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Abstract: Bayesian epistemologists support the norms of probabilism and conditionalization 

using Dutch book and accuracy arguments. These arguments assume that rationality requires 

agents to maximize practical or epistemic value in every doxastic state, which is evaluated from 

a subjective point of view (e.g., the agent’s expectancy of value). The accuracy arguments also 

presuppose that agents are opinionated. The goal of this paper is to discuss the assumptions of 

these arguments, including the measure of epistemic value. I have designed AI agents based on 

the Bayesian model and a nonmonotonic framework and tested how they achieve practical and 

epistemic value in conditions in which an alternative set of assumptions holds. In one of the 

tested conditions, the nonmonotonic agent, which is not opinionated and fulfills neither 

probabilism nor conditionalization, outperforms the Bayesian in the measure of epistemic value 

that I argue for in the paper (α-value). I discuss the consequences of these results for the 

epistemology of rationality. 

Keywords: Bounded rationality; Computational epistemology; Bayesian epistemology; 

Epistemic utility theory; Nonmonotonic logic. 

Introduction 

Bayesian epistemologists propose the norms of probabilism and conditionalization1. 

The initial justifications for these norms were Dutch book arguments (DBAs). A DB is a series 

of bets, each of which the agent considers fair, but when taken together, they result in a 

guaranteed loss. A DBA aims to demonstrate that if an agent violates a specific Bayesian norm, 

then it is possible to create a DB against her. Ramsey (1926) and De Finetti (1937) proposed 

 
1 Probabilism states that a rational agent’s credence function is consistent with the axioms of probability. 

Conditionalization states that a rational agent who becomes certain of some new piece of evidence updates her 

previous unconditional credences by conditionalizing them on the evidence (see Talbott 2016). 
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DBAs for probabilism, and Teller (1973) for conditionalization. Satisfaction of a given 

Bayesian norm does not guarantee invulnerability to DBs for other norms, but if a reasoner 

fulfills a norm (e.g., probabilism), then it can be shown that a DB for that norm cannot be 

constructed against her (e.g., Kemeny 1955). Since vulnerability to DBs may lead an agent to 

buy and sell a series of bets that amounts to a sure loss, it is associated with the minimization 

of ‘practical value’, which, in turn, is related to the fulfillment of the agent's practical goals 

(e.g., having monetary gain). Some critics argue that vulnerability to DBs is not adequately 

related to the minimization of practical value2. Others argue that practical rationality might be 

associated with maximizing practical value, while epistemic rationality should be associated 

with maximizing ‘epistemic value’. 

Different features of a set of ‘beliefs’3 are putative sources of epistemic value: closure, 

coherence, amount of evidential support, etc. In the last decades, a group of epistemologists has 

argued for ‘veritism’, the thesis that the fundamental source of epistemic value is the believing 

of truths rather than falsehoods4. These epistemologists sought to justify the Bayesian norms in 

purely epistemic terms (i.e., veritistic), which resulted in the epistemic utility theory (EUT). 

The ‘accuracy arguments’ of EUT purport to show that the fulfillment of the Bayesian norms 

leads to the minimization of (expected) epistemic disvalue (inaccuracy, see sec. 1). Joyce (1998) 

argues that if an agent’s credence function is not probabilistic, then she is in the position to 

know that there is a probabilistic function that is less inaccurate than hers in all situations that 

she finds possible. Leitgeb and Pettigrew (2010) argue that an agent who updates her credences 

using a non-Bayesian strategy is in the position to know that an update using conditionalization 

 
2 For example, Hájek (2009, 231) points out that violating the Bayesian norms amounts not only to the construction 

of DBs but also to Czech books (a series of fair bets that together amount to a sure win). 
3 I use ‘belief’ as a general term, which encompasses both full beliefs and credences. 
4 For example: “the fundamental source of epistemic value for a doxastic state is the extent to which it represents 

the world correctly: that is, its fundamental epistemic value is determined entirely by its truth or falsity” (Pettigrew 

2019, 761). See Littlejohn (2015) for a critical discussion about veritism. 



minimizes expected inaccuracy relatively to hers, where this expectancy is calculated using her 

credences. 

I use the expression ‘maximization of value’ loosely, in such a way that it includes the 

avoidance of minimization of value (e.g., the avoidance of a ‘sure loss’) and the minimization 

of (expected) disvalue. In this sense, the DBAs and the accuracy arguments are ‘maximization 

arguments’, as they evaluate an agent's rationality in terms of how much they maximize 

practical or epistemic values. These arguments assume the following: 

a1. Rationality requires maximization of value in every doxastic state; 

a2. ‘Maximization of value’ is evaluated from a subjective point of view; 

a3. Agents are opinionated. 

These arguments assume a1 because they concern the doxastic states of an agent at an 

arbitrary point in time (e.g., after an update). Failing to maximize value at that time is sufficient 

for irrationality. Nevertheless, a rational agent might risk value at the present if this may result 

in a gain of value in the future. A related issue is that the DBAs assume that a rational agent 

cannot make choices that lead to a sure loss of any practical value (monetary gain is not a 

priority practical value). Nevertheless, a rational agent may be forced to make such choices 

when facing trade-offs between goals. These arguments assume a2 because they measure value 

in such a way that is accessible to the agents. For example, Leitgeb and Pettigrew measure the 

expectation of value using the agents’ credences5. This assumption is reasonable because 

rationality is usually assumed to have a subjective character (e.g., Wedgwood 2015, 221), but 

whether agents maximize actual value should also interest epistemology6. Opinionation is the 

holding of belief-values for every proposition in the agent’s agenda (the set of propositions of 

 
5The DBAs appeal to the notion of sure loss and Joyce’s argument appeals to the principle of dominance. These 

elements are objective in the sense of concerning guaranteed outcomes. But these arguments still conform to a2 

because the agents are in the position to know that those outcomes are guaranteed.  
6 “[I]t would seem absurd to claim that it is epistemically more important to have an update rule that minimizes 

expected inaccuracy than to have one that actually minimizes inaccuracy” (Douven 2013, 438, his emphases). 



interest). The accuracy arguments assume a3 because they always compare sets of beliefs with 

values for the same propositions (the agenda). This assumption is related to the difficulty of 

using inaccuracy to compare sets of beliefs with different sizes (see sec. 1). Nevertheless, it 

may be rational to ‘withhold beliefs’7 in some situations (e.g., in the absence of evidence). 

I intend to investigate how much of the justificatory force of the maximization 

arguments depends on a1-a3 and whether these are necessary assumptions in a study about 

rationality. The investigation will proceed by comparing how a Bayesian agent and an agent 

who does not fulfill the Bayesian norms maximize practical and epistemic values in conditions 

in which a1-a3 do not hold. Several formal systems model uncertain reasoning in a way that 

deviates from the tenets of probability (see Genin and Huber 2020). The nonmonotonic 

frameworks are among those that deviate the most. There is a myriad of nonmonotonic 

frameworks, but not all of them are far enough from probability (for our purposes)8. I will focus 

on a three-valued version of logic programming (LP, see Doets 1994), whose third value may 

be used for modeling non-opinionated agents (against a3). The comparison will be performed 

using the tools of computational epistemology (e.g., Douven 2013), where epistemologists 

design computer simulations of AI agents interacting with environments that are randomly 

generated from fixed parameters. The measures of practical and epistemic values will be done 

only at the end of each trial (against a1). ‘Value in a random trial’ (actual value) is a contingent 

notion, but, if the number of trials is large enough, their mean approximates an ‘objective 

expected value’ (against a2), which results from actual values and environmental probabilities 

and not the agent’s beliefs. 

I have designed computer simulations of two AI agents facing an epistemic version of 

the Wumpus World, a class of environments used for investigating uncertain reasoning. The 

 
7 I use ‘withhold beliefs’ to denote the attitude of neither believing nor disbelieving a proposition. I am not using 

this expression to denote the attitude of holding middling credences about a proposition (see Sturgeon 2008). 
8 For example, Bourne and Parsons (1998) show how to use System P (Kraus et al. 1990) to propagate the lower 

bounds on conditional probabilities. 



first is the ‘Bayesian agent’, who holds degrees of belief (credences), is opinionated, and fulfills 

both probabilism and conditionalization. The second is the ‘nonmonotonic agent’, based on a 

three-valued LP, who holds all-or-nothing beliefs (full beliefs), is not necessarily opinionated, 

and fulfills neither probabilism nor conditionalization. I analyze how often these agents solve 

the problem (practical rationality) and the epistemic value of their beliefs (epistemic 

rationality)9. The idea is not to refute the conclusions of Bayesian epistemology, but to discuss 

the assumptions in the notion of maximization of (practical or epistemic) value, including the 

measure of epistemic value. In Section 1, I introduce the Wumpus World and the used measures 

of epistemic value (α- and β-values, with linear, Brier, and log scoring rules) and of practical 

value (p-value) used in the investigation. In Section 2, I discuss the implementation of these 

models in a computer simulation and present the results from the simulation. In one condition 

(c3), the nonmonotonic agent outperforms the Bayesian in α-value. In Section 3, I discuss the 

measures of epistemic value, whether a1-a3 are necessary assumptions in a study about 

rationality, and how the results from EWW impact the epistemology of rationality. 

1 Setting the Stage 

The Wumpus World (WW, see Russell and Norvig 2020, 210) is a class of environments 

used in AI for studying uncertain reasoning. WW is a cave comprising rooms connected by 

passageways and surrounded by walls. Somewhere in the cave, there is the Wumpus, a beast 

that kills anyone who enters its room. Other rooms contain bottomless pits that kill anyone who 

steps in. Finally, there is a heap of gold hidden somewhere in the cave. The agent’s goal is to 

explore the cave, find the gold, and escape the cave with the gold. The agent cannot enter a 

room containing a pit or the Wumpus without dying, but the rooms around those contain a 

breeze and a stench (respectively). WW is an interesting environment for studying uncertain 

 
9 The study of practical rationality most often concerns the principles of choice between actions given the beliefs 

and preferences of an agent (e.g., in decision theory, see Steele and Stefánsson 2020). I use ‘practical rationality’ 

in the broader sense of ‘how much the agent's beliefs assist her practical goals’. 



reasoning because it is only partially observable, in such a way the absence of direct information 

about pits and the Wumpus forces the agents to draw provisional conclusions and revisit them 

given new information. WW is more complex than the average environment used in 

computational epistemology, but it also is more ‘realistic’ than the average because it associates 

a practical cost (risk of death) with the gathering of evidence. This feature enables us to integrate 

the investigation of practical and epistemic rationality. 

The only goal of WW (‘grab the gold and escape the cave’) is a practical goal, but I am 

also concerned with epistemic rationality. For this reason, I have developed an epistemic 

version of WW (EWW). EWW has the additional goal of forming the most comprehensive and 

accurate set of beliefs about the positions of the pits and the Wumpus. EWW has an additional 

layer of uncertainty: the agent may perceive ‘random’ breezes and stenches, which are 

independent of the pits and the Wumpus. The occurrence of random breezes and stenches may 

be interpreted as a feature of the agent’s perception, which may return a persistent false positive 

(a perceptual illusion)10. Random breezes and stenches may be used to evaluate how reasoning 

processes cope with a faulty perception. EWW may be represented as a matrix of dimensions 

s×s, where the room (x, y) is in the xth row and 𝑦th col of the matrix. In the following, px,y states 

that there is a pit in (x, y). Similarly, wx,y for Wumpus, gx,y for gold, bx,y for breezes, and sx,y for 

stenches. The Wumpus and the gold are randomly placed in a room other than (0, 0). Rooms 

other than (0, 0) contain a pit with probability pr(p) and a random breeze or random stench with 

an independent probability of pr(rand)11. The agent starts in (0, 0) (`the entrance'), facing east. 

 
10 The most natural model of a faulty perception is one in which each perception has some probability of returning 
a non-persistent false positive/negative (e.g., about breezes). This model introduces some complications for our 

purposes. For example, a Bayesian agent with faulty perception in this sense would need to update her credences 

using Jeffrey conditionalization (Jeffrey, 1983), but Leitgeb and Pettigrew (2010) have shown that Jeffrey 

conditionalization does not necessarily minimize expected inaccuracy. This result is exploited by Trpin and Pellert 

(2019), who use the natural model of faulty perception. 
11 I have also introduced some simplifications to the traditional WW. No room contains a pit and the Wumpus, or 

a pit and the gold, or the Wumpus and the gold. The Wumpus does not move and the agent does not have ‘arrows’ 

so that she can kill the Wumpus. 



She knows the description of EWW and the size of the cave, but she ignores the configuration 

of the cave (the position of pits, Wumpus, and gold). 

The most distinguishing feature of EWW is the measure of epistemic value. The 

measure used in EUT is one of epistemic disvalue (inaccuracy), defined as the ‘distance’ 

between a set of beliefs and the ‘ideal’ set containing beliefs about the same propositions (see 

Carr 2015, 223)12, where the belief that φ has the value 1 when φ is true and 0 when it is false. 

Inaccuracy is not an adequate measure of epistemic disvalue for the comparison between the 

Bayesian and the nonmonotonic agents because the latter can withhold beliefs, which is a 

‘cheap’ way of minimizing inaccuracy. If inaccuracy was the measure of epistemic disvalue, 

then the nonmonotonic agent would have no reason to explore the cave and form new beliefs 

because, in doing so, she would risk increasing (but not decreasing) her inaccuracy (Dantas 

2022). The comparison between those agents requires a measure of epistemic value that awards 

comprehensiveness and accuracy, which may be done by measuring the amount of truth (t) and 

of falsehood (f) in the agent’s belief-set and then conjoining these values using an ‘alethic’ 

function a(t, f). 

The values of t and f may be measured using different ‘scoring rules’. These values are 

the global amounts of truth and falsehood in the agent’s set of beliefs, measured as the sum of 

the local amounts tφ and fφ, for every proposition φ in the agent's belief-set B (i.e., t = ∑φ∈B tφ 

and f = ∑φ∈B fφ). Let the ‘error’ of the belief that φ be εφ = |v(φ) − b(φ)|, where v(φ) is φ’s truth-

value and b(φ) is φ’s belief-value for the agent. The scoring rules in Table 1 encode different 

attitudes towards epistemic risk (see Babic 2019). The Brier score awards risk-averse agents 

who hold middling credences because fφ = (εφ)² ≤ εφ, where this difference is larger when εφ is 

around 0.5. The log score invites risk-seeking agents because tφ = − ln(εφ) ≥ (1 − εφ) and fφ = − 

 
12 “Epistemic decision theory [EUT] usually presupposes that the credence functions it compares are defined over 

the same algebra of propositions [agenda]. Once we abandon this presupposition, new difficulties arise” (Carr, 

2015, p. 223). I exploit some of these difficulties in the rest of this paragraph. 



ln(1 − εφ) ≥ εφ, where these differences approach +∞ when εφ approaches 0 and 1 (respectively, 

but see fn. 12). The linear score is neutral in this regard because tφ = (1 − εφ) and fφ = εφ. The 

Brier score tends to favor the Bayesian agent, who can hold credences. The log score may favor 

the nonmonotonic agent, who can hold all-or-nothing true beliefs and withhold those that are 

possibly false, or the Bayesian, who can avoid the risk by holding non-extreme credences. I will 

use the three scores to keep the results of the simulations independent of specific measures13. 

 tφ fφ 

Linear score 1 − εφ  εφ 

Brier score  (1 − εφ)² (εφ)² 

Logarithmic score − ln(εφ) − ln(1 − εφ) 

Table 1: Scoring rules, where εφ = |v(φ) − b(φ)|, v(φ) is φ’s truth-value, and b(φ) is the belief-

value of φ for the agent. 

The alethic function a(t, f) must strictly increase with respect to (wrt) t (if t’ > t, then 

a(t’, f) > a(t, f)) and strictly decrease wrt f (if f’ > f, then a(t, f’) < a(t, f)). These ‘basic 

requirements’ are accepted by Douven (2013, 436): “The basic intuition underlying it is clear 

enough, to wit, that the higher one’s degree of belief in a true proposition is, the more accurate 

one is, ceteris paribus, and also the lower one’s degree of belief in a false proposition is, the 

more accurate one is, ceteris paribus”. The basic requirements are put to work in a 

computational investigation by Trpin and Pellert (2019), who use the function t − f. This is the 

‘minimal’ function that fulfills the basic requirements, but it is unbounded from above and 

below. This feature makes the comparison of performances in caves of different sizes difficult 

because the final value may be dominated by the values of t or f. This problem may be avoided 

by adding a denominator to this function, which may be done conscientiously in at least two 

 
13 The Brier score is the most popular scoring rule in EUT, but Lewis and Fallis (2019) argue for the log score. 

The linear score is often dismissed for not being a proper scoring rule (see Lewis and Fallis 2019, sec. 4), but it 

returns the same values as the Brier score for full beliefs (0² = 0 and 1² = 1). The fact that tφ and fφ collapse to +∞ 

when εφ is 0 and 1 causes the global measure of t and f also to collapse in those cases. To avoid this, I will compute 

ln(c) instead of ln(0) for a small constant c > 0 (I will use c = 0.01, but there is nothing special with this value). 



ways: (i) t + f, as the agent’s ‘amount of commitment’ (there is a vestigial problem with this 

suggestion, see below), or (ii) n, as the maximum size for the agent’s agenda (the number of 

propositions at issue)14. 

The first possibility results in the function (t − f)/(t + f), which does not fulfill the basic 

requirements and does not measure epistemic value correctly. For example, two agents with 

only true beliefs about one and ten propositions (respectively) would receive the same 

evaluation, but the second is more well-informed than the first and should be awarded for this. 

The addition of a small constant c > 0 to the denominator avoids this problem15, leading to the 

second agent receiving more (marginal) epistemic value than the first. The resulting function is 

α(t, f) = (t −f)/(t + f + c), which is discussed in Dantas (2021). The second possibility results in 

the function β(t, f) = (t − f)/n, where n is the number of propositions at issue (in EWW, n = 2 × 

s²). This function is used in the literature about truthlikeness (e.g., Cevolani and Festa 2021, 

11472). The function α awards lower amounts of commitment, which both agents can do: the 

Bayesian agent can hold middling credences (which lowers t + f given some scores) and the 

nonmonotonic agent can commit herself to fewer propositions (which always lowers t + f). The 

denominator of the function β denominator is a fixed upper bound for the agents’ amount of 

commitment and it does not award lower amounts of it. I will use both functions to keep the 

results of the simulations independent of specific measures. For readability, I will measure the 

epistemic value as 1000 𝗑 a(t, f), where a = α (α-value) or a = β (β-value). The practical value 

(p-value) will be measured as +1000 for escaping with the gold and −1000 for dying. 

1.1 The Bayesian model 

 
14 The number of propositions in the real world is infinite, but it may be finite in toy worlds, such as EWW. It is 

often assumed that agendas are maximal (i.e., that agents are interested in the truth-value of ‘every proposition’). 

This is a reasonable idealization for our purposes, but real agents may withdraw propositions from their agendas 

(see the ‘anti-interrogative attitude’ in sec. 3). 
15  I intend to set c = 0.01 in both uses of constants (see fn. 12), but nothing in this paper depends on this specific 

value. The constant c may be seen as setting the `sensitivity' of the function α: the smaller the c, the greater the 

benefit for believing more truths and the penalty for believing more falsehoods. 



The Bayesian model of a rational agent has the following features: 

b1. The agent’s belief-values can have continuously many values between 0 and 1 

(credences); 

b2. The agent’s credence function is consistent with the axioms of probability; 

b3. The agent updates her credences using conditionalization. 

The Bayesian agent holds very fine-grained beliefs (b1) and fulfills both probabilism 

(b2) and conditionalization (b3). It follows from b2 and b3 that the Bayesian agent is 

opinionated16. This model does not determine the initial credences of the Bayesian agent in the 

EWW (apart from their being probabilistic), but I will freely use principles such as the principal 

principle and the principle of indifference to determine those priors. 

The following sentence schemas describe the agent’s initial unconditional credences 

about pits and the Wumpus: 

b4. cr(px,y) = pr(p) if (x, y) ≠ (0, 0); 

b5. cr(wx,y) = 1/(s² − 1) if (x, y) ≠ (0, 0); 

b6. cr(p0,0) = cr(w0,0) = 0. 

Clauses b4 state that the agent has an initial credence of pr(p) that (x, y) contains a pit 

for every room (x, y) ≠ (0, 0). Clauses b5 state that, for every room (x, y) ≠ (0, 0), the agent has 

initial credence of 1/(s² − 1) that (x, y) contains the Wumpus. Clauses b6 state that the agent has 

an initial credence of 0 that (0, 0) contains a pit or the Wumpus. 

The agent’s conditional credences about pits and the Wumpus are: 

b7. cr(bx,y | ⋁p±x,±y) = 1 and cr(bx,y| ⋀p±x,±y) = pr(rand); 

b8. cr(sx,y | ⋁w±x,±y) = 1 and cr(sx,y| ⋀¬w±x,±y) = pr(rand); 

 
16 A (probabilistic) credence function (not a partial function) returns a value between 0 and 1 for every proposition 

in its domain (the agent’s agenda) and there is no update from the absence of values about a proposition to some 

belief-value using conditionalization. As a result, the Bayesian agent cannot gain or lose beliefs. 



where ⋁φ±x,±y abbreviates φx+1,y ∨ φx−1,y ∨ φx,y+1 ∨ φx,y−1 and ⋀¬φ±x,±y abbreviates  ¬φx+1,y ∧ ¬φx−1,y 

∧ ¬φx,y+1 ∧ ¬φx,y−1
17. Clauses b7 and b8 are a consequence of the fact that if a room is in the 

neighborhood of a room containing a pit or the Wumpus, then it contains a breeze or a stench 

with probability 1; else it contains a random breeze or a random stench with probability 

pr(rand). The Bayesian agent updates her beliefs using conditionalization. 

1.2 The nonmonotonic model 

The nonmonotonic model of a rational agent has the following features: 

d1. The agent’s beliefs have only two potential values: 0, 1 (full beliefs); 

d2. The agent can withhold beliefs (null values); 

d3. The agent adopts and withdraws beliefs given adequate reasons and defeaters. 

The nonmonotonic agent has doxastic states much less fine-grained than the Bayesian. 

Instead of continuously many values between 0 and 1, the model only allows for two belief-

values (d1): 0 when the agent disbelieves that φ (i.e., she believes that ¬φ) and 1 when she 

believes that φ. Another difference is that, while the Bayesian is opinionated, the nonmonotonic 

agent can withhold beliefs (d2). The withholding of belief is modeled by using a third value 

(null), which marks the absence of belief-values for some proposition φ (i.e., φ is not in the 

agent’s belief-set). Nonmonotonic frameworks are used to model defeasible reasoning (d3), 

where agents draw and retract conclusions given new information. 

The nonmonotonic agent fulfills neither probabilism nor conditionalization as she 

initially holds null values about many propositions and gains new beliefs from investigating the 

cave (see fn. 15). LP is a nonmonotonic framework with computational applications (Doets 

1994). A ‘logic program’ in LP is a set of conditionals of the form φ ∧ ¬ab → ψ (‘if φ and 

nothing is abnormal, then ψ’), where φ is a conjunction of literals, ab is a disjunction of literals 

 
17 The Bayesian agent may not hold credences about complex propositions in EWW. In this case, ⋀ and ⋁ should 

be seen as meta-linguistic connectives, where ⋀¬φ±x,±y abbreviates the list where φx+1,y, φx−1,y, φx,y+1, and φx,y−1 appear 

all negated and 𝖵φ±x,±y abbreviates the lists of these same atoms where at least one of them appears in the affirmative 

form (in the same order). 



(‘abnormalities’) indexed to a particular conditional, and ψ is a single literal. These conditionals 

may be seen as licenses for performing inferences (e.g., modus ponens) under certain conditions 

(e.g., ab is false). If something is abnormal (i.e., ab is true), then φ ∧ ¬ab is false and the modus 

ponens is blocked. If φ is true but ψ is false, then something is abnormal (ab is true). This 

framework exhibits a form of negation as failure (the closed world assumption): in some cases, 

the absence of reasons for the truth of some proposition (e.g., ab) is a reason for its negation. 

LP may be used to model defeasible reasoning18. 

The nonmonotonic agent is modeled using LP. Her initial beliefs about (0, 0) are ¬p0,0 

and ¬w0,0. For all (x, y) ≠ (0, 0), px,y and wx,y are initially assigned the null value. The agent uses 

the following conditionals about pits: 

d4. bx,y ∧ ¬ab → p±x,±y; 

d5. ¬bx,y → ¬p±x,±y, 

where φ±x,±y is either φx+1,y, φx−1,y, φx,y+1, or φx,y−1. Clauses d4 state that perceiving a 

breeze in a room is a defeasible reason for believing that there are pits in the adjacent rooms, 

whereas ab expresses the possibility that bx,y is a random breeze. Clauses d5 state that perceiving 

the absence of breezes in a room is a conclusive reason for believing that there aren’t pits in the 

adjacent rooms. Clauses d5 express rebutting defeaters for the belief that px,y based on d4. 

The agent uses the following conditionals about the Wumpus: 

d6. sx,y ∧ ¬ab → w±x,±y; 

d7. sx,y ∧ ¬ab → ¬wz,w for (z, w) ≠ (±x, ±y); 

d8. wx,y → ¬wz,w for (z, w) ≠ (x, y); 

d9. ¬sx,y → ¬w±x,±y, 

 
18 If φ ∧ ¬ab → ψ is a clause in the agent’s logic program, then believing that φ is a reason for believing that ψ. If 

ab has zero disjuncts, then this is a conclusive reason. Otherwise, it is a defeasible reason. We could say that if φ’ 

is a reason for ¬ψ, then the belief that φ’ rebuts the belief that ψ on the previous basis; and that if φ’ is a reason for 

ab, then the belief that φ’ undercuts the belief that φ on that same basis. LP often blurs the distinction between 

rebutting and undercutting defeaters because a reason for ¬ψ is often a reason for ab (by modus tollens) and a 

reason for ab may be a reason for ¬ψ (closed world). 



where (z, w) ≠ (±x, ±y) abbreviates (z, w) ≠ (x + 1, y) ∧ (z, w) ≠ (x − 1, y) ∧ (z, w) ≠ (x, y + 1) ∧ 

(z, w) ≠ (x, y − 1). Clauses d6 state that perceiving a stench in a room is a defeasible reason for 

believing that there are Wumpuses in each of the adjacent rooms, whereas ab expresses the 

possibility of sx,y being a random stench. Clauses d7 state that perceiving a stench in a room is 

a defeasible reason for believing that the Wumpus is nowhere else but in the adjacent rooms, 

where ab has the same interpretation. Clauses d6 and d7 may rebut each other. Clauses d8 are 

a consequence of the fact that there is only one Wumpus: believing that the Wumpus is in a 

specific room is a conclusive reason for believing that it is not elsewhere. Clauses d9 state that 

perceiving the absence of stench in a room is a conclusive reason for believing that the Wumpus 

is not in the adjacent rooms. 

Integrating these conditionals in a sound pattern of inference is not trivial. Some 

researchers have proposed procedural semantics for LP, which are based on the fixpoints of an 

update operator 19. For example, given a belief-set M and a logic program P, Stenning and van 

Lambalgen (2008, 194) define an application of the update operator T to M (i.e., T(M)) as: 

(a) T(M)(ψ) = 1 iff there is a clause φ → ψ in P such that M ⊧ φ; 

(b) T(M)(ψ) = 0 iff there is a clause φ → ψ in P and for all such clauses, M ⊧ ¬φ; 

(c) T(M)(ψ) = u otherwise (Stenning and van Lambalgen 2008, 194), 

where their third value, u (currently indeterminate), is related to my use of the null value. The 

updated belief-set T(M) must be among the fixpoints of T (i.e., T(T(M)) = T(M))20. I will focus 

on the ‘most well-supported’ fixpoint, where a belief-set is more well-supported than another 

iff it is constructed by triggering more conditionals d621. 

 
19 A fixpoint c of a function f(x) is such that c belongs to the domain and the codomain of f(x), and f(c) = c. 
20 There may be different applications of T to a model M that are fixpoints of T. Suppose that M |= s0,1, s2,1. There 

are at least three applications T(M) that are fixpoints of T: (1) T(M)(w0,2) = u, T(M)(w2,2) = u; (2) T(M)(w0,2) = 1, 

T(M)(w2,2) = 0; and (3) T(M)(w0,2) = 0, T(M)(w2,2) = 1. 
21 Suppose that M |= s0,1, s1,2, s3,1, ¬s0,0, ¬s1,0, ¬s1,1, ¬s2,0, ¬s2,1, ¬s2,2, ¬s3,1. In this case, the most well-supported 

model is one such that T(M)(w0,2) = 1 and T(M)(w3,2) = 0 because it triggers two conditionals d6 (s0,1 ∧ ¬ab → w0,2 

and s1,2 ∧ ¬ab → w0,2) while the other models trigger at most one. 



2 The simulation 

I have implemented AI agents based on the Bayesian and nonmonotonic models in a 

computer simulation of EWW. The agents have four modules: perception, memory, practical 

and epistemic cognition. They share perception, memory, and part of practical cognition, but 

they have different epistemic cognitions (based on the Bayesian and nonmonotonic models 

respectively). The modules of perception and memory are straightforward. Perception simply 

receives percepts from the environment (e.g., the presence of a breeze), encodes them in the 

format of beliefs, and sends these beliefs to memory. Beliefs are formatted as one matrix of 

numbers for each of breeze, stench, pit, Wumpus, and gold, where a position in a matrix 

represents the corresponding room in the cave22. Memory simply stores these matrices and 

makes them available for practical and epistemic cognition. 

The role of practical cognition is to construct and execute plans (sequences of actions). 

Practical cognition checks whether there is a plan being executed. If there is, it executes the 

next action in the plan. Otherwise, it constructs a plan and executes its first action. In 

constructing a plan, practical cognition chooses the sub-goal that she attributes higher value 

among ‘grab the gold’, ‘get out of the cave’, and ‘move to a fringe room (x, y)’, where fringe 

rooms are non-visited rooms in the neighborhood of a visited room. The value of moving to a 

room (x, y) is calculated differently by each agent23. The value of grabbing the gold (if the room 

contains it) is 1000 and the value of getting out of the cave is 0. The plan for moving to a room 

is constructed using Dijkstra's pathfinding algorithm, with cost computed as the number of 

actions (Russell and Norvig 2020, 84); the plan for grabbing the gold is composed solely of the 

 
22 For example, the position (x, y) in the pit matrix represents px,y, where the value in that position represents the 

agent’s belief-value for px,y. 
23 The Bayesian agent calculates the expected utility of moving to a room (x, y) as −1000 × (cr(px,y) + cr(wx,y)) + 

1000 × cr(gx,y). The nonmonotonic agent assigns −1000 if b(px,y) = 1 or b(wx,y) = 1; she assigns 1000 × b(gx,y) if 

b(gx,y) ≠ null; and an intermediate value (e.g., 500) otherwise. This is an application of the minimax principle. 



action ‘grab the gold’; the plan for getting out of the cave is a plan for moving to (0, 0) 

concatenated with the action ‘get out of the cave’. 

Epistemic cognition updates the agent’s beliefs, given the new information. The agents 

differ in how they encode and update beliefs about pits and Wumpus24. The Bayesian agent 

encodes those beliefs using floating-point numbers between 0 and 1 and updates them using 

causal Bayesian networks and joint probability tables, in a standard algorithm (e.g., Russell and 

Norvig 2020, 134). The nonmonotonic agent encodes beliefs about pits and Wumpus using 

Boolean values. The algorithm for pits is very simple. If you perceive a breeze in a position (x, 

y), then write a 1 in all positions (±x, ±y) of the pit matrix that do not already contain a 0 (d4). 

If you perceive the absence of breezes in a position (x, y), then write a 0 in all positions (±x, ±y) 

of the pit matrix (d5). The algorithm for Wumpus keeps track of its viable locations and the 

number of cues about the Wumpus. Do the following when you perceive a new stench. If the 

stench matrix contains a 1 in a position (x, y), then add +1 to the value in the positions (±x, ±y) 

of the support matrix (d6) and add -1 from the value in the other (d7 and d8). If the stench 

matrix contains a 0 in a position (x, y), then write a large negative number in the positions (±x, 

±y) of the support matrix (d9). If there is a position in the support matrix with a value that is 

strictly higher than the other, assign 1 to that position in the Wumpus matrix and 0 to the other. 

Otherwise, assign null to the positions with the highest value and 0 to the other. 

The simulation of EWW generates a random cave for each trial and works as a loop. In 

each iteration, the cave outputs precepts for the agent, who updates her beliefs and returns an 

action to the cave, which updates its state given that action. The loop stops when the agent dies 

or gets out of the cave. I have simulated three conditions (c1-c3). In c1, the probability of pits 

is fixed at 0.1 (pr(p) = 0.1) and the probability of random breezes [stenches] is fixed at 0.01 

 
24 For simplicity, both agents encode and update beliefs about breezes, stenches, and gold in the same all-or-

nothing way: if the agent perceives a breeze [stench, gold] in a room, then perception adds a 1 to the corresponding 

position in the breeze [stench and gold] matrix; otherwise, it adds a 0. 



(pr(rand) = 0.01). I have run the simulation using caves with dimensions s × s (size s), from s 

= 2 to s = 10 (incrementing by 1). In c2, I have run simulations with pr(rand) varying from 0 

to 0.5 (incrementing by 0.05), where pr(p) is fixed at 0.1. In c3, I have run simulations with 

pr(p) varying from 0 to 1 (incrementing by 0.1), where pr(rand) is fixed at 0.01. In c2 and c3, 

I have used ‘medium’ caves (s = 6). I have run up to 50,000 trials for each configuration of the 

cave in each condition and averaged the results. The code was written in Java and the graphs 

were plotted in Grace. 

2.1 Results 

The results for the Bayesian and nonmonotonic agents are depicted in Figures 1 and 2 

(respectively). The linear and the Brier scores return the same β-values for both agents because 

t−f returns the same values for these scores and n is constant within each trial25. The linear and 

the Brier scores do not return the same α-values for the Bayesian agent because t + f does not 

return the same values for these scores, but this is the case for the nonmonotonic because 0 = 

0² and 1 = 1². The log values were normalized by − ln(c), as to depict all scores in the same 

scale26. In this case, the three scores return the same α- and β-values for the nonmonotonic agent 

because 1 = 1² = (− ln(c))/(− ln(c)) and 0 = 0² = (− ln(1))/(− ln(c)). I will discuss f and the time 

requirements in Section 3. 

Condition c1 represents the ‘normal’ condition, in the sense of the evidence being 

relatively informative and relatively accessible for the agents. In c1, as the cave grows from s 

= 2 to s = 10, the α-values of the Bayesian agent start stabilizing around 853 (linear), 917 (Brier), 

or 926 (log). The α-values of the nonmonotonic agent start stabilizing around 857. The 

Bayesian's α-values are higher than the nonmonotonic’s when the measure uses a Brier or log 

score, but they are not when it uses a linear score (they are about the same, with similar curves). 

 
25 Let y = εφ and x = 1 − εφ. The function t − f returns the same values for both agents in terms of linear and Brier 

scores because (x + y) × (x − y) = x² − y² and x + y = 1, which entails that x − y = x² − y². 
26 This was unnecessary for the α-values because the divisor t + f + c already works as a normalizer. 



The β-values of the Bayesian agent start stabilizing around 852 (linear and Brier), or 827 

(normalized log). The β-values of the nonmonotonic agent go down to 495 and start to stabilize 

at a much lower level (250)27. The Bayesian’s β-values are higher than the nonmonotonic’s 

independently of the scores. The results of α- and β-values diverge, as the nonmonotonic agent 

is much closer to the Bayesian in terms of α-values (especially, in linear score) than she is in 

terms of β-values. However, the disagreement is not very strong as all graphs have the same 

general shape: they fall fast until stabilizing at different levels. Furthermore, the (higher) 

epistemic value of the Bayesian agent does not reflect in a higher practical value: both agents 

have p-values that reach around 360 when the cave reaches s = 10 (with very similar curves). 

In c2, I have tested how the agents react when pr(rand) varies from 0 to 0.5 (the 

tendencies do not change from 0.5 to 1). The higher the pr(rand), the less information observed 

breezes [stenches] carry about the position of pits [Wumpus]28. The α-values of the Bayesian 

agent stabilize around 775 (linear), 874 (Brier), or 860 (log) when pr(rand). The nonmonotonic 

agent performs much worse: her α-values reach 527 when pr(rand) = 0.5. The same goes for β-

values. The Bayesian’s β-values stabilize around 775 (linear and Brier), or 575 (normalized 

log), while the nonmonotonic’s fall to 86 when pr(rand) = 0.5. These results highlight the 

strength of the Bayesian model: the ability to deal with uncertain evidence. The Bayesian agent 

considers the value of pr(rand) in updating beliefs, whereas the nonmonotonic can only 

conclude blindly that there are pits (not so much for Wumpus) in the surroundings from the 

presence of breezes (random or not). The disagreement between the α- and β-values is also mild 

in c2, where the nonmonotonic’s β-values fall faster than her α-values. The higher epistemic 

value of the Bayesian agent affects her practical value: although both p-values converge to 

 
27 The β-values of the nonmonotonic agent are around 250 from s = 50 to s = 150 (her α-values are around 845 in 

those cases). These results are less reliable because they were averaged over fewer trials. 
28 For example, suppose that the agent has just arrived in the cave. If pr(p) = 0.1 and pr(rand) = 0.01, then 

conclusive evidence about b0,1 transmits 0.27 bits of information about p0,2. If pr(p) = 0.1 and pr(rand) = 0.05, then 

conclusive evidence about b0,1 transmits only 0.24 bits of information about p0,2. 



around 22 when pr(rand) = 0.5, the Bayesian’s p-value (94) is 20% higher than the 

nonmonotonic’s (78) when pr(rand) = 0.3. 

In c3, I have tested how the agents react when pr(p) varies from 0 to 1. The increase in 

pr(p) increases the difficulty of gathering the evidence because the higher the number of pits, 

the riskier it is to explore the cave. The α-values of the Bayesian reach around 918 (linear), 944 

(Brier), or 939 (log) when pr(p) = 1, in a u-shape with the lowest values around 479 (linear), 

644 (Brier), or 695 (log) when pr(p) = 0.5. The nonmonotonic’s α-values reach around 978 

when pr(p) = 1, in a u-shape with the lowest values around pr(p) = 0.35 (778). The 

nonmonotonic agent performs much better than the Bayesian in terms of α-values when pr(p) 

> 0.35, which is surprising because the Bayesian (but not the nonmonotonic) agent fulfills 

probabilism and conditionalization. The explanation for this result is that it is too risky to gather 

information when pr(p) > 0.35 when the nonmonotonic’s null values about the unobserved 

rooms are worth more α-value than the Bayesian’s indifferent beliefs29. The situation is not the 

same regarding β-values. The β-values of the Bayesian reach around 918 (linear and Brier) or 

839 (normalized log) when pr(p) = 1, in a u-shape with the lowest values around 479 (linear 

and Brier) and 404 (normalized log) when pr(p) = 0.5. The nonmonotonic’s β-values do not 

have a u-shape, as they fall to 80 when pr(p) = 1. Neither the nonmonotonic’s higher α-values 

nor the Bayesian’s higher β-values affect their p-values (both fall to 0 with similar curves). 

In c1 and c2, the functions α and β only disagree on the speed at which the curves 

decrease and at which level they converge. In c3, they disagree on the very shape of the graphs: 

the α- but not the β-values of the nonmonotonic agent have a u-shape. They also disagree on 

which agent achieves higher epistemic value: the α-values of the nonmonotonic agent are higher 

 
29 Suppose that the Wumpus may be in three different rooms, but that the evidence about its position is inaccessible. 

The Bayesian agent would hold indifferent credences of 0.33 about these positions, while nonmonotonic would 

withhold beliefs (null values). The nonmonotonic agent would have a higher α-value regarding those positions 

because α(t, f) > α(t + 1.67, f + 1.33) when t > f, which is usually the case in EWW. The Bayesian would have a 

higher β-value because β(t, f) < β(t + 1.67, f + 1.33). These inequalities use linear scores, but the same holds for 

the Brier and log scores. 



than the Bayesian’s when pr(p) > 0.35, but the β-values of the Bayesian are always higher than 

the nonmonotonic’s. These results are related to the relative accessibility of evidence in c1-c3. 

The functions α and β generally agree in c1 and c2, where the evidence is accessible, 

independently of whether it is informative (c1) or misleading (c2). They disagree in c3, where 

the evidence is increasingly inaccessible when pr(p) > 0.35. Consequently, the functions α and 

β generally agree on their evaluations of how agents reason from the available evidence (c1 and 

c2), but they disagree about what they should do in the absence of evidence (c3). In the absence 

of evidence, the agents tend to maintain their initial belief-values. The initial belief-values of 

the Bayesian agent (e.g., about the Wumpus) are often applications of the principle of 

indifference; the nonmonotonic’s are mostly null. The use of null values may be interpreted as 

the withholding of beliefs. Then the disagreement between the functions α and β in c3 may be 

interpreted as they prescribing different attitudes in the absence of evidence: the function α 

prescribes the withholding of beliefs; the β prescribes indifference (see fn. 28). 

3 Discussion 

The results from EWW may affect the justificatory force of the maximization arguments 

because the nonmonotonic agent (who fulfills neither probabilism nor conditionalization) 

achieves higher α-values than the Bayesian in c3 (when pr(p) > 0.35) and similar p-values in 

the three conditions. Whether this is the case depends on the adoption of the function α as the 

measure of epistemic value and of a set of assumptions different from a1-a3. I will defend these 

choices, starting by proposing three arguments for the adoption of the function α. The first 

argument is pragmatic. In c3, the α-values of the nonmonotonic agent are higher than the 

Bayesian's when pr(p) > 0.35, but the β-values of the Bayesian are always higher than the 

nonmonotonic’s. When pr(p) > 0.35, the Bayesian agent holds many more beliefs than the 

nonmonotonic (e.g., about the Wumpus). These ‘extra beliefs’ do not have practical value 

because the p-values of the Bayesian and nonmonotonic agents are similar in this condition. 



While the function β awards the Bayesian agent for holding beliefs without practical value, the 

function α awards the nonmonotonic agent for not holding those beliefs. From a pragmatic point 

of view, the function α is correct30. The pragmatic argument is controversial because it 

presupposes a form of pragmatic encroachment in the notion of epistemic rationality, whereas 

the epistemological orthodoxy most often separates epistemic rationality from practical 

rationality. Nevertheless, there are investigations that consider the possibility of pragmatic 

encroachment in the notion of epistemic rationality (e.g., Gao 2021). 

The second argument is cognitive. A fundamental aspect of our cognitive situation is 

that human beings are in the finitary predicament of having fixed limits on their cognitive 

capacities and the time available to them (Cherniak 1986, 8). Epistemic rationality seems to 

require from ‘finite reasoners’ (those in the finitary predicament) a form of cognitive 

parsimony: to convert scarce cognitive resources (memory and time) into epistemic value 

efficiently. There are no interesting limits on the amount of information that we can hold in 

long-term memory (Dudai 1997), but the learning of new information can adversely affect our 

capacity to retrieve old information in a process of interference (Baddeley et al. 2020, 291). 

This cognitive limitation is modeled by adopting not an upper bound for the size of B but a 

diminishing reward for the amount of (truthful) commitment, which is done by the function α 

because α(t + 2x, f) − α(t + x, f) < α(t + x, f) − α(t, f), but not by the β because β(t + 2x, f) − β(t 

+ x, f) = β(t + x, f) − β(t, f), where x > 0. This difference between the functions α and β explains 

their incompatible prescriptions in c3, where the nonmonotonic agent’s withholding of beliefs 

in the absence of evidence is more cognitively parsimonious than the Bayesian's indifference 

(see Dantas 2022, for a discussion). If the notion of epistemic rationality should regard finite 

 
30 In c1, both agents are able to explore the cave and end up holding a similar number of beliefs. The Bayesian 

agents may hold extra beliefs in c2, but these beliefs do affect her p-value. 



reasoners, then the function α should be preferred over the function β. The Bayesian model is 

also more cognitively demanding in time (see g. 1 and 2, 1st line and 4th column)31. 

The third argument is epistemic, as it draws on veritistic notions. The function α should 

be preferred over the function β because of how they relate to the most used measure of 

epistemic disvalue (inaccuracy). The goal of believing truths and avoiding falsehoods is two-

fold, but I believe that its second part should take precedence over the first because of ‘the 

problem of contradictory pairs’. The function β evaluates equally an agent who believes (as to 

the same degree) both propositions in a contradictory pair and one who believes neither because 

β(t, f) = β(t + x, f + x) when x > 0, but the second agent should be evaluated higher than the first 

regarding these propositions. This problem could be avoided by attributing weights R and W to 

t and f (respectively) where R < W (Fitelson and Easwaran 2015, 83), but this is to attribute 

priority to the goal of avoiding falsehoods. The function α deals more naturally with this 

problem because α(t, f) > α(t + x, f + x) when x > 0 and t > f, but this is to attribute priority to 

the goal of avoiding falsehoods when t > f32. The nonmonotonic agent has a much lower 

inaccuracy than the Bayesian in c3, as depicted in figures 1 and 2, 2nd and 3rd lines, 4th 

column33. If avoiding falsehoods takes precedence over believing truths, then the evaluation of 

the function α in c3 should be preferred over that of the function β. 

The function β awards investigation more straightforwardly than the function α because 

the β-value, for example, of a new true (maximal) belief, is fixed (1/n), but its α-value varies 

 
31Time requirements were measured as the number of changes in the value of variables used in update procedures. 

The time requirements on the nonmonotonic agent grow polynomially on the size of the cave; the Bayesian's grow 

exponentially (see fig. 1 and 2, 1st line and 4th column). There are algorithms for Bayesian inference that are 

polynomial in time (e.g., belief propagation, see Pearl, 1986), but these only work for singly connected networks, 

whereas EWW requires multiple-connection. Inference from multiply connected Bayesian networks is NP-hard 

(Cooper, 1990). Dantas (2017) argues that rationality demands finite reasoners to implement polynomial patterns 
of inference when they are available. 
32 The situation is the opposite when t < f, where the agent is an anti-expert about her agenda and believes a 

contradiction may serve as a flag for revising her beliefs (Dantas, 2022, discusses this point). 
33 This result does not contradict the conclusions of the accuracy arguments because the Bayesian and 

nonmonotonic agents are not opinionated over the same agenda. In c1 and c2, the nonmonotonic agent also has a 

lower inaccuracy, but both functions agree that the Bayesian achieves a higher epistemic value. In c1, as the cave 

grows from s = 2 to s = 10, the nonmonotonic’s inaccuracy grows from 0.1 to 3, whereas the Bayesian’s grows 

from 0.2, 0.1, or 0.3 to 15, 7, or 27 (linear, Brier, and log scores respectively). 



inversely wrt the overall truthfulness of the agent’s belief-set. If the agent holds mostly true 

beliefs (and many of them), the α-value of investigating will be only marginal. This feature of 

the function β seems welcome, but I believe that the way that the function α awards 

investigation is more appropriate for c3. Figures 1 and 2, 2nd and 3rd lines, 1st, 2nd, and 4th 

columns show that the graphs for α-values have approximately the same shape as those of 

inaccuracy, although vertically reflected because α is a value and inaccuracy a disvalue (the 

same holds in c1). This does not happen with β- values, especially in c3, where the graphs for 

α-values and f have a u-shape for both the Bayesian and the nonmonotonic agents, but the 

graphs for β-values only have a u-shape for the Bayesian. This discrepancy is not welcome in 

c3, where the agents are not able to investigate, and avoiding error (f) is even more important 

than seeking the truth (t). The conservativeness of the function α regarding the measure of 

inaccuracy seems to return the correct evaluation in c3. The functions α and β agree in c1 and 

c2. If my arguments are good, the first should be preferred when they disagree (c3). The 

function α should be preferred as a measure of epistemic value in general, especially regarding 

finite reasoners. 

I have already commented on a1-a3 and EEW’s alternative assumptions (a1’ and a2’), 

but I will return to this point before addressing the DBAs and accuracy arguments. Assumption 

a1 is reasonable, but it is reasonable to risk value at the present if this may result in a gain of 

value in the future. This remark points to the reasonableness of a1’, where the values are 

measured only at the end of each trial. ‘Long run’ evaluations of this sort may raise the concern 

that finite reasoners cannot always wait to fulfill their goals. They may also hide short run vices 

of the agents’ reasoning processes. These concerns may be mitigated by paying attention to 

whether the agent’s reasoning processes enable them to fulfill their goals. The practical 

performance of the Bayesian agent could be seen as the gold standard because she minimizes 

expected inaccuracy in every belief update (given a3) and acts to maximize expected practical 



value (see fn. 22). The agents achieve similar p-values in the three conditions of EWW, which 

suggests that their reasoning processes are equally supporting the fulfillment of their goals 

(except in c2, where all measures show an unmistakable advantage for the Bayesian). These 

results suggest that both agents are able to fulfill their golds and the measuring of values only 

at the end of each trial in EWW is not hiding short run vices of the nonmonotonic agent. The 

related assumption that rationality requires agents not to make choices that lead to a sure loss 

of any practical value is also reasonable, but it depends on idealizing environments that do pose 

trade-offs between goals (I will return to this point in discussing the DBAs). 

Assumption a2 is also reasonable because rationality is usually assumed to have a 

subjective character (e.g., Wedgwood 2015, 221), which is related to what the agent can know 

from the available evidence. Philosophers often distinguish between subjective and objective 

norms, where subjective but not objective norms are sensitive to which evidence is available to 

the agents. The veritistic norm is objective because the truth-values of their beliefs are often not 

transparent for the agents. This is why the Bayesian epistemologists supplement their measures 

of value with the notion of a sure loss or principles of decision theory, to consider rationality's 

subjective character. The resulting Bayesian norms are subjective. The expected values of 

EWW (the mean of actual values) are objective and I propose that their maximization is by 

itself relevant to the agent's rationality (this is the assumption a2'). This focus highlights 

interesting aspects of rationality. Together with a1’, the objective expected values may be seen 

as evaluating the stable beliefs of agents, i.e., those that result from all the evidence available 

to her (including that available in the environment). The very notion of evidence being 

‘available’ to a finite reasoner depends on the amount cognitive resources available to 

investigate. The evidence accessible through investigating the environment may also be 

‘available’ in the relevant sense given a1’ and a2’. This discussion suggests an ecological notion 



of rationality (Todd and Gigerenzer 2007), where the rationality of an agent depends on how 

she copes with her surroundings. 

If a1 and a2 are reasonable assumptions, a3 is not. Opinionation is assumed as a 

simplifying idealization in EUT because of the limitations of the measure of inaccuracy (see 

sec. 1), but the results of EWW suggest that non-opinionated epistemic practices may be worth 

more epistemic value (α-value) than opinionated ones (e.g., when evidence is not accessible). 

In this context, assuming a3 introduces a bias towards Bayesianism because it artificially 

eliminates these practices ‘from the competition’. This assumption also defeats the purpose of 

veritism, of supporting norms of epistemic rationality from veritistic considerations. The 

function β might be used for supporting opinionation from veritistic considerations. For 

example, indifference is worth more β-value than the withholding of belief when the agents 

lack evidence about large exhaustive sets of exclusive propositions (e.g., fn. 28)34. Since the 

function β abstracts from the cognitive limitations of agents, its use for supporting opinionation 

would vindicate the Bayesian model as describing an ideal reasoner (i.e., a reasoner without 

cognitive limitations). This seems correct because the Bayesian ideal reasoner exhibits a form 

of logical omniscience35 and cannot forget36. 

Choices that lead to a sure loss should be avoided, but rational agents may be forced to 

make such choices when the environment poses trade-offs between goals. For example, Douven 

(2013) simulates a Bayesian and an explanationist agent, who updates her credences using 

inference to the best explanation and is vulnerable to DBs. These agents watch finite sequences 

 
34 This is not the case for exhaustive pairs of exclusive propositions (e.g., contradictory pairs) because β(t + x, f + 

x) = β(t, f). How large these sets must be hangs on the relative sizes of the weights R < W, which could be adopted 

to deal with the problem of contradictory pairs (see the epistemic argument). 
35 The Bayesian ideal reasoner fulfills probabilism and conditionalization. The probability’s axiom of normality 

entails that she must be certain of (i.e., hold maximum credence about) every logical truth. If she comes to learn 

some evidence with certainty, then the axioms of normality and finite additivity require her to be certain of every 

logical consequence of that evidence (see Garber 1984, 104). 
36 If the Bayesian ideal reasoner ever reaches certainty on a proposition, then the axioms of probability assure that 

this certainty will be maintained after any subsequent update by conditionalization. Consequently, the Bayesian 

ideal reasoner cannot be certain that she is currently having spaghetti for dinner, but forget this irrelevant fact a 

year later (i.e., loose certainty about it, see Talbott 1991, 139). 



of coin tosses and must estimate the coin’s bias. Douven sets up a game, where the first correct 

estimation yields a point to the estimator, and an incorrect one yields a point to the opponent 

(the trade-off is between speed and accuracy). The Bayesian agent always loses because the 

explanationist converges to an answer faster. Part of the DBAs’ appeal results from non-

Bayesian agents being in the position to know that their choices lead to a sure loss in DB-

environments. But the same is true about Douven’s game because the Bayesian ideal reasoner 

is in the position to know anything that we can only learn from computer simulations (it is not 

surprising that slow convergence reasoning processes are prone to lose in environments that 

award speed of convergence). Then why would DB-environments be so central to rationality? 

I believe they are not, especially because Dutch bookies only occur as fictional characters in 

philosophers' tales (Douven 2013, 431). Although (ecological) rationality is relative to sets of 

conditions (e.g., the Bayesian model copes better with misleading evidence), the relevance of 

these conditions depends on how likely they are to occur to reasoners like us (i.e., how ‘normal’ 

they are). 

The results of EWW impact the accuracy arguments more than the DBAs because the 

nonmonotonic agent (who fulfills neither probabilism nor conditionalization) achieves higher 

α-values than the Bayesian in c3 (when pr(p) > 0.35). This result suggests that the Bayesian 

ideal reasoner is only guaranteed to maximize epistemic value in situations where a1-a3 hold. 

In those situations, she minimizes (expected) inaccuracy. But this result does not hold when 

assumption a3 is relaxed because the nonmonotonic agent achieves lower inaccuracy in the 

three tested conditions (this happens even in c2, in which the Bayesian model achieves higher 

α- and β-values). The results of EWW impact more directly the argument for probabilism than 

that for conditionalization because, when pr(p) is high, the agents are not able to gather evidence 

and, update beliefs (they tend to maintain their initial beliefs). However, the argument for 

conditionalization is also affected. The nonmonotonic’s higher α-values were explained by her 



withholding of beliefs in the absence of evidence (see fn. 28) and there is no update from the 

absence of beliefs to a belief-value by conditionalization. An agent who maximizes α-value in 

the absence of evidence cannot update beliefs by conditionalization. Conversely, the Bayesian 

ideal reasoner's failure in maximizing α-value was explained by her use of the principle of 

indifference, which is how she maintains opinionation in the absence of evidence. The 

inefficiency of the Bayesian model was located in its demand for opinionation (see fn. 15). 

An epistemic interpretation of the nonmonotonic agent’s null values is that she is 

suspending judgment (i.e., adopting a neutral stance toward the truth-value of a proposition). A 

difficulty with this interpretation is that the mere lack of belief-values about a proposition is not 

sufficient for suspension37. There are different notions of suspension, two of which may be used 

to interpret the nonmonotonic’s use of null values: the interrogative view (Friedman 2015), in 

which suspending about a proposition involves actively inquiring about its truth, and the anti-

interrogative view (Lord 2020), in which suspending about a proposition involves forgoing 

evidence about its truth. Intuitively, the nonmonotonic agent does the first when she attributes 

null values at the beginning of each task and when there is evidence of Wumpus in different 

rooms. She does the second at the end of each task when it is too risky to gather evidence about 

the remaining null propositions. There is a notion of suspension in which the Bayesian agent 

may be said to be suspending in c3: the credal view (Sturgeon 2008), where suspending is 

related to the holding of middling credences. The Bayesian agent holds middling credences 

about pits when pr(p) = 0.5, for example, because her initial (indifferent) credences are of 0.5 

and it is difficult to gather evidence when pr(p) > 0.35. This form of suspension does not result 

in higher α-values (but results in higher β-values). This is a matter for another paper. 

4 Conclusions 

 
37 For example, when an agent never considered a proposition, we say that she does not hold a doxastic attitude 

towards it and not that she holds an attitude of committed neutrality (suspension) towards it (Friedman 2013, 167). 



The conclusions of the maximization arguments follow from assumptions a1-a3, but the results 

of EWW show that these conclusions do not hold when an alternative set of reasonable 

assumptions is assumed. For example, the results from EWW show that there is a reasonable 

notion of maximization of epistemic value (α-value, without the assumptions a1-a3) in which a 

nonmonotonic agent, who does not fulfill the Bayesian norms, maximizes epistemic value. The 

nonmonotonic agent also achieves the same amount of practical value in the ‘normal’ condition 

of c1, even though she is vulnerable to DBs. These results suggest that which assumptions and 

measures of epistemic value should be used in an investigation of rationality is open to 

discussion. I have argued that a1 and a2 are reasonable assumptions, but the alternative 

assumptions of EWW are also reasonable. The situation is different with a3 (opinionation), 

which, I have argued, is not a reasonable assumption. Researchers such as Gigerenzer and 

Gaissmaier (2011) have already investigated conditions under which Bayesian reasoning is 

epistemically outperformed by simple reasoning heuristics38. Their claims are corroborated by 

our results, especially because the nonmonotonic’s algorithm for Wumpus implements a 

tallying heuristic (Gigerenzer and Gaissmaier 2011, 469). The results of EWW are interesting 

because they locate the focus of epistemic inefficiency of the Bayesian model in its demand for 

opinionation. Forgoing this assumption is difficult for EUT because inaccuracy cannot be used 

to compare agents with different numbers of beliefs, which may be done with the functions α 

and β. 

The preceding discussion motivates the distinction between two different projects about 

rationality. The first is the Bayesian project, which relies on the assumptions a1-a3 and uses 

functions such as the function β for measuring epistemic value. These assumptions enable the 

focus on analytical methods within this project (see below) because they introduce several 

 
38 “In a number of large worlds, simple heuristics were more accurate than standard statistical methods that have 

the same or more information. These results became known as ‘less-is-more effects’: there is an inverse-U-shaped 

relation between the level of accuracy and amount of information, computation, or time. There is a point where 

more is not better, but harmful” (Gigerenzer and Gaissmaier 2011, 453). 



simplifications. For example, the practical side of a1 requires idealizing that environments do 

not pose trade-offs between goals. These environments are ‘cost-free’ in the sense that no 

practical cost is associated with the gathering of evidence. This allows the Bayesian project to 

separate the epistemic from the practical. This project also abstracts from the cognitive 

limitations of finite reasoners because the function β does not consider these limitations (the 

value of new true beliefs does not depend on the agent's belief-set). The assumption of 

opinionation consolidates this state of affairs because it forces the agents' belief-sets to be fixed 

in size. The goal of the Bayesian project is to describe an ideal reasoner, but it might still 

concern finite reasoners (indirectly). The strategy would be to propose a model as an ideal 

reasoner whom we should strive to approximate (Leitgeb 2014, fn. 3). Approximating the 

Bayesian ideal reasoner would be beneficial for finite agents, even when they cannot be ‘fully’ 

rational. For example, De Bona and Stael (2017, 2018) show that, in doing so, finite reasoners 

are worth more epistemic value and become less vulnerable to DBs. The Bayesian project is an 

axiomatic approach to rationality, where optimization is related to approximating the model. 

The second project is the one that I am proposing in this paper, which measures 

epistemic value using the function α and drops the assumptions a1-a3. The goal of this project 

is to investigate the rationality of finite reasoners, where the function α considers their cognitive 

limitations. The dropping of a1 and a2 has consequences for the methods of the investigation 

because these are the assumptions that enable the use of analytical methods in the Bayesian 

project. For example, a2 enables the consideration of all possible truth-values of the agent's 

beliefs instead of their actual value. The study of actual values may hardly be carried out 

analytically. For example, the choice of a situation to be the actual (as to calculate actual values) 

would be unmotivated. This difficulty is avoided in computational epistemology, where the 

actual values are related to randomly generated environments. I believe that it might be a 

consequence of the no-free-lunch theorems (Wolpert and Macready 1997) that no general 



model of a rational agent will come out as maximizing practical or epistemic value in every 

environment. The rationality of a finite reasoner would depend not on how she approximates a 

model but on how she is able to exploit the features of her environment given her cognitive 

limitations. These are two forms of investigating two different notions of rationality. The first 

is an optimality-oriented axiomatic approach that abstracts the cognitive limitations of finite 

reasoners. The second is an ecological approach that considers those limitations. These projects 

have different methods and goals and should both be carried out, although the assumption of 

opinionation still calls for a justification from Bayesian epistemologists. 

  



Fig. 1: Top to bottom: results of the Bayesian agent for c1, c2, and c3. Left to right: the α- and 

β-values, using linear (○), Brier (×), and log scores (+); and the p-value (△). The results for the 

nonmonotonic agent are depicted in dashed lines. The 4th column depicts the time requirements 

(number of variable-changes) in c1 (□) and f in c2 and c3 using the same scoring rules. 

  



Fig. 2: Top to bottom: results of the nonmonotonic agent for c1, c2, and c3. Left to right: the α- 

and β-values, using linear (○), Brier (×), and log scores (+); and the p-value (△). The results 

for the Bayesian agent are depicted in dashed lines.  The 4th column depicts the time 

requirements (number of variable-changes) in c1 (��) and 𝑓 in c2 and c3 using the same scoring 

rules. 
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