied to a single emerald.
5 Given two predicates, P and Q, the predicate ‘grue’ is defined as follows: (P and Q) or (~P and ~Q).
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Now, let us model Goodman's experiment using n-universes. It is necessary to accurately describe
the  universe of reference in which the paradox occurs. Goodman mentions the properties green and
not-green as applicable to emeralds, making color one of the variable criteria of the n-universe in
which the paradox occurs. Furthermore, Goodman distinguishes between emeralds observed  before
time  T and  those  observed  after  T.  Thus,  the  corresponding  n-universe  also  includes  a  variable
criterion of time. As a result, we can describe the minimal universe in which Goodman situates his
paradox as a colored and temporal n-universe, i.e., a CT. 

Goodman also mentions several instances of emeralds. It might seem natural to model the paradox in
an n-universe with multiple objects, both colored and temporal. However, it is not necessary to use an
n-universe with multiple objects. To avoid a combinatorial explosion of cases, it is preferable to model
the paradox in the simplest type of n-universe: one with a unique object. In this version of the paradox,
we consider a single emerald whose color may vary over time. The emerald currently observed was
green every time it was observed before. Therefore, by induction, we conclude it will be green the next
time it is observed. However, the same inductive reasoning leads to the conclusion that it will be grue,
and thus not-green. This variation consistently leads to the emergence of the paradox. This version
takes place in an n-universe with a unique object and variables of color and time, i.e., a CT. Given
that the original statement of the paradox is ambiguous in this respect, and that the minimal context is
a CT, we distinguish between two situations: one situated in a CT, and another in a CT (where
 denotes a third variable-criterion). 

Let us place ourselves first in the context of a coloured and temporal n-universe, i;e. a CT. In such
universe, to be  green, is to be  green at time T. In this context, it appears completely legitimate to
project  the  shared  property  of  colour  (green)  of  the  instances  through  time.  The  corresponding
projection can be denoted by C°T. The emerald was green every time where I observed it before, and
the inductive projection leads me to conclude that it will be also green next time when I will observe
it. This can be formalized as follows (V denoting green): 

(I1) VT1·VT2·VT3·...·VT99 instances
(H2) VT1·VT2·VT3·...·VT99·VT100 generalization
(P3)  VT100 from (H2)

The previous reasoning appears entirely correct and aligns with our inductive practice. However, can
we conclusively determine from this that the green predicate is projectible without restriction in the
CT? It seems not. The preceding inductive enumeration applies to an n-universe where the temporal
variable corresponds to our present time, such as a period of 100 years surrounding our current epoch,
specifically the interval [-100, +100] years. But what if the temporal variable extended much further,
including, for example, a period of 10 billion years around our current time, specifically the interval [-
1010, +1010] years? In that case, the emerald would be observed in 10 billion years. At that time, our
sun would have burned out and progressively become a white dwarf. The temperature on our planet
would  have  increased  significantly,  reaching  8000°C:  the  observation  would  reveal  then  that  the
emerald—as with most minerals—had undergone significant transformations and was no longer green.
Why  is  the  projection  of  green correct  in  the  CT  where  the  temporal  variable  is  defined  by
restriction relative  to  our present  time,  but  incorrect  if  the temporal  variable assimilates itself  by
extension to the interval of 10 billion years before or after our present time? In the first case, the
projection is correct because the different instances of emeralds are representative of the reference
class to which the projection applies. An excellent way of obtaining representative instances of a given
reference class is by choosing the latter randomly. On the other hand, the projection is incorrect in the
second case, as the different instances are not representative of the considered reference class. Indeed,
the 99 observations of emeralds come from our modern time, while the 100th concerns an extremely
distant time. Thus, the generalization (H2) results from 99 instances that are not representative of the
CT[-1010, +1010] and does not legitimately support induction. Consequently, green is projectible in
the CT[-102, +102] but not projectible in the CT[-1010, +1010]. At this stage, it is evident that green
is not projectible in the absolute sense but is projectible or not projectible  relative to a specific n-
universe. 

In  light  of  the  preceding  discussion,  we  are  now in  a  position  to  highlight  the  fallacies  in  the
generalization  that  ‘all  swans  are  white.’  In  1690,  this  hypothesis  arose from the  observation  of
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numerous instances of swans in Europe, America, Asia, and Africa. The n-universe in which this
projection took place included multiple objects, with variables for color and location. To simplify, we
can  assume that  all  instances  were  observed at  a  constant  time  T0.  The  corresponding inductive
projection C°L led to the conclusion that the next observed swan would be white. However,  this
prediction proved to be false with the discovery of black swans in Australia by the Dutch explorer
Willem de Vlamingh in 1697. In the n-universe where this projection was made, the location criterion
implicitly covered the entire planet. However, the generalization that ‘all swans are white’ was based
on observations of swans from only one part of the reference n-universe. Consequently, the sample
was biased and not representative of the reference class, thus invalidating the generalization and the
corresponding inductive conclusion.

Now, let us consider the projection of grue. The use of the  grue property, which along with bleen
constitutes a taxon of tcolor*, reveals that the criteria system used originates from the  Z. The n-
universe in which the projection of grue occurs is then a ΩZ, an n-universe to which the CT reduces.
The presence of two color taxa (green,  not-green) and two time taxa (before T,  after T) in the CT
determines four different states: green before T, not-green before T, green after T, not-green after T.
In contrast, the Z only determines two states: grue and bleen. The reduction of the CT to the Z is
is achieved by transforming the color and time taxa into taxa of tcolor*. The classical definition of
grue (green before T or not-green after T) allows for this transformation. In this context, the paradox
remains. It manifests in the following form: the emerald was grue every time I observed it before, and
I conclude inductively that the emerald will also be grue, and thus not-green, the next time I observe
it. The corresponding projection Z°T can then be formalized (G denoting grue): 

(I4*) GT1·GT2·GT3·...·GT99 instances
(H5*) GT1·GT2·GT3·...·GT99·GT100 generalization
(H5'*) VT1·VT2·VT3·...·VT99·~VT100 from (H5*), definition
(P6*)  GT100 prediction
(P6'*)  ~VT100 from (P6*), definition

What is it then that leads to deceive our intuition in this specific variation of the paradox? It appears
here that the projection of grue comes under a form which is likely to create an illusion. Indeed, the
projection Z°T which results  from it  is  that  of  the tcolor* through time.  The general  idea which
underlies inductive reasoning is that the instances are grue before T and therefore also grue after T.
But  it  should be noticed here that  the  corresponding n-universe  is  a  Z. And in a  Z, the only
variable-criterion is tcolor*. In such n-universe, an object is grue or bleen in the absolute. By contrast,
an object is green or not-green in the CT relative to a given temporal position. But in the Z where
the projection of grue takes place, an additional variable-criterion is missing so that the projection of
grue could be legitimately made. Due to the fact that an object is grue or bleen in the absolute in a Z,
when it is  grue before T, it is also necessarily  grue after T. And from the information according to
which an object is grue before T, it is therefore possible to conclude, by deduction, that it is also grue
after T. As we can see it, the variation of the paradox corresponding to the projection Z°T presents a
structure which gives it the appearance of an enumerative generalization but that constitutes indeed a
genuine deductive reasoning. The reasoning that ensues from it constitutes then a disguised form of
induction, a pseudo-induction. 

Let us now consider the case of a colored, temporal n-universe that includes an additional variable-
criterion  β,  denoted  as  ΩCTβ.  An n-universe  with  variable  criteria  of  color,  time,  and  location, 6

denoted as CTL, will be suitable for this discussion. In a ΩCTL, to be green means to be green at
time T and location L. Furthermore, the ΩCTL reduces to a ΩZL, an n-universe where the variable
criteria are tcolor* and location. The taxa of tcolor* are grue and bleen. To be grue in the ΩZL means
to be grue at location L. 

It is important to note that the projections C°TL and Z°TL do not require separate analyses. These
projections have the same structure as the previously studied projections C°T and Z°T, except for the
additional criterion of location. The conditions under which the paradox dissolves when comparing the

6 Criteria other than colour and time, such as mass, temperature, and orientation, are also appropriate.
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projections C°T and Z°T apply identically to the variation of the paradox that arises when considering
the projections C°TL and Z°TL. 

Additionally, it is pertinent to compare the projections CT°L and Z°L, which occur in the ΩCTL and
ΩZL, respectively. Let us begin with the projection CT°L. Here, the shared criteria of color and time
are projected through the differentiated criterion of location. The taxa of time are defined as before T
and after T. In this context, the projection of green is as follows: the emerald was green before T in
every place it was observed, leading to the conclusion that it will also be green before T in the next
place it is observed. The corresponding projection C°TL can then be formalized as follows: 

(I7) VTL1·VTL2·VTL3·...·VTL99 instances
(H8) VTL1·VTL2·VTL3·...·VTL99·VTL100 generalization
(P9)  VTL100 prediction

At this stage, it appears entirely legitimate to project the properties  green and  before T, shared by
previous instances, through a differentiated criterion of location. We can then predict that the next
emerald observed at location L will exhibit the same properties. 

What about the projection of grue in the CTL? The use of grue indicates that we are considering
ourselves within a  ZL, an n-universe to which the CTL reduces, and whose variable criteria are
tcolor* and location. Being grue is relative to the variable criterion of location. In the ZL, to be grue
is to be grue at location L. The projection thus relates to a taxon of tcolor* (grue or bleen) shared by
instances,  through  a  differentiated  criterion  of  location.  Consider  the  classical  definition  of  grue
(green before T or  non-grue after T). Hence, the emerald was  grue at every location where it was
observed before, and I predict it will also be grue at the next location where it will be observed. If we
take T to be 1010 years, the projection Z°L in the  ZL then appears as a completely valid form of
induction (with V~T denoting green after T): 

(I10*) GL1·GL2·GL3·...·GL99 instances
(H11*) GL1·GL2·GL3·...·GL99·GL100 generalization
(H11'*) VT~V~TL1·VT~V~TL2·VT~V~TL3·...·VT~V~TL99·VT~V~TL100 from (H11*), definition
(P12*)  GL100 prediction
(P12'*)  VT~V~TL100 from (P12*), definition

As pointed out by Frank Jackson (1975, 115), this type of projection applies legitimately to all objects
whose colors change over time, such as tomatoes or cherries. Furthermore, if we consider a very long
period, extending up to 10 billion years as in the example of emeralds, this property virtually applies
to all  concrete objects.  Finally, it  can be noted that the contradiction between the two concurrent
predictions (P9) and (P12'*) has now disappeared since the emerald turns out to be green before T in
L100 (VTL100) in both cases. 

As we see in the present analysis, a predicate turns out to be projectible or not projectible relative to
a  given  universe  of  reference.  Similar  to  green,  grue is  not  projectible  in  an  absolute  sense  but
becomes projectible in some n-universes and not projectible in others. This contrasts with several
classical solutions offered to solve Goodman's paradox, which suggest that a predicate is projectible or
not projectible in an  absolute sense. Such solutions lead to the definition of criteria distinguishing
projectible  predicates  from  unprojectible  ones,  based  on  temporal/non-temporal,  local/non-local,
qualitative/non-qualitative,  etc.  Goodman  himself  aligns  the  distinction  between
projectible/unprojectible with the distinction between entrenched/unentrenched. However, Goodman's
further reflections in Ways of Worldmaking,7 emphasize the non-absolute nature of the projectibility of
green or grue: ‘Grue cannot be a relevant kind for induction in the same world as green, for that would
preclude some of the decisions, right or wrong, that constitute inductive inference’. As a result, grue
can  be  projectible  in  a  Goodmanian  world  and  not  projectible  in  another.  Green and  grue,  for
Goodman, belong to different worlds with different category structures. Thus, the present solution is
based on a form of relativism that is essentially Goodmanian in nature. 

7 Cf. Goodman (1978, 11).
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5. Conclusion

From the preceding discussion, particularly in light of Goodman’s paradox, it becomes evident that the
n-universes possess a fundamentally Goodmanian essence. From this perspective, the essence of n-
universes is pluralistic, allowing for multiple descriptions of the same reality using different systems
of criteria. A characteristic example, as previously observed, is the reduction of the criteria of color
and time in a  CTL to a single criterion of tcolor* in a  ZL. Thus, n-universes can be seen as an
implementation  of  Goodman’s  program  defined  in  Ways  of  Worldmaking.  Goodman  proposes
constructing worlds through composition, emphasis, ordering, or deletion of elements. In this context,
n-universes enable the representation of our concrete world through various systems of criteria, each
corresponding to a relevant viewpoint or a way of perceiving the same reality. Favoring one system of
criteria over another leads to a truncated view of reality, and the exclusive choice of a particular n-
universe without objective justification results in a biased perspective. 

However, the genuine nature of the n-universes is inherently ambivalent. The similarity of the n-
universes to Goodmanian worlds does not preclude a purely ontological approach. Alternatively, n-
universes can be considered solely from an ontological viewpoint, serving as methodological tools to
model specific concrete situations directly. In this sense, n-universes represent various universes with
different  properties  based  on  combinations  of  unique  or  multiple  objects,  their  relationships,  and
criteria such as time, location, and color. Goodmanian n-universes also enable the construction of
diverse universes with different structures, which sometimes align with real-world properties and at
other  times  exhibit  exotic  properties.  For  instance,  the  simplest  of  these,  L*  is  an  n-universe
containing a single ubiquitous object that exists simultaneously in multiple locations.8 

At this stage, it is worth noting several advantages of using n-universes for modeling probabilistic
situations. One significant advantage is the improved intuitive understanding of a given probabilistic
situation  by  emphasizing essential  elements  and  removing superfluous  ones.  For  example,  by
distinguishing whether the situation involves a constant or time-variable, a constant or space-variable,
a  single  object,  or  multiple  objects,  n-universe  modeling  provides  better  intuitive  support.
Furthermore,  distinguishing  whether  objects  are  duplicated  or  in  one-to-many relationships  with
various criteria allows for precise classification of different probabilistic situations encountered.

Additionally, using notation for probability spaces extended to n-universes eliminates the ambiguity
sometimes associated with classical notation. For instance, {1,2,...,6}2 can ambiguously denote both
the sample space of simultaneously throwing two discernible dice in T0 and that of two successive
throws of the same die in T1 and T2. With n-universe notation, this ambiguity is resolved: the sample
space for simultaneously throwing two discernible dice in T0 is  {1,2}*T0L{1,2}*O{1,2,...,6},
whereas for two successive throws in T1 and T2, it is 0T*{1,2}L0O{1,2,...,6}. 

Finally, a key advantage of modeling probabilistic situations in n-universes is the ease of comparing
multiple probabilistic models, highlighting isomorphisms and corresponding dimorphisms. However,
the  primary  advantage  of  using  n-universes  as  a  methodological  tool,  as  demonstrated  through
Goodman’s paradox, lies in clarifying complex situations encountered in the study of paradoxes.9 
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